INVARIANCE OF THE L-REGULARITY OF COMPACT SETS IN C^N UNDER HOLOMORPHIC MAPPINGS

BY W. PLEŚNIAK

ABSTRACT. The property for a polynomially convex compact set E in \mathbb{C}^N that the Siciak extremal function Φ_E be continuous or, equivalently, that E satisfy some Bernstein type inequality, is proved to be invariant under a large class of holomorphic mappings with values in \mathbb{C}^M (M < N) including all open holomorphic mappings. Local specifications of this result are also given.

0. Introduction. Let E be a polynomially convex compact set in \mathbb{C}^N and let $P_n(\mathbb{C}^N)$ denote the space of all polynomials from \mathbb{C}^N to \mathbb{C}^1 of degree at most n. It is known [8] that if f is a holomorphic function in a neighborhood of E then

$$\limsup_{n\to\infty} \left[\operatorname{dist}_{E} \left(f, P_{n}(\mathbb{C}^{N}) \right) \right]^{1/n} < 1,$$

where the distance from f to $P_n(\mathbb{C}^N)$ is taken in the sense of the supremum norm on E, denoted by $\| \cdot \|_{E}$.

Conversely, in order that each continuous function f defined on E and satisfying there (*) be continuable to a holomorphic function in a neighborhood of E, the compact set E must satisfy some regularity conditions (see [1]) of the type of Bernstein's (or Markov's) inequality for polynomials, and in the case where the compact set E is sufficiently big, they are equivalent to the continuity in \mathbb{C}^N of Siciak's extremal function of E (see [8] and [9]):

$$\Phi_E(z) = \sup\{|p(z)|^{1/n}: p \in P_n(\mathbb{C}^N), \|p\|_E \le 1, n > 1\}$$

for $z \in \mathbb{C}^N$. In the sequel a compact set $E \subset \mathbb{C}^N$, for which the function Φ_E is continuous in \mathbb{C}^N , is said to be *L*-regular (compare [9]). By a result of Zaharjuta [11] (see also [9]), in order that E be L-regular it suffices that the function Φ_E be continuous in E.

If N = 1, the function $\log \Phi_E$ is known to be equal to the Green function of the unbounded component of the set $\mathbb{C}^1 \setminus E$ with pole at ∞ , and hence the

Received by the editors June 18, 1977.

AMS (MOS) subject classifications (1970). Primary 41A10, 32A10; Secondary 41A25, 31C10, 31C15, 32E20.

Key words and phrases. Extremal function, Green function, approximation of analytic functions, polynomials, Bernstein inequality.

question about the L-regularity of compact sets in \mathbb{C}^1 is well explored. Incomparably less is known about this problem in the case where N > 1. Some criteria of L-regularity can be found in [8], [9] and [1]. Additional information on the class of L-regular subsets of \mathbb{C}^N can be derived from the main result of this paper (Theorem 3.5) saying that the property for a polynomially convex, compact set E in \mathbb{C}^N to be L-regular is invariant under a large class \mathcal{F} of holomorphic mappings in a neighborhood of E, with values in \mathbb{C}^M (M < N), including, in particular, all open holomorphic mappings. Thus if M = 1, the class \mathcal{F} consists of all nonconstant holomorphic functions in a neighborhood of E. This result has been probably unknown even in the case where N = 1.

Next we give local specifications of the main result and examine the invariance under holomorphic mappings of the property for E to be L-regular at a point $a \in E$, which stands, by definition, for the continuity of the extremal function Φ_E at a. Here we distinguish two cases (Theorems 3.8 and 3.12) according as E is a compact subset of \mathbb{R}^N or \mathbb{C}^N and leave open the problem of equivalence of both results (see Remark 3.10 and Question 3.11).

1. Properties (A) and (B).

1.1. Let E be a compact set in \mathbb{C}^N and let C(E) denote the Banach space of complex-valued continuous functions defined on E with the supremum norm $\| \ \|_E$. Given an open set U in \mathbb{C}^N let $\mathfrak{G}_E(U)$ be the Banach space of all bounded continuous functions defined on $E \cup U$ holomorphic in U, with the supremum norm on $E \cup U$. We denote by $N_E(U)$ the kernel of the natural restriction r_U : $\mathfrak{G}_E(U) \ni f \to f_{|E} \in C(E)$ and by $A_E(U)$ its range endowed with the quotient topology $\mathfrak{G}_E(U)/N_E(U)$.

Given a subset F of E we define

$$\mathfrak{O}_{E}(F) = \inf_{U \supset E, \ U \text{ open}} \mathfrak{O}_{E}(U)$$

and

$$N_E(F) = \inf_{U \supset F, U \text{ open}} N_E(U).$$

The mappings r_U define the restriction $r: \mathcal{O}_E(F) \to C(E)$ with its kernel $N_E(F)$ and its range

$$A_E(F) = \inf_{U \supset F, U \text{ open}} A_E(U).$$

Let us consider an increasing sequence (H_n) of vector subspaces of the space $\mathcal{O}_E(F)$ and a nondecreasing sequence (m_n) of positive numbers. Following Baouendi and Goulaouic [1] (see also [10]) we define properties (A) and (B) of the quadruplet $(E, F, (H_n), (m_n))$ as follows.

PROPERTY (A). For any function $f \in C(E)$, if

$$\limsup_{n\to\infty} \left[\operatorname{dist}_{E}(f, r(H_{n})) \right]^{1/m_{n}} < 1,$$

then $f \in A_E(F)$.

PROPERTY (B). For any real number b > 1 there exist an open neighborhood U of F and a constant C > 0 such that for any $h \in H_n$ (n = 1, 2, ...) there exists $g \in N_E(F)$ for which $h + g \in \mathcal{O}_E(U)$ and

$$\sup_{z\in U}|h(z)+g(z)|\leqslant Cb^{m_n}\|h\|_E.$$

1.2. If the compact sets E and F are so big that $N_E(F) = 0$, then Property (B) of the quadruplet $(E, F, (H_n), (m_n))$ yields the following:

PROPERTY (B'). For any real number b > 1 there exist an open neighborhood U of F and a constant C > 0 such that each $h \in H_n$ (n = 1, 2, ...) belongs to $\mathcal{O}_E(U)$ and

$$\sup_{z\in U}|h(z)|\leqslant Cb^{m_n}||h||_E.$$

In some special cases we shall also prove that (B') implies (B) and $N_F(F) = 0$ (see Proposition 3.2).

We note that Property (B') is an analogue of the well-known Bernstein-Walsh inequality for polynomials which can be written in terms of the extremal function Φ_E as follows.

1.3. Inequality. For any polynomial $p \in P_n(\mathbb{C}^N)$ (n = 1, 2, ...), we have

$$|p(z)| \leq ||p||_E [\Phi_E(z)]^n, \quad z \in \mathbb{C}^N.$$

An important role in our considerations will be played by the following theorem due to Baouendi and Goulaouic [1] (the case where $E = F \subset \mathbb{R}^N$).

1.4. THEOREM. Assume that for each $a \in (0, 1)$, $\sum_{n=1}^{\infty} a^{m_n} < \infty$ and $\limsup_{n\to\infty} m_{n+1}/m_n < \infty$. Then Properties (A) and (B) for the quadruplet $(E, F, (H_n), (m_n))$ are equivalent.

The proof of the implication (B) \Rightarrow (A) is easy while the converse implication can be proved in the same manner as in [10] (the case where $H_n = P_n(\mathbb{C}^N)$ and $m_n = n, n = 1, 2, \ldots$).

- 1.5. Remark. Notice that we have not assumed the spaces H_n of Theorem 1.4 to be finite dimensional. However it can be proved in the case where E = F is polynomially convex that Property (B) holds only if dim $r(H_n) = O(m_n^N)$, as $n \to \infty$ (see [7]).
- 2. Invariance of Property (B) under holomorphic mappings. We start with a lemma which is a version for families of holomorphic functions of a theorem due to Siciak [8, Theorem 10.2] being a generalization to \mathbb{C}^N of a known Bernstein-Walsh Theorem. The lemma was first stated in [5]. Here we give its

elegant proof communicated to us by Siciak. Another proof can be derived from Theorem 2 in [11].

2.1. LEMMA. Let A(U) denote the Banach space of all bounded holomorphic functions defined in an open set U in \mathbb{C}^N , equipped with the supremum norm on U, $\| \|_U$. For each polynomially convex compact set $E \subset U$ there exist constants C > 0 and $a \in (0, 1)$, both C and a independent of $f \in A(U)$ and n, such that

$$\operatorname{dist}_{E}(f, P_{n}(\mathbb{C}^{N})) \leq C \|f\|_{L} a^{n}$$

for all f in A(U) and $n = 1, 2, \ldots$

PROOF. Given a polynomially convex compact set $E \subset U$, we can find a polynomial polyhedron $P \subset U$ such that $E \subset \text{int } P$ (see e.g. [2, Lemma 2.7.4]). Then for sufficiently small r > 0, the set

$$E^r = \bigcup_{a \in F} B(a, r),$$

where B(a, r) denotes the closed ball $\{z \in \mathbb{C}^N : |z - a| \le r\}$, is contained in P together with its polynomially convex hull

$$\hat{E}' = \{ z \in \mathbb{C}^N : |p(z)| \le ||p||_E \text{ for all } p \in P_n(\mathbb{C}^N) \text{ and } n > 1 \}.$$

Since we have (see [8])

$$\Phi_{B(a,r)}(z) = \max\{1, |z-a|/r\}, \quad z \in \mathbb{C}^N,$$
 2(1)

and

$$\Phi_{E_1}(z) \leqslant \Phi_{E_2}(z), \quad z \in \mathbb{C}^N$$
, whenever $E_1 \supset E_2$, 2(2)

which immediately follows from the definition of the extremal function, the set E' is L-regular and so is the set \hat{E}' because for every compact set $E \subset \mathbb{C}^N$ we have

$$\Phi_E(z) = \Phi_{\hat{E}}(z), \qquad z \in \mathbb{C}^N.$$

Consequently the set E of the lemma can be assumed to be L-regular. Then there exists an R > 1 such that

$$D_R = \{ z \in \mathbb{C}^N : \Phi_E(z) < R \} \subset U.$$

Take any $b \in (1, R)$ and define

$$\mathcal{E}_b = \Big\{ f \in C(E) : \sup_{n > 0} b^n \operatorname{dist}_E \big(f, P_n(\mathbb{C}^N) \big) < \infty \Big\}.$$

 \mathcal{E}_b is a Banach space with the norm

$$|f|_b = ||f||_E + \sup_{n>0} b^n \operatorname{dist}_E(f, P_n(\mathbb{C}^N)).$$

By the above-mentioned result of Siciak [8, Theorem 10.2], there is a natural inclusion φ_b : $A(U) \to \mathcal{E}_b$. One can also easily check that the graph of the mapping φ_b is closed. Hence φ_b is continuous, which gives the result.

2.2. Given a compact set $E \subset \mathbb{C}^N$ let

$$\Phi_E^*(z) = \limsup_{w \to z} \Phi_E(w)$$

and

$$c(E) = \lim_{|z| \to \infty} \sup_{z} [|z|/\Phi_E^*(z)].$$

The number c(E) is called the C^N -capacity of E (see [9], [11]; if N=1, c(E) is equal to the logarithmic capacity of E). By 2(2), if $E_1 \subset E_2$, then $c(E_1) < c(E_2)$. If E is L-regular at a point $a \in C^N$, then by Inequality 1.3 and 2(1), c(E) > 0.

The following lemma will play a crucial role in the proof of the main result of this section (Proposition 2.9).

2.3. Lemma. Suppose E is a polynomially convex compact set in \mathbb{C}^N and F is a subset of E. Let h be a holomorphic mapping defined in an open neighborhood U of E, with values in \mathbb{C}^M $(M \le N)$. Assume that c(h(E)) > 0. Then, if Property (B) holds for the quadruplet $(E, F, (P_n(\mathbb{C}^N)), (n))$, it also holds for the quadruplet $(E, F, (H_n), (n))$, where $H_n = \{p \circ h : p \in P_n(\mathbb{C}^M)\}$, $n = 1, 2, \ldots$

PROOF. By Theorem 1.4 it suffices to show that Property (A) holds for $(E, F, (H_n), (n))$. To this aim take a function $f \in C(E)$ such that

$$||f - p_n \circ h||_E \le Ca^n, \qquad n = 1, 2, \dots,$$
 2(3)

where $p_n \in P_n(\mathbb{C}^M)$, C > 0 and $a \in (0, 1)$, the constants C and a being independent of n. We wish to show that $f \in A_E(F)$. Observe that by 2(3), for each n,

$$||p_n||_{h(E)} = ||p_n \circ h||_E \le C + ||f||_E.$$

We may obviously suppose that h is bounded in U. Since c(h(E)) > 0, we have

$$B = \sup \{\Phi_{h(E)}(w) \colon w \in h(U)\} < \infty.$$

Hence by Inequality 1.3,

$$B_n = \sup_{z \in U} |p_n(h(z))| = \sup_{w \in h(U)} |p_n(w)| \le ||p_n||_{h(E)} B^n,$$

whence

$$B_n \leqslant (C + ||f||_E)B^n \leqslant D^n$$

for each n, with an appropriate constant D > 0. By Lemma 2.1 we can find constants $D_1 > 0$ and $d \in (0, 1)$ such that

$$\operatorname{dist}_E\bigl(p_n\circ h,\, P_k(\mathbb{C}^N)\bigr) \leq D_1 D^n d^k$$

for k > 1, n > 1. Then by setting k = mn, where the positive integer m is so chosen that $Dd^m \le d$, we get

$$\operatorname{dist}_{E}(p_{n} \circ h, P_{mn}(\mathbb{C}^{N})) \leq D_{1}d^{n}, \quad n > 1,$$

whence by 2(3),

$$\operatorname{dist}_{E}(f, P_{mn}(\mathbb{C}^{N})) \leq D_{2}d_{1}^{n},$$

for $n \ge 1$, where $D_2 \ge \max(C, D_1)$ and $d_1 = \max(a, d) < 1$. Therefore, since for $mn \le k < m(n + 1)$,

$$\mathrm{dist}_E\big(f,\,P_k(\mathbb{C}^N)\big) \leqslant \,\mathrm{dist}_E\big(f,\,P_{mn}(\mathbb{C}^N)\big) \leqslant D_2\big(d_1^{n/k}\big)^k \leqslant D_2d_2^k$$

with $d_2 \in (0, 1)$ independent of n, we get

$$\limsup_{k\to\infty} \left[\operatorname{dist}_E(f, P_k(\mathbb{C}^N))\right]^{1/k} < 1,$$

and since the quadruplet $(E, F, (P_k(\mathbb{C}^N)), (k))$ has Property (A), it follows that $f \in A_E(F)$, as claimed.

2.4. REMARK. It occurs that c(E) = 0 but c(h(E)) > 0, e.g. take $E = [0, 1] \times \{0\} \subset \mathbb{R}^2$ and set $h(z_1, z_2) = z_1$.

We shall need the following

2.5. LEMMA. Let E be a compact subset of \mathbb{C}^N with c(E) > 0. Suppose h is a holomorphic mapping in a connected open set U, $E \subset U$, with values in $\mathbb{C}^M(M \leq N)$, such that

$$\sup\{c(F): F \subset h(U), F compact\} > 0.$$

Then c(h(E)) > 0.

PROOF. Suppose c(h(E)) = 0. Then h(E) is globally C^M -polar (see [9, Corollary 3.9]), i.e. one could find a plurisubharmonic function p in C^M such that $p(w) = -\infty$ for $w \in h(E)$. Then the function $q = p \circ h$ is plurisubharmonic in U, and by the assumptions on h, $q \not\equiv -\infty$ in U. Since $q(z) = -\infty$ for $z \in E$, the set E is locally C^N -polar, whence by a recent result of Josefson [3], it should be globally C^N -polar. Consequently by [9, Theorem 3.10], we would have c(E) = 0, a contradiction.

- 2.6. Remark. The assumption that f is nonconstant in U is not sufficient for the above lemma to hold. Take, e.g., $E = \{(x_1, x_2, x_3): 0 \le x_i \le 1, i = 1, 2, 3\} \subset \mathbb{R}^3$ and $h(z_1, z_2, z_3) = (z_1, z_1)$.
- 2.7. Given a compact set E in \mathbb{C}^N let h be a holomorphic mapping in an open neighborhood U of E, with values in \mathbb{C}^M ($M \le N$). In the sequel we shall be interested in h such that for a given subset F of E, the triplet (h, E, F) satisfies the following hypothesis:
- (H) For each $a \in F$ and each bounded open set V such that $F \subset V \subset \overline{V} \subset U$, the set $h(\overline{V})$ is L-regular at h(a).

Notice that if the mapping h is open in an open neighborhood W of F then by 2(1) and 2(2) the triplet (h, E, F) satisfies (H). In particular, if M = 1 and h is nonconstant in any connected component W of U such that $W \cap F \neq \emptyset$, then by the open mapping theorem for holomorphic functions the triplet (h, E, F) satisfies (H).

An example of a triplet (h, E, F) satisfying (H) with a nonopen h is given by $h(z_1, z_2) = (z_1, z_1 z_2)$ for $(z_1, z_2) \in \mathbb{C}^2$ and $E = F = [0, 1] \times [0, 1]$.

From Lemma 2.5 we derive

2.8. COROLLARY. If h: $U \to \mathbb{C}^M$ $(M \le N)$ is holomorphic and U is connected, and the triplet (h, E, E) satisfies (H), then c(E) > 0 implies c(h(E)) > 0.

More generally, if there exists a point $a \in E$ such that $(h, E, \{a\})$ satisfies (H), and for the connected component V_a of the set U which contains a, we have $c(V_a \cap E) > 0$, then c(h(E)) > 0.

Now we can prove

- 2.9. PROPOSITION. Let E be a polynomially convex, compact set in \mathbb{C}^N and h a holomorphic mapping in an open set $U \supset E$, with values in \mathbb{C}^M $(M \leq N)$. Assume that c(h(E)) > 0. Then, for any subset F of E:
- 1°. If $(E, F, (P_n(\mathbb{C}^N)), (n))$ has Property (B) and the triplet (h, E, F) satisfies (H), and $N_E(F) = 0$, then the quadruplet $(h(E), h(F), (P_n(\mathbb{C}^M)), (n))$ has Property (B').
- 2°. If M = N and h is a biholomorphism, then if $(E, F, (P_n(\mathbb{C}^N)), (n))$ has Property (B) then the quadruplet $(h(E), h(F), (P_n(\mathbb{C}^M)), (n))$ also has this property.

PROOF. In both 1° and 2°, if $(E, F, (P_n(\mathbb{C}^N)), (n))$ satisfies (B), then by virtue of Lemma 2.3, so does the quadruplet $(E, F, (H_n), (n))$, where $H_n = \{p \circ h: p \in P_n(\mathbb{C}^M)\}$. It follows that for each b > 1 there exist a bounded open set $V, F \subset V \subset \overline{V} \subset U$, and a constant C > 0 such that for each n and each $p \in P_n(\mathbb{C}^M)$ one can find $g_p \in N_E(V)$ such that

$$\sup_{z \in V} |p(h(z)) + g_p(z)| \le Cb^{n/2} ||p \circ h||_E.$$
 2(4)

Now with the assumptions of case 1°, it follows that $g_p = 0$, whence

$$\sup_{w \in h(\overline{V})} |p(w)| = \sup_{z \in V} |p(h(z))| \le Cb^{n/2} ||p \circ h||_E = Cb^{n/2} ||p||_{h(E)}.$$

The set $h(\overline{V})$ need not be a neighborhood of h(F). However, by (H), there is an open neighborhood W of h(F) such that

$$\Phi_{h(\overline{V})}(w) < b^{1/2}, \quad w \in W,$$

and then by Inequality 1.3 we get

$$\sup_{w \in W} |p(w)| \leq Cb^n ||p||_{h(E)},$$

which completes the proof of case 1°.

2°. Since h is a biholomorphism, the set W = h(V) is an open neighborhood of h(F) for each open set V such that $F \subset V \subset U$, and by 2(4) we get

$$\sup_{w \in W} |p(w) + g_p(h^{-1}(w))| \le Cb^n ||p||_{h(E)},$$

whence since $g_p \circ h^{-1} \in N_{h(E)}(h(F))$, we get the result.

- 3. Applications to the L-regularity. In this section our attention will be devoted to Properties (B) and (B') in the case where $H_n = P_n(\mathbb{C}^N)$ and $m_n = n, n = 1, 2, \ldots$ Then, given a compact set $E \subset \mathbb{C}^N$ and a subset F of E, we shall shortly write $(E, F) \in (B)$ (resp. $(E, F) \in (B')$) if Property (B) (resp. (B')) holds for $(E, F, (P_n(\mathbb{C}^N)), (n))$.
- 3.1. We note that $(E, F) \in (B')$ if and only if E is L-regular at every point $a \in F$.
- 3.2. PROPOSITION. 1°. For any polynomially convex compact set E in \mathbb{C}^N , $(E, E) \in (B')$ if and only if $(E, E) \in (B)$ and $N_E(E) = 0$.
- 2°. If $E \subset \mathbb{R}^N$ then for any subset F of E, $(E, F) \in (B')$ if and only if $(E, F) \in (B)$ and $N_E(F) = 0$.

PROOF. By virtue of (1.2) in both 1° and 2° it suffices to prove that $(E, F) \in (B')$ implies $N_F(F) = 0$.

1°. Take a function $f \in N_E(U)$, where U is an open neighborhood of E. Since $(E, E) \in (B')$, the set E is L-regular, whence for each R > 1 the set

$$E_R = \{ z \in \mathbb{C}^N : \Phi_E(z) \leq R \}$$

is compact and $E \subset \text{int } E_R$. Since $E = \hat{E}$, the polynomially convex hull of E, we can find R > 1 such that $E_R = \hat{E}_R \subset U$. Then by Lemma 2.1 there exist constants C > 0 and $a \in (0, 1)$, and a sequence of polynomials $p_n \in P_n(\mathbb{C}^N)$ (n = 1, 2, ...), such that

$$||f - p_n||_{E_n} \le Ca^n, \quad n = 1, 2, \ldots$$

If $1 < R' \le \min(R, 2/(1+a))$, then $E_{R'} \subset E_R$ and since f = 0 on E, by Inequality 1.3 we get

$$||f||_{E_{R'}} \le ||f - p_n||_{E_{R'}} + ||p_n||_{E_{R'}} \le Ca^n + ||p_n||_{E}(R')^n \le C[a^n + (2a/(1+a))^n]$$
 for $n = 1, 2, \ldots$, whence $f = 0$ on $E_{R'}$, and, consequently, $N_{E}(E) = 0$.

2°. It suffices to show that if E is L-regular at $b \in E$ then $N_E(b) = 0$. To do this take a function $f \in N_E(U)$, where U is an open neighborhood of b. We can find three bounded closed parallelepipeds K_1 , K_2 , and K_3 , such that $b \in \text{int } K_1$, $K_i \subset \text{int } K_{i+1}$, $i = 1, 2, K_2 \subset U$ and $E \subset K_3$. Then by Lemma 2.1 there exist polynomials $p_n \in P_n(\mathbb{C}^N)$ (n = 1, 2, ...) such that

$$||f - p_n||_{K_1} \le Ca^n$$

with C>0 and $a\in(0,1)$, both C and a independent of n. By [6, Lemma 12.3], there exist polynomials $l_k\in P_k(\mathbb{C}^N)$ $(k=1,2,\ldots)$ and constants D>0 and $d\in(0,1)$ such that

$$||l_k - 1||_{K_1} \le Dd^k$$
, $||l_k||_{K_3 \setminus \text{int } K_2} \le Dd^k$ and $||l_k||_{K_2} \le Dk^N$

for $k = 1, 2, \dots$ Write $r_{k,n} = l_k p_n$ $(k \ge 1, n \ge 1)$. By Inequality 1.3 there is

a constant A > 0 such that

$$||p_n||_{K_1} \le A^n$$
, $n = 1, 2, \ldots$

Then for each k > 1 and n > 1, we have

$$||r_{k,n}||_{E\cap(K_3\setminus \text{int}K_2)} \le ||l_k||_{K_3\setminus \text{int}K_2}||p_n||_{K_3} \le DA^n d^k,$$

$$||r_{k,n}||_{E\cap(K_2\setminus \text{int}K_1)} \le Dk^N ||p_n||_{E\cap K_2} \le DCk^N a^n$$

and

$$||r_{k,n}||_{E\cap K_1} \leq (D+1)Ca^n.$$

Now choose an integer m > 0 such that $Ad^m \le e = \max(a, d) < 1$ and set $r_n = r_{mn,n}$ for $n = 1, 2, \ldots$ Then by the above inequalities there exists $n_0 > 0$ such that

$$||r_n||_E \le D_1 e_1^n$$
 for $n > n_{0}$

with an appropriate constant $D_1 > 0$ and $e_1 = (e + 1)/2$. Hence by Inequality 1.3, we can find a compact neighborhood V of the point b, $V \subset K_1$, such that

$$||r_n||_V \to 0$$
, as $n \to \infty$.

On the other hand, for each n,

$$||r_n - p_n||_{K_1} \le ||l_{mn} - 1||_{K_1} ||p_n||_{K_1} \le De^n,$$

whence

$$||f||_{V} \le ||f - p_{n}||_{V} + ||p_{n} - r_{n}||_{V} + ||r_{n}||_{V} \to 0$$

as $n \to \infty$, which yields f = 0 on V. This gives the result.

3.3. Remark. If E is not polynomially convex, then Proposition 3.2(1°) fails to hold (take, e.g., for N=1, $E=\{|z|=1\}\cup\{0\}$; then $\Phi_E(z)=\max(1,|z|)$ but $N_E(E)\neq 0$).

We also note that by the Stone-Weierstrass theorem, if $E \subset \mathbb{R}^N$ then E is polynomially convex.

3.4. Question. For any compact set $E = \hat{E} \subset \mathbb{C}^N$ does the L-regularity of E at a point $a \in E$ imply $N_E(a) = 0$?

We note that this is the case when N=1 (see Remark 3.10 and the proof of Theorem 3.12).

Now we can prove the main result of this paper.

3.5. THEOREM. Let E be a polynomially convex, L-regular compact set in \mathbb{C}^N and h a holomorphic mapping in an open neighborhood U of E, with values in \mathbb{C}^M $(M \le N)$, such that the triplet (h, E, E) satisfies (H). Then h(E) is L-regular.

PROOF. Since E is L-regular, then by 2(1) and Inequality 1.3, c(E) > 0. By Corollary 2.8 we then have c(h(E)) > 0, and by Proposition 3.2(1°) we get

- $N_E(E) = 0$. Therefore by Proposition 2.9(1°) and by 3.1, the set h(E) is L-regular.
- 3.6. COROLLARY. If $E = \hat{E} \subset \mathbb{C}^N$ is L-regular and $h: E \subset U \to \mathbb{C}^1$ is holomorphic and nonconstant in any connected component W of U such that $W \cap E \neq \emptyset$, then the set h(E) is also L-regular.
- 3.7. REMARK. If $E \neq \hat{E}$, then Theorem 3.5 fails to hold; take, e.g., $E = \{|z| = 1\} \cup \{\frac{1}{2}\} \subset \mathbb{C}^1$ and $h(z) = z^{-1}$; then h(E) is not L-regular at $2 \in h(E)$.

Now we wish to give local versions of Theorem 3.5. Owing to Proposition 3.2(2°), by a similar argument to that of the proof of Theorem 3.5 we get

3.8. THEOREM. If a compact set $E \subset \mathbb{R}^N$ is L-regular at a point $a \in E$ and h: $E \subset U \to \mathbb{C}^M$ $(M \leq N)$ is holomorphic in U and such that the triplet $(h, E, \{a\})$ satisfies (H), then h(E) is L-regular at h(a).

We cannot prove Theorem 3.8 for any compact set $E = \hat{E} \subset \mathbb{C}^N$ (see Question 3.4). Nevertheless we shall give a little weaker (or equivalent-see Remark 3.10 and Question 3.11) version of this result.

- 3.9. DEFINITION (compare [9]). A compact set $E \subset \mathbb{C}^N$ is said to satisfy condition (L¹) at a point $a \in E$, if for each r > 0 the set $E \cap B(a, r)$ is L-regular at a; B(a, r) being the closed ball with centre a and radius r.
- 3.10. REMARK. It is obvious that if E satisfies (L^1) at $a \in E$, then it is L-regular at a. Conversely, if N = 1 and $a \in E = \hat{E}$ (or $a \in \partial(\mathbb{C}^1 \setminus E)$, if $E \neq \hat{E}$) then the L-regularity of E at a implies that E satisfies (L^1) at a (see e.g. [4, (5.1.15')]).
- 3.11. Question. Suppose $E = \hat{E} \subset \mathbb{C}^N$ is L-regular at $a \in E$. Does E then have to satisfy (L^1) at a?
- 3.12. THEOREM. With the assumptions of Theorem 3.8 on h, for any compact set E in \mathbb{C}^N , if E satisfies (L^1) at $a \in E$, so does the set h(E) at h(a).

PROOF. If E satisfies (L¹) at $a \in E$, then for each r > 0, $c(E \cap B(a, r)) > 0$, and by Corollary 2.8 we have c(h(E)) > 0.

Moreover, it follows from Lemma 2.1 and Inequality 1.3 that for each r > 0, $N_{E \cap B(a, r)}(a) = 0$ (see the proof of Proposition 3.2). For each r > 0 there exists s > 0 such that

$$h(E \cap B(a, s)) \subset h(E) \cap B(h(a), r).$$

Hence, since by Proposition 2.9(1°) the set $h(E \cap B(a, s))$ is L-regular at h(a), by 2(2) so is the set $h(E) \cap B(h(a), r)$, which means that h(E) satisfies (L¹) at h(a), as claimed.

REFERENCES

1. M. S. Baouendi and C. Goulaouic, Approximation of analytic functions on compact sets and Bernstein's inequality, Trans. Amer. Math. Soc. 189 (1974), 251-261.

- 2. L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton. N. J., 1966.
- 3. B. Josefson, On the equivalence between locally polar and globally polar sets for plurisub-harmonic functions on \mathbb{C}^N , Ark. Mat. (1978).
 - 4. N. S. Landkof, Foundations of modern potential theory, Moscow, 1966 (Russian).
- 5. W. Pleśniak, On superposition of quasianalytic functions, Ann. Polon. Math. 26 (1972), 75-86.
- 6. _____, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. 147 (1977), 1-65.
- 7. _____, Remarques sur une généralisation de l'inégalité de S. Bernstein, C. R. Acad. Sci. Paris Sér. A 284 (1977), 1211-1213.
- 8. J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322–357.
- 9. _____, Extremal plurisubharmonic functions in C^N, Proceedings of the First Finnish-Polish Summer School in Complex Analysis at Podlesice (Lódź 1977), University of Lódź, pp. 115–152.
- 10. J. Siciak and Nguyen Thanh Van, Remarques sur l'approximation polynomiale, C. R. Acad. Sci. Paris Sér. A 279 (1974), 95-98.
- 11. V. P. Zaharjuta, Extremal plurisubharmonic functions, orthogonal polynomials and Bernstein-Walsh theorem for analytic functions of several complex variables, Ann. Polon. Math. 33 (1976), 137-148. (Russian)

DEPARTMENT OF MATHEMATICS, JAGELLONIAN UNIVERSITY, 30-059 KRAKÓW UL. REYMONTA 4, POLAND