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THE HEAT EQUATION ON A COMPACT LIE GROUP
BY

H. D. FEGAN1

Abstract. Recently there has been much work related to Macdonald's

Tj-function identities. In the present paper the aim is to give another proof of

these identities using analytical methods. This is done by using the heat

equation to obtain Kostant's form of the identities. The basic idea of the

proof is to look at subgroups of the Lie group which are isomorphic to the

group SU(2). When this has been done the problem has essentially been

reduced to that for the group SU(2), which is a classical result.

1. Introduction. Let G be a compact, simply connected and connected

semisimple Lie group. On G we take the Riemannian structure given by left

translation of the metric induced by the Killing form. The Laplacian on G is

A and we have chosen the signs so that A has an increasing sequence of

positive eigenvalues. We shall take the heat equation in the form

Am-(1/(2ot))3«/8/-0; (1.1)

the coefficient of du/ dt represents a change of variables so that the variable /

lies in the upper half-plane. Now let us define a distribution v(x) on G by

K*) = 2 xaWxa(*) (i-2)

where the summation is over the set of dominant weights, Xa is the character

associated to the dominant weight X and a is an element "principal of type p".

We shall use the distribution ¡>(x) as initial data for the heat equation (1.1)

and denote the solution of this problem by Ha(g, t). The main result of this

paper is the following product formula for Ha(g, t).

Theorem 1.1. The solution of the heat equation with initial data v(x) is

CO

Ha(g,t)= IT   det(l - e2™' Ad(g)).
n=l

For a definition of an element "principal of type p" see §2 of this paper or
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[11]. It is clear that a is a special point for the heat equation. Let

*(/) = t~""^(O = II (1 - e2"** ) (1.3)
«=i

where tj(/) is the Dedekind 17-function. Now we shall see that if H(g, t)

denotes the fundamental solution of the heat equation then

H(a,t) = Ha(\,t) (1.4)

where 1 is the identity element of G. Hence putting g = 1 gives the result

Proposition 1.2. The fundamental solution of the heat equation satisfies

emk'lx2H(a, t) = f\(if where k = dim G.

The result of this proposition is Kostant's form of Macdonald's identities.

In [11] it is obtained from Macdonald's 7j-function identities and results about

the properties of the element a. It can also be proved directly, see [5], and

then we have a cycle of three results: Macdonald's 17-function identities,

results about the element a and Proposition 1.2, any two of which imply the

third. However, Macdonald's identities have a more general form [12,

equation (0.4)]. Again there is a cycle of three results: this time the more

general form of Macdonald's identities, results about the element a and

Theorem 1.1, any two of which imply the third. Thus when we prove

Theorem 1.1 directly we shall have given a new proof of Macdonald's

identities, this time using the heat equation. Details of the relationship

between Theorem 1.1 and Macdonald's identities are given in §2 of this

paper.

An important example is the case of the group SU(2), where we find a

result of Jacobi; see [9]. To explain this we introduce one of the classical theta

functions

9l(z,t) = 2 2   (- 0" sin{(2« + l)z}e*<"+,/2)\ (1.5)
n = 0

see [13]. The result of Jacobi is then

00

0, (z, i) = 2<í>(í)í?""/4 sin z   II   (1 - 2e2i™' cos 2z + e4im' ),      (1.6)
n~\

see [13]; our notation is consistent with that of [13] where q is used for e""

and G for </>(/). To see that this result corresponds to Theorem 1.1 we take the

expansion of Ha(g, t) as a sum of characters which using (1.5) gives

2e""/4 sm(wa(g))Ha(g, t) = 9X (nta(g), t) (1.7)

where a is the unique positive root of SU(2). Substituting this expression into

Theorem 1.1 gives the product expansion of #,. We summarize this in the

following result.
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Proposition 1.3. For the group SU(2) the solution of the heat equation with

initial data v(x) is

Ha(g, t) = 9, (™(g), t)/2eM'A sim>a(g)).

It is convenient to express this in its product form.

Proposition 1.4. For the group SU (2) there is the product formula

00

Ha(g,t) = <s>(t)  II  (1 - eUin'e27"a^)(\ - e^e-***&).
n-l

Some details of the case for the group St/(2) will be given in §3 of this paper.

Let us now return to considering the more general case of G a compact

group. Fix a maximal torus T and choose a set {a} of positive roots of G with

respect to T. Now the adjoint representation has a simple expression in terms

of the roots and this enables us to compute explicitly the term

det(l - e2""' Ad(g)); here 1 is the identity matrix and Ad is the adjoint

representation. Expanding this and then collecting terms by roots gives

another expression for our solution of the heat equation.

Theorem 1.5. The solution of the heat equation with initial data v(x) is

, \    9l(na(g);t)    }

a>o[2<?"r'/4sin7ra(g) J

The notation in this theorem is as follows: / is the rank G, ju, is the number of

positive roots, the sign ITa>0 indicates that the product is taken over the

positive roots and the other notation is as before.

It is now clear why the example of the group SU(2) is important. Theorem

1.5 expresses our solution of the heat equation as a product of a function of /

and then a product of factors each of which is the solution of the heat

equation on a copy of the group SU (2). Each of the positive roots of G gives

rise to a subgroup isomorphic to SU(2). The heat equation then has a

solution which is made up of the product of the solutions on each of these

subgroups and a factor <i>(/)'-'1. Since the heat equation is multiplicative, in

the sense that if M = M, X M2 is a product manifold with Riemannian

structure being the product structure, then H(x, t) = Hx(xx, t)H2(x2, t) for

x = (xu x2) and H, Hv and H2 being the solutions of the heat equation on

M, Mx, and M2. Thus one can interpret Theorem 1.5 as expressing the

solution of the heat equation on G as a product of the solutions on the

subgroups associated to the roots with the extra factor <X0/-M to compensate

for the fact that G is not a product of these subgroups. In this context

Theorem 1.5 gives a partial explanation of Macdonald's identities in terms of

the classical identities of Jacobi and the structure of the subgroups

isomorphic to SU (2) inside the Lie group.
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We prove Theorem 1.1 in the form of Theorem 1.5. This proof is broken

down into a series of stages and is finally completed in §7. In §8 we give an

application of this to give a relation involving the Green's function of the Lie

group G. The green's function y is the convolution kernel of the operator

A-1; for details see §8 or [7]. The result is

Theorem 1.6. The Greeris function restricted to the torus T satisfies

roo    °°

v*y\T=\      II  det(l - e~n' Kd(x)\ dt,
Jo     »-1

where v * y is the convolution of y with the distribution v(x).

I wish to thank the many mathematicians with whom I have had helpful

conversations, especially Professor S. Helgason who suggested the application

of the result given in §8 of this paper and Dr. M. Flensted-Jensen for

spending much time in discussions.

2. Macdonald's identities. To begin we recall the basic argument for [11].

Macdonald's îj-function identities can be written in the form

r](t)k=  £   d(X + p)e2"mx+<>)2' (2.1)

asm

where M is a suitable lattice, d(X) = Ua>0B(X, a)/Ua>0B(p, a) with the

products taken over the positive roots, p = \ IIa>0a is half the sum of the

positive roots and B(x, y) is the negative of the Killing form. The sign of the

Killing form has been changed to make B(x,y) positive definite and we use

the notation B(x)2 = B(x, x). In the case when G is simply-laced the lattice is

M = « • P with « the Coxeter number and P the lattice of weights. It is well

known, for example see [10], that c(X) = B(X + p)2 - B(p)2 is the eigenvalue

of the Casimir operator with corresponding eigenfunctions the matrix coef-

ficients of the representation with highest weight X, where we have fixed a

fundamental Weyl chamber D. Now using the strange formula B(p)2 = k/24,

see [5] or [6], we can rewrite (2.1) as

</>(')*=  2   d(X + p)e2mc(A)'. (2.2)
AeA/

For X E M there exists a unique element of W of the Weyl group and a

unique element ju E P n D such that X = <o(/i + p) — p; see [11, Lemma

3.5.2]. Hence there is a weighting e(X) with e(X) = 1, — 1, or 0 such that (2.2)

can be written as a sum over the dominant weights. That is

<K0* =     2     e(X)d(X + p)e2"'c(x)'. (2.3)
XePnD

Now in [11] the weighting e(X) is identified. To do this we must introduce a

special element, that is one which is "principal of type p". Let t denote the Lie
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algebra of T, the maximal torus which we have chosen in G, and t* the dual

to t. The Killing form B(x,y) defines an isomorphism a: t* ->t. Define an

element a E T by a = exp(a(2p)). For our purposes it is sufficient to define

an element "principal of type p" up to conjugation; any element conjugate to

a will be such an element. The weighting is then found to be e(X) = Xa(û)>

where Xa is the character with highest weight X. By the Weyl dimension

formula d(X + p) = dim Vx = XaO) is the dimension of the corresponding

representation space. Thus we now have

<*>(')*=     2      XA(«)XA(l)e2mcW'. (2-4)

\ePnD

Later we shall discuss solutions of the heat equation. We shall see that this

can be represented as a convolution kernel which we denote by H(x, t) and

that this has an expression as a sum over characters as

H(x,t)=     2     XaWXa(1)^2,"c(X)'- (2-5)
Ae/>n£>

Thus we have Macdonald's Tj-function identities expressed in the form

<t>(t)k=H(a,t) (2.6)

which is Proposition 1.2. For details of the rearrangement and identification

of the weighting e(X) used to obtain (2.4) the reader is referred to [11].

Now Macdonald's identities have the more general form, see [12, equation

(0.4)], as a formal identity in an indeterminant X:

00      , .

IT    (1 - x")' 11(1 - x"e2™)\ =   2   Xa*c(A)> (2-7)
n = l  t a I        AeA/

where Xa - ^aew(-iTf*^**fèaSw(-l)ae2*^\Tïàs is of course the

Weyl character formula when X is a dominant weight. We now use the action

of the Weyl group on the lattice M and as in the case of the special identity

we obtain from the right-hand side of (2.7)

2   Xa*c(X)=     2      Xa(*)Xa*c(A)- (2-8)
Aga/ Ae/>n£>

Taking X = e2™' and applying this to « E T we obtain

2   Xx(h)X^ = Ha(h,t). (2.9)
AeA/

The steps in the argument to obtain (2.9) are the same as before in the special

identity.

To work on the left-hand side of (2.7) we consider the adjoint repre-

sentation which for « E T decomposes into:

//

Adh= Aa(h) (2.10)
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where /, is the / X / identity matrix and, for each positive root a, Aa(h) is the

2x2 matrix

(cos 2-na (h)     sin lira (h) \

-sin2ira(h)     cos2ra(li))' (2-H)

Here h E t such that n = exp h. This enables us to calculate explicitly

det(l - X" Ad «) = (1 - X" )' II   det(l - X"Aah), (2.12)
a>0

and we see that the right-hand side of (2.7) gives
00       . .CO

II    (1 - Xn )'II(1 - A-Vma(h))   = II  det(l - X" Ad «).   (2.13)

Writing g for «, putting X = e2*" and combining (2.7), (2.9) and (2.13) gives

Ha(g, t) = II   det(l - e2""" Ad(g)) (2.14)
n = l

which is Theorem 1.1.

3. The group SU(2). The group SU(2) has rank one. The maximal torus is

isomorphic to a circle S1 and t s R. There is one positive root a and we

choose an isomorphism t* -»R so that a -> 1. With this normalization we

have p = \, the Killing form is B(x,y) = ¿xy for x, y E R s t*. The

isomorphism a: t*—>t induced by the Killing form is a map R-»R and

o(2p) = j. The integer lattice is 2Z and the exponential map is exp(x) = e"™

so a = e'v/2. The lattice of weights is P = JZ and we take as dominant

weights those X E jZ such that X > 0. Observe that the Weyl group is

W ss Z2 with the nontrivial element acting as multiplication by — 1. By the

Weyl character formula the character with highest weight X is

Xx(g) = sin((2X + l)*rg)/sin(irg), (3.1)

where g = exp(g), g E T and g E t is regular. The condition g E t is regular

is equivalent to sin(wg) ^ 0. It has been noted that Xa(°) nas special impor-

tance; the values of this are given as follows.

— 1,    X is an odd integer,

Xx(a) = - 0,        A is not an integer, (3.2)

1,        X is an even integer,

and the eigenvalues of the Casimir operator are

c(X) = {-X(X+ 1). (3.3)

The fundamental solution of the heat equation is given by

H(g,t)~     S     XAU)XA(l)e2mc(X)', (3-4)
Xefnö
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and the distribution v by

"(X>= 2(-l)"x,(*). (3-5)
n = 0

Hence the solution Ha(g, t), which is obtained by taking the convolution of

v(x) with H(g, t), is given by

tf„U>')=2   X,(g)(-1)"^*K")', (3-6)
n = 0

which upon substituting for Xn(g) becomes

Ha(g, 0=2 (- l)"(sin{(2« + l)Wg}/sin ^g)eim^+l)'.        (3.7)
n = 0

Let us recall the definitions of one of the classical theta functions; from

[13] we have

#1 (*. 0 = 2 2 (- 0 sin((2« + l)z)<?'v(n+1/2)2'. (3.8)

Since «(« + 1) = (« + j)2 — \ the expression (3.7) can be written as

Ha(g,t) = 9, (77g, t)/ (2 sin^gK«/4 ). (3.9)

As before let <>(/) = II"=i(l - e2"""); then there is the classical result, see

[13],

91 (nrg, t)/ (2 sin(7rg)<?""/4) = <b(t) 2 (1 - 2e2™' cos(2vrg) + e4*"" ).(3.10)

Hence by substituting (3.10) into (3.9) we obtain

Ha(g, t) = <i>(/) 2 0 - e2'in'e2"<s)(l - e2™'e-2™*). (3.11)
n=l

This is Proposition 1.4 and equation (3.9) is Proposition 1.3.

Finally observe that since H(a,t) = Ha(\, t) by putting g = 0 we obtain

the special identity for SU(2), that is

H(a,t)=<b(tf. (3.12)

4. The heat equation. We begin this section with some results about the heat

equation on a Riemannian manifold. After discussing it in this generality we

shall then specialize to the case when the Riemannian manifold is a Lie

group. Since much of this is taken from [1] and [2] the reader is referred there

for proofs and further details.

Let M be a compact Riemannian manifold with metric tensor g0; then in
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local coordinates the Laplacian is given by

V = -F^= 2   ¿7 (\^j> ^ \ (4.1)ydet(g~)    "   dx    V dx   I

where (g") = (g^)- '. As the heat equation on M we take AG + dG/dt = 0,

G(x, 0) = f(x), where G: M X R+ -> R is the solution to the problem with/:

M->Ra given initial condition. This problem can be solved for any initial

condition/when the kernel of the heat equation is known.

Definition. The kernel of the heat equation is a function

K:M X M XR+^R

satisfying the following three conditions:

(1) K is C° in the three variables, C2 in the first two variables and C ' in the

last variable.

(2) &2K + dK/dt = 0 where A2 is the Laplacian acting on the second

variable.

(3) For each y E M, lim,_„0 K(x,y, t) = 8y(x), where 8y(x) is the Dirac

measure concentrated at y.

We need the following normalization of measures on M. The metric tensor

gy defines a volume form and hence a measure dg on M. Let v = fMl dg so

that v is the volume of M with respect to the Riemannian structure and set

dx = v~ldg so that dx is a measure on M with jM\ dx = 1. The Dirac

measure concentrated at y then has the formal property that, for a suitable

class of functions/: M -» R, fMf(x)8y(x) dx = /( v).

It is known that the kernel of the heat equation exists and is unique. Once

we have such a kernel then the solution of the heat equation with initial

condition / is given by

G(y,t) = ( f(x)K(x,y,t)dx. (4.2)
JM

The function K has an expansion in terms of the eigenfunctions of the

Laplacian. Let spec(Af) denote the eigenvalues of the Laplacian A and for

X E spec(Af) let >//,,..., \¡/r be an orthonormal basis of the eigenfunctions of

A with eigenvalue X and using (»p, <i>> = fM\p(x)^>(x) dx as the inner product.

Change notation so that {</>,} is a complete set of orthonormal eigenfunctions

of A and let A, be the eigenvalue corresponding to <fy. Of course these are not

all distinct but we have an increasing sequence

0 < X, < X2 < ... (4.3)

which is unbounded. With this notation K is given by

K(x,y,t) = 2 fyixtyiyy-*. (4.4)

It is clear from this formula that K(x,y, t) = K(y, x, t) and that K is C°° in
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the three variables and analytic in the third.

Now let M = G be a compact simply connected Lie group. Let g0 be the

bi-invariant metric defined by the innerproduct induced from the Killing

form. The Casimir operator is denoted by A and we adopt the convention of

sign which gives A an increasing sequence of positive eigenvalues. We shall

call the function given by the following definition the fundamental solution.

Definition. The fundamental solution of the heat equation is

H: G x R+^R

which satisfies the three conditions:

(1) H is C° in the two variables, C2 in the first and C ' in the second.

(2)AH +dH/dt = 0.
(3) lim^o H(x, t) = 5,(x) where 5,(x) is the Dirac measure concentrated

at the identity of the group G.

Again we use a normalized measure. Let dx denote the unique bi-invariant

Haar measure on G normalized so that /Gl dx = 1. Then if/: G-»R is an

initial condition the corresponding solution of the heat equation is given by

G(y,t) = [f(x)H(x-ly,t)dx. (4.5)

A proof of this follows immediately from the next theorem.

Theorem 4.1. The functions H and K are related by H(x~y,t) =

K(x,y, t). In particular since K exists and is unique so is H.

Proof. Since K(x, y, t) satisfies the conditions of the first definition and is

unique we can define H(y, t) = K(\,y, t), and then check that H satisfies

the conditions of the second definition. Conversely for each H satisfying the

second definition let K(x,y, t) = H(x~y, t) and we see that K satisfies the

first definition and hence H is unique.

The function K has an expansion as a sum of eigenfunctions of A; see (4.4).

There is an analogous expansion for H in terms of the characters of G. For

X E P n D a dominant weight let ttx: G -^ Aut Vx denote the corresponding

finite dimensional irreducible representation and Xa the character of -nx. It is

well known that the Casimir element A E Z (11) is an element of the centre of

the universal enveloping algebra It of g. Hence A acts by scalar multiplication

on the representation and this scalar is c(X); see [10]. Thus the eigenfunctions

of A are the matrix coefficients of itx and the corresponding eigenvalue is

c(X). This gives the following expansion in characters for H:

H(g,t)=     2      Xa(1)XaU)*-c(X)'- (4-6)
Ae^no

Notice that this follows from the Peter-Weyl theory which gives the following.
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Let

S=     0    (KA®rç); (4-7)
Ae/TiZ>

then 5 is dense in L2(G), the square-integrable functions on G. In this Ff is

the dual space to Vx.

We have chosen a normalization of our characters so that XaO) ~ dim V\-

This gives us the following formula for the convolution of characters:

»(«»•¿¡M-{*w ;jr*      <«)
For the case which we are studying we wish to work with the solution of the

heat equation with initial data v(x). Recall that v(x) was defined as a sum of

characters

'(*) = 2 Xa(«)Xa(*)> (4-9)

where a is an element "principal of type "principal of type p" and so Xa(û) is

+ 1, - 1 or 0. The solution with initial data v(x) is given by

Ha(g,t) = (v*H)(g,t) (4.10)

and so using (4.8) and the expressions for v and H as sums of characters we

obtain immediately

Ha(g,t)=     2     Xx(a)Xx(g)e-cM'. (4.11)
Ae/TiO

Notice that from equations (4.6) and (4.11) we have

H(a,t) = Ha(\,t). (4.12)

Finally we remark that in our applications we shall replace the variable /

by -2777/. This corresponds to replacing the heat equation by the equation

Au + (— \/2mï)du/dt = 0 when the variable / lies along the imaginary axis

in the upper half-plane. Then we shall replace the solutions by their analytic

continuations to the whole upper half-plane. Neither of these steps presents

any difficulties and making this change helps us to relate our functions to the

classical ones which are traditionally defined on the upper half-plane.

5. The heat equation on a torus. To study the fundamental solution on the

maximal torus T we define an embedding into another torus T1*. Consider a

positive root a; then a: t -> R is a linear functional on the Lie algebra of T.

Since a takes integer values on the integer lattice there is associated to a a

map a„: T-» R/Z. Let (a,, . . . , a^} be the set of positive roots, where p is

the number of positive roots, and let T* = S1 X • • • X S1 with p factors.

Then the embedding A t : T —> T* is given by

^W = («i-W.v(4 (51)
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Similarly we have a map A : t -» RM of Lie algebras which is given by

A(x) = (ai(x),...,%(x)) (5.2)

for x E t and where we are now regarding the roots as linear functional on t.

In fact since the map a, is the derivative, at the identity element, of a,-, then

the map A is the derivative of A ̂ .

We shall show that in a natural way the map A m is an isometry. To do this

we must introduce Riemannian metrics on T and T*. Firstly introduce inner

products on t and RM as follows. For x, y E t let B(x, y) = 2a(x)a(y) be the

negative of the Killing form, with the sum over all the roots both positive and

negative. Since G is a compact semisimple Lie group B is a nondegenerate

positive definite innerproduct on t. For u, v E R*1 with u = (u,,..., u^) and

v = (vt, .. ., v^) let <m, t>> = 22,UjVj be twice the standard innerproduct on

R*1. Now t and R*1 are the tangent spaces at the identity to T and TM. Hence

by left translation these innerproducts define Riemannian structures on T

and TM. With these Riemannian structures the map A „ is an isometry.

Lemma 5.1. The embedding An: T-> T7* is an isometry.

Proof. It is sufficient to check that B(x, y) = (A(x), A(y)) since A is the

derivative of A. This follows immediately from the definitions since B(x, y) =

2ZjL,a,(x)a,(y).

The main result of this section can now be stated and proved.

Theorem 5.2. Let h(x, t) and «M(x, /) denote respectively the fundamental

solutions of the heat equation on T and T^; then there is a function F,(/) such

that h(x,t) = F,(/)«M(^,(x), t).

Proof. Since the embedding A „ is an isometry which preserves the group

structure, that is A^(xy) = A +(x)A „,( v), it is sufficient to check the result

infinitesimally. Thus if h(x, /) and h^x, /) denote the liftings of h(x, t) and

hß(x, t) it is sufficient to check that

h(x,t) = Fx(t)\(x,t). (5.3)

To do this let y,, . . . , y, be an orthonormal basis for t with respect to B(x, y);

then z, = A (y,), . . . , z, = /l(y,) are orthonormal in R*1 with respect to (x, y>.

Complete these to an orthonormal basis z„ . . . , zM for RM. Then since the

heat equation is multiplicative

/

h(x, 0 = II  h,( v,(x), /) (5.4)
y=i

and

h„(x, i) = fi  h,(z,(x), t), (5.5)
i-l
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where the functions .y, (x) are given by x = S>'7(x)y/ and similarly for z,(x). In

(5.4) and (5.5) h,(x, /) denotes the lifting of the solution on a circle. From the

definition of these bases we have

z,(^x))->(x) ^-;-.•.a (5.6)
A   K "      1 0 for/ - / + 1, . . . , p. K    '

Thus the result of Theorem 5.2 follows with Ft(t) = h,(0, ff~*.

Remark. We have in fact proved more than is stated in the theorem by

identifying F,(/) as F,(/) = h,(0, if**.

6. Passage between the torus and the group. Let AG denote the Laplacian on

G and AT the flat Laplacian on T, both of which are associated to the metrics

induced by the Killing form. As before we have chosen the signs so that both

AG and Ar have increasing sequences of positive eigenvalues. If / is a class

function on G, that is.y = gxg~x implies f(y) = f(x), then/is determined by

its restriction f\T to the maximal torus. Similarly AG(/) is also a class

function and so is determined by (AG/)| T. The two functions (Ac/)! T and

Ar(/| T) are in fact related and the result is due to Harish-Chandra.

Lemma 6.1. The functions (AG/)| T and AT(f\ T) are related by

j(x)(Acf)(x) = (AT - B(pf)j(x)(f\T)(x),

where j(x) = ITa>o(2/ sin tra^x)) is the denominator of the Weyl character

formula and as usual B(p)2 means B(p)2 = B(p, p).

Proof. See [7, p. 587], but notice that the signs of our Laplacians are

different to those in [7], hence the difference in the sign of B(p)2.

As a consequence of this we can express solutions of the heat equation on

G, restricted to T, in terms of solutions of the flat heat equation on T. More

precisely this is given by the result.

Proposition 6.2. Let kT(x, t) be a solution of the heat equation on T; then

for x a regular element of T

kc(x,t) = e-2«iB^'kT(x,t)/j(x)

is a solution of the heat equation on G restricted to the regular elements of T.

Proof. This follows from an easy calculation by substituting the functions

into the equation Au — (\/2m)du/dt = 0, with the relevant Laplacian A.

It is important to realize that this result gives a correspondence between

solutions of the heat equation on T with those on G rather than between

fundamental solutions. In fact if kT(x, t) is the fundamental solution on T

then the corresponding function kG(x, t) is not the fundamental solution of

the equation on G. This is clearly seen by observing that on a manifold M if

H(x, t) denotes the fundamental solution then lim,^,^ H(x, t) = 1. Hence if
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kT(x, t) is the fundamental solution we have that kG(x, t) satisfies as t -» /oo

the following:

lim  kG(x, t) = lim  e'2niB(p)2'/j(x) (6.1)
I —Woo f—Woo

and so kG(x, t) is unbounded.

We are interested in finding the solution of the heat equation on T which

corresponds to the solution on G with initial data v(x). For convenience of

notation we shall call this the v(x)-solution; more precisely we make the

following definition.

Definition. If Ha(g, t) is the solution of the heat equation on G with initial

data v(x) then the function

k(x, t) = e2^»)2'j(x)Ha (x, t) (6.2)

for x a regular element of the maximal torus T will be called the v(x)-solution

of the heat equation on T.

One way to describe the v(x)-solution is to consider its expansion in a series

of characters. It has already been shown that

Ha(x,t)=     2     XA(*)XA(a)e2mc(X)'- (6-3)
Ae/Tlö

Hence since c(X) = B(X + p)2 — B(p)2 we have from the definition

K(x,t)=     2     J(x)xÁx)Xx(a)e2"iB(x+")2'. (6.4)
AePnO

Now the Weyl character formula gives for x a regular element of T with

x = exp x, x £ t

/«xa(*)= 2 (-lyv™^")«. (6.5)
u>BW

Before substituting this into equation (6.4) observe that under the action of

the Weyl group the orbit of P n D in P is in fact the whole of P. We must

now consider the function Xxia) as a function of X. By the Weyl character

formula we have

j(a)Xx(a)=   2   (-If^^^» (6.6)

where we have used the definition of a = exp(a(2p)); see §2. Now since the

Killing form B(x,y) is invariant under the action of the Weyl group we can

write (6.6) as

J(a)Xx{a)=   2  (-1)V"<^+'». (6.7)
o>ew

At this point we can use the Weyl denominator formula to observe that we
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have

7(a)x*(a)=/(2a(X + p)), (6.8)

where, as in §2, a: t* -»t is induced by the Killing form and the function/

has, on the right-hand side of (6.8), been lifted from T to t. In [11] it is shown

that a is a regular element of T and so j(a) =?*= 0. Define the function a:

t* -* R by

a(X)=/(2a(X))//(a) (6.9)

so that Xx(a) = a(X + p). This function has the properties:

(1) a(X) = 0 ifX is in a wall of the Weyl chamber,

(2) a(wX) = (- \)ua(X)for a E W.

Here (-1)" is the sign of w. Since p E P there is a map P -» P given by

X -» X + p and it is well known that under this map P n D maps onto the

lattice points in the interior of D. Using these facts we can substitute the

Weyl character formula, (6.5), into equation (6.4) to obtain the following

result.

Lemma 6.3. If x E T is a regular point and x E t satisfies x = exp x then

K(x, t) = 2   a(X)e2«*XM+BM2'\
\eP

Corollary 6.4. Let v1 be the distribution on T defined by vl(x) =

2xe/> a(X)e2mX(x); then K(x, i) is the solution of the heat equation on T with

initial condition vx(x).

In the previous section the fundamental solution of the heat equation on

the torus T was expressed as a product over the roots, this is essentially the

content of Theorem 5.2. We shall express the solution on G with initial data

v(x) as a product over the roots.

Theorem 6.5. Let Ha(x, t) denote our solution of the heat equation on G;

then there is a function F(t) such that

Ha(x,t) = F(t) II   #3(«.(*).')
a>0

for x £ T where H3(x, t) is the solution of the heat equation on SU(2).

Proof. Our solution H(x, t) is related to the v(x)-solution K(x, t) by the

definition

K(x, t) = e2"iB(l'f'j(x)H(x, t). (6.10)

Now by the "strange formula", see [6], B(p)2 = k/24 where k = dim G, but

k = / + 2p and so

B(p)2= (I - p)/24 + 3p/24. (6.11)



THE HEAT EQUATION 353

By Weyl's denominator formula we can express j(x) in terms of j3(x), the

denominator of the Weyl character formula for SU(2), this is

j(x) = II Z3(«*(*)). (6.12)
a>0

Since Si/(2) is three dimensional and we have p positive roots we can write

(6.10) as

K(x, t) = e2^'-'i)'/2AH(x, t) II   e2m3'/24/3(a*(*)), (6.13)
<x>0

and so it is sufficient to prove that

K(x, t) = e2*i(l-¿>"2*F(t) II   K3 (a.(x), t) (6.14)
a>0

where K3 is the v(x)-solution of the group SU(2).

The solution of the heat equation on T can be obtained from the initial

condition and the fundamental solution. To complete the proof of the

theorem we must study both the initial condition given by t>\x) and the

fundamental solution.

To consider the distribution vl(x) let us recall its definition:

p\x) = 2   a(X)e2viXM (6.15)
Xep

where a(X) = j(a(2X))/j(a). Now the Weyl denominator function is the

product over the roots

J(x) = II /3 («(*)) (6.16)
cr>0

of the corresponding function for the group SU(2). Thus we have that a(X) is

the product over the roots

a(X)= II   a3(B(a,X)); (6.17)
<*>o

again this is a product of the corresponding function for the group SU(2).

Now a(X) is, by (6.15), the Fourier transform of vl(x). Thus the product

formula (6.17) for a(X) gives an expression for vx(x) as the convolution

product of the corresponding functions for SU (2) with the product taken

over the positive roots. Now from Theorem 5.2 we have

h(x,t) = Fi(t) II  «,(<*,(*),/), (6.18)
o>0

where h(x, t) is the fundamental solution on T and «, is the fundamental

solution on a circle. The product formula (6.17) now enables us to use the
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argument of Theorem 5.2 and so obtain the product formula for the v(x)-

solution. This is

K(x,t) = F2(t) II  K3(a(x),t) (6.19)

for F2(t) a suitable function of /.

The simply change in notation

F2(t) = e2™('->l)'/24F(t) (6.20)

gives equation (6.14) which completes the proof of the theorem.

Remark. As in Theorem 5.2 we have in fact proved more than is stated in

the theorem. The additional information is that F(t) = /(f)'-'1 for some

function /(/). In Theorem 5.2 we were able to express the corresponding

function in terms of the fundamental solution of the heat equation on a circle.

Here we shall only remark that /(/) is related to a solution on the circle and

determine it in detail later.

7. Proof of the main theorem. In this section we shall complete the proof of

the main theorem, that is Theorem 1.1, which we shall obtain in the form of

Theorem 1.5. That is we shall prove the following

Theorem 7.1. The solution of the heat equation on the Lie group G with

initial data v(x) is

, 0, (7ra(x), /)
Ha(x, /) = «*/)'-" n   .'; ;; ;,/4.

a>0 2 sin(7ra(x))e"r'/4

Proof. Recall the equations we have already established.

Ha(x,t) = F(t)J[   H3(a,(x),t), (7.1)
a>0

0, (™,(x), t)
H3(x,t)~—-—— (7.2)

2 sin ■tram(x)e""/

and the function F(t) has the form

F(0=/(0/_". (7-3)

These are from Theorem 6.5, equation (3.9) and equation (6.20).

In [5] it was shown that

H (a, t) = <t>(t)k. (7-4)

Hence since H(a,t) = Ha(\, t) we see that

/(/)'" "tf/)3*= <b(t)'+2» (7-5)

where we have used the identity k = I + 2p. It is immediate from (7.5) that

/(/) = <j>(t) which completes the proof of the theorem.
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Alternatively to see that /(/) = </>(/) we can recall equation (3.12) which

gives

H3(\,t) = <p(tf. (7.6)

Now from the proof of Theorem 6.5 we see that/(i) comes from the solution

evaluated at the origin. That is we see that

Ha(\,t)=f(t)k. (1.1)

Comparing this with the result for SU(2), equation (7.6), gives that for some

constant c, a root of unity,

/(o = ¿m
To determine c we let t —> /oo and we find c'-'1 = 1 and so it is sufficient to

take/(i) = <#/)•

8. The Green's function on G. Consider the following space of functions on

G,

C0°°(G)= {/://(*)<& = o}. (8.1)

Then the Laplacian A: C¿°(G) -* C¿°(G) is an isomorphism of C¿°(G) onto

itself, see [7]. Let T denote the inverse operator to A; then T is an integral

operator whose kernel, y, is the Green's kernel of G. This is characterised by

Lemma 8.1. The Greeris function y considered as a distribution on G is the

unique solution of the equation Ay = 8 — 1.

Proof. This is taken from [7].

Let yp be the distribution on T given by the Fourier series

Yp=       2 2 l 2 e™, (8-2)

¿HArV*(p)2  5(x) - b(p)

and let J be the linear form on C^T) given by

•/(F) = (-ir(2((-irn/;f- (8-3)
Here Fu denotes the action of the Weyl group element w on F. Since/(x)

divides all functions which are skew invariant under the Weyl group this is

well defined. The Green's function is now given by

Lemma 8.2. The restriction of the Greeri s function to T is

y|ï>(y, •/)//.

Proof. This is again taken from [7].

By using Theorem 1.1 we can obtain another expression for y\T. For the

remainder of this section we shall take the heat equation in the form
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Ah + du/ dt = 0 so then Theorem 1.2 gives our solution as

00

Ha(x, t) = II  det(l - e~m Ad(x)). (8.4)
n = l

Proceeding formally we have the operator V(t) defined by

V(t)f(x) = e-Í(x). (8.5)

Since we have

d(V(t)f(x))/dt=-A(V(t)f(x)) (8.6)

then formally the kernel of V(t) is convolution by H(x, t). The operator Y

can be formally obtained from V by

r/(*) = (X V(t)f(x) dt. (8.7)
•'o

By its definition the function y is the kernel of the operator T and so we have

obtained

Proposition 8.3. 77ie Greeri s function restricted to the torus T satisfies

roo    °°

v*y\T = j     II  det(l - e~m Ad(x)) dt.
"    n = l

Proof. Convolution with v(x) maps C™(G) -> C£°(G) since the Haar

measure on G is invariant. Hence we have the composition of operators

v*Tf(x) = [v* j™V(t)fdt}(x), (8.8)

which gives v * y\ T = /" Ha(x, t) dt since convolution with Ha(x, t) is equal

to the composition of applying V(t) followed by convolution with v(x).
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