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INVARIANCE OF THE L-REGULARITY OF COMPACT SETS
IN CY UNDER HOLOMORPHIC MAPPINGS
BY
W. PLESNIAK

ABSTRACT. The property for a polynomially convex compact set E in C¥
that the Siciak extremal function ®; be continuous or, equivalently, that E
satisfy some Bernstein type inequality, is proved to be invariant under a
large class of holomorphic mappings with values in C¥ (M < N) including
all open holomorphic mappings. Local specifications of this result are also
given.

0. Introduction. Let E be a polynomially convex compact set in CV and let
P, (C") denote the space of all polynomials from C" to C! of degree at most
n. It is known [8] that if f is a holomorphic function in a neighborhood of E
then

lim sup [ dist,( £, P,,(C”’))]l/'l <1,
n—oo

where the distance from f to P,(C") is taken in the sense of the supremum
norm on E, denoted by || || g-

Conversely, in order that each continuous function f defined on E and
satisfying there (s) be continuable to a holomorphic function in a neigh-
borhood of E, the compact set E must satisfy some regularity conditions (see
[1]) of the type of Bernstein’s (or Markov’s) inequality for polynomials, and in
the case where the compact set E is sufficiently big, they are equivalent to the
continuity in C" of Siciak’s extremal function of E (see [8] and [9)):

©5(2) = sup{|p(z)["/": p € P,(C"), ||plls < 1,n > 1}
for z € C". In the sequel a compact set E C CV, for which the function ® g is
continuous in C, is said to be L-regular (compare [9]). By a result of
Zaharjuta [11] (see also [9]), in order that E be L-regular it suffices that the
function @, be continuous in E.
If N = 1, the function log ® is known to be equal to the Green function
of the unbounded component of the set C' \ E with pole at oo, and hence the
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question about the L-regularity of compact sets in C' is well explored.
Incomparably less is known about this problem in the case where N > 1.
Some criteria of L-regularity can be found in [8}, [9] and [1]. Additional
information on the class of L-regular subsets of C can be derived from the
main result of this paper (Theorem 3.5) saying that the property for a
polynomially convex, compact set E in C¥ to be L-regular is invariant under
a large class % of holomorphic mappings in a neighborhood of E, with values
in CM (M < N), including, in particular, all open holomorphic mappings.
Thus if M = 1, the class ¥ consists of all nonconstant holomorphic functions
in a neighborhood of E. This result has been probably unknown even in the
case where N = 1.

Next we give local specifications of the main result and examine the
invariance under holomorphic mappings of the property for E to be L-regular
at a point a € E, which stands, by definition, for the continuity of the
extremal function ®; at a. Here we distinguish two cases (Theorems 3.8 and
3.12) according as E is a compact subset of R¥ or CV and leave open the
problem of equivalence of both results (see Remark 3.10 and Question 3.11).

1. Properties (A) and (B).

1.1. Let E be a compact set in CV and let C(E) denote the Banach space of
complex-valued continuous functions defined on E with the supremum norm
| llg- Given an open set U in C¥ let O,(U) be the Banach space of all
bounded continuous functions defined on E U U holomorphic in U, with the
supremum norm on £ U U. We denote by N (U) the kernel of the natural
restriction ry: O,(U) 3 f—fg € C(E) and by A(U) its range endowed
with the quotient topology O, (U)/ N (U).

Given a subset F of E we define

Og(F) = mdhm 0:(U)
U open

and

Ng(F) = md lim Ng(U).

F, U open

The mappings r,, define the restriction r: O (F)— C(E) with its kernel
Ng(F) and its range

Ag(F) = U;ngll}lglpcn Ag(U).

Let us consider an increasing sequence (H,) of vector subspaces of the
space Oz(F) and a nondecreasing sequence (m,) of positive numbers. Follow-
ing Baouendi and Goulaouic [1] (see also [10]) we define properties (A) and
(B) of the quadruplet (E, F, (H,), (m,)) as follows.
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PROPERTY (A). For any function f € C(E), if
lim sup [ diste(f, r(H,))]"™< 1,
n—oo

then f € A (F).

PROPERTY (B). For any real number b > 1 there exist an open neighbor-
hood U of F and a constant C > 0 such that foranyh € H,(n=1,2,...)
there exists g € Ng(F) for which h + g € O,(U) and

sup |h(z) + g(2)| < Cb™||h|.
zE

1.2. If the compact sets E and F are so big that No(F) = 0, then Property
(B) of the quadruplet (E, F, (H,), (m,)) yields the following:

PROPERTY (B’). For any real number b > 1 there exist an open neighbor-
hood U of F and a constant C > 0 such thateachh € H, (n=1,2,...)
belongs to O (U) and

sup |h(z)| < Cb™| || .
zeU

In some special cases we shall also prove that (B’) implies (B) and
Ng(F) = 0 (see Proposition 3.2).

We note that Property (B’) is an analogue of the well-known Bernstein-
Walsh inequality for polynomials which can be written in terms of the
extremal function @, as follows.

1.3. INEQUALITY. For any polynomialp € P,(CY)(n = 1,2, ...), we have

p(2)] <[pls[@(2)]" 2 e,

An important role in our considerations will be played by the following
theorem due to Baouendi and Goulaouic [1] (the case where E = F c RY).

1.4. THEOREM. Assume that for each a € (0,1), TF_ ,a™ < oo and

lim sup,_, .m,,,/m, < co. Then Properties (A) and (B) for the quadruplet
(E, F, (H,), (m,)) are equivalent.

The proof of the implication (B) = (A) is easy while the converse implica-
tion can be proved in the same manner as in [10] (the case where H, =
P(C")andm,=nn=12,...).

1.5. REMARK. Notice that we have not assumed the spaces H, of Theorem
1.4 to be finite dimensional. However it can be proved in the case where
E = F is polynomially convex that Property (B) holds only if dim r(H,) =
O(mY), as n — o (see [7)).

2. Invariance of Property (B) under holomorphic mappings. We start with a
lemma which is a version for families of holomorphic functions of a theorem
due to Siciak [8, Theorem 10.2] being a generalization to C¥ of a known
Bernstein-Walsh Theorem. The lemma was first stated in [5). Here we give its
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elegant proof communicated to us by Siciak. Another proof can be derived
from Theorem 2 in [11}.

2.1. LeMMA. Let A(U) denote the Banach space of all bounded holomorphic
functions defined in an open set U in CY, equipped with the supremum norm on
U, || || y- For each polynomially convex compact set E C U there exist constants
C > 0anda € (0, 1), both C and a independent of f € A(U) and n, such that

distz(f, P,(C")) < C|f)2"
Jorall finA(U)andn=1,2..... ,
PrOOF. Given a polynomially convex compact set E C U, we can find a

polynomial polyhedron P C U such that E Cint P (see e.g. [2, Lemma
2.7.4)). Then for sufficiently small r > 0, the set

E' = B(a,r),

a€E

where B(a, r) denotes the closed ball {z € C": |z — a| < r}, is contained in
P together with its polynomially convex hull

E7 = {2 €C": |p(2)] < I|pllg forallp € P,(C") and n > 1}.
Since we have (see [8])
DPpa (z) =max{l, |z —a|/r}, z€CV, 2(1)
and
®;(2) < g (z), z €CV, whenever E, D E,, 2(2)

which immediately follows from the definition of the extremal function, the
set E” is L-regular and so is the set E” because for every compact set E ¢ C¥
we have

O.(z) = ®z(z), zeCV

Consequently the set E of the lemma can be assumed to be L-regular. Then
there exists an R > 1 such that

Dp={z€C":®(z) <R} C U
Take any b € (1, R) and define
&, = { f € C(E): sup b dist,(f, P,(C")) < oo}.
n>0

&, is a Banach space with the norm
s =l + Sl;]()) b" distg(f, P,(C)).
n

By the above-mentioned result of Siciak [8, Theorem 10.2), there is a natural
inclusion @,: A(U)— &,. One can also easily check that the graph of the
mapping g, is closed. Hence ¢, is continuous, which gives the result.
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2.2. Given a compact set E C CV let
®(z) = lim sup P(w)
and
o(E) = lim sup [2/®2(2) ]

2|00
The number ¢(E) is called the C"-capacity of E (see [9), [11]; if N = 1, ¢(E)
is equal to the logarithmic capacity of E). By 2(2), if E, C E,, then ¢(E)) <
c(E,). If E is L-regular at a point a € C¥, then by Inequality 1.3 and 2(1),
¢(E) > 0.
The following lemma will play a crucial role in the proof of the main result
of this section (Proposition 2.9).

2.3. LEMMA. Suppose E is a polynomially convex compact set in C¥ and F is a
subset of E. Let h be a holomorphic mapping defined in an open neighborhood U
of E, with values in CM (M < N). Assume that c(h(E)) > 0. Then, if Property
(B) holds for the quadruplet (E, F, (P,(C")), (n)), it also holds for the quadru-
plet(E, F, (H,),(n)), where H, = {p o h: p € P,(CM)},n=1,2,....

Proor. By Theorem 1.4 it suffices to show that Property (A) holds for
(E, F, (H,), (n)). To this aim take a function f € C(E) such that
If — Pn ° Az < Ca”, n=12..., 2(3)

where p, € P,(CM), C >0 and a € (0, 1), the constants C and a being
independent of n. We wish to show that f € A, (F). Observe that by 2(3), for
each n,

IPallscey =11Pn © Bz < C +|fle.

We may obviously suppose that k is bounded in U. Since c¢(h(E)) > 0, we
have

B = sup{®yg)(w): w € h(U)} < 0.
Hence by Inequality 1.3,
B, = sup |p,(h(2))|= sup |p,(W)| <||Pulls)B"s
zEU weh(U)
whence
B, < (C +||flg)B" < D"

for each n, with an appropriate constant D > 0. By Lemma 2.1 we can find
constants D, > 0 and d € (0, 1) such that

distz(p, ° h, P,(C")) < D,D"d*

for k > 1, n > 1. Then by setting k = mn, where the positive integer m is so
chosen that Dd™ < d, we get

distg(p, © h, P(CY)) < Dd",  1n > 1,
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whence by 2(3),
distz( f, P,,,(CV)) < D,dy,

for n > 1, where D, > max(C, D,) and d, = max(a, d) < 1. Therefore, since
formn < k <m{n + 1),

distg(f, P(C)) < distg(f, P,,,(CV)) < Dy(d}/*)* < D,d¥
with d, € (0, 1) independent of n, we get

lim sup [ distz(f, P(CY))]"* < 1,

and since the quadruplet (E, F, (P,(C")), (k)) has Property (A), it follows
that f € A (F), as claimed.

2.4. ReMARK. It occurs that ¢(E) = 0 but c(h(E)) > 0, e.g. take E = [0, 1]
X {0} c R? and set i(z,, z,) = z,.

We shall need the following

2.5. LEMMA. Let E be a compact subset of C¥ with ¢(E) > 0. Suppose h is a

holomorphic mapping in a connected open set U, E C U, with values in
CM(M < N), such that

sup{c(F): F C h(U), F compact} > 0.
Then c(h(E)) > 0.

PROOF. Suppose c(h(E)) = 0. Then h(E) is globally C™-polar (see [9,
Corollary 3.9)), i.e. one could find a plurisubharmonic function p in C* such
that p(w) = — oo for w € h(E). Then the function ¢ = p ° h is plurisub-
harmonic in U, and by the assumptions on h, ¢  — oo in U. Since g(z) =
—oo for z € E, the set E is locally C-polar, whence by a recent result of
Josefson [3], it should be globally C¥-polar. Consequently by [9, Theorem
3.10], we would have ¢(E) = 0, a contradiction.

2.6. REMARK. The assumption that f is nonconstant in U is not sufficient for
the above lemma to hold. Take, e.g, E = {(x}, X3, x3): 0< x; < 1, i =
1,2,3} c R®and h(z,y, 25 23) = (24, 2)).

2.7. Given a compact set E in C" let h be a holomorphic mapping in an
open neighborhood U of E, with values in C (M < N). In the sequel we
shall be interested in A such that for a given subset F of E, the triplet
(h, E, F) satisfies the following hypothesis:

(H) For each a € F and each bounded open set V suchthat Fc V c V
C U, the set i(V) is L-regular at h(a).

Notice that if the mapping 4 is open in an open neighborhood W of F then
by 2(1) and 2(2) the triplet (h, E, F) satisfies (H). In particular, if M = 1 and
h is nonconstant in any connected component W of U such that W N F
I, then by the open mapping theorem for holomorphic functions the triplet
(h, E, F) satisfies (H).
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An example of a triplet (h, E, F) satisfying (H) with a nonopen 4 is given
by h(z,, z,) = (z,, z,2,) for (z,, z) EC2and E = F = [0, 1] X [0, 1].
From Lemma 2.5 we derive

2.8. COROLLARY. If h: U - CM (M < N) is holomorphic and U is connected,
and the triplet (h, E, E) satisfies (H), then ¢(E) > 0 implies c(h(E)) > 0.

More generally, if there exists a point a € E such that (h, E, {a}) satisfies
(H), and for the connected component V, of the set U which contains a, we have
c(V, N E) >0, then c(h(E)) > 0.

Now we can prove

2.9. PROPOSITION. Let E be a polynomially convex, compact set in C~ and h a
holomorphic mapping in an open set U O E, with values in CM (M < N).
Assume that c(h(E)) > 0. Then, for any subset F of E:

1°. If (E, F, (P,(C")), (n)) has Property (B) and the triplet (h, E, F) satisfies
(H), and N (F) =0, then the quadruplet (h(E), h(F), (P,(CM)), (n)) has
Property (B').

2°. If M = N and h is a biholomorphism, then if (E, F, (P,(C")), (n)) has
Property (B) then the quadruplet (h(E), h(F), (P,(C™)), (n)) also has this
property.

ProoF. In both 1° and 2’, if (E, F, (P,(C)), (n)) satisfies (B), then by
virtue of Lemma 2.3, so does the quadruplet (E, F, (H,), (n)), where H, =
{p ° h: p € P,(CM)}. It follows that for each b > 1 there exist a bounded
openset V, FC V c ¥V c U, and a constant C > 0 such that for each n
and each p € P,(C) one can find g, € Ng(¥) such that

sg;:/ |p(h(2)) + g,(2)| < Cb™?||p ° h||. 2(4)
Now with the assumptions of case 1°, it follows that & = 0, whence

sup |p(w)|= sup |p(h(2))| < Cb"?||p © h||g = Cb"*||p||nce)
weh(V) zeV

The set #(¥) need not be a neighborhood of A(F). However, by (H), there is
an open neighborhood W of A(F) such that
q)h(V)(W) < bl/z, wE W,
and then by Inequality 1.3 we get
sup |p(w)| < Cb"||p||ncey,
weEW

which completes the proof of case 1°.
2°. Since A is a biholomorphism, the set W = h(}V) is an open neighbor-
hood of h(F) for each open set ¥ such that F ¢ V C U, and by 2(4) we get
sup |p(w) + 5,(h~'(W))] < CB"lpllncs
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whence since g, © h~' € Ny x(h(F)), we get the result.

3. Applications to the L-regularity. In this section our attention will be
devoted to Properties (B) and (B’) in the case where H, = P,(C") and
m, =n,n=12,....Then, given a compact set E C C" and a subset F of
E, we shall shortly write (E, F) € (B) (resp. (E, F) € (B)) if Property (B)
(resp. (B")) holds for (E, F, (P,(C")), (n)).

3.1. We note that (E, F) € (B') if and only if E is L-regular at every point
a €€ F.

3.2. ProPOSITION. 1°. For any polynomially convex compact set E in CV,
(E, E) € (B) if and only if (E, E) € (B) and No(E) = 0.

2°. If E CRY then for any subset F of E, (E, F) € B) if and only if
(E,F) € (B)and N (F) =0

PROOF. By virtue of (1.2) in both 1° and 2° it suffices to prove that
(E, F) € (B) implies N(F) =

1°. Take a function f € N(U), where U is an open neighborhood of E.
Since (E, E) € (B'), the set E is L-regular, whence for each R > 1 the set

={z €C": ®y(2) < R}
is compact and E C int ER Since E = E, the polynomially convex hull of E,
we can find R > 1 such that E; = ER C U. Then by Lemma 2.1 there exist
constants C > 0 and a € (0, 1), and a sequence of polynomials p, € P,(C")
(n=1,2,...),such that
If — Palle, < Ca”, n=1,2,..

If I <R" < min(R, 2/(1 + a)), then Ep. C E and since f=0 on E, by
Inequality 1.3 we get

Mlze <If = Pallee +1IPalee. < Ca” +[[p,|| (R)" < C[a" + (2“/(l + a))’]
forn=1,2,..., whence f = 0 on E,, and, consequently, N (E) =

2°. It sufflces to show that if E is L-regular at b € E then NE(b) 0. To
do this take a function f € Ng(U), where U is an open neighborhood of b.
We can find three bounded closed parallelepipeds K,, K,, and Kj, such that

beintK,K cintK,,,i=12K,C Uand E C K,. Then by Lemma 2.1
there exist polynomials p, € P,(CY) (n =1, 2, ... ) such that
If = Pull, < Ca”

with C > 0 and a € (0, 1), both C and a independent of n. By [6, Lemma
12.3], there exist polynomials /, € P,(C") (k=1,2,...) and constants
D > 0andd € (0, 1) such that

M5 = Uik, < DA% Nl kinex, < Dd* and  |[f]|x, < D™
fork=12,....Writer, , = p, (k > 1, n > 1). By Inequality 1.3 there is
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a constant A > 0 such that
[Pallc, < A", n=12,....
Then foreach k > 1 and n > 1, we have

Wenll £ hintie,) <Nl kssinescy | Pall &, < DA,

"rk:"HEn(Kz\imK,) < l)k)v"pn"En'(2 < DCkNa"
and
Irenll £k, < (D + 1)Ca™
Now choose an integer m > 0 such that 4d™ < e = max(a, d) < 1 and set
Ty =Typyn for n=1,2,.... Then by the above inequalities there exists
ny > 0 such that
Iralle< Dyet forn > ng,

with an appropriate constant D, > 0 and e, = (e + 1)/2. Hence by Inequal-
ity 1.3, we can find a compact neighborhood ¥ of the point b, V' C K|, such
that

rally =0, asn— oo.

On the other hand, for each n,

I7a = Pallx, < oma = ix,IPallx, < De”,
whence

Wy <Wf = Pally +1Pa = rally +li7ally >0
as n — oo, which yields f = 0 on V. This gives the result.

3.3. REMARK. If E is not polynomially convex, then Proposition 3.2(1°) fails
to hold (take, e.g., for N = 1, E = {|z| = 1} U {0}; then ®-(z) = max(l, |z|)
but No(E) # 0).

We also note that by the Stone-Weierstrass theorem, if E C R” then E is
polynomially convex. '

3.4. Question. For any compact set E = E C C does the L-regularity of E
ata pointa € E imply Ng(a) = 0?

We note that this is the case when N = 1 (see Remark 3.10 and the proof
of Theorem 3.12).

Now we can prove the main result of this paper.

3.5. THEOREM. Let E be a polynomially convex, L-regular compact set in C¥
and h a holomorphic mapping in an open neighborhood U of E, with values in
CM (M < N), such that the triplet (h, E, E) satisfies (H). Then h(E) is
L-regular.

PROOF. Since E is L-regular, then by 2(1) and Inequality 1.3, ¢(£) > 0. By
Corollary 2.8 we then have c(h(E)) > 0, and by Proposition 3.2(1°) we get
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Ng(E) = 0. Therefore by Proposition 2.9(1") and by 3.1, the set A(E) is
L-regular.

3.6. COROLLARY. If E=E Cc CV is L-regular and h: E c U>C! is
holomorphic and nonconstant in any connected component W of U such that
W N E # O, then the set h(E) is also L-regular.

3.7. REMARK. If E # E, then Theorem 3.5 fails to hold; take, e.g., E = {|z]
=1} U {3} c C'and h(z) = z~!; then h(E) is not L-regular at 2 € h(E).

Now we wish to give local versions of Theorem 3.5. Owing to Proposition
3.2(2"), by a similar argument to that of the proof of Theorem 3.5 we get

3.8. THEOREM. If a compact set E C R” is L-regular at a point a € E and h:
EcU—->CY (M < N) is holomorphic in U and such that the triplet
(h, E, {a}) satisfies (H), then h(E) is L-regular at h(a).

We cannot prove Theorem 3.8 for any compact set E = Eccy (see
Question 3.4). Nevertheless we shall give a little weaker (or equivalent-see
Remark 3.10 and Question 3.11) version of this result.

3.9. DEFINITION (compare [9]). A compact set E C CV is said to satisfy
condition (L") at a point a € E, if for each r > 0 the set E N B(a, r) is
L-regular at a; B(a, r) being the closed ball with centre a and radius .

3.10. REMARK. It is obvious that if E satisfies (L!) at a € E, then it is
L-regular at a. Conversely, if N=1 and a € E = E (or a € )(C'\ E), if
E # E) then the L-regularity of E at a implies that E satisfies (L') at a (see
e.g. [4, (5.1.15))).

3.11. Question. Suppose E = E C CV is L-regular at a € E. Does E then
have to satisfy (L') at a?

3.12. THEOREM. With the assumptions of Theorem 3.8 on h, for any compact
set E in CV, if E satisfies (L") at a € E, so does the set h(E) at h(a).

PrOOF. If E satisfies (L') at a € E, then for each r > 0, ¢(E N B(a, r)) >
0, and by Corollary 2.8 we have ¢(h(E)) > 0.

Moreover, it follows from Lemma 2.1 and Inequality 1.3 that for each
r >0, Ngpa n(a) =0 (see the proof of Proposition 3.2). For each » > 0
there exists s > 0 such that

h(E N B(a, s)) c h(E) n B(h(a), r).

Hence, since by Proposition 2.9(1") the set A(E N B(a, s)) is L-regular at
h(a), by 2(2) so is the set A(E) N B(h(a), r), which means that A(E) satisfies
(L") at A(a), as claimed.
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