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Abstract. Let f{z) = J,fanz" be close-to-convex on the unit disc. It is

shown that (a) if A > 0, then/ belongs to the Hardy space Hx if and only if

2 «x"2|a„|x is finite and that (b) if 0 < X < 1, then/' G Hx if and only if

either 2 na_2|ajx or, equivalently, fl0Mx(r,f')dr is convergent. It is

noted that the first of these results does not extend to the full class of

univalent functions and that the second is best possible in a number of

different senses.

1. Introduction and summary of results. Let

f(z) = ^anz" = fanz"
l

be regular on the unit disc A = {z: \z\ < 1} and, for 0 < r < 1, define the

family of means

{Mx(r):0<X < oo}

by

Mx(r) = Mx(f) = Mx(r,f) = (¿ f\J{re»)f d9J    ,

with the usual convention applying here and below when X = oo. Thus, for

instance,

A/00(r,/) = max{|/(z)|:|z|=r},

which for notational convenience we write variously as M(r,f), M(r) or

M(f). (Here too and throughout the paper we adopt the practice of not

displaying limits on (i) sums that are over the set of positive integers; (ii)

integrals with respect to d9 that are over (0, 2m); and (iii) integrals with

respect to dt that are over (0, 1).)
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Fix X > 0 and consider the following propositions:

sup{MA(r,/):0<r< 1} < oo, (1.1)

i.e.,/belongs to the Hardy space Hx;

(jV (',/)<*)     <«d, (1.2)

i.e., the maximum modulus function M(f) is an element of the Lebesgue space
Lx(0, 1);

(lrtx-2\an\x)l/X<oo, (1.3)

i.e., the series 2«x~2|a„|A is convergent if 0 < X < oo, and the sequence (n an)

is bounded ifX= oo;

the derivative f belongs to //**, where p = X/(l + X). (1.4)

Of the very many significant results established by Hardy and Littlewood

involving these statements, we recall here only the following:

Theorem A. 7/0 < X < oo, then (1.1) => (1.2).

Theorem B. 7/0 < X < 2, then (1.1) => (1.3).

Theorem C. If 2 < X < oo, then (1.3) => (1.1).

Theorem D. 7/0 < X < oo, then (1.4) =»(1.1).

Aside from the trivial fact that (1.1) and (1.2) say the same thing if X = oo,

the converse of each of these theorems is false in general. (A proof of this

fact, together with a good discussion of these theorems can be found in [4].)

However, restricted converses of Theorems A, B, and C are known. Thus, for

instance, if/ is univalent on A, then (1.1) and (1.2) are equivalent for all

X > 0, and (1.1) and (1.3) for X E [1, 2]. Again if / G DC, the class of
close-to-convex functions defined below, then (1.1)«* (1.3) if 1 < À < oo.

(These and related observations are noted in our paper [8].) Whereas, as

Clunie and Pommerenke have shown in [3], the implication "(1.1) => (1.3)"

also holds when / G DC and X = oo, the opposite conclusion is false, as the

example

/(z)=2""1*n,       z E A,

shows: as in the general case, the most we can conclude is that

/G H {Hx:0<X<oo}.

One purpose of the present paper is to complete a line of study initiated in

[8] about the class DC; another is to obtain converses of Theorems A and B

for the class DC' = {g';gGDC} when 0 < X < 1, and yet another is to
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establish that the converse of Theorem D holds if / is starlike, but not if

/ G DC. We proceed to formulate our principal results.

Theorem 1. Letf(z) = 2a„z" G DC andO < X < oo. Then

/G Z7A<=>2nA~2|ö/< oo.

In view of the known results mentioned above, Theorem 1 follows once we

show that (1.3) forces (1.1) when 0 < X < 1; and this we do in §4.

Theorem 2. Let f(z) = 2a„z" G DC and 0 < X < 1. 77k?« the following

statements are equivalent.

(a)/' G 77\
(b)M(f')ELx(0, 1).

(c) S«2*-2^/ < °o.

This theorem is best possible in a number of senses. First of all, we observe

that (b) =* (a) if X = 1. In fact, a good deal more can be said, namely

Theorem 3. Let f be starlike. Then no matter how slowly M(r,f) tends to

infinity as r -^ 1~ we cannot, in general, infer that f EH1.

Since it is true, generally, that (c) => (a) if X > 2, it is tempting to speculate

that this also occurs if 1 < X < 2 and/ G DC. But the next result shows that

this is not the case.

Theorem 4. Suppose 1 < X < 2. Then there is a starlike function f, whose

Taylor coefficients a„ are nonnegative, such that (c) obtains and yet f £ Hx.

There remains the possibility that (a)=>(c) if X > 1 and/ G DC. This is

certainly true if 1 < X < 2, by Theorem B. However, it is false if 2 < X < oo.

To see this, let2<X<oo,0<a = l— 2/X and consider the function

f(z) = z + (2a - l)22-(1 + a)mz2"' =2a„zn.

Then

\f'(z) - l|<2«a„ = 1    forallzGA.
2

Hence (a) holds and/is starlike [2], but (c) is false.

Finally, we remark that Theorem 2 does not extend to the full class of

univalent functions. Indeed, whereas for such functions statements (b) and (c)

hold if 0 < X < 1/3, Lohwater, Piranian and Rudin have shown in [11] (cf.

also [1]) that a sequence (n(p)) of positive integers can be chosen so that the

function

f(z) = J"exp{ \ 2 W-W} dw,     zEA,
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is univalent on A, belongs to 77°° and yet its derivative has unbounded

characteristic. Since («(/>)) can also be selected (cf. [4, p. 87]) to meet the

requirement

2r"W= 0(q>(r))       (r-»l)

for a given <p(r) increasing to infinity as r —> 1, it follows that we have a

univalent function / such that M (r, /') increases arbitrarily slowly to infinity

and

supf J log+\f'(rei9)\ d9: 0 < r < 1 j = +00.

Thus, for no X > 0 is it true that (a) follows from (b) if / is assumed to be

merely univalent.

Theorem 4 shows that the implication "(c) => (a)" fails if/is univalent and

1 < X < 2. The examples just discussed have absolutely convergent power

series on \z\ = 1-since they are bounded and have nonnegative Taylor

coefficients-and hence satisfy (c), by Holder's inequality, if 0 < X < 1. Thus

the implication "(c) => (a)" fails also if 0 < X < 1.

Theorems 2, 3 and 4 are proved in §5 and in the last section we prove the

following results.

Theorem 5. Suppose f G DC n Hx, where 0 < X < 00. Thenf E H", where

0 < v < p = X/(l + X); butf & H* in general.

Theorem 6. If f is starlike and 0 < X < 00, then f E Hx if and only if

f E H», where p = X/(l + X).

2. Definitions and notations. For a given regular function/(z) = 2 a„z" we

set

P(r) = P(r,f)=^\an\r",       0 < r < 1.

We write <$ for the class of regular functions of the form

«(z) = 1+2 c„zn,       z E A,

which have positive real part on A.

A regular function

/(;) = 2^n (2-1)

is said to belong to the class S * of starlike functions if and only if / is

univalent on A and the image/(A) contains the line segment [0, W] whenever

it contains W. It can be shown that

/GS*«»F(z) = z/'(z)/7(z)G<3>.
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For each/ G S * the limit

log M (/-,/)
lim        f    .;     \   = a(f) (2.2)
r->\    - log(l - r) v  ' v    '

exists and 0 < a(f) < 2 [12]; a(f) is called the o/tfer of/.

A function/of the form (2.1) is called close-to-convex if there is a starlike

function g and a function « G 9 such that

z/'(z) = g(z)h(z),       z E A. (2.3)

The class DC of such functions was introduced by Kaplan [10] and shown by

him to consist of univalent functions. It is clear that S * c DC.

3. Some preliminary lemmas.

We begin by establishing a result about the class of univalent functions.

Lemma 1. Iff(z) = "2anz" is univalent on A, then

rP(r,f) < \6P(r2,f),       0 < r < 1.

Proof. Let 0 < r < 1. Then, by Schwarz's inequality,

rP'(r)=^n\an\r"

<(2«K|V,+1)1/2(i-'-r1

= (M(r'/2)),/2(l-r)-1,

where it A (r) is the area of/({z: \z\ < r}). Since

A(r) < M2(r) < P2(r)

and the function t -*■ (1 — t)2t~xM(i) decreases on (0, 1) [7], it follows that

rP'(r) < M(r^2)r^2(\ - r)"1

Hence the function

,^(1 - /«/2)V•/>(/)

is also decreasing on (0, 1). The stated result is now an easy consequence of

this.

We refer to [3] for a proof of the next result.

Lemma 2. Let f E DC. Then, for every pair of functions g E S *, h G ty

involved in the factorization (2.3), we have

f\g(reie)\Re h(reie) d9 < 2mM(r,f)

i/0 < r < 1.
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The same source also contains all the ingredients for a proof of Lemma 3,

but, for convenience, we give some of the details.

Lemma 3. Letf(z) = 2 a„z" E DC. Then, ifO<r< I,

n\a„\rn <4P(r,f),       « = 1,2....

Proof. Our starting point is the inequality

n\an\<±-n j\g(re»)\Reh(rei»)d9

+ 2^ 1/ ̂ *) M*") ein»
(3.1)

taken from [3], where g E S *, « G <3> and (2.3) holds.

By Lemma 2, the first term on the right of (3.1) is dominated by 2r~"M(r).

The second term can be expressed as r~2n\Jn(2, r)\, where

/„(2, r) - £- [     zn+lf'(z)e-2i«**w $■ .
2m J\A = r tz

Now

•>„(2, r) - l f     M**-3""«*** G(z) f

after an integration by parts, where

G(z) = zg'(z)/g(z)   and   /„(z) = /V/'(w) dw,       z E A.

Clearly

|7„(2,r)|<2M(r,/n)

since C£f. Putting these facts together, we see that

n\an\r" < 2M(r) + 2r~nM(r,fn) < 4P(r),

as asserted.

4. Proof of Theorem 1. The case X > 1 was completely disposed of in [8].

As far as the remaining case, 0 < X < 1, is concerned, it is enough, in view of

Theorem B, to establish that the finiteness of the series 2 nx~2\a„\x qualifies/

for membership of Hx; and this is an easy consequence of the following more

general theorem.

Theorem 7. Let f(z) = 2 a„z" G DC, 0<x<l and 0 < y < I. Then

there is a positive constant C, depending only on x andy, such that

f(P(t,f))\l - t)-ydt < C2 nx+y-2\an\x.
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Proof. For s > 0 and 0 < r < 1, we write

Ps(r)=I,n°-l\an\sr»,

and, using Holder's inequality in a straightforward manner, we find that

P(r) = SKK" =^{nx-l\an\Xr")X(nx\an\l + xrn)l~X

<(S^-1NV)x(2«>n|1+v)1_x

= (PAr))X(Pl+x(r)y-X.

Now

p^x(ñ < pi+x(rl+x) -2(«nr)W

< 4*(F(r))1+*,

by Lemma 3. Hence

7^) <(^('2))>.+*('2))'~*< Cl^i^rf^W)1-1,

where, here and immediately following, C(x) stands for a positive constant,

depending only on x, and not necessarily the same at each occurrence.

Appealing now to Lemma 1, we infer that, if r > \, say, then

l-x2
P(r2)<C(x)(Px(r2)) (P(r2))

and so

(P(t))x< C(x)Px(t)

if t E [ i, 1]. It now follows that

J(P(t))X(l - t)~ydt < C(*)j>x(0(l - *f'*

= C(x)^nx-1\an\xit"(\-tfydt

n ^  .-.,   .,r(n + l)r(l-j>)
= c(x)2^ *K|    r(i, + 2-y)

whence the conclusion of the theorem is immediate, since

T(n+2-y)~ny <* "» °°>-

Proof of Theorem 1. It is enough to show that if

2 »A-2K|X

is finite, then / G Hx. For this purpose, set x = X and v = 0 in Theorem 7.

Noting that M(r,f) < P(r,f),0< r < 1, we see at once that M(f) belongs
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to Lx (0, 1). Hence, since/is univalent,/ G Hx [8].

Remark 1. Since every univalent function on A satisfies (1.1) and (1.3) if

0 < X < \, the argument just presented was really only necessary to deal with

the range \ < X < 1, and it may well be that the conclusion holds also, in this

case, for all univalent functions.

5. Proofs of Theorems 2-4. Concerning Theorem 2, it is, of course, well

known (see, for example, [4, p 87]) that (a) => (b) for all X > 0 and that

(a) => (c) for all X G (0, 2]. The inequality derived in the next theorem allows

us to reverse these implications if 0 < X < 1 and/belongs to DC.

Theorem 8. Let 0 < x < 1 and letf G DC. Then, for 0 < r < 1,

rMx (r,f) < sec(mx/2) frMx (/,/') dt.

Proof. Select a pair of functions g G S * and n G 9 to satisfy (2.3) and

then define/^ by

zf'x(z) = gx(z)hx(z),       zEA,

where

gx(z) = z(g(z)/z)xE%*

and

hx(z) = (h(z))xE$,

so that/, G DC. Lemma 2 applies to/x and so, if 0 < r < 1,

f\.gx(rei9)\Re hx(rei9) d9 < 2mM(r,fx).

But

Re hx(z) > cos(7Tx/2)|«(z)f,        z G A,

and hence

rMx (r,f) = ^S\f'(rei9)\Xd9

= ^i\g(reie)f\h(re«>)\Xd9

< sec(™/2) ^ f\g(re*)\* Re hx(reiB) d9

sec(wx/2)   r
j\gx(re»)\Rehx(re»)d9

as required.

2tt

< sec(mx/2) M(r, fx)

<sec(mx/2)[rM (t,fx)dt
JQ

= sec(mx/2) f M x(t,f')dt
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Corollary 8.1. Iff E DC, 0 < X < 1, andM(f') E 7/(0, 1), thenf E Hx.
In other words, (b) => (a).

The proof is obvious.

Corollary 8.2. If f(z) = 2 anz" G DC, 0 < X < 1 and 2 /ia-2K|x «
convergent, then f E Hx, i.e., (c) => (a).

Proof. Since for any univalent function/we have [7]

rM(r,f) < 2M(r,f)(\ - r)~\       0 < r < 1, (5.1)

an application of Theorem 7 with x = y = X shows that Af (/') belongs to

7/(0, 1), whence the result follows.

Before embarking on the proofs of Theorems 3 and 4, which are of a

negative character, it may be in order to recall a few general facts about Riesz

products of the form

00

II (1 + cos(«(A:)0)), (5.2)
k = \

where the positive integers n(k) satisfy the condition

n(k + 1) > 2p(*),     n(k) = 2 «(/)•
7 = 1

(For information about Riesz products not mentioned here, the reader is

referred to [14].)

The kth partial product of (5.2) can be expressed as a linear combination of

cosines:

* n(k)

Pk(0) = II (1 + cos(«(/)0)) = 1+2   cm cos m9;
j=\ n=l

andpk + l(9) is obtained by adding topk(9) the polynomialpk(9) cos (n(k +

1)9) all of whose terms are of rank > n(k + 1) - fi(k) > fi(k).

The numbers (cm) generated in this way are such that 0 < cm < 1 and

cn(k) =1,       k = 1, 2, ... . (5.3)

Consider now the function « defined on A by the power series

h(z)=\+^cnz".

Since each pk(9) is a nonnegative partial sum of the real part of the

trigonometric series 1 + 2cme""*, it follows that « G 9. Moreover, cOT-^*0,

by (5.3). After these few remarks, we are ready to prove

Theorem 9. Let <p be any positive function defined and increasing on [0, 1)

and such that q>(r) -» oo as r -> 1_. Then there exists a function h(z) = 1 +
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2c„zn G "5P with c„ > 0, such that

M(r,h) = 0(<p(r))       (r^l-),

but for which cn -t* 0.

Proof. Let the sequence (r„) be defined by

log(l - rn)
—- = n,       « > 1,

log/-„

so that j < r, < r2 < . . . < 1 and

r„" = 1 - rn,       «=1,2,.... (5.4)

Choose a sequence of positive integers (n(k)) such that n(k + \)/n(k) > 3

and

<p(rn(k)) > 2*+2,       k > 1. (5.5)

Since

* oo

2n(k) = 22 «CO < 2n(k) 2 3_y= 3«(A:)
j-\ y=o

the sequence («(A:)) generates, in the manner described above, a function

h(z) = 1 + 2 cnz" E 9 having the properties that c„ > 0 and c„ -¿»0. It

remains to show that M(r, h) — 0(<p(r)). To this end, note that

2* = p,(0) = 1 + 2 cm,       k>\. (5.6)
m = 1

Let /"„(!)</■< 1 and choose 9 such that

rn(q) < r < r„(,+1).

Then

hir) < Hr>*i*n) = ' + 2 tA+i)
"(9+1)

< 1 +  2 cm+    2    C(,+o
m-1 m>n(q+\)

M(?+l)

< 1+    2    cm+^:'1>/(l-rn(9+1))
1

= 2«+1 + l<2«+2<<p(rn(i))<<p(r),

by (5.4), (5.6) and (5.5).

Remark 2. Those familiar with Riesz products will recognize that the

construction used in Theorem 9 provides an indirect method of manu-

facturing singular measures having good continuity properties as measured by

their moduli of continuity. While the existence of such measures is well
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known (cf. [13] and the references therein), the method just described yields

ones whose Fourier-Stieltjes coefficients are nonnegative and 'large' infinitely

often.

Proof of Theorem 3. Without loss of generality, we can suppose given a

positive <p(r) increasing to infinity as r —> 1 ~ and such that

f<p(t) dt < oo. (5.7)

Choose h(z) = 1 + 2c„z" in accordance with Theorem 9 and define/by

f(z) = z exp (\h(w) - \)/w dw - 2^". (5-8)
•'o

Then/ G S * and, by (5.7),/ G 77°°. Since the Taylor coefficients of / and h

are related by the equations
n-i

(« - \)an = c„_, + 2 <*kCn-k>       » > 3, (5.9)
fc-2

we see that the a„ are nonnegative and such that « a„+1 > c„. Thus « an -i^O

and so/' G 77 ', while at the same time

M(r,f') = 0(y(r)),       r-»l,

a consequence of the identity

zf'(z) - /(z)«(z),       zGA.

Proof of Theorem 4. This time, let the function «(z) = 1 + 2 c„z"

correspond to the Riesz product 11(1 + cos(n(k)9)), generated by the

sequence n(k) = 22\ As before, cn -»0, but now the c„ are small on the

average, in the sense that

2cm=0(logJV),
i

as can be seen very easily from (5.6).

Since 0 < c„ < 1 and X > 1 we deduce that

TN = ^cx= O (log N).
i

A summation by parts now reveals that, as m —> oo,

m m

2*x-2c¿=2*A-2(T;t-7';t_1)       (7-0-0)
1 1

m-1

-m*-arm+ 2 [^-^(À^i)*-2^

= 0(mA-2log«i) + OÍ 2>x"3log/t] = 0(1)
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since 1 < X < 2. Thus

^nx-2cx<oo.

Next, define/by (5.8), so that/ G S * and

f(z) = zexp *2c„z"/n.

As we have just proved, the series 2 c„/«, in particular, is convergent.

Hence, so is 2 an.

Rewriting (5.9), we see that, if ß > 0,

n-\

(n - l)a„ = 2 ««-*<*>       « > 2,
i

= 1 an_kkBckk~B
i

<(n-l)ß2a„_k(ckk-B),
i

i.e.

(n-l)l-ßan<"^an_k(ckk-B),       « > 2.
i

Applying first Holder's inequality, with exponents X and X/(X - 1), to

these inequalities, and then adding the new ones, we find that

_S(«-i)*-'V<(2 *)f_£->-*.
a simple special case of the remarkable inequality proved by Hardy and

Littlewood in [6]. Taking ß = (2 — X)/X, we now deduce that

2 n*-^ < oo,

although /' G 77 ', because (« an) does not converge to zero.

6. Proofs of Theorems 5 and 6. In this section we examine to what extent

the converse of Theorem D holds when/ G DC. The answer is furnished by

Theorem 5, whose proof we proceed to give. So, let / G DC n Hx, p = X/v

and q == X/(X - v). Then p and q are conjugate exponents and qv < 1, by

assumption. Using inequality (5.1) together with Holder's inequality we find

that

f{tM(t,f')Ydt < 2'f M'(t,f)(\ - ty'dt

<2(JV" (/,/)<*)  '(/(l-/)""*)   *

= 2(1-^-'/'(Ja/'-(/,/)<*) '
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By Theorem A, the last displayed integral is finite. Hence M(f') belongs to

7/(0, 1) and the first part of Theorem 5 is now seen to be another

consequence of Theorem 8.

To complete the proof we need an example of a function in DC n 77x for

some X > 0 whose derivative is not an element of 77 M, where p = X/(l + X).

To this end, consider the function

<p(z) = (1 - z) log^l - z)/z2

-o-o(2-"-y«)-i-2 v"
It is easily seen that <p„ > 0 and that 2 <p„ = 1. Hence <p E <$. Likewise, if

0 < e < 1, the functions <pE, (1 - z)l~efpe(z) and their reciprocals belong to

ty if the branches are appropriately chosen. With these qualifications, the

function

is a member of 9. Since also any regular branch of

*(*) = tH-t^ .      z e A-
(1 -z)

is starlike, if 0 < a < 2, it follows that the function/defined by

/(Z) = (1 - z)1+a I - log (1 - z) j

belongs to DC, if 0 < a < 2 and 0 < e < 1. (This generalizes an example

given in [5].)

Now choose a in (0, 1) and then e so that a < 2e < 1 + a. The estimate

A/(/-,/)=o((l-r)-alog-2£(147))

shows that M(f) E Li/a (0, 1) and, therefore,/ G Hx,a. However, since

M(r,f) >-—,— ( —t—Çz- )
V      ^     (1 - r)l + a I  - log(l - r) /

and 2e < 1 + a,

M(f') G V^+a\Q, 1),

and, a fortiori/' G i/'/(1+a), by Theorem 2. This concludes the proof.

In contrast to the result just established, it is interesting to note that, if we

work with the class of starlike functions, then we do obtain a direct converse

of Theorem D. This is the content of the necessity part of Theorem 6, which
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is one of the consequences of our last main result.

Theorem 10. Let / G S * and let a = a(f) denote the order off as defined

by (2.2). Then (i)/ G 77x, 0 < X < oo, if and only if aX < 1 and (ii)/' G H11,

0 < p < 1, if and only i/p(l + a) < 1.

Proof, (i) Suppose aX < 1. The defining relation (2.2) shows that M(f)

belongs to LA(0, 1), and so/ G 77x, since/is univalent.

Suppose, conversely, that / G 77x and that a > 0. It can be shown [9] that

there is a complex number u, with |w| = 1, such that

|/(z)| >2«"2|z| |fl,|/| 1 -üz\",       zEA,

whence it results that (1 - z)~a E Hx. Hence aX < 1.

(ii) Suppose/' G Tf. Then, by Theorem D,/ G H*W~tí and so, by what

we have just done, ap < 1 — p, i.e., p(l + a) < 1.

Conversely, if p(l + a) < 1, then, by part (i) again, there exists e > 0 such

that / belongs to 77', where p = (1 + e)p/(l - p), and so, by Theorem 5,

/' G //>.

The following is an immediate consequence of part (i), and we omit the

proof which is obvious.

Corollary 10.1. Iff is starlike, then f is a member of every Hardy space if

and only if a(f) = 0.
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