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INVARIANCE OF THE ¿-REGULARITY OF COMPACT SETS
IN C" UNDER HOLOMORPHIC MAPPINGS

BY

W. PLESNIAK

Abstract. The property for a polynomially convex compact set E in CN

that the Siciak extremal function *¿ be continuous or, equivalently, that E

satisfy some Bernstein type inequality, is proved to be invariant under a

large class of holomorphic mappings with values in CM {M < N) including

all open holomorphic mappings. Local specifications of this result are also
given.

0. Introduction. Let £ be a polynomially convex compact set in C^ and let

P„ (CN) denote the space of all polynomials from C^ to C1 of degree at most

n. It is known [8] that if /is a holomorphic function in a neighborhood of E
then

Kmsup[d\stE{f,Pn(CN))}l/n <\,
«—»00

where the distance from / to Pn(CN) is taken in the sense of the supremum

norm on E, denoted by || \\E.

Conversely, in order that each continuous function / defined on E and

satisfying there (*) be continuable to a holomorphic function in a neigh-

borhood of E, the compact set E must satisfy some regularity conditions (see

[1]) of the type of Bernstein's (or Markov's) inequality for polynomials, and in

the case where the compact set E is sufficiently big, they are equivalent to the

continuity in C^ of Siciak's extremal function of E (see [8] and [9]):

<S>E(z) = Sup{\p(z)\l/":p E P„(C»), \\p\\E < 1,« > 1}

for z E CN. In the sequel a compact set E c C^, for which the function <i>E is

continuous in C^, is said to be L-regular (compare [9]). By a result of

Zaharjuta [11] (see also [9]), in order that E be L-regular it suffices that the

function <S>E be continuous in E.

U N = 1, the function log 3»£ is known to be equal to the Green function

of the unbounded component of the set C1 \ E with pole at oo, and hence the
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question about the L-regularity of compact sets in C1 is well explored.

Incomparably less is known about this problem in the case where N > 1.

Some criteria of L-regularity can be found in [8], [9] and [1]. Additional

information on the class of L-regular subsets of C^ can be derived from the

main result of this paper (Theorem 3.5) saying that the property for a

polynomially convex, compact set E in CN to be L-regular is invariant under

a large class <3r of holomorphic mappings in a neighborhood of E, with values

in CM (M < TV), including, in particular, all open holomorphic mappings.

Thus if M = 1, the class ®s consists of all nonconstant holomorphic functions

in a neighborhood of E. This result has been probably unknown even in the

case where N = 1.

Next we give local specifications of the main result and examine the

invariance under holomorphic mappings of the property for E to be L-regular

at a point a E E, which stands, by definition, for the continuity of the

extremal function $£ at a. Here we distinguish two cases (Theorems 3.8 and

3.12) according as E is a compact subset of R^ or C* and leave open the

problem of equivalence of both results (see Remark 3.10 and Question 3.11).

1. Properties (A) and (B).

1.1. Let £ be a compact set in C^ and let C(E) denote the Banach space of

complex-valued continuous functions defined on E with the supremum norm

|| ||E. Given an open set U in CN let GE(U) be the Banach space of all

bounded continuous functions defined on E U U holomorphic in U, with the

supremum norm on E u U. We denote by NE(U) the kernel of the natural

restriction rv: QE(U) 9 f-*f¡E G C(E) and by AE(U) its range endowed

with the quotient topology 0E(U)/'NE(U).

Given a subset F of E we define

BE(F)=    indlim   6E(U)
Í/D.E, {/open

and

NE(F)=     indlim    NE(U).
UoF, {/open

The mappings rv define the restriction r: ®E(F) -» C(7i) with its kernel

NE(F) and its range

AE(F)=    indlim    AE(U).
UoF, U open

Let us consider an increasing sequence (77„) of vector subspaces of the

space 6E(F) and a nondecreasing sequence (m„) of positive numbers. Follow-

ing Baouendi and Goulaouic [1] (see also [10]) we define properties (A) and

(B) of the quadruplet (E, F, (Hn), (mn)) as follows.
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Property (A). For any function/ G C(E), if

limsuPrdist£(/,r(77J)l1/m"<l,
n—»oo     L J

then/ G AE(F).

Property (B). For any real number b > 1 there exist an open neighbor-

hood U of F and a constant C > 0 such that for any h E H„ (n = 1,2,...)

there exists g E NE(F) for which « + g E <3E(U) and

sup \h(z) + g(z)\ < Cb"^\\h\\E.
z&U

1.2. If the compact sets E and F are so big that NE(F) = 0, then Property

(B) of the quadruplet (E, F, (H„), (mn)) yields the following:

Property (B'). For any real number b > 1 there exist an open neighbor-

hood U of F and a constant C > 0 such that each « G 77„ (« = 1, 2, . . . )

belongs to 0E(U) and

sup \h(z)\ < Cb^\\h\\E.
zeu

In some special cases we shall also prove that (B') implies (B) and

NE(F) = 0 (see Proposition 3.2).

We note that Property (B') is an analogue of the well-known Bernstein-

Walsh inequality for polynomials which can be written in terms of the

extremal function <PE as follows.

1.3. Inequality. For any polynomial p E P„(CN) (n = 1, 2,.. . ), we have

\p(z)\<\\p\\E[*E(z)]n,        zECN.

An important role in our considerations will be played by the following

theorem due to Baouendi and Goulaouic [1] (the case where E = F c RN).

1.4. Theorem. Assume that for each a G (0, 1), E^a"^ < oo and

lim sup„_>00mn+1/w„ < oo. Then Properties (A) and (B) for the quadruplet

(E, F, (Hn), (mn)) are equivalent.

The proof of the implication (B) => (A) is easy while the converse implica-

tion can be proved in the same manner as in [10] (the case where 77„ =

Pn(CN) and m„ = «, « = 1, 2, . . . ).

1.5. Remark. Notice that we have not assumed the spaces 77„ of Theorem

1.4 to be finite dimensional. However it can be proved in the case where

E = F is polynomially convex that Property (B) holds only if dim r(H„) =

O(mf), as « -» oo (see [7]).

2. Invariance of Property (B) under holomorphic mappings. We start with a

lemma which is a version for families of holomorphic functions of a theorem

due to Siciak [8, Theorem 10.2] being a generalization to C* of a known

Bernstein-Walsh Theorem. The lemma was first stated in [5]. Here we give its
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elegant proof communicated to us by Siciak. Another proof can be derived

from Theorem 2 in [11].

2.1. Lemma. Let A(U) denote the Banach space of all bounded holomorphic

functions defined in an open set U in CN, equipped with the supremum norm on

U, || || ¡j. For each polynomially convex compact set E c U there exist constants

C > 0 and a E (0, 1), both C and a independent off G A( U) and n, such that

distE(f, pn(cN)) < q/ii^-

for allf in A(U) and n = 1,2.

Proof. Given a polynomially convex compact set E c U, we can find a

polynomial polyhedron Peí/ such that E c int P (see e.g. [2, Lemma

2.7.4]). Then for sufficiently small r > 0, the set

Er = U B(a, r),
a&E

where B(a, r) denotes the closed ball {z G C^: \z — a\ < r), is contained in

P together with its polynomially convex hull

Êr={zE CN: \p(z)\ < ||p||£ for allp G 7»„(C") and« > l}.

Since we have (see [8])

OiKa,r)(z) = max{l,|z-a|/r},       zECN, 2(1)

and

QEi(z) < $e2(z),       z E CN, whenever Ex d E2, 2(2)

which immediately follows from the definition of the extremal function, the

set Er is L-regular and so is the set Êr because for every compact set E cCN

we have

Consequently the set E of the lemma can be assumed to be L-regular. Then

there exists an R > 1 such that

DR = {zECN:<t>E(z)<R} c U.

Take any b E (1, R) and define

&b = f / G C(E): sup b" dist£(/, P„(CN)) < oo }.

&b is a Banach space with the norm

l/|* = ll/IU + sup b» dist£(/, P„(C")).
R>0

By the above-mentioned result of Siciak [8, Theorem 10.2], there is a natural

inclusion q>b: A(U)^> &b. One can also easily check that the graph of the

mapping <p6 is closed. Hence <pb is continuous, which gives the result.
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2.2. Given a compact set E cCN let

®E(z) = Um sup<E»£;(w)
w-*z

and

c(E) = lim sup[\z\/<ï>*E(z)].
|z|-»oo

The number c(7J) is called the QN-capacity of E (see [9], [11]; if TV = 1, c(E)

is equal to the logarithmic capacity of E). By 2(2), if Ex c E2, then c(Et) <

c(E2). If £ is L-regular at a point a G CN, then by Inequality 1.3 and 2(1),

c(E) > 0,

The following lemma will play a crucial role in the proof of the main result

of this section (Proposition 2.9).

2.3. Lemma. Suppose E is a polynomially convex compact set in CN and F is a

subset of E. Let h be a holomorphic mapping defined in an open neighborhood U

of E, with values in CM (M < N). Assume that c(h(E)) > 0. 77ie«, // Property

(B) holds for the quadruplet (E, F, (Pn(CN)), («)), // also holds for the quadru-

plet (E, F, (Hn),(ri)), where Hn = {p ° h: p E Pn(CM)}, « = 1, 2.

Proof. By Theorem 1.4 it suffices to show that Property (A) holds for

(E, F, (H„), («)). To this aim take a function/ G C(E) such that

\[f - Pn ° h\\E < Ca",       « = 1,2,..., 2(3)

where pn G P„(CM), C > 0 and a E (0, 1), the constants C and a being

independent of «. We wish to show that/ G AE(F). Observe that by 2(3), for

each «,

\\Pn\WE)=\\Pn°h\\E<C+\\j\\E.

We may obviously suppose that « is bounded in U. Since c(h(E)) > 0, we

have

B = sup{$h(E)(w): w E h(U)} < oo.

Hence by Inequality 1.3,

Bn = sup \pMz))\ =    sup   \pn(w)\ < \\pn\\h(E)Bn,
zSU weh(U)

whence

B„ < (C + \\f\\E)B" < D»

for each «, with an appropriate constant D > 0. By Lemma 2.1 we can find

constants Dx > 0 and d E (0, 1) such that

dist£(p„ » «, P,(C")) < DxD"dk

for k > 1, « > 1. Then by setting k = mn, where the positive integer m is so

chosen that Ddm < d, we get

dist£(p„ o h, Pmn(CN)) < TV",       n> I,
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whence by 2(3),

dist£(/,Pmn(C"))<7VÍ',

for « > 1, where D2 > max(C, 7),) and dx = max(a, d) < 1. Therefore, since

for mn < k < m(n + I),

dist£(/, Pk(CN)) < dist£(/, /UC")) < 7>2«*)* < D2dk

with d2 G (0, 1) independent of «, we get

limsupfdist^/.P^C"))]17^!,
A—*-CO

and since the quadruplet (E, F, (Pk(CN)), (k)) has Property (A), it follows

that/ G AE(F), as claimed.

2.4. Remark. It occurs that c(E) = 0 but c(h(E)) > 0, e.g. take E = [0, 1]

X {0} c R2 and set «(z„ z¿) = z,.

We shall need the following

2.5. Lemma. Let E be a compact subset of CN with c(E) > 0. Suppose h is a

holomorphic mapping in a connected open set U, E c U, with values in

CM(M < TV), such that

sup{c(7"): F c h(U), F compact) > 0.

Then c(h(E)) > 0.

Proof. Suppose c(h(E)) = 0. Then h(E) is globally CM-polar (see [9,

Corollary 3.9]), i.e. one could find a plurisubharmonic function p in CM such

that p(w) = — oo for w E h(E). Then the function q = p ° h is plurisub-

harmonic in U, and by the assumptions on «, q ^ - oo in U. Since q(z) =

- oo for z G £, the set E is locally C^-polar, whence by a recent result of

Josefson [3], it should be globally C^-polar. Consequently by [9, Theorem

3.10], we would have c(7i) = 0, a contradiction.

2.6. Remark. The assumption that/is nonconstant in U is not sufficient for

the above lemma to hold. Take, e.g., E = {(x¡, x2, x3): 0 < xi¡ < 1, / =

1, 2, 3} c R3 and «(z„ z2, z3) = (z„ z,).

2.7. Given a compact set E in C^ let « be a holomorphic mapping in an

open neighborhood U of E, with values in CM (M < N). In the sequel we

shall be interested in « such that for a given subset F of E, the triplet

(«, Tí, F) satisfies the following hypothesis:

(H) For each a E F and each bounded open set V such that F c V c V

C Í/, the set h( V) is L-regular at h(a).

Notice that if the mapping « is open in an open neighborhood W oî F then

by 2(1) and 2(2) the triplet (h, E, F) satisfies (H). In particular, if M = 1 and

« is nonconstant in any connected component W of U such that W n F ^

0, then by the open mapping theorem for holomorphic functions the triplet

(«, E, F) satisfies (H).



L-REGULARITY OF COMPACT SETS 379

An example of a triplet («, E, F) satisfying (H) with a nonopen « is given

by «(z„ zj = (z„ z,Z2) for (z„ Zj) G C2 and £ = F = [0, 1] X [0, 1].

From Lemma 2.5 we derive

2.8. Corollary. Ifh: U -» CM (M < N) is holomorphic and U is connected,

and the triplet (h, E, E) satisfies (H), then c(E) > 0 implies c(h(E)) > 0.

More generally, if there exists a point a E E such that («, E, {a}) satisfies

(H), and for the connected component Va of the set U which contains a, we have

c(Va n E) > 0, then c(h(E)) > 0.

Now we can prove

2.9. Proposition. Let E be a polynomially convex, compact set in CN and h a

holomorphic mapping in an open set U D E, with values in CM (M < N).

Assume that c(h(E)) > 0. Then, for any subset F of E:

V. If(E, F, (P„(CN)), (n)) has Property (B) and the triplet (h, E, F) satisfies

(H), and NE(F) = 0, then the quadruplet (h(E), h(F), (P„(CM)), («)) has

Property (W).

2°. If M = N and « is a biholomorphism, then if (E, F, (Pn(CN)), («)) has

Property (B) then the quadruplet (h(E), «(F), (Pn(CM)), («)) also has this

property.

Proof. In both 1° and 2°, if (E, F, (P„(CN)), («)) satisfies (B), then by

virtue of Lemma 2.3, so does the quadruplet (E, F, (77„), («)), where 77„ =

[p ° h: p E Pn(CM)}. It follows that for each b > 1 there exist a bounded

open set V, F c V c V c U, and a constant C > 0 such that for each «

and eachp G P„(CM) one can find gp E NE(V) such that

sup \p(h(z)) + gp(z)\ < C6"/2||p o „||£. 2(4)
zev

Now with the assumptions of case 1°, it follows that gp = 0, whence

sup_  \p(w)\ = sup |p(«(z))| < Cè"/2||p o h\\E = C6"/2||p||A(£).

weh(v) zeV

The set h(V) need not be a neighborhood of h(F). However, by (H), there is

an open neighborhood W of h(F) such that

®«v)M < bi/2,       wEW,

and then by Inequality 1.3 we get

sup lp(vtO| < Cb"\\p\\KE),
w&W

which completes the proof of case 1°.

2°. Since « is a biholomorphism, the set W = h(V) is an open neighbor-

hood of h(F) for each open set V such that F c V c U, and by 2(4) we get

sup \p(w) + gp(h-\w))\ < Cb"\\p\\h(E),
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whence since gp ° «   ' G NHE)(h(F)), we get the result.

3. Applications to the L-regularity. In this section our attention will be

devoted to Properties (B) and (B') in the case where 77„ = Pn(CN) and

m„ = n, « = 1, 2, .. .. Then, given a compact set E cCN and a subset F of

E, we shall shortly write (E, F) E (B) (resp. (E, F) E (B')) if Property (B)

(resp. (B')) holds for (E, F, (Pn(CN)), («)).

3.1. We note that (E, F) E (B') if and only if E is L-regular at every point

a G F.

3.2. Proposition. 1°. For any polynomially convex compact set E in CN,

(E, E) E (B') if and only if(E, E) E (B) and NE(E) = 0.

2°. If E cRN then for any subset F of E, (E, F) G (B') // and only if
(E, F) G (Ti) and NE(F) = 0.

Proof. By virtue of (1.2) in both 1° and 2° it suffices to prove that

(E, F) G (B') implies NE(F) = 0.

1°. Take a function/ G NE(U), where U is an open neighborhood of E.

Since (E, E) E (B'), the set E is L-regular, whence for each ü > 1 the set

ER = {zECN:H>E(z)<R}
A

is compact and E c int ER. Since E = E, the polynomially convex hull of E,

we can find R > 1 such that ER = ER c U. Then by Lemma 2.1 there exist

constants C > 0 and a E (0, 1), and a sequence of polynomials pn G P„(CN)

(n = 1,2,...), such that

\[f - Pn\\E¡> < Ca",       « = 1,2,....

If 1 < R' < min(Ä, 2/(1 + a)), then £Ä< c ER and since / = 0 on E, by
Inequality 1.3 we get

IL/K <\\f-Pn\\EK. + Ms* < Ca" +\\P»URT < C[a" + (2a/(1 + a))n]

for « = 1,2,..., whence/ = 0 on ER,, and, consequently, NE(E) = 0.

2°. It suffices to show that if E is L-regular at b E E then NE(b) = 0. To

do this take a function/ G NE(U), where U is an open neighborhood of b.

We can find three bounded closed parallelepipeds AT,, K2, and AT3, such that

b E int a:,, à; c int Ki+ „ /' = 1,2, K2eU and £ c AT3. Then by Lemma 2.1
there exist polynomialspn E P„(CN) (« = 1, 2, . . . ) such that

\\f-p„U2<Cä*

with C > 0 and a G (0, 1), both C and a independent of n. By [6, Lemma

12.3], there exist polynomials lk E Pk(CN) (k = 1, 2, ... ) and constants

D > 0 and d E (0, 1) such that

114 - l|k< Ddk,   ||4|ky«*2< Ddk   and    ||/^< DkN

for k = 1,2,_Write r*„ = lkpn (k > 1, « > 1). By Inequality 1.3 there is
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a constant A > 0 such that

\\P„\\k3<A",     « = 1,2,....

Then for each k > 1 and « > 1, we have

M<n(W) <||>*|kxi„,*JNk < ̂ "¿*.

IMUnU.Nim*,) < M'lMm* < flC*"û"
and

K88finJCl<(Z)+. l)Ca".

Now choose an integer /« > 0 such that ^4rfm < e = max(a, rf) < 1 and set

rn = rmnn for « = 1, 2.Then by the above inequalities there exists

n0 > 0 such that

NU< ¿Vf   for«> «o,

with an appropriate constant 7), > 0 and t?, = (e + l)/2. Hence by Inequal-

ity 1.3, we can find a compact neighborhood V of the point b, V c AT,, such

that

INIk-*0'   as«-* oo.

On the other hand, for each «,

whence

M\v<\\f-Pn\\v+\\Pn-rn\\V+\K\\v^O

as « -» oo, which yields/ = 0 on V. This gives the result.

3.3. Remark. If E is not polynomially convex, then Proposition 3.2(1°) fails

to hold (take, e.g., for TV = 1, E = (|z| = 1} u {0}; then $E(z) = max(l, |z|)

but NE(E) * 0).

We also note that by the Stone-Weierstrass theorem, if E c RN then E is

polynomially convex.

3.4. Question. For any compact setE = EcCN does the L-regularity of E

at a point a E E imply 7V£(a) = 0?

We note that this is the case when N = 1 (see Remark 3.10 and the proof

of Theorem 3.12).

Now we can prove the main result of this paper.

3.5. Theorem. Let E be a polynomially convex, L-regular compact set in CN

and « a holomorphic mapping in an open neighborhood U of E, with values in

CM (M < N), such that the triplet (h, E, E) satisfies (H). Then h(E) is

L-regular.

Proof. Since E is L-regular, then by 2(1) and Inequality 1.3, c(7i) > 0. By

Corollary 2.8 we then have c(h(E)) > 0, and by Proposition 3.2(1°) we get
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NE(E) = 0. Therefore by Proposition 2.9(1°) and by 3.1, the set h(E) is

L-regular.

3.6. Corollary. If E = Ê c CN is L-regular and h: E c c/-»C' is

holomorphic and nonconstant in any connected component W of U such that

W n E =£ 0, then the set h(E) is also L-regular.

3.7. Remark. If E ^ Ê, then Theorem 3.5 fails to hold; take, e.g., E = {|z|

= 1} U {\} C C and h(z) = z_1; then h(E) is not L-regular at 2 G h(E).

Now we wish to give local versions of Theorem 3.5. Owing to Proposition

3.2(2°), by a similar argument to that of the proof of Theorem 3.5 we get

3.8. Theorem. If a compact set E cRN is L-regular at a point a E E and h:

E c U-+CM (M < TV) is holomorphic in U and such that the triplet

(h, E, {a}) satisfies (H), then h(E) is L-regular at h(a).

We cannot prove Theorem 3.8 for any compact set E = E czCN (see

Question 3.4). Nevertheless we shall give a little weaker (or equivalent-see

Remark 3.10 and Question 3.11) version of this result.

3.9. Definition (compare [9]). A compact set E c CN is said to satisfy

condition (L1) at a point a G Tí, if for each r > 0 the set E n B(a, r) is

L-regular at a; B(a, r) being the closed ball with centre a and radius r.

3.10. Remark. It is obvious that if E satisfies (L1) at a E E, then it is

L-regular at a. Conversely, if TV = 1 and a E E = E (or a E 9(C' \ E), if

E =£ E) then the L-regularity of E at a implies that E satisfies (L1) at a (see

e.g. [4, (5.1.15')]).

3.11. Question. Suppose E = E cCN is L-regular at a E E. Does E then

have to satisfy (L1) at al

3.12. Theorem. With the assumptions of Theorem 3.8 on h,for any compact

set E in CN, if E satisfies (L1) at a E E, so does the set h(E) at h(d).

Proof. If E satisfies (L1) at a E E, then for each r > 0, c(7i n B(a, r)) >

0, and by Corollary 2.8 we have c(h(E)) > 0.

Moreover, it follows from Lemma 2.1 and Inequality 1.3 that for each

r > 0, TV£nB(a r)(a) = 0 (see the proof of Proposition 3.2). For each r > 0

there exists s > 0 such that

h(E n B(a, s)) c h(E) n B(h(a), r).

Hence, since by Proposition 2.9(1°) the set h(E n B(a, s)) is L-regular at

h(d), by 2(2) so is the set h(E) n B(h(a), r), which means that h(E) satisfies

(L1) at h(a), as claimed.
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