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ON THE FIRST OCCURRENCE OF VALUES
OF A CHARACTER

BY

G. KOLESNIK AND E. G. STRAUS1

Abstract. Let x be a character of order k (mod n), and let gm(x) be the

smallest positive integer at which x attains its (m + l)st nonzero value. We

consider fixed k and large n and combine elementary group-theoretic

considerations with the known results on character sums and sets of integers

without large prime factors to obtain estimates for gm(x)-

1. Introduction. Let x be a character of order k (mod «), and let gm(x) =

«i/t-Oc) be the least positive integer at which x attains its (m + l)st nonzero

value.

Even though we shall not need most of the information, it may be useful to

give a brief review of some elementary facts about characters which can be

found in most textbooks on the subject. The character group (mod «) is

isomorphic to the multiplicative group G(n) of reduced residue classes

(mod «). If we write « = 2apx< ■ ■ • p^; a > 0, a,> 0 (j = 1, . . . , s) where/^

are odd primes, then, by the Chinese remainder theorem, G(ri) is the direct

product of the groups G (2a), G(pß) (j = 1,.. ., s). Now G(pp) is cyclic of

order <p(pp) = pp~\pj - 1) and G(2a) = (1} if a = 0, 1, while if a > 2,

then G(2a) is the direct product of a group of order 2 and a cyclic group of

order 2a~2. Thus there exists a character of order k = 2ßqß' • ■ ■ qf', where

the qj are odd primes, if and only if the following conditions are satisfied:

For every/ = 1, . . ., / we have either

p¡ = 1 (mod qfî)   for some i,

or

Pi = qj   and a, > ßj   for some /',

and either

Pi = 1 (mod 2B)   for some i,
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or

ß = 0,   or ß = 1 and a > 1,    or ß > 1 and a > ß + 1.

The group of nonzero values of a character of order k is the group of kth

roots of unity. Also the character x (mod n) of order k = 2Bqf> • ■ ■ q,B' can

be expressed uniquely as a product of characters Xo» Xi> ■ • • > Xi (mod «) of

orders 2B, qf',.. ., qj3', respectively.

Throughout this paper the modulus « of the characters is assumed fixed

and cube free (although some of the results could be extended to more

general «). So we shall omit the notation (mod «). The symbol e stands for a

positive number which can be chosen arbitrarily small, although different

uses of e in the same statement may refer to unequal choices. Since g0(x) = 1

(To(x) = oo) holds for all x we use the symbol gm(x) in the following with the

understanding that m > 0.

In §3 we use simple group theoretic facts to obtain estimates of gm(x) in

terms of various values g¡(x') with / < m or ord x' < k. In §4, we use

estimates for character sums and estimates on the number of integers without

large prime divisors to get bounds for gx and apply these results to the result

of §3 to obtain bounds for gm which are useful for values of m which are

small compared to k. Finally in §5 we illustrate a method of estimating the

number of integers with few large prime factors to improve the estimates for

gm by carrying out some of the details in estimating g2.

2. A group theoretic lemma. Let G be a group and S a subset of G. Define

S,= {sxs2- ■ ■ s,\s¡ E S),       /=1,2, ....

If 1 G S and S0 = {1} then S0 c Sx c S2 c_

2.1. Theorem. If l E S and \Sm\ < m, then Sm is a subgroup of G and

Sm-l  =  Sm =  Sm+X  =   •   •   •   .

Proof. The theorem is obvious when m = 1. Now assume the theorem true

for m - 1. If Sm_x c Sm, then \Sm_x\ < m — \ and therefore Sm_x is a

subgroup. Hence Sm = Sm_xS = Sm_x is a subgroup of G. We may thus

assume that Sm_x = Sm = Sm_xS, which means that Sm is closed under

multiplication and hence it is a subgroup of G.

Both hypotheses in Theorem 2.1 are necessary. If 1 G S, then the result is

false for m = 1; while if S = {1, a), where a is an element of order m + 2,

then |Sm| = m + 1 and Sm is not a group. It is convenient to state the

following corollary.

2.2. Corollary. // S is a set of generators of a group G of order m and S

contains the identity, then \S¡\ > I for all I < m; and in particular, Sm_x = G.

Proof. If we had \S¡\ < / for some I < m then, by Theorem 2.1, S¡ would

be the group generated by S, contrary to hypothesis.
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3. Applications to values of characters. Let x be a character of order k.

3.1. Definition. Let gm = gm(x) denote the least positive integer for which

X attains its (m + l)st nonzero value. Thus g0(x) = 1 and gm(x) is the least

positive integer with x(gm) $ {0, x(go)> • • • > XÍ&»-i)}-

Now Theorem 2.1 leads to the following:

3.2. Lemma. If x is a positive integer, (x, n) = 1 and all prime divisors of x

lie in the interval (1, g^m), then \(x) belongs to a subgroup of order I < m, l\k,

of the group of kth roots of unity.

Proof. If we let S = {x(*)|(«, x) = 1, 0 < x < gxJm], then S satisfies the

hypotheses of Theorem 2.1 and Sm is a subgroup contained in the set

T= {X(x)\(n,x) = 1.0<*<gm}.

3.3. Lemma. Let I be the order of the subgroup defined in the proof of Lemma

3.2.

(i) We have I = 1 if and only if gm < g™.

(ii) If I < I < m, define X\ = x' as a character of order kx = k/l. If I = m,

then gm(x) = g,(xi)-

(iii) If I < I < m, define

m, = [(m - I)/ (t + 1)] + 1,        t = 0, 1, ...,/- 1,

and obtain

^(x)<omin/g^(Xir/<m-').

m,<kl

Proof. Part (i) is obvious, since x(*) =1 for (x, n) = 1, 0 < x < gxJm,

implies gxJm < gx. Conversely, if gxm/m < gx, then 5 = {1} = Sm so that

/= 1.

Part (ii) assumes that / = m. Thus x(x)! = 1 for every 0 < x < gm, (x, n)

= 1 and x(gm)' ^ 1- Hence gm is the smallest positive integer x, (x, n) = 1,

for which Xi(x) ¥= 1-

To prove part (iii), we wish to estimate the number of values attained by Xi

in the interval [1, gm(xYm~')/m)- Assume that XiW = f f°r some x with

(x, n) = 1, 1 < x < gm(x)(m~')/m- Since the set of values x(>0 with 1 < y <

gm(x)l/m, (n,y) = 1 generates a group of order /, we have

|{xOv • -y,)\i < y\,---,y,<gm{x)'/mAyx- • • v„«) = i}| > / + i

for all r < / by Corollary 2.2. Thus xixy\ • ■ • y,) attains at least t + 1 distinct

values fj, . . . , £,+ 1 with f,' = • • ■ = f/+1 = f, for 1 < v„ . . . , y, <

gm(x)'/m and hence for 1 < xy, . . .yt < gm(x)- In other words, to every

nonzero value f attained by Xi in the interval [1, gm(x)(m-')/m) there corre-

spond at least t + 1 distinct values of x> attained in the interval [1, gm(x))>

whose /th power is f. In addition we know from Theorem 2.1 that all / values
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of the subgroup of /th roots of unity, that is the values x(*) f°r which

X\(x) = 1, are attained in the interval [1, gm(x))- Hence the number of distinct

nonzero values of Xi in [1, gm(x)(m~')/m) is at most 1 + (m - l)/(t + 1), that

is

\{Xx(x)\(x,n)=l,0<x<gm(x)(m-')/m}\
m — I

+ 1 = m,
t + 1

for 0 < t < / - 1. Hence g^Oo) > gm(x)(m"')/m for all these values of t

whenever the sumbol gm (xi) makes sense.

Lemma 3.3 enables us to get upper bounds for gm(x) in terms of gx(x') for

the divisors / of k. If k is a prime, or generally when m is smaller than the

least nontrivial divisor of k, then

g«(x) < gi(x)m

Now take k = p2 where/» is an odd prime. Then gm(x) < gi(x)m f°r rn <p.

For p < m < 2p — 1, we have either / = 1 and gm < gf or / = p. In case

I = p, choose t = [m/2]. Then

to — p
to, = + 1 = 1

[to/2] + 1 J

and

gm(x) < max{g1(xr,g1(xOm/(m"tm/2l)} < m^{gx(x)m,gx(x"f}-

If k > m > 2p and / = p choose t = p — I. Then to, = [m/p] and

gm(x) < max{g,(x)m,g[m/pl(xO'"/('""', + 1)}-

But

gu/P\{xp) < gÁxp)[m/p] < gÁxp)m/p

and therefore

gm(x) < max{g1(x)m,g1(xOm2/;'('""/'+1)}- (M)

The computations get increasingly cumbersome as k has more factors.

However, since, as we observed in the introduction, every x can be expressed

as a product of characters of prime power order, it is particularly useful to

give the relations for k = pr,p prime. This can be done by case divisions as

above for the cases r = 1,2. We omit the details.

Another upper bound for gm for x of arbitrary order k is obtained as

follows.

Let /, be the order of the group generated by x(gi(x))- Define Xi = x'' and

let l2 be the order of Xi(gi(Xi)) and so on. In this manner we get divisors /„

l2, . . . , ls of k so that /, > 1 and lxl2- • • ls = k; and characters x¡ = x'1 ''

of order k¡ = k/lx • ■ ■ l¡ = li+\ ■ ■ ■ ls- The order of the group G, generated

by X(gi(x)), x(g.(Xi)), • • • . X(gi(x-i)) is /, • • • /, as seen from the fact that
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Gj/G¡_x is the cyclic group of order /, generated by xÍE\(x¡-\))G¡-v which is

isomorphic to the group generated by x_i(£i(X-i))- All values of G, are

attained by x(x) with

i<*< t?i(x),,",fi(xj),2"l-;-ftOû-i)*"1-

The values x(gi(x)a'gi(Xi)a2 ' " ' giOt-i)"') are distinct elements of G, for

0 < üj < lj and thus we have the following.

3.5. Theorem. There exist divisors lx, l2, . . ., ls of k so that l¡ > I, /, • ■ • ls

= k,Xi = X1'"'1 and

gm(x) < g,(xf g.tx,)"2 ■ ■ ■ g,(xî-,r.       0 < a, < /,,

whenever

to <\{(bx, ..., bs)\0 < bi < li,gx(xt • • ■ gliXs-l)"'

< gÁx)"'■ ■ ■ gÁXs-J%

Proof. We need only verify the assertion that

X(g,(x)a' • • • g.U-,)"') = X(g,(x)6' • • • g,(X-.)6') (3-6)

with 0 < Op bj < lj (j = 1, . . . , i) implies a, = 6, for/ = 1, . . . , i. We prove

this by induction on /'. For i = 1 we know that x(c?i(x)) is a root of unity of

order /,, and hence x(gi(x))a' = x(gi(x))6' implies ax = bx (mod /,), therefore

ax = bx since \ax — bx\ < /,. Now assume the statement true for /' — 1 and

raise both sides of (3.6) to the power /, • • • /,_, to get

X-i(gi(X-i))a'= X-iUi(X-i))

which implies a¡ = b¡ (mod /,) and hence a¡ = b¡, since \a¡ — b¡\ < l¡. Thus we

can cancel the factor x(gi(X-i))a' = X(gi(x,-i))6' on both sides of (3.6) and

get Oj = bj (j = 1, . . . , i) by the induction hypothesis.

4. Bounds in terms of powers of the modulus. Using the results on character

sums due to D. A. Burgess [1] and K. Norton [4] which show that the

different values of x are equally distributed in relative short intervals,

together with a simple sieve argument first used by Vinogradov [5], one can

get bounds for g,(x), and thus for general gm(x) whose order is a fractional

power of «. For details and further references see the monograph of K.

Norton [3].

We need the following fact (compare [4, Theorem 7.24]).

4.1. Lemma. Let Nm(h) be the number of integers x in [1, «] for which

xix) = x(gm) where x >s a character of order k (mod «). Then

Nm(h) = (<p(«)/A:«)« + 0(«1-1/'n('+l)/4r2+£) (4.2)

where r is an arbitrary positive integer, e > 0, and the implied constant in O

depends only on r and e.
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Proof. Since Norton's proof in [4] refers to the case of power residues, we

adapt the proof in [4] as suggested by the referee.

Let f be a £th root of unity; then

(\    iff-1,i 2f-
/=i 0    iff^l.

Hence

\ 2 x\x)x!(gm)=\\   *
K   1=1 {0    ol

X(x) = X(gm)>

otherwise.

Summing over 1 < x < h, we get

Nm(h) = \-   S  x'(gm)    2     X'W
/=i 1 <;c</i

£-1

= i     2   x*00 + 2 x'(gj  2   x'W
1 <: je «s A /=l ]<x<h

(4.3)

Since x* is the principal character, we get by the method of Norton [4, p. 165]

that

2     xk(x) = -^- h + 0(n*).
\<x<h "

We now use Theorem 2 of [1] which gives

¿-1

*2 x'(gj   2   x'(x)
1=1 \<x<h

<
1

/=1
2   x'W

Kx< h

1
A:-l

-t    2   0(h1-i/rn^r+l)/4r2+t)= 0(hl-l/rn<r+1)/4r2+<)        (4.4)
*   i=i

for any positive integer r (in case « is cube free as we assume throughout).

Here the implied constant depends only on r and e.

Combining (4.3) and (4.4) we have the desired result.

We also need the Dickman function.

4.5. Definition. The Dickman function p(a) is defined for all nonnegative a

by

p(a) =1,        0 < a < 1,

-a   p(t - 1) N <a < N+l,
t        aT'        N = 1, 2, • • • .

The function p(a) is monotonically strictly decreasing for 1 < a < oo with

lima^aop(a) = 0. It is therefore possible to define p~'(f) for every f G (0, 1]

as a number in [1, oo) (see [3, p. 3] for details).

Now let Nn(x,y) be the number of integers prime to n in the interval [1, x]

p(a) = p(N) - f°
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which have no prime divisors > y. Then (see [3, (6.8)]) for a > 0, « > 3 we

have
<»(«) / (log log nfx ,   \

Nn{x,,«/.) = ÏLL p(a)x + 0p ëiQgë^    +„.(»!/- + ,.-./-) j

(4.6)
where the implied constant depends only on a and e.

We now write

UX) = ",/y-(x),        to = 1, . . . , A: - 1.

In the following we assume k fixed. Then if « = «'/4+e, we can choose r such

that the error term in (4.2) is small compared to the principal term. Thus

Jm > 4 - e (4.7)

for all characters of order k provided « is sufficiently large.

Combining (4.2) and (4.6) we can prove the following (see [3, (1.7)]).

4.8. Lemma. For every e there exists an «(e) such that yx > 4p~\l/k) — t

for all n > n(e, k).

Proof. Assume that there exists a S > 0 such that y, < 4p"'(l/A:) — 8 for

infinitely many « and corresponding characters x- Then choose « = n'/4+£,

where e is chosen so small that

g, = »'/»i > „i/(p-'(i/*)-£) + i.

From (4.2) we get

N0(h) = (cp(n)/kn)h(l + o(l)). (4.9)

From (4.6) we get

A„(«,g, - 1) >(<p(«)/«)p(p-1(l//c) - e)«(l + o(l))

> (<p(n)/n)(l/k + e)«(l + o(l)), (4.10)

since p is a decreasing function. But every positive integer x which is prime to

« and has all its prime factors < g, obviously satisfies x(x) = 1. Thus

N0(h) > Nh(h, g, - 1), in contradiction to (4.9) and (4.10).

In order to apply Lemma 4.8 to the estimates of gm which we obtained in

§3, we observe the following.

4.11. Lemma. For all integers k > 2 and 1 < m < k we have

(l/m)Px-(l/k)<p-l(m/k).

Proof. Set f(x) = xp~l(x/k). Then f(x) is differentiable for all x in

0 < x < k. For any x in this range, write y = p~\x/k), so that f(x) =

kyp(y). Now, by Definition 4.3,

^ = k(p(y) + yp'(y)) = k(p(y) - p(y - 1)) < 0

for all y G (1, oo). Thus / is a decreasing function of y and hence an
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increasing function of x, so that/(l) < /(to).

If we combine Lemma 4.11 with Theorem 3.5 and write

gi(X/) = ni/y,(x),

we find that for i = 0,1, . . . , s - 1 and any e, we have

7,(X) > 4p-'(lA) - « = 4p-'((/I • • • /,)/*) - *

>(4//,-../i)p-'(lA)-e (4.12)
for all large «.

4.13. Theorem. Let k be a fixed integer. For every e, there exists an n(e, k)

such that for every character x of order k, we have

Ym(x)>(4/TO)p-'(l/A:)-e

for all « > «(e, k) and every integer 1 < m < k.

Proof. If k = 1 there is nothing to prove. If k > 1 define the divisors

/„..., 4 and the characters Xi, • • • , Xs-i as in Theorem 3.5. We shall prove

that for any e there is an «(e, k) so that for all « > «(e, k) the number of

solutions of the system

gf" (x)gr(Xi) • • • gfiXs-t) < vm, 0 < at < /,, i = 1, . . . , s, (4.14)

where v = «l/(4p "'(|/*»+£ is at least to + 1. Since x attains distinct values at

the integers on the left side of (4.14), this proves the theorem.

If we set g,(x) = vB', g,(x) = pß> then from Lemmas 4.8 and 4.11 it follows

that ß < l, ßi < lx ■ ■ ■ l¡. Now the number of solutions of (4.14) is equal to

the number of solutions of

ax ß + a2ßx + • • • + asßs_x < to,      0 < a, < /„    i = 1, . . ., s,   (4.15)

and the number of such solutions can only decrease if the ß, ßt axe increased.

It thus suffices to prove that the inequalities

ax + a2lx + a3lxl2 + • • • + aslxl2 • "• • ¿_, < m,

0 < a, < /,,    i = I,.. . ,s,   (4.16)

have to + 1 solutions. This is obvious from the fact that the expressions on

the left of (4.16) represent all integers from 0 to k - 1 = /, • ■ • ls — 1 > m

in a unique manner as the a, vary in the given ranges.

Note that Theorem 4.13 is useful only for m which are small compared to k

since p~\l/k) grows less rapidly than k. In fact (see [3, (3.24)]) we have

p" '(1/A;) < < log k/log log k for large k.

While we do not know how to improve the results in Theorem 4.13 without

better information on the character sums which appear in the proof of

Lemma 4.1, it is possible to get additional information for gm of other

characters in case g,(x) is comparatively large for some character x-

4.17. Corollary. Given characters X\ of order kx and x2 of order k2. Assume

that gm(x2) < gi(Xi). Then there exists an n(e, k) such that



VALUES OF A CHARACTER 393

gtixi) < «e/4'~1(1/*))+*,      1 < / < m,

where k = [kx, k2] and n > n(e, k).

Proof. Write kx = pf' ■ ■ ■ ps">, k2 = pB> ■ ■ ■ pf> and set k\ = Iiai>ßiPla<,

k'2 = Tlp.>a¡ pp. Then the character

X = Xi,/k''X22/k'2

has order k = k\k2 = [kx, k2].

Now assume that g^Xi) > g/(X2)- Then in the interval [1, g,(xi)) the

character x can assume at most / distinct nonzero values. Hence g,(x2) <

g/(x). The corollary now follows from Theorem 4.13. It constitutes an

improvement unless kx divides k2.

5. More elaborate sieve arguments. We can improve the argument that led

to the estimate of g, by way of (4.6) in a manner that was used by J. H.

Jordan [2]. We illustrate the idea by estimating g2.

5.1. Definition. Let N(x,y, z) be the number of integers in [1, x] which

have no prime factor > v and at most one prime factor > z. Define

Nn(x,y, z) is an analogous manner, restricting attention to the integers which

are relatively prime to «.

5.2. Definition. p(a, ß) = p(ß) + /£p(ß - ß/r) dr/r, where 1 < a < ß

< oo.

5.3. Lemma. N(x, xl/a, x1/B) = p(a, ß)x + o(x), where the constant implied

in o(x) depends only on a, ß.

Proof. We have

N(x,xl/«,xl/B) = N(x,x'/B)+        2 n\(-),x1/b

x>/e<P<x</°   p     V lugx     /

/ rxV-    /      log(x/t) \        dt \

= xp(a, ß) + o(x)

where we have substituted t = x^r in the first integral.

We shall actually use a more specific lemma which we state without proof

since the argument is entirely analogous to the one in [3] which leads to (4.6).

5.4. Lemma. If x > ns for a fixed 8 > 0 and ß > a > 1, then
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N„(x,xl^,x1^) = (<p(n)/n)p(a,ß)x(l + o(l)).

Now we can express a bound for g2.

5.5. Theorem. Let xbe a character of order k (mod n), and let yx = yx(x),

y2 = y2(x) be as in §4. Then for any e and all large n, we have

P(v2/4, Y./4) < 2/k + e.

Since y,/4 > p~\l/k) — e for all large « and p(a, ß) is a decreasing function

of ß for 1 < a < ß < oo, we get

p(y2/4,p-l(l/k))<2/k + e (5.6)

for all large n.

Proof. Choose « = «1//4+E. According to Lemma 4.1, the number of

integers in [1, «] for which x has the value 1 or x(gi) is (2<p(«)//c«)«(l +

o(l)).

Now every integer x in [1, h] with (x, «) = 1, which has no prime factor

> g2 and has at most one prime factor > g„ obviously has x(*) = 1 or

X(x) = x(gi). The number of such integers is

N(h, »>/* „>/r.) > ffiht „4/r2+e> ä4/t,+.) > ^  /p| 2£ ,   M _ eJÄ-

Thus

2<p(«) , ..   <p(")

fol

and the result follows.

It would not be difficult to extend these arguments to estimate gm for larger

values of to, but it would involve more case divisions.
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