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DENSE SUBGROUPS OF LIE GROUPS. II
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Abstract. Let G be a dense analytic subgroup of an analytic group L. Then

G contains a maximal (CA) closed normal analytic suhgroup M and a

closed abelian subgroup A = Z(G) X E, where E is a_ closed vector sub-

group of G, such that G = M ■ A, M n A = Z(G), M = M- Z(G), and
L = MA.

We also indicate the extent to which a {CA) analytic group is uniquely

determined by its center and a dense analytic subgroup.

1. Introduction. By an analytic group and an analytic subgroup of a Lie

group we mean a connected Lie group and connected Lie subgroup, respec-

tively. If G and H are Lie groups and <#> is one-to-one (continuous) homomor-

phism from G into H, <£ will be called an immersion. <> will be called closed or

dense, as <j>(G) is closed or dense in H. G0 and Z(G) will denote the identity

component group and center of G, respectively.

If G is an analytic group, A{G) will denote the Lie group of all (bicontinu-

ous) automorphisms of G, topologized with the generalized compact-open

topology. G will be called (CA) if 1(G), the Lie subgroup of A(G) consisting

of all inner automorphisms of G, is closed in A (G). It is well known that G is

(CA) if, and only if, its universal covering group is (CA).

A brief version of our main result (Theorem 2.1) is stated below. It

represents a significant generalization of Zerling [7].

Let G be a dense analytic subgroup of an analytic group L. Then G

contains a maximal (CA) closed normal analytic subgroup M and a closed

abelian subgroup A = Z(G) X W X Y, where y is a closed vector subgroup

of G and W is a_ closed vector subgroup of_L, such that G = MA,

M nA = Z(G), M = M-ZjG),&ndL = M■ Ä.

If G is a normal analytic subgroup of an analytic group H, then each

element h oî H induces an automorphism of G, Namely, g —> hgh~x. We will

denote this homomorphism of H into A(G) by pCH. IH(h) will denote the

inner automorphism of H determined by h G H. More generally, if A is a
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subset of H, IH(A) will denote the set of all inner automorphisms of H

determined by elements of A. IH(H) will be written as 1(H), and the

mapping h -» IH(h) of H onto 1(H) will be denoted by IH.

If N is an analytic group and H is an analytic subgroup of A (N), then

N © H will denote the semidirect product of N and H. On the other hand, if

G is an analytic group containing a closed normal analytic subgroup N and a

closed analytic subgroup H, such that G = NH, N n H = {e}, and such that

the restriction of pNC to H is one-to-one, we will frequently identify G with

N ® Png(H) and Ü witn Png(H)> that is, we may write G = N © H.

In Zerling [5] we proved the following theorem.

Main Structure Theorem. Let G be a non-(CA) analytic group. Then

there exist a (CA) analytic group M, a toral group T in A(M), and a dense

vector subgroup VofT, such that:

(i) H = M © T is a (CA) analytic group.

(ii) G is isomorphic to the dense analytic subgroup M © V of H.

(iii) Z(G) is contained in M.

(iv) Z0(G) = Z0(H), and tt(Z(H)) is finite, where it is the natural projection

of H onto T. Moreover, if G/Z(G) is homeomorphic to Euclidean space, then

Z(G) = Z(H).

(v) Each automorphism a of G can be extended to an automorphism e(a) of

H, such that e: A(G) —» A(H) is a closed immersion.

We will frequently use this theorem in §§2 and 3.

In §3 we relate the concept of (CA) completion of a Lie algebra as

discussed in van Est [3], [4] and the Main Structure Theorem in order to

improve upon some results in Zerling [6]. In particular we will indicate

(Theorem 3.3) the extent to which a (CA) analytic group is uniquely de-

termined by its center and a dense analytic subgroup.

However, in order to make our presentation more self-contained we will

first state most of those results from our bibliography which are used in our

proofs. The result of Goto [1] is modified to better suit our needs. Also, those

bibliographical results concerning the (CA) completion of a Lie algebra will

be stated in §3. In all cases the notation is consistent with our notation.

Goto [1, Theorem]. Let G be a dense analytic subgroup of an analytic group

L and suppose that G contains a maximal normal analytic subgroup N which

contains the commutator subgroup of G and is also closed in L. Then for each

maximal compact subgroup K of L there exists a closed vector subgroup V of G,

such that G = NV, N n V = {e}, and L = NV, where N n V is finite and V

is a toral subgroup of L which is central in K. Moreover, L is diffeomorphic to

the space N X V.
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van Est [2, Theorem 2.2.1], // G is a dense (CA) analytic subgroup of an

analytic group L, then Z(L) =Z(G), L = G- Z(G), and L is also (CA).

Zerling [5, Lemma 2.2]. Let M be an analytic group and let K be a compact

analytic subgroup ofA(M). Let F be a closed central subgroup of M, such that

each element of K keeps F elementwise fixed. Let m G M and suppose that

o(m) ■ m~l is in F for all a in K. Then a(m) = m for all a in K.

Zerling [6, Lemma 2.1]. Maintaining the notation of the Main Structure

Theorem, we have that Z(G) is of finite index in Z(H).

Zerling [6, Lemma 3.1]. Let L be an analytic group. Let M and H be a

closed normal analytic subgroup and a closed abelian analytic subgroup of L,

respectively, such that L = MH, M n H = {e}. Let G be a dense analytic

subgroup of L and let S be a subset of H. Then pML(S) is closed in A(M) if,

and only if, pCL(S) is closed in A(G).

Zerling [6, Corollary to Lemma 3.2]. Let us maintain the notation of the

Main Structure Theorem and let L be a (CA) analytic group containing G as a

dense analytic subgroup. Then

dim L = dim H + dim Z(L) - dim Z(G) > dim H.

Zerling [6, Theorems 3.1 and 3.4]. Let us maintain the notation of the Main

Structure Theorem and let L be an analytic group with the following properties,

which we know to be exhibited by H.

(i) L is (CA).

(ii) There is a dense immersion f: G -» L.

(iii) Z(f(G)) is of finite index in Z(L).

Then L is diffeomorphic to H, and Z(f(G)) is closed in L. If we replace (iii) by

(iii)' Z(f(G)) is of countably infinite index in Z(L),

then dim L = dim H and Z(f(G)) is still closed in L.

2. Main results.

Lemma 2.1. Let G = MV, M n V = {e} be the canonical decomposition of

G given in the Main Structure Theorem. Then M is a maximal (CA) closed

normal analytic subgroup of G.

Proof. Let M' be a closed normal analytic subgroup of G properly

containing M. Let W denote the projection of M' onto V. Then M' = M ■ W,

M n W = {e}. We will prove that M' is non-(G4) by showing that IM(W)

is closed in I(M'), but not in A(M').

Since the closure of pMG( V) in A (M) is T, a toral group, clearly pMM( W) is

not closed in A(M). Therefore, from Zerling [6, Lemma 3.1] IM(W) is not

closed in A (My

Now suppose that {Im(w„)} converges to IM(mw) in I(M'). Then {IG(wn)}
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converges to IG(mw) in 1(G). But IC(W) is closed in 1(G). This can be seen

most directly by observing that 1(G) = IG(M) ■ IG(V), IG(M) n IG(V) -

{e}, since Z(G) is contained in M. Therefore, IG(mw) = IG(w) for some

w G W. Hence, mww'1 E Z(G). So m G Z(G) and IM{m) = e. Thus,

{Af'(w«)} converges to IM(w) in I(M') and, consequently, /¿/'(WO is closed

in I(M'). We have now proved that M' is non-(CA).

Theorem 2.1. Let f: G —> L be a proper dense immersion of an analytic group

G into an analytic group L. Then there exist closed vector subgroups W and Y

of G and a maximal (CA) closed normal analytic subgroup M of G, which

contains Z(G), such that G = MWY, MW n Y = M n W = {e}, and WY

is a closed vector subgroup of G, and such that

L=f(M)-f(W)-f(Z(G))-f(Y),

where f(M)= f(M) ■ f(Z(G)) and f(W) and J(M)-f(W) are closed in L.
Moreover, f(W) n Z(L) = {<?}.

Proof. If G is (CA), then L = f(G) ■ f(Z(G)) from van Est [2, Theorem

2.2.1]. We now assume that G is non-(CA) and will adopt the notation of the

Main Structure Theorem.

Let KL be an arbitrarily fixed maximal compact subgroup of L and let K be

a maximal compact subgroup of 1(G) containing pGL(KL). Since G is

non-(CA) we can appeal to Goto [1]: Let N be a maximal analytic subgroup

of 1(G), which contains the commutator subgroup of 1(G) and is closed in

A(G). Then there is a closed vector subgroup V of 1(G), such that

1(G) = NV,       N n V ={e}, (1)

and 1(G) = NV, where T' = V is a central toral subgroup of K. Moreover,

N n T' is finite and the space of /(G) is diffeomorphic to the product space

N X 7". In the proof of the Main Structure Theorem IG(M) = N and

IG(V)=V- _ _

We now show that f(M) = f(M) ■ f(Z(G)). To this end we construct

the analytic subgroup P =f(M)-f(V) of L. Since Z(G) c M from the

Main Structure Theorem, f(Z(G)) c Z(P). Also, if mv G Z(P),

m G f(M), v Ef(V), then pGP(m) ■ pGP(v) = e. Since N n V = {e} from

(0. Pc/'(t') = e and so ü G Z(G). Again, since Z(G) is contained in M,

v = e, and so Z(P) is contained in f(M). Thus,

/(Z(G))cZ(/>)c7(Ä7). (2)

Let d G Z(P). Then from (2) there is a sequence {g„} in f(M) converging

to d in P. Therefore, {pGP(g„)} converges to e in A(G). Since N is closed in

.4(G), {pGP(g„)} converges to e in N and, therefore, in /(G). Since G/Z(G)

is isomorphic to /(G), there is a sequence of central elements of G such that

{c~ ' • g„J = {6^} converges to e in G, where {g^} is a subsequence of { g„}.
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So {bn } converges to e in P. Hence {c„ } = {g^ • b^ '} converges to J in P.

Thus í/ G f(Z(G)). Therefore

Z(P)c/(Z(G))

and so

/(Z(G)) = Z(/>) (3)

from (2).     _

Since pGP{f(M)) = N = pGP(f(M)) because N is closed in A(G), f(M)

C f(M) ■ Z(P). So Z(f(M)) is contained in/(M) • Z(P). Therefore,

J(M) = f(M) ■ Z(f(M)) cf(M)-Z(P) = f(M) ■ f(Z(G))   c  J(M),

where the first equality follows form van Est [2], since M is (CA). We now

have

7(Ä7)=/(A/)-/(Z(G)). (4)

Let us return to P =f(M) ■ f(V). If m = u, then pGP(m) • pGP(v~l) = e\

So ü = e from (1). Thus f(M) n f(V) = {e}, and so f(V) is closed in P.

Now let y denote a maximal analytic subgroup of P which contains f(M)

and is closed in L. Then from Goto [1] there exists a closed vector subgroup

Uof P such that P = J- U,J n U = {<?}, and such that L = J• Ü, where ¿7

is a central toral subgroup of A¿ and / n U is finite. Therefore, since

PGL(U) C_pGL(KL) c AT, and since T' is central in K, we see that 7" central-

izes pGL(U).

Let 7t: P ->/(K) be the natural projection and let 7t(/) = f(W), where If

is a vector subgroup of V. Thenf(W) is a closed vector subgroup of/(K) and

since / contains f(M) we see that

/=/(A/)-/(IT),        f(M)nf(W)={e}. (5)

Therefore,

/> = /(M)-/(If)-i7   and   L =J(M)-f (W) ■ Ü. (6)

Let IF' = pGP(f(W)). Then since /> =/(M)-/(F) and pGP(f(M)) = A/

= pGP(M), we have /(G) = pGP(P) = N■ W ■ pGP(U) by (6). Since Z(P) is

contained in f(M) by (2), we see that pGP(U) n (A/- W') = {e). In particu-

lar, pGP(U) is a vector subgroup of /(G), which is isomorphic to U.

Let U' = pGP(U), and let t/' = t/J • t/9'_, • • • U[ be a direct product

decomposition of U' into one dimensional vector subgroups. For IG: G-»

1(G) we see that MW is the complete inverse image of NW, and we let //,,

1 < / < q, denote the identity component group of the complete inverse

image of U¡. Each //, is closed in G. Since the restriction of IG to //, is a

homomorphism of //, onto U{ having kernel Z(G) n //„ we see that Z(G)
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n H¡ is connected and H¡ = (Z(G) n H¡) • Y¡, where Y¡ is a closed one

dimensional vector subgroup of //„ such that

hit,) = u;. (?)
Therefore,

G = M-W-(Z(G)nHq)-Yq- ■■ (Z(G)nHl)-Yl

= M-W-Yq-Yq_x--- Yx.

If mwyq • ■ ■ yi = e, then IG(m) ■ IG(w) ■ IG(yq) ■ ■ • IG(yx) = e. Since

1(G) = N-W -U', NW n U' = N n W = {e}, we see that /G(w) =
AjCV/) ~ e f°r each ». Therefore, m = w = y¡ = e. Hence, W • Yq •

K , • • • y, is closed in G. We now show that it is actually a closed vector

subgroup of G.

Let Af2 = M ■ W ■ Yq ■ Yq_x • ■ ■ Y2. M2 is closed and normal in G and

G = M2 • F,, M2 n y, = {e}. Let <//: y, ^^4(M2) be given by ^ChX/w^ =

yxm2yxx. Since Z(G) is contained in Af2, and since Yx is abelian, we see that

\j/ is an immersion. \p(Y{) is not closed in A(M2), since_/£(y_1) = U[ is not

closed in A(G); Zerling [6, Lemma 3.1]. Consider M2 © \p(Yx), where ip(Y})

is the closure of \p( y,) in /Í (Af2). »/>( y,) is a toral group.

Let^, G y, and let x = wyq ■ ■ ■ y2 G WYq ■ ■ • Y2. Then /C(^(>'1X*)) =

/gCvi • ̂  -^f1) = w'r w' •«;••• u2 • m',"1, where «/ = IG(y¡) 6 £// C K and

w' = /c(w) G W c 7". Since 7" is central in /f, and because U' is abelian,

we see that IG(yx ■ x-yx~l) = IG(x). Therefore, \l/(y¡)(x) • x~x is in Z(G).

Thus, a(x) • x ~ ' is in Z(G) for each a in i//( y, ) and each jc in W• Yg- • • Y2.

Z(G) is a closed central subgroup of M2 and each element of 4*(Yi) keeps

Z(G) elementwise fixed. Therefore, from Zerling [5, Lemma 2.2] we see that

a(x) = x for each a G ^(y) and each x G W• Y • Yq_x • • • Y2. Hence,

W ■ Yq- ■ ■ y, is a closed vector subgroup of G. Let Y = Yq- Yq_l- ■ ■ Yv

Then G = MW-Y, (MW) n Y = A/ n W = {<?}. The maximality of A/
as a (C/l) closed normal analytic subgroup of G follows from Lemma 2.1.

Since pGP(U) = pGP(f(Y)) = U' from (7), we see that

UcZ(P)-f(Y) = f(Z(G))-f(Y), (8)

where the last equality follows from (3). Therefore we have proved that

L «  J(M)-f{W)-Ü = f(M)-f(W)- f(Z(G))-U

Cf(M)-f(W)-f(Z(G))f(Y),
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that is,

L=f(M)-f(W)-f(Z(G))-f(Y),

which we claimed in our theorem.

Finally we show that f(W) n Z(L) = {e}. Indeed, since J n Z(L) is

contained in Z(P), it is contained in f(M) from (2). But f(M) n f(W) =

[e] from (5). Hence,/(H0 n Z(L) = {e}.

Corollary 1. Maintaining the notation of Theorem 2.1, // f(Z(G)) is

compact, then: _

(i) y can be selected so that L = f(M) ■ f(W) • f(Y), where f(Y) is a toral

group._      _ _

(") /(y) n (f(M) -f(W)) is contained in f(Z(G)) ■ F, where F is a finite

subgroup of f(M).

(m)f(W)n(f(M)-J(Y)) = {e}.

_Proof, (i) If f(Z(G)) is compact, then from (8) of Theorem 2.1 we have

U C/(Z(G)) • f(Y), and so from (6) of Theorem 2.1

_L=J(M)f(W)-Uc7(M)-f(W)-7(Y),

since f(Z(G)) is contained in f(M). That is, L =f(M)-f(W)- f(Y) as

we claimed. From (7) of Theorem 2.1, we seejhat f(Y) c U- f(Z(G)).

Therefore, since U is a toral group and since f(Y) c U• f(Z(G)), we see

that /( y ) is a toral group.

(ii) Suppose that x G f(Y) n (f(M) ■ f(W)). Then x = z • ¿7,

z G f(Z(G)\ ü G U, since f(Y) cf(Z(G)) • U as we just showed above

in (i). Therefore ü = z~l ■ x, and so m G f(M)-f(W). So ü G / n C/, which

is a finite subgroup of P, and consequently in f(M). Call this finite group F.

Hence x G f(Z(G))F. Thus, we have shown that f(Y) n (/(M)-/(W0)

is contained in f(Z(G)) • F, as we claimed.

(iii) Suppose that f(W) n (f(M)- f(Y)) ^ {e}. Then there exist w G

/( W), m G /(M), and y G /(y) so that w = my. Therefore, y G f(Y) n /.

But (/(y)n/) C/(Z(G))-F C/(M) from (ii). Therefore, y G /(A/) and

so w G f(M). Thus, w = e from (5) of Theorem 2.1. Hence,

f(W) n (7PÔ-7TÔ) = ie)> as we claimed.

Corollary 2. Maintaining the notation of Theorem 2.1, if f(Z(G)) is closed

in L, then Y can be selected so that L = f(MW) • f(Y), where f(Y) is a toral

group such that f(MW) n f(Y) is finite.

Proof. If f(Z(G)) is closed in L, then f(M) = f(M) from Theorem 2.1.

Hence G = P and we can take Y¡ = U¡ in the proof of Theorem 2.1; so

y = U. Our claim then follows from (6) of Theorem 2.1.

Remark. In the proof of Theorem 2.1? was a device which we constructed
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in order to apply Goto's Theorem. Since U was in P, and not in G, we needed

to construct y in G in order to carry out our proof. In Corollary 2, however,

the use of P as a device is not necessary because M is already closed in L.

Corollary 3. Maintaining the notation of Theorem 2.1, // L is (CA) and

Z(L) is compact, then W = {e}.

Proof. Since Z(L) is compact, f(Z(G)) is compact. Since

f(W) n (f(M)- f(Y)) = {e} from Corollary 1, and since f(W) n Z(L) =
[e]_from   Theorem   2.1,   we   see   from   Corollary   1   that   L = (f(M)

■ f(Y)) ®f(W). Let Q =f(M)-J(Y). Then pQL(f(W)) is not closed in
A (Q), since pGL(f( W)) = W c V is not closed in A (G); Zerling [6, Lemma

3.1]. Hence L is properly dense in (f(M)- f(Y))® Tx, where Tx is the

closure of f(W) in A(Q). This is a contradiction from van Est [2]. Hence

W= {e}.

3.(CA) Lie groups and Lie algebras. Following van Est [3] we define a Lie

subalgebra © of a Lie algebra ß to be dense in 8, if there exists an analytic

group L with Lie algebra ß in which the analytic subgroup generated by © is

dense. We also say that <// is a dense imbedding of a Lie algebra © into a Lie

algebra S if ^ is a Lie algebra isomorphism of © into S such that \p(&) is a

dense subalgebra of 8.

In [3, Theorem 4.1] van Est proved that for each Lie algebra © there exists

a unique (up to isomorphism) Lie algebra ©(C/() such that:

(i) ©(ex) is a (CA) Lie algebra, whose center coincides with the center of @.

(ii) There exists a dense imbedding »//of © into @(CM).

(iii) With any dense imbedding ip' of © into a (CA) Lie algebra 2 there

exists a dense imbedding rj of ©(C^) into S so that \p' = ■»)>/>.

The Lie algebra @(OI) described above is called the (C4)-completion or

(Czl)-closure of ©. We now relate this concept with the Main Structure

Theorem in order to improve upon some results in Zerling [6]. First we state

the following useful result from van Est [3, Lemma 5.4]: Let G be an analytic

group with Lie algebra ©. Suppose that © is a dense ideal of a Lie algebra S,

such that the center of 2 is contained in ©. Then there exists an analytic

group L with Lie algebra S that contains G as a dense analytic subgroup.

Theorem 3.1. Let us maintain the notation of the Main Structure Theorem.

Let © and $ be the Lie algebras of G and H, respectively. Then $ as ©(C4).

Proof. Since © is a dense subalgebra of @(C/4), we have from van Est [3,

Lemma 5.4] that there exists an analytic group G(C/4) having ©(C4) as its Lie

algebra and containing G as a dense analytic subgroup. Therefore, from the

corollary to Lemma 3.2 of Zerling [6] we see that dim H < dim G(C/1).

On the other hand, since § is a (CA) Lie algebra containing © as a dense
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subalgebra, there is a dense imbedding from ©(C/)) into $. Since dim H <

dim G{0)) we see that this imbedding is an isomorphism of ©(C4) onto §.

Hence, our theorem is proved.

Theorem 3.2. Let us maintain the notation of the Main Structure Theorem

and let f: G —» L be a dense immersion of G into a (CA) analytic group L.

(i) // Z(f(G)) is of finite index in Z(L), then L is locally isomorphic and

diffeomorphic to H, and Z(f(G)) is closed in L.

(ii) // Z(f(G)) is of countably infinite index in Z(L), then L is locally

isomorphic to H and Z (/(G)) is closed in L.

Proof, (i) In Lemma 2.1 of Zerling [6] we proved that Z(G) is of finite

index in Z(H) and in Theorem 3.1 of that paper we showed that L is

diffeomorphic to H and that Z(f(G)) is closed in L. Since G is a dense

analytic subgroup of the (CA) analytic group L, there is a dense imbedding of

@(CV4) into S. Hence § ^ S, since ®(Cx) is isomorphic to $ from Theorem 3.1

and dim H = dim L from the diffeomorphism between H and L given above.

Thus, H and L are locally isomorphic.

(ii) In Theorem 3.4 of Zerling [6] we proved that dim L = dim H and that

Z(f(G)) is closed in L. Now by repeating the argument in (i) above we see

that H and L are locally isomorphic.

Theorem 3.3. Let Lx and L2 be (CA) analytic groups and let Gx and G2 be

isomorphic proper dense analytic subgroups of Lx and L2, respectively.

(i) // Z(LX) and Z(L2) are both finite, the Lx and L2 are diffeomorphic and

locally isomorphic.

(ii) // Z(LX) and Z(L2) are both discrete, then Lx and L2 are locally

isomorphic.

Proof, (i) Since Z(LX) and Z(L2) are both finite, Z(GX) and Z(G2) are

both finite. Thus, Gx and G2 are non-(CA). Let us now maintain the notation

of the Main Structure Theorem with the obvious subscript modification for

G, and G2. We have Hx ~ H2 and from (i) of Theorem 3.2 we have that Hx

and L, are diffeomorphic and locally isomorphic, as are H2 and L2. Hence L,

and L2 are diffeomorphic and locally isomorphic.

(ii) Replace "finite" by "discrete" in the proof of (i) above and then apply

(ii) of Theorem 3.2.

Example. Let R, C, and T denote the group of real numbers, the group of

complex numbers, and the one dimensional toral group, respectively. For a,

ß, y, 8 G C and r, s, t, u G R let (a, ß, y, 8; r, s, t, u) denote the 5x5

matrix whose right-hand column consists from top to bottom of a, ß, y, 8,

and 1, and whose main diagonal consists from top to bottom of e2mr, e2ms,

e2™', e2wi", and 1, and whose other entries are 0.

Let Lx = {(a, ß, y, 8; r, s, t, u): a, ß,y,8 G C; r, s, t, u G R}. Then L, ^
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C4 © T4, Z(LX) = {<?}, and Lx is (CA). Let /x and v be fixed irrational

numbers and let L2 = {(a, ß, y, 8; r, s, t, ¡it): a, ß, y, 8 G C; r, s, t & R}.

Then L2 sa C4 © (r2 x R), Z(L2) = {e}, and L2 is non-(C4). Let G =

{(a, ß, y, 8; r, vr, t, p.t): a, ß, y, 8 G C; r, t G R}. Then G s* C4 © (R X R),

Z(G) = {e}, and G is non-(C4).

This example shows that L, and L2 both have trivial center and both

possess G as a dense analytic subgroup; yet, Lx and L2 do not even have the

same dimension. Thus, the condition in Theorem 3.3 that L, and L2 both be

(CA) cannot be removed. It is also true that the conditions on Z(LX) and

Z(L2) in Theorem 3.3 cannot be removed, as we see by observing that T2 and

T3 both possess a dense one dimensional vector subgroup.
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