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AMALGAMATION AND INVERSE AND
REGULAR SEMIGROUPS

BY

T. E. HALL

Abstract. A method for proving the embeddability of semigroup amalgams

is introduced. After providing necessary and sufficient conditions in terms

of representations for the weak embeddability of a semigroup amalgam, it

successfully deals with the embedding of inverse semigroup amalgams into

inverse semigroups and the embedding of an amalgam of regular semi-

groups whose core is full in each member.

Most of the known results on amalgamation of semigroups, almost all of

which are due to J. M. Howie, have now been proved by a method in-

troduced in [7] involving a countably infinite number of steps, each step

extending a representation of a semigroup [7], [8], [14], [15]; the main results

thus proved concern amalgamation over a common unitary subsemigroup, an

almost unitary subsemigroup, an inverse subsemigroup, a two-element sub-

semigroup, and the embedding of an inverse semigroup amalgam in an

inverse semigroup. We give here a method of proof that avoids this infinite

number of steps.

First it yields a necessary and sufficient condition, in terms of representa-

tions, for the weak embeddability of a semigroup amalgam (defined below).

This gives then a short proof of [7, Theorem 8] (see also Howie's text [9] for

an exposition), namely that inverse semigroups have the strong amalgamation

property. Further we are able to show that finitehess can be preserved in the

embedding of an amalgam (S¡, i E I; U) of inverse semigroups if the com-

mon inverse subsemigroup U is full in each S¡, i.e. contains all the idempo-

tents of each S¡; in general, finiteness cannot be preserved [7, §3].

Further we are able to show that, in fact, regular semigroups can be

amalgamated over a full regular subsemigroup, also with finiteness being

preserved. In general, an amalgam of regular semigroups (even left regular

bands) cannot be weakly embedded in a semigroup [8, Remark 7]. In the final

section we consider semigroups that are unions of groups.
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1. Preliminaries.

Result 1 [4, Result 9]. If U is a regular subsemigroup of a semigroup S then

Green's relation £ on U is the restriction to U of £ on S.

Result 2 [5, Theorem 14]. // E is any set of idempotents of a semigroup S

such that there is a regular subsemigroup U of S with E as the set of all

idempotents of U, then there is a unique maximum regular subsemigroup of S

with E as its set of idempotents.

For any set X we denote by <?'ö(X) and by ^(X) the semigroups of all

partial and all total transformations of X, respectively, under composition of

binary relations. For any set X and any semigroup S we call a homomor-

phism p of S into 9 ^(X) a representation of S by partial transformations of X.

By an S-orbit of p or a p-orbit we mean any minimal (with respect to the

partial ordering Ç) nonempty subset of X closed under the taking of images

and pre-images by the functions ps, s E S. The p-orbits thus include the

singleton sets {x} for each x E X which is not in the domain or range of any

ps, s E S. We note that the action of S on a p-orbit is not necessarily

transitive, but that, of course, X is the disjoint union of its p-orbits. We call

the partial unary algebra (X, {ps : s E S }), consisting of X and an indexed set

of partial unary operations indexed by elements from S, an S-system, and of

course, two S-systems (X, {ps: s E S}) and (X1, {p's: s E S}) are called

isomorphic or equivalent if there is a bijection <¡>: X -» X' such that 4>~lps<¡> =

p's for all s E S. As is usual for all structures, (X, {ps: s E S}) is often

denoted by just X, the context telling us the partial operations ps, s E S. For

a subset X' of X we denote by p\\X' the function from S into <$ ̂ (X) which

maps each s E S to ps\X', the partial transformation of X obtained by

restricting the domain of ps to X'; p\\X' is a representation if X'ps Q X' for

all s E S.

By a class G of representations of a class & of semigroups we simply mean

a class each object of which is a representation of some semigroup from 6E ;

three such classes consist of all representations, and the representations by

total and by one-to-one partial transformations.

Let U and S be any semigroups such that U < S and let G be a class of

representations of { U, S}. We say that Uhas the [orbitpreserving] representa-

tion extension property in S for the class 6 if for any representation p:

U -» 9 'S(X) from G there is a set Y disjoint from X and a representation a:

S^W <ö(X u Y) from G such that ajA- = p„ [and further Ya» C Y] for all

u E U. We permit ourselves to omit the phrase "for the class G" when G is

the class of all representations.

Using the standard method of embedding 9 ^(X) into <5(X u 0), where

0 6 X [1, §11.1], we can easily see that U has the [orbit preserving] repre-

sentation extension property in S for the class of representations by total

transformations if U has this property in S for the class of all representations.
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Result 3 [8, Theorem 1]. If U is an inverse subsemigroup of a semigroup S,

then U has the representation extension property in S for the class of represen-

tations by total transformations.

Let â be any class of algebras. If, for some index set I, {S¡: i E 1} is an

indexed set of algebras from â having a common subalgebra U also in (£,

then the list (S¡, i E I; U) is called an amalgam from &. If there exist an

algebra W and monomorphisms <f>,: S, —> W, i E I, agreeing on U (i.e.

0,| U = <fy| U for all /,/ E /) then we say the amalgam (S¿, i E I; U) is weakly

[strongly] embeddable in W [if also (S¡4>¿) n (Sfy) = U<¡>¡ for all distinct i,

j E I]. An algebra U E & is called a weak [strong] amalgamation base in £E if

every amalgam from â of the form (S¡, i E I; U) is weakly [strongly]

embeddable in an algebra from &. If an amalgam of the form (S, S; U) is

strongly embeddable in an algebra from & we say U is closed in S (within &).

If U is closed in 5 within & for all U, S E â with U < S, then we say & has

the special amalgamation property. If every amalgam from & is weakly

[strongly] embeddable in an algebra from é£ then we say & has the weak

[strong] amalgamation property.

Result 4 [9, Theorem 4.11]. The class of inverse semigroups has the special

amalgamation property.

2. A necessary and sufficient condition.

Theorem 1. An amalgam (S¡, i E /; U) of semigroups is weakly embeddable

in a semigroup if and only if, for all i E I, there is a set Z, and a faithful

representation aw: S¡ -» 9<^(Z¡) such that the representations a(,)|t/, / E /, of

U contain precisely the same isomorphism types of U-orbits (i.e. for all i,j E I,

for each U-orbit ofaM\ U there is an isomorphic U-orbit of aw| U).

Proof, (i) Suppose such representations exist. We consider first the case

/ = ( 1, 2), say. Put S = Sx, T = S2, a = a(1) and ß = a(2) and let X be any

infinite cardinal such that X > |Z,|, |Z2|. Let a': S -> ty ̂ i(Z'x) be the sum of A

copies of a: S -h> 9 f(Z,) and let ß': T^><$ 3"(Z2) be the sum of X copies of

ß: T^'3"ö(Z2).
Now a'\U and ß'\U each have exactly X copies of each isomorphism type

of £/-orbit that either of them contains, so they are equivalent; i.e. there is a

bijection <£: Z{ —> Z2 such that </>~ Wu<i> = ß'u for all u E U.

We now define a representation a": S-*® ^(Z^) by a" = <#>"'a> for all

sES. Then a"\U = ß'\U and a" and ß' are faithful on S and T, respec-

tively, so (S, T; U) is weakly embeddable. We may similarly deal with the

arbitrary case by taking X > |Z,| for all i E I and by taking X copies of each

a«.

(ii) Suppose (S¡, i E I; U) is weakly embedded in a semigroup W by

monomorphisms <£,: S,-* W agreeing on U. Let p:  W-> <5"ö(W') be the
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extended right regular representation of W. Put Z, = Wx and a(0 = <#>,p for

all /' E L Then, in fact, the representations a(,)| U are all identical. We also see

that the theorem remains valid if $ 9"(Z,) is replaced by ^(Z¡).

Theorem 2. If U is any subsemigroup of any semigroup S such that U has the

orbit preserving representation extension property in S, then for any infinite

cardinal n > \S\, there is a set Z and a faithful representation a: S -» fy 9"(Z)

such that the orbits of a\U, up to isomorphism, are precisely all the possible

U-orbits on sets of size at most k.

Proof. For any semigroup U and any cardinal k let {Xy. j E J) be an

indexed set of sets, pairwise disjoint, and for each/ E J let pw: Í/-» 3* ̂ (Xy)

be a representation of U, such that each Xj is a pw-orbit, but further such

that for any arbitrary t/-orbit 0 of size at most k, there is precisely one/ E J

such that Xj and O are isomorphic t/-systems. (If k is infinite then \J | < 2\)

Put X = U jejXj and let p: f/ -» *éP ^(X) be the sum of the representations

p(/>. u _> 6j> g-(A}X/ E y (i.e. we define p by p„ = U y6/P„w for each u E [/).

Now let S be any semigroup with U as a subsemigroup and such that U has

the representation extension property in S. Then for each/ E J there exist a

set Yj disjoint from A} and a representation aœ: S -» <2P ^(A,. u )^) such that

af/^Xj = p^ for all u E U. Without loss of generality we can assume that

XjU Yj = XjU (Uses xjas) and that for a11 distinct/, k E J, Xp Xk, Yp Yk
are pairwise disjoint. Put Y = UJeJ Yj and let a: S^><$"ö(X U Y) be the

sum of the representations aw,/ E /. Let O be any i/-orbit of «| U. Then for

some/ E /, O Ç Xj u Y} whence

\0\ < |A} u Yj\ < |A,| + [Xj x 5| = |A,| + |A}| \S\.

Thus if k is an infinite cardinal such that k > \S\, then O is also a i/-orbit

with size at most n.

If U has the orbit preserving extension property in S then we can assume

that further, for all/ E J, for all u E U, YjU^ Ç Yp i.e. that Xj is a i/-orbit

of a | Í/. To make a faithful on S we need merely take the sum of a and the

extended right regular representation of S. This completes the proof.

Corollary 3 [8, Theorem 27(i)]. An amalgam (S¡, i E I; U) of semigroups

is weakly embeddable if U has the orbit preserving representation extension

property in each S¡ for the class of representations by total transformations.

Proof. The proof of Theorem 2 shows that Theorem 2 is still valid if we

consider only representations by total transformations. The corollary follows

immediately from Theorem 1 and this modified version of Theorem 2. Note

that by [8, Theorem 27(i)] the amalgam (S¡, i E I; U) is actually strongly
embeddable.
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Theorem 4 [7, Theorem 5]. Let U be any inverse subsemigroup of any

inverse semigroup S. Then U has the orbit preserving representation extension

property in S for the class of representations by one-to-one partial transforma-

tions.

Proof. Take any set X and any representation p: [/—> í (X), the semigroup

of one-to-one partial transformations of X. Using the standard method of [1,

§11.1], we take an element, 0 say, not in X, and for each u E U define a total

transformation yu of X u 0 = X u {0} by yu = pu U (X X {0}) u {(0, 0)}.

Then the map y: U -> ^){X u 0}, u\-*yu is easily seen to be a

homomorphism. By Result 3 there is a set Y disjoint from X u 0 and a

representation a: S -> §(X u 0 u Y) such that (^¡(X u 0) = yu for all u E

U.

As in [12] or [13, Theorem 1], we define a representation a*: S -» $(X u 0

U Y) by a* = ^((A u 0 u Y)as-i) for all j E S. Easy checking shows that

c£\X = pu for all «et/. Further, (T u 0)a* Ç Y u 0 for all u E U, since

for any_y E Y u 0 such that y E Domain cl*, we have (yaf)af-i = y E Y (J

0 so yo£ E A. This completes the proof of the theorem.

Theorem 5 [7, Theorem 8]. The class of inverse semigroups has the strong

amalgamation property.

Proof. Take any amalgam (S, T; U) of inverse semigroups. Using Theo-

rem 4 we may modify the proof of Theorem 2 to show that there is a set Z

and a faithful representation a: S-»á(Z) such that a\U contains, up to

isomorphism, precisely the i/-orbits of size at most k in the class of repre-

sentations by one-to-one partial transformations. Without modification the

proof of Theorem 1 yields faithful representations of S and T in 5(Z2),

agreeing on U. Thus the amalgam is weakly embeddable in an inverse

semigroup W, say by monomorphisms <¡>: S ^> W, \p: T ^> W agreeing on U.

By Result 4 there exist an inverse semigroup W' and monomorphisms <j>,:

W^> W', <i>2: W -» W' agreeing precisely on t/</> = U\p. Then the monomor-

phisms 4^>x: S-* W' and \p<f>2: T^>W' agree precisely on U, giving that the

amalgam (S, T; U) is strongly embeddable in an inverse semigroup. An easy

transfinite induction argument gives the strong embeddability of arbitrary

amalgams of inverse semigroups.

3. Amalgamation over a full regular subsemigroup. Using Lallement's refor-

mulation [10, Proposition 2.2] of Preston's representation result [11, Theorem

2], for any semigroup S we define for each element s6S,a partial transfor-

mation p(S)s of S by

p(S)s={(x, xs) E S X S: x <& xs in S},

and we define p(S): S -> <$ 3"(5) to be the function mapping each s E S to
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p(S)s. Then p(S) is a representation of S, and is just the Preston-Vagner

representation (as in [1, §1.9]) when S is an inverse semigroup.

Dually, we define X(S): S ^ <3> ?T(S) by

X(S)s={(x, sx) E S X S: x £ sxinS)

for each s E S. Then X(S): S -» $ 'ÏÏ(S)*, the semigroup dual to <3> 3"(5), is a

homomorphism.

If S is regular then the map

(X(S),p(S)):S^<$<ö(S)* X 9${S),   s»(X(S)s,p(S)s),

is a monomorphism [10, Proposition 2.2].

Lemma 6. // U is a full regular subsemigroup of a regular semigroup S, then

the amalgam (S, S; U) is strongly embeddable in a semigroup (i.e. U is closed

in S). If S is finite then the amalgam is strongly embeddable in a finite

semigroup.

Proof. For each u E U it is clear that Up(S)u G U; we show that also

(S \ U)p(S)u Ç S \ U. Suppose to the contrary that there is an element

b E S \ U such that bp(S)u E U. Let b' be any inverse of b in S. Then bu,

b'b, (b'b)u E U and b <3l bu in S so b'b <3l b'bu in S and hence in U (Result

1). Thus there exists an element v E {/' such that b'b = b'buv whence

b = bb'b = bb'buv = (bu)v 6i/,a contradiction, as required.

Let S' be a set disjoint from S and of the same cardinality, and let S —* S',

x\-+x' be a bijection. Make S' a copy of the S-system S by defining p'(S):

S -► <3> Ï(S') by x'p'(S)s = (xs)' for all x' E S', s ES such that x E

Domain p(S)s.

Define a permutation <¡>: S u S' -+ S u S' by, for ail a E U, b E S \ U,

a<j> = a, a'<t> = a', b<¡> = b', b'<¡> = b. Let a: S -+ <$ 9"(S u S') be the sum of

p(S) and p'(S) and define ß: S -+ 9 *ö(S u S') by ßs = <t>~\<t> for all s E S.

It is easy to see that a„ = ßu for all u E U. Further, for any s E S \ U, and

any inverse x of s in S, since sx E U, we have

(sx)as = s,

0*)& =(^)«í>"1«í<í> =(í*K<Í> = J<í> = í',

and so a, ^= /?f.

We now take the direct sum of each of a and ß with the right regular

representation of S, thus obtaining two monomorphisms from S into a single

semigroup, agreeing precisely on U. Thus the amalgam (S, S; U) is strongly

embeddable in a [finite] semigroup [if 51 is finite]. This completes the proof of

the lemma.

Remark 1. If U is a subsemigroup of a finite semigroup S and if U is

closed in S, then it is always the case that the amalgam (S, S; U) can be
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strongly embedded in a finite semigroup. To see this, we modify the proof of

[9, Theorem VII.2.5] by taking the free abelian group of exponent 2, say, on

A, instead of taking the free abelian group on A.

Lemma 7. If U is any full regular subsemigroup of regular semigroups S and T

then the amalgam (S, T; U) is weakly embeddable in a semigroup. If S and T

are finite then the amalgam can be weakly embedded in a finite semigroup.

Proof. First we note that for any x E S, u E U, if (x, xu) E p(S)u then

for any inverse x' of x in S, since x 51 xu in S we have x'x 51 x'xu in S and

hence in U (Result 1), so for some element v E U (rather than Ul, since U is

regular), x'x = x'xuv whence x = (xu)v. This shows that U acts transitively

on each i/-orbit of p(S)\ U.

We define two (/-orbits O and O' of p(S)\ U to be £-equivalent if there are

elements a E O, b E O' such that a £ b in S. There will be elements p,

q E S ' such that a = pb, b = qa and then routine calculations show that the

maps 0—»0', x\-+qx, and 0'-»0, y*-*py are mutually inverse, £-class

preserving isomorphisms between iZ-orbits of p(S)\ U. Also, for any element

x E O and any inverse x' of x in S, the i/-orbit of p(S)\ U containing x'x, O"

say, is £-equivalent to O and is also a {/-orbit of p(U) (note that U has the

same action on O" under p(U) and p(S)\ U). Thus the isomorphism types of

¿/-orbits of p(S)\U are precisely those of p(U), and hence precisely those of

p(T)\U. As in the proof of Theorem 1, from a = p(S) and ß = p(T)

construct representations a": S —> 5"3"(Z2) and ß: T-> 5"5"(Z2) agreeing on

U. Dually, from X(S) and X(T) construct homomorphisms ä" and ß agreeing

on U, imitating each detail in the dual situation. Then (a", ä") and (ß, ß),

defined as usual, are monomorphisms agreeing on U. Hence the amalgam

(S, T; U) is weakly embeddable. It remains to show that finiteness can be

preserved, so we assume now that S and T are finite.

Let us first note that the S-orbits of p(S) are just the 5l-classes of S, on

each of which S acts transitively, and that £-equivalent 5-orbits are just

51-classes contained in the same ^-class of S (take the case where U is all of

S).

Let Sx, . . . , Sm, a.nd Tx, . . ., Tn, and Ux, . . . ,Up say, be 51-classes from

S, T and U, with precisely one 51-class chosen from each ^-class of S, T and

U, respectively; denote the cardinality of a % -class of S, T and U in these

5l-classes by 8X, ... , 8m, and £„ . . . , £„, and t/„ . . . , tj , respectively.

Now Sx is an 5-orbit of p(S) and so contains complete i/-orbits of p(5)| U,

and each such is £-equivalent to one of Ux, . . . , U, each of these being the

same {/-orbit of p(S)\U as of p(U). Further, if 5, contains a i/-orbit

£-equivalent to U¡ say, then Sx contains precisely 5,/tj, {/-orbits £-equivalent

to Uj (each a copy of U¡), which we prove as follows. Suppose U¡ meets

exactly q, say,  £-classes of  U (equivalently, of S, by Result  1). Then



402 T. E. HALL

\U¡\ = qrj¡. Let V be the set of elements of Sx which are £-related in S to

elements of U¡. Then V is a disjoint union of q X-classes of S, so | V\ — q8x.

Also V consists of the disjoint union of those {/-orbits of p(S)\ U which are

£-equivalent to U¡ and contained in Sx, so the number of such {/-orbits is

as required. Similar remarks apply to S2, . . . , Sm, Tx, . . . , Tn.

Put N = 8X82 ■ ■ ■ 8me¿2 ■ ■ ■ i,. Take the sum of N/8¡ copies of p(S)||S„

/ = 1, 2, . . . , m, and take the sum of all these sums, denoting the final sum

by a. Since a contains each S-orbit type of p(5) we have a ° a-1 =

p(S) ° p(S)~\ Take the sum of N/§ copies of p(T)\\ Tpj = 1, 2, . .., «, and

take the sum of all these sums, denoting the final sum by ß.

We consider a\U and ß\U. Take any U¡ and for convenience suppose Sx

and Tx contain {/-orbits of p(S)\U and p(T)\U, respectively, £-equivalent to

U¡. Then the N/8X copies of p(S)||5, contain (N/8x)(8x/t]¡) = N/r\¡ copies of

{/, and the A/|, copies of pí^yr, contain (AV£,)(£,/tj,) = A/17, copies of

U,

We now see that ct\ U is the sum of A/rj, copies of {/„ A/tj2 copies of

U2, . . . , and A/îjp copies of i/p, and so also is ß \ U. Hence a\ U and ß \ U are

equivalent so there is a one-to-one function <b say, such that <f> ~ xau$ = ßu for

all u E {/. Defining c^' = 0 " las<f> for all s E S gives us representations a' of S

and ß of T agreeing on {/. From X(S) and X(T) let us produce â' and ß, just

as from p(S) and p(T) we produced a' and ß, imitating each detail above in

the dual situation. Then (¿7', a'), defined as usual, is faithful on S, as is (ß, ß)

on T, and the two monomorphisms agree on U, giving that the amalgam

(S, T; U) can be weakly embedded in a finite semigroup.

Theorem 8. Let (S¡, i E I; U) be any amalgam of semigroups, all regular,

and such that U contains all the idempotents of S¡, for all i E I. Then the

amalgam is strongly embeddable. If I and each S¡ are finite then the amalgam is

strongly embeddable in a finite semigroup. For any semigroup W such that

S¡ < W for all i E I and such that W is generated by U ,e/ S„ W is regular

andE(W)= E(U).

Proof. We deal first with the case / = (1, 2} say. Put S = 5„ T = S2.

Then from Lemma 7, (S, T; U) can be weakly embedded in a semigroup V

say, by monomorphisms <j>: S -» V, \p: T-» V, agreeing on U. Without loss of

generality we can assume V is generated by (S<j>) u (T\p). Then from Result 2,

Fis regular and E(U<j>) = E(V). By Lemma 6, the amalgam (V, V; U<b) can

be strongly embedded in a semigroup W by monomorphisms <p': V —> W, \p':

V -» W agreeing precisely on {/</>. Then the monomorphisms <ffî: S —> W and

W: T-» W agree precisely on U. Hence (S, T; U) is strongly embeddable.

Further, at each step finiteness can be preserved so W can be taken to be
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finite if S and T are finite. The fact that W is regular and that E ( U<¡x¡>') =

E(W) enables us to obtain the strong embedding for an arbitrary index set /

by transfinite induction, embedding into a finite semigroup when / and each

S¡ are finite. The last statement of the theorem follows from Result 2.

Corollary 9. An amalgam (S¡, i E I; U) of orthodox semigroups such that

U is full in each S¡ is strongly embeddable in an orthodox semigroup.

Remark 2. This latter result preceded and led the author to Theorem 8.

The original proof quite easily deduced Corollary 9 from the strong amalga-

mation property for inverse semigroups and the author's construction [6,

Theorem 1] of orthodox semigroups in terms of bands and inverse semi-

groups.

4. Unions of groups. The following theorem is well known for inverse

semigroups. For orthodox semigroups, it has been announced as an unpub-

lished result of the present author by Clifford in [2], where it played a major

rôle in giving a further structure theorem for orthodox unions of groups. We

shall obtain from it a result concerning amalgamation of unions of groups.

Theorem 10. Let E be the set of all idempotents of any regular semigroup S.

(i) There is a full subsemigroup U of S which is a union of groups if and only

if (E}, the subsemigroup generated by E, is a union of groups.

(ii) In that case, among the full subsemigroups which are unions of groups

there is a maximum member, namely

Eu = [a E S: for some [all] a' E V(a), a'xa % x

in (E/ for all x E E with x < aa'}.

Proof, (i) The subsemigroup generated by the idempotents of a regular

semigroup is regular (Fitz-Gerald [3]) and then from Result 1 and its dual it is

easily seen that the subsemigroup generated by the idempotents of a union of

groups is also a union of groups.

(ii) For the remainder of the proof V(a) will denote the set of inverses in S

of an element a E S, and f will denote Green's relation $ on <£>; of course

f is a congruence on <£> and <£>/£ IS a semilattice. Let

Tx = {a E S: for some a' E V(a), a'xa % x in <£>

for all x E Eviithx < aa'},

T2 = {a E S: for all a' E V(a), a'xa % x in <£>

for all x E E with x < aa'} ;

clearly T2 Q Tx.

Take any elements a, b E Tx and any elements a' E V(a), b' E V(b)

satisfying the condition of membership of a, b in Tx.
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Take any y E V(a'abb') and put z = b'ya!. Then routine checking shows

that z E V(ab) and bza E E. Further

bza =(bza)(a'a) $ (a'à)(bza) = a'(abz)a % abz

since abz < aa'.

Take any x E E with x < abz ( < aa'). Then a'xa E E, and a'xa f x.

Further

zxab = b'(bzxabb')b = b'wb%w

since w = bzxabb' say, is an idempotent (routine to check from x < abz) and

w < bb'. Now w = (6za)(a';ea)(W>'), so in the semilattice (E)/f we have

''zxab = "Av = •'bza''a'xa''bb' = •'bb"'bza''a'xa

~ •'bza-'a'xa ~ ^ abz'' x = •>abzx ~ 'x'

Hence zxab $ x and ab E Tx giving that 7, is a subsemigroup of 5. Further,

for any y E E with j> < a'a we have v = a'aya'a = a'(aya')a % aya since

aya! E £ and aya < aa', giving that a! E Tx and so Tx is regular.

Also a'a = a'(aa')a j- aa' so there is an element c E •(£■) such that

a'a £ c 51 aa' in <£> (£ = <$ on <£» and hence also in S. But a'a £

a 51 aa' so a % c in 5. Since <£> is a union of groups, c % e in <£) for

some e E E, whence a % e in S, and thus in T, by Result 1 and its dual.

Thus Tx is a union of groups. Clearly E C Tx.

Now let T be any full subsemigroup of S which is a union of groups and

take any a E T and any inverse a' of a in S. Then a' E Thy Result 1 and its

dual and [1, Theorem 2.18]. Take any x E E with x < aa'. In the semilattice

T/ty we have

Daxa = DaDxDa = DxDaDa. = Dxaa. = Z>x,

i.e. a'xatyx in T. One easily obtains that a'xa ^ x in <£>, i.e. a'xa ^ x,

giving that a E T2. Hence ÍC r2 C Tx, giving T, Ç T2 and the required

result.

Remark 3. The above theorem and manipulative proof were both derived

from the author's fundamental representation (p, X): S -» T<£> of any regular

semigroup S with set of idempotents E in T<£> [5, Theorem 7], a generaliza-

tion to all regular semigroups of the Munn semigroup TE for inverse semi-

groups. An outline of this conceptual proof is as follows. Construct T<£> and

(p, X): £-► T<E>. Using the formula </>(a>i>(ß) = <KS) of t5- P- U] we easilv

characterize £ ^ in T<£;> as

(<¿>(a): for some e,f E E, a E TeJ and

xa f x in <£> for all x E E with x < e }.

Then Eu in S is found as the set of elements of S mapping under (p, X) into

the i''7 of T<E>.
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For S an orthodox semigroup another simple conceptual proof takes the

back image in S of Ev, the centralizer of the set of idempotents, in the

maximum inverse semigroup homomorphic image of S.

Remark 4. Note that by [5, Theorem 3], <£> is a union of groups if and

only if for all e, f, g E E such that e £ / 51 g in S there exists « E E such

that e 51 « £ g.

Corollary 11. Let E be any set of idempotents of a semigroup S.

(i) There is a subsemigroup U of S which is a union of groups having E as its

set of all idempotents if and only if <£), the subsemigroup generated by E, is

such a semigroup.

(ii) If <(£■) is a union of groups having E as its set of all idempotents then

there is a maximum such subsemigroup of S, namely

Ev = [a E S: for some a' E V(a), a'a, aa', a'xa, aya' E E

and a'xa f x in ^E} for all x,y E E with x < aa',y < a'a}.

Proof. This follows from Theorem 10 and [5, Theorem 14].

Corollary 12. An amalgam (S¡, i E I; U) of [orthodox, inverse] semigroups

which are unions of groups such that U is full in each S¡ can be strongly

embedded in an [orthodox, inverse] union of groups, with finiteness being

preserved.

Proof. This follows from Theorems 8 and 10.
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