DENSE SUBGROUPS OF LIE GROUPS. II

RV

DAVID ZERLING

ABSTRACT. Let G be a dense analytic subgroup of an analytic group L. Then G contains a maximal (CA) closed normal analytic subgroup M and a closed abelian subgroup $A = Z(G) \times E$, where E is a closed vector subgroup of G, such that $G = M \cdot A$, $M \cap A = Z(G)$, $\overline{M} = M \cdot \overline{Z}(G)$, and $L = M \cdot \overline{A}$.

We also indicate the extent to which a (CA) analytic group is uniquely determined by its center and a dense analytic subgroup.

1. Introduction. By an analytic group and an analytic subgroup of a Lie group we mean a connected Lie group and connected Lie subgroup, respectively. If G and H are Lie groups and ϕ is one-to-one (continuous) homomorphism from G into H, ϕ will be called an immersion. ϕ will be called closed or dense, as $\phi(G)$ is closed or dense in H. G_0 and Z(G) will denote the identity component group and center of G, respectively.

If G is an analytic group, A(G) will denote the Lie group of all (bicontinuous) automorphisms of G, topologized with the generalized compact-open topology. G will be called (CA) if I(G), the Lie subgroup of A(G) consisting of all inner automorphisms of G, is closed in A(G). It is well known that G is (CA) if, and only if, its universal covering group is (CA).

A brief version of our main result (Theorem 2.1) is stated below. It represents a significant generalization of Zerling [7].

Let G be a dense analytic subgroup of an analytic group L. Then G contains a maximal (CA) closed normal analytic subgroup M and a closed abelian subgroup $A = Z(G) \times W \times Y$, where Y is a closed vector subgroup of G and W is a closed vector subgroup of L, such that $G = M \cdot A$, $M \cap A = Z(G)$, $\overline{M} = M \cdot \overline{Z(G)}$, and $L = M \cdot \overline{A}$.

If G is a normal analytic subgroup of an analytic group H, then each element h of H induces an automorphism of G, Namely, $g \to hgh^{-1}$. We will denote this homomorphism of H into A(G) by ρ_{GH} . $I_H(h)$ will denote the inner automorphism of H determined by $h \in H$. More generally, if A is a

Presented to the Society, January 5, 1978; received by the editors February 22, 1977 and, in revised form, September 20, 1977.

AMS (MOS) subject classifications (1970). Primary 22E15; Secondary 22D45.

Key words and phrases. (CA) Lie group, (CA) Lie algebra, automorphism group, semidirect product, dense subgroup, dense subalgebra.

[©] American Mathematical Society 1979

subset of H, $I_H(A)$ will denote the set of all inner automorphisms of H determined by elements of A. $I_H(H)$ will be written as I(H), and the mapping $h \to I_H(h)$ of H onto I(H) will be denoted by I_H .

If N is an analytic group and H is an analytic subgroup of A(N), then $N \otimes H$ will denote the semidirect product of N and H. On the other hand, if G is an analytic group containing a closed normal analytic subgroup N and a closed analytic subgroup H, such that G = NH, $N \cap H = \{e\}$, and such that the restriction of ρ_{NG} to H is one-to-one, we will frequently identify G with $N \otimes \rho_{NG}(H)$ and H with $\rho_{NG}(H)$, that is, we may write $G = N \otimes H$.

In Zerling [5] we proved the following theorem.

MAIN STRUCTURE THEOREM. Let G be a non-(CA) analytic group. Then there exist a (CA) analytic group M, a toral group T in A(M), and a dense vector subgroup V of T, such that:

- (i) $H = M \otimes T$ is a (CA) analytic group.
- (ii) G is isomorphic to the dense analytic subgroup $M \otimes V$ of H.
- (iii) Z(G) is contained in M.
- (iv) $Z_0(G) = Z_0(H)$, and $\pi(Z(H))$ is finite, where π is the natural projection of H onto T. Moreover, if G/Z(G) is homeomorphic to Euclidean space, then Z(G) = Z(H).
- (v) Each automorphism σ of G can be extended to an automorphism $\varepsilon(\sigma)$ of H, such that $\varepsilon: A(G) \to A(H)$ is a closed immersion.

We will frequently use this theorem in §§2 and 3.

In §3 we relate the concept of (CA) completion of a Lie algebra as discussed in van Est [3], [4] and the Main Structure Theorem in order to improve upon some results in Zerling [6]. In particular we will indicate (Theorem 3.3) the extent to which a (CA) analytic group is uniquely determined by its center and a dense analytic subgroup.

However, in order to make our presentation more self-contained we will first state most of those results from our bibliography which are used in our proofs. The result of Goto [1] is modified to better suit our needs. Also, those bibliographical results concerning the (CA) completion of a Lie algebra will be stated in §3. In all cases the notation is consistent with our notation.

GOTO [1, THEOREM]. Let G be a dense analytic subgroup of an analytic group L and suppose that G contains a maximal normal analytic subgroup N which contains the commutator subgroup of G and is also closed in G. Then for each maximal compact subgroup G of G such that G = NV, G of G and G is a toral subgroup of G which is central in G. Moreover, G is diffeomorphic to the space G is a definite or G of G and G is a toral subgroup of G which is central in G. Moreover, G is diffeomorphic to the space G is a definite or G in G and G is a definite or G in G and G is a definite or G in G in G in G and G is a definite or G in G in

VAN EST [2, THEOREM 2.2.1]. If G is a dense (CA) analytic subgroup of an analytic group L, then $Z(L) = \overline{Z(G)}$, $L = G \cdot \overline{Z(G)}$, and L is also (CA).

ZERLING [5, LEMMA 2.2]. Let M be an analytic group and let K be a compact analytic subgroup of A(M). Let F be a closed central subgroup of M, such that each element of K keeps F elementwise fixed. Let $m \in M$ and suppose that $\sigma(m) \cdot m^{-1}$ is in F for all σ in K. Then $\sigma(m) = m$ for all σ in K.

ZERLING [6, LEMMA 2.1]. Maintaining the notation of the Main Structure Theorem, we have that Z(G) is of finite index in Z(H).

ZERLING [6, LEMMA 3.1]. Let L be an analytic group. Let M and H be a closed normal analytic subgroup and a closed abelian analytic subgroup of L, respectively, such that L = MH, $M \cap H = \{e\}$. Let G be a dense analytic subgroup of L and let S be a subset of H. Then $\rho_{ML}(S)$ is closed in A(M) if, and only if, $\rho_{GL}(S)$ is closed in A(G).

ZERLING [6, COROLLARY TO LEMMA 3.2]. Let us maintain the notation of the Main Structure Theorem and let L be a (CA) analytic group containing G as a dense analytic subgroup. Then

$$\dim L = \dim H + \dim Z(L) - \dim Z(G) \ge \dim H.$$

ZERLING [6, THEOREMS 3.1 AND 3.4]. Let us maintain the notation of the Main Structure Theorem and let L be an analytic group with the following properties, which we know to be exhibited by H.

- (i) L is (CA).
- (ii) There is a dense immersion $f: G \to L$.
- (iii) Z(f(G)) is of finite index in Z(L).

Then L is diffeomorphic to H, and Z(f(G)) is closed in L. If we replace (iii) by (iii)' Z(f(G)) is of countably infinite index in Z(L), then dim $L = \dim H$ and Z(f(G)) is still closed in L.

2. Main results.

LEMMA 2.1. Let G = MV, $M \cap V = \{e\}$ be the canonical decomposition of G given in the Main Structure Theorem. Then M is a maximal (CA) closed normal analytic subgroup of G.

PROOF. Let M' be a closed normal analytic subgroup of G properly containing M. Let W denote the projection of M' onto V. Then $M' = M \cdot W$, $M \cap W = \{e\}$. We will prove that M' is non-(CA) by showing that $I_{M'}(W)$ is closed in I(M'), but not in A(M').

Since the closure of $\rho_{MG}(V)$ in A(M) is T, a toral group, clearly $\rho_{MM'}(W)$ is not closed in A(M). Therefore, from Zerling [6, Lemma 3.1] $I_{M'}(W)$ is not closed in A(M').

Now suppose that $\{I_{M'}(w_n)\}$ converges to $I_{M'}(mw)$ in I(M'). Then $\{I_G(w_n)\}$

converges to $I_G(mw)$ in I(G). But $I_G(W)$ is closed in I(G). This can be seen most directly by observing that $I(G) = I_G(M) \cdot I_G(V)$, $I_G(M) \cap I_G(V) = \{e\}$, since Z(G) is contained in M. Therefore, $I_G(mw) = I_G(\overline{w})$ for some $\overline{w} \in W$. Hence, $mw\overline{w}^{-1} \in Z(G)$. So $m \in Z(G)$ and $I_{M'}(m) = e$. Thus, $\{I_{M'}(w_n)\}$ converges to $I_{M'}(w)$ in I(M') and, consequently, $I_{M'}(W)$ is closed in I(M'). We have now proved that M' is non-(CA).

THEOREM 2.1. Let $f: G \to L$ be a proper dense immersion of an analytic group G into an analytic group L. Then there exist closed vector subgroups W and Y of G and a maximal (CA) closed normal analytic subgroup M of G, which contains Z(G), such that G = MWY, $MW \cap Y = M \cap W = \{e\}$, and WY is a closed vector subgroup of G, and such that

$$L = f(M) \cdot f(W) \cdot \overline{f(Z(G)) \cdot f(Y)},$$

where $\overline{f(M)} = f(M) \cdot \overline{f(Z(G))}$ and f(W) and $\overline{f(M)} \cdot f(W)$ are closed in L. Moreover, $f(W) \cap Z(L) = \{e\}$.

PROOF. If G is (CA), then $L = f(G) \cdot \overline{f(Z(G))}$ from van Est [2, Theorem 2.2.1]. We now assume that G is non-(CA) and will adopt the notation of the Main Structure Theorem.

Let K_L be an arbitrarily fixed maximal compact subgroup of L and let K be a maximal compact subgroup of $\overline{I(G)}$ containing $\rho_{GL}(K_L)$. Since G is non-(CA) we can appeal to Goto [1]: Let N be a maximal analytic subgroup of I(G), which contains the commutator subgroup of I(G) and is closed in A(G). Then there is a closed vector subgroup V' of I(G), such that

$$I(G) = NV', \qquad N \cap V' = \{e\},\tag{1}$$

and $\overline{I(G)} = N\overline{V'}$, where $T' = \overline{V'}$ is a central toral subgroup of K. Moreover, $N \cap T'$ is finite and the space of $\overline{I(G)}$ is diffeomorphic to the product space $N \times T'$. In the proof of the Main Structure Theorem $I_G(M) = N$ and $I_G(V) = V'$.

We now show that $\overline{f(M)} = f(M) \cdot \overline{f(Z(G))}$. To this end we construct the analytic subgroup $P = \overline{f(M)} \cdot f(V)$ of L. Since $Z(G) \subset M$ from the Main Structure Theorem, $f(Z(G)) \subset Z(P)$. Also, if $\overline{m}v \in Z(P)$, $\overline{m} \in \overline{f(M)}$, $v \in f(V)$, then $\rho_{GP}(\overline{m}) \cdot \rho_{GP}(v) = e$. Since $N \cap V' = \{e\}$ from (1), $\rho_{GP}(v) = e$ and so $v \in Z(G)$. Again, since Z(G) is contained in M, v = e, and so Z(P) is contained in $\overline{f(M)}$. Thus,

$$\overline{f(Z(G))} \subset Z(P) \subset \overline{f(M)}$$
. (2)

Let $d \in Z(P)$. Then from (2) there is a sequence $\{g_n\}$ in f(M) converging to d in P. Therefore, $\{\rho_{GP}(g_n)\}$ converges to e in A(G). Since N is closed in A(G), $\{\rho_{GP}(g_n)\}$ converges to e in N and, therefore, in I(G). Since G/Z(G) is isomorphic to I(G), there is a sequence of central elements of G such that $\{c_{n_e}^{-1} \cdot g_{n_e}\} = \{b_{n_e}\}$ converges to e in G, where $\{g_n\}$ is a subsequence of $\{g_n\}$.

So $\{b_{n_r}\}$ converges to e in P. Hence $\{c_{n_r}\}=\{g_{n_r}\cdot b_{n_r}^{-1}\}$ converges to d in P. Thus $d\in \overline{f(Z(G))}$. Therefore

$$Z(P) \subset \overline{f(Z(G))}$$

and so

$$\overline{f(Z(G))} = Z(P) \tag{3}$$

from (2).

Since $\rho_{GP}(f(M)) = N = \rho_{GP}(f(M))$ because N is closed in A(G), $\overline{f(M)} \subset f(M) \cdot Z(P)$. So Z(f(M)) is contained in $f(M) \cdot Z(P)$. Therefore,

$$\overline{f(M)} = f(M) \cdot Z(\overline{f(M)}) \subset f(M) \cdot Z(P) = f(M) \cdot \overline{f(Z(G))} \subset \overline{f(M)},$$

where the first equality follows form van Est [2], since M is (CA). We now have

$$\overline{f(M)} = f(M) \cdot \overline{f(Z(G))}. \tag{4}$$

Let us return to $P = \overline{f(M)} \cdot f(V)$. If $\overline{m} = v$, then $\rho_{GP}(\overline{m}) \cdot \rho_{GP}(v^{-1}) = e$. So v = e from (1). Thus $\overline{f(M)} \cap f(V) = \{e\}$, and so f(V) is closed in P. Now let J denote a maximal analytic subgroup of P which contains $\overline{f(M)}$ and is closed in L. Then from Goto [1] there exists a closed vector subgroup U of P such that $P = J \cdot U$, $J \cap U = \{e\}$, and such that $L = J \cdot \overline{U}$, where \overline{U} is a central toral subgroup of K_L and $J \cap \overline{U}$ is finite. Therefore, since $\rho_{GL}(\overline{U}) \subset \rho_{GL}(K_L) \subset K$, and since T' is central in K, we see that T' centralizes $\rho_{GL}(\overline{U})$.

Let $\pi: P \to f(V)$ be the natural projection and let $\pi(J) = f(W)$, where W is a vector subgroup of V. Then f(W) is a closed vector subgroup of f(V) and since J contains $\overline{f(M)}$ we see that

$$J = \overline{f(M)} \cdot f(W), \qquad \overline{f(M)} \cap f(W) = \{e\}. \tag{5}$$

Therefore,

$$P = \overline{f(M)} \cdot f(W) \cdot U \quad \text{and} \quad L = \overline{f(M)} \cdot f(W) \cdot \overline{U}. \tag{6}$$

Let $W' = \rho_{GP}(f(W))$. Then since $P = \overline{f(M)} \cdot f(V)$ and $\rho_{GP}(\overline{f(M)}) = N$ = $\rho_{GP}(M)$, we have $I(G) = \rho_{GP}(P) = N \cdot W' \cdot \rho_{GP}(U)$ by (6). Since Z(P) is contained in $\overline{f(M)}$ by (2), we see that $\rho_{GP}(U) \cap (N \cdot W') = \{e\}$. In particular, $\rho_{GP}(U)$ is a vector subgroup of I(G), which is isomorphic to U.

Let $U' = \rho_{GP}(U)$, and let $U' = U'_q \cdot U'_{q-1} \cdot \cdot \cdot \cdot U'_1$ be a direct product decomposition of U' into one dimensional vector subgroups. For $I_G : G \rightarrow I(G)$ we see that MW is the complete inverse image of NW', and we let H_i , $1 \le i \le q$, denote the identity component group of the complete inverse image of U'_i . Each H_i is closed in G. Since the restriction of I_G to H_i is a homomorphism of H_i onto U'_i having kernel $Z(G) \cap H_i$, we see that Z(G)

 \cap H_i is connected and $H_i = (Z(G) \cap H_i) \cdot Y_i$, where Y_i is a closed one dimensional vector subgroup of H_i , such that

$$I_G(Y_i) = U_i'. (7)$$

Therefore,

$$G = M \cdot W \cdot (Z(G) \cap H_q) \cdot Y_q \cdot \cdot \cdot (Z(G) \cap H_1) \cdot Y_1$$
$$= M \cdot W \cdot Y_q \cdot Y_{q-1} \cdot \cdot \cdot \cdot Y_1.$$

If $mwy_q \cdot \cdot \cdot y_1 = e$, then $I_G(m) \cdot I_G(w) \cdot I_G(y_q) \cdot \cdot \cdot I_G(y_1) = e$. Since $I(G) = N \cdot W' \cdot U'$, $NW' \cap U' = N \cap W' = \{e\}$, we see that $I_G(w) = I_G(y_i) = e$ for each *i*. Therefore, $m = w = y_i = e$. Hence, $W \cdot Y_q \cdot Y_{q-1} \cdot \cdot \cdot Y_1$ is closed in *G*. We now show that it is actually a closed vector subgroup of *G*.

Let $M_2 = M \cdot W \cdot Y_q \cdot Y_{q-1} \cdot \cdots \cdot Y_2$. M_2 is closed and normal in G and $G = M_2 \cdot Y_1$, $M_2 \cap Y_1 = \{e\}$. Let $\psi \colon Y_1 \to A(M_2)$ be given by $\psi(y_1)(m_2) = y_1 m_2 y_1^{-1}$. Since Z(G) is contained in M_2 , and since Y_1 is abelian, we see that ψ is an immersion. $\psi(Y_1)$ is not closed in $A(M_2)$, since $I_G(Y_1) = U_1'$ is not closed in A(G); Zerling [6, Lemma 3.1]. Consider $M_2 \otimes \overline{\psi(Y_1)}$, where $\overline{\psi(Y_1)}$ is the closure of $\psi(Y_1)$ in $A(M_2)$. $\overline{\psi(Y_1)}$ is a toral group.

Let $y_1 \in Y_1$ and let $x = wy_q \cdot \cdot \cdot y_2 \in WY_q \cdot \cdot \cdot Y_2$. Then $I_G(\psi(y_1)(x)) = I_G(y_1 \cdot x \cdot y_1^{-1}) = u'_1 \cdot w' \cdot u'_q \cdot \cdot \cdot u'_2 \cdot u'_1^{-1}$, where $u'_i = I_G(y_i) \in U'_i \subset K$ and $w' = I_G(w) \in W' \subset T'$. Since T' is central in K, and because U' is abelian, we see that $I_G(y_1 \cdot x \cdot y_1^{-1}) = I_G(x)$. Therefore, $\psi(y_1)(x) \cdot x^{-1}$ is in Z(G). Thus, $\sigma(x) \cdot x^{-1}$ is in Z(G) for each σ in $\overline{\psi(Y_1)}$ and each x in $W \cdot \underline{Y_q} \cdot \cdot \cdot \underline{Y_q} \cdot \underline{$

Z(G) elementwise fixed. Therefore, from Zerling [5, Lemma 2.2] we see that $\sigma(x) = x$ for each $\sigma \in \overline{\psi(Y_1)}$ and each $x \in W \cdot Y_q \cdot Y_{q-1} \cdot \cdot \cdot \cdot Y_2$. Hence, $W \cdot Y_q \cdot \cdot \cdot \cdot Y_1$ is a closed vector subgroup of G. Let $Y = Y_q \cdot Y_{q-1} \cdot \cdot \cdot \cdot Y_1$. Then $G = M \cdot W \cdot Y$, $(MW) \cap Y = M \cap W = \{e\}$. The maximality of M as a (CA) closed normal analytic subgroup of G follows from Lemma 2.1.

Since $\rho_{GP}(U) = \rho_{GP}(f(Y)) = U'$ from (7), we see that

$$U \subset Z(P) \cdot f(Y) = \overline{f(Z(G))} \cdot f(Y), \tag{8}$$

where the last equality follows from (3). Therefore we have proved that

$$L = \overline{f(M)} \cdot f(W) \cdot \overline{U} = f(M) \cdot f(W) \cdot \overline{f(Z(G))} \cdot \overline{U}$$

$$\subset f(M) \cdot f(W) \cdot \overline{f(Z(G))} \cdot \overline{f(Y)},$$

that is,

$$L = f(M) \cdot f(W) \cdot \overline{f(Z(G)) \cdot f(Y)},$$

which we claimed in our theorem.

Finally we show that $f(W) \cap Z(L) = \{e\}$. Indeed, since $J \cap Z(L)$ is contained in Z(P), it is contained in $\overline{f(M)}$ from (2). But $\overline{f(M)} \cap f(W) = \{e\}$ from (5). Hence, $f(W) \cap Z(L) = \{e\}$.

COROLLARY 1. Maintaining the notation of Theorem 2.1, if $\overline{f(Z(G))}$ is compact, then:

- (i) Y can be selected so that $L = \overline{f(M)} \cdot f(W) \cdot \overline{f(Y)}$, where $\overline{f(Y)}$ is a toral group.
- (ii) $\overline{f(Y)} \cap (\overline{f(M)} \cdot f(W))$ is contained in $\overline{f(Z(G))} \cdot F$, where F is a finite subgroup of $\overline{f(M)}$.
 - (iii) $f(W) \cap (\overline{f(M)} \cdot \overline{f(Y)}) = \{e\}.$

PROOF. (i) If $\overline{f(Z(G))}$ is compact, then from (8) of Theorem 2.1 we have $\overline{U} \subset \overline{f(Z(G))} \cdot \overline{f(Y)}$, and so from (6) of Theorem 2.1

$$L = \overline{f(M)} f(W) \cdot \overline{U} \subset \overline{f(M)} \cdot f(W) \cdot \overline{f(Y)},$$

since $\overline{f(Z(G))}$ is contained in $\overline{f(M)}$. That is, $L = \overline{f(M)} \cdot f(W) \cdot \overline{f(Y)}$ as we claimed. From (7) of Theorem 2.1, we see that $f(Y) \subset U \cdot \overline{f(Z(G))}$. Therefore, since \overline{U} is a toral group and since $\overline{f(Y)} \subset \overline{U} \cdot \overline{f(Z(G))}$, we see that $\overline{f(Y)}$ is a toral group.

- (ii) Suppose that $x \in \overline{f(Y)} \cap (\overline{f(M)} \cdot f(W))$. Then $x = \overline{z} \cdot \overline{u}$, $\overline{z} \in f(Z(G))$, $\overline{u} \in \overline{U}$, since $\overline{f(Y)} \cap f(Z(G)) \cdot \overline{U}$ as we just showed above in (i). Therefore $\overline{u} = \overline{z}^{-1} \cdot x$, and so $\overline{u} \in \overline{f(M)} \cdot f(W)$. So $\overline{u} \in J \cap \overline{U}$, which is a finite subgroup of P, and consequently in $\overline{f(M)}$. Call this finite group F. Hence $x \in \overline{f(Z(G))} \cdot F$. Thus, we have shown that $\overline{f(Y)} \cap (\overline{f(M)} \cdot f(W))$ is contained in $\overline{f(Z(G))} \cdot F$, as we claimed.
- (iii) Suppose that $f(W) \cap (\overline{f(M)} \cdot \overline{f(Y)}) \neq \{e\}$. Then there exist $w \in f(W)$, $\overline{m} \in \overline{f(M)}$, and $\overline{y} \in \overline{f(Y)}$ so that $w = \overline{my}$. Therefore, $\overline{y} \in \overline{f(Y)} \cap J$. But $(\overline{f(Y)} \cap J) \subset \overline{f(Z(G))} \cdot F \subset \overline{f(M)}$ from (ii). Therefore, $\overline{y} \in \overline{f(M)}$ and so $w \in \overline{f(M)}$. Thus, w = e from (5) of Theorem 2.1. Hence, $f(W) \cap (\overline{f(M)} \cdot \overline{f(Y)}) = \{e\}$, as we claimed.

COROLLARY 2. Maintaining the notation of Theorem 2.1, if f(Z(G)) is closed in L, then Y can be selected so that $L = f(MW) \cdot \overline{f(Y)}$, where $\overline{f(Y)}$ is a toral group such that $f(MW) \cap \overline{f(Y)}$ is finite.

PROOF. If f(Z(G)) is closed in L, then $\overline{f(M)} = f(M)$ from Theorem 2.1. Hence G = P and we can take $Y_i = U_i$ in the proof of Theorem 2.1; so Y = U. Our claim then follows from (6) of Theorem 2.1.

REMARK. In the proof of Theorem 2.1 P was a device which we constructed

in order to apply Goto's Theorem. Since U was in P, and not in G, we needed to construct Y in G in order to carry out our proof. In Corollary 2, however, the use of P as a device is not necessary because M is already closed in L.

COROLLARY 3. Maintaining the notation of Theorem 2.1, if L is (CA) and Z(L) is compact, then $W = \{e\}$.

PROOF. Since Z(L) is compact, $\overline{f(Z(G))}$ is compact. Since $f(W) \cap (\overline{f(M)} \cdot \overline{f(Y)}) = \{e\}$ from Corollary 1, and since $f(W) \cap Z(L) = \{e\}$ from Theorem 2.1, we see from Corollary 1 that $L = (\overline{f(M)} \cdot \overline{f(Y)}) \otimes f(W)$. Let $Q = \overline{f(M)} \cdot \overline{f(Y)}$. Then $\rho_{QL}(f(W))$ is not closed in A(Q), since $\rho_{GL}(f(W)) = W' \subset V'$ is not closed in A(G); Zerling [6, Lemma 3.1]. Hence L is properly dense in $(\overline{f(M)} \cdot \overline{f(Y)}) \otimes T_1$, where T_1 is the closure of f(W) in A(Q). This is a contradiction from van Est [2]. Hence $W = \{e\}$.

- 3. (CA) Lie groups and Lie algebras. Following van Est [3] we define a Lie subalgebra $\mathfrak G$ of a Lie algebra $\mathfrak L$ to be dense in $\mathfrak L$, if there exists an analytic group L with Lie algebra $\mathfrak L$ in which the analytic subgroup generated by $\mathfrak G$ is dense. We also say that ψ is a dense imbedding of a Lie algebra $\mathfrak G$ into a Lie algebra $\mathfrak L$ if ψ is a Lie algebra isomorphism of $\mathfrak G$ into $\mathfrak L$ such that $\psi(\mathfrak G)$ is a dense subalgebra of $\mathfrak L$.
- In [3, Theorem 4.1] van Est proved that for each Lie algebra \mathfrak{G} there exists a unique (up to isomorphism) Lie algebra $\mathfrak{G}_{(CA)}$ such that:
 - (i) $\mathfrak{G}_{(CA)}$ is a (CA) Lie algebra, whose center coincides with the center of \mathfrak{G} .
 - (ii) There exists a dense imbedding ψ of \mathfrak{G} into $\mathfrak{G}_{(CA)}$.
- (iii) With any dense imbedding ψ' of \mathfrak{G} into a (CA) Lie algebra \mathfrak{L} there exists a dense imbedding η of $\mathfrak{G}_{(CA)}$ into \mathfrak{L} so that $\psi' = \eta \psi$.

The Lie algebra $\mathfrak{G}_{(CA)}$ described above is called the (CA)-completion or (CA)-closure of \mathfrak{G} . We now relate this concept with the Main Structure Theorem in order to improve upon some results in Zerling [6]. First we state the following useful result from van Est [3, Lemma 5.4]: Let G be an analytic group with Lie algebra \mathfrak{G} . Suppose that \mathfrak{G} is a dense ideal of a Lie algebra \mathfrak{L} , such that the center of \mathfrak{L} is contained in \mathfrak{G} . Then there exists an analytic group L with Lie algebra \mathfrak{L} that contains G as a dense analytic subgroup.

THEOREM 3.1. Let us maintain the notation of the Main Structure Theorem. Let \mathfrak{G} and \mathfrak{F} be the Lie algebras of G and H, respectively. Then $\mathfrak{F} \simeq \mathfrak{G}_{(CA)}$.

PROOF. Since \mathfrak{G} is a dense subalgebra of $\mathfrak{G}_{(CA)}$, we have from van Est [3, Lemma 5.4] that there exists an analytic group $G_{(CA)}$ having $\mathfrak{G}_{(CA)}$ as its Lie algebra and containing G as a dense analytic subgroup. Therefore, from the corollary to Lemma 3.2 of Zerling [6] we see that dim $H \leq \dim G_{(CA)}$.

On the other hand, since \mathfrak{F} is a (CA) Lie algebra containing \mathfrak{F} as a dense

subalgebra, there is a dense imbedding from $\mathfrak{G}_{(CA)}$ into \mathfrak{F} . Since dim $H \leq \dim G_{(CA)}$ we see that this imbedding is an isomorphism of $\mathfrak{G}_{(CA)}$ onto \mathfrak{F} . Hence, our theorem is proved.

THEOREM 3.2. Let us maintain the notation of the Main Structure Theorem and let $f: G \to L$ be a dense immersion of G into a (CA) analytic group L.

- (i) If Z(f(G)) is of finite index in Z(L), then L is locally isomorphic and diffeomorphic to H, and Z(f(G)) is closed in L.
- (ii) If Z(f(G)) is of countably infinite index in Z(L), then L is locally isomorphic to H and Z(f(G)) is closed in L.
- PROOF. (i) In Lemma 2.1 of Zerling [6] we proved that Z(G) is of finite index in Z(H) and in Theorem 3.1 of that paper we showed that L is diffeomorphic to H and that Z(f(G)) is closed in L. Since G is a dense analytic subgroup of the (CA) analytic group L, there is a dense imbedding of $\mathfrak{G}_{(CA)}$ into \mathfrak{L} . Hence $\mathfrak{F} \simeq \mathfrak{L}$, since $\mathfrak{G}_{(CA)}$ is isomorphic to \mathfrak{F} from Theorem 3.1 and dim $H = \dim L$ from the diffeomorphism between H and L given above. Thus, H and L are locally isomorphic.
- (ii) In Theorem 3.4 of Zerling [6] we proved that dim $L = \dim H$ and that Z(f(G)) is closed in L. Now by repeating the argument in (i) above we see that H and L are locally isomorphic.

THEOREM 3.3. Let L_1 and L_2 be (CA) analytic groups and let G_1 and G_2 be isomorphic proper dense analytic subgroups of L_1 and L_2 , respectively.

- (i) If $Z(L_1)$ and $Z(L_2)$ are both finite, the L_1 and L_2 are diffeomorphic and locally isomorphic.
- (ii) If $Z(L_1)$ and $Z(L_2)$ are both discrete, then L_1 and L_2 are locally isomorphic.
- PROOF. (i) Since $Z(L_1)$ and $Z(L_2)$ are both finite, $Z(G_1)$ and $Z(G_2)$ are both finite. Thus, G_1 and G_2 are non-(CA). Let us now maintain the notation of the Main Structure Theorem with the obvious subscript modification for G_1 and G_2 . We have $H_1 \simeq H_2$ and from (i) of Theorem 3.2 we have that H_1 and L_1 are diffeomorphic and locally isomorphic, as are H_2 and L_2 . Hence L_1 and L_2 are diffeomorphic and locally isomorphic.
- (ii) Replace "finite" by "discrete" in the proof of (i) above and then apply (ii) of Theorem 3.2.

EXAMPLE. Let **R**, **C**, and *T* denote the group of real numbers, the group of complex numbers, and the one dimensional toral group, respectively. For α , β , γ , $\delta \in \mathbf{C}$ and r, s, t, $u \in \mathbf{R}$ let $(\alpha, \beta, \gamma, \delta; r, s, t, u)$ denote the 5×5 matrix whose right-hand column consists from top to bottom of α , β , γ , δ , and 1, and whose main diagonal consists from top to bottom of $e^{2\pi i r}$, $e^{2\pi i s}$, $e^{2\pi i t}$, $e^{2\pi i u}$, and 1, and whose other entries are 0.

Let $L_1 = \{(\alpha, \beta, \gamma, \delta; r, s, t, u): \alpha, \beta, \gamma, \delta \in \mathbb{C}; r, s, t, u \in \mathbb{R}\}$. Then $L_1 \simeq$

 $\mathbb{C}^4 \ \odot \ T^4$, $Z(L_1) = \{e\}$, and L_1 is (CA). Let μ and ν be fixed irrational numbers and let $L_2 = \{(\alpha, \beta, \gamma, \delta; r, s, t, \mu t): \alpha, \beta, \gamma, \delta \in \mathbb{C}; r, s, t \in \mathbb{R}\}$. Then $L_2 \simeq \mathbb{C}^4 \odot (T^2 \times \mathbb{R})$, $Z(L_2) = \{e\}$, and L_2 is non-(CA). Let $G = \{(\alpha, \beta, \gamma, \delta; r, \nu r, t, \mu t): \alpha, \beta, \gamma, \delta \in \mathbb{C}; r, t \in \mathbb{R}\}$. Then $G \simeq \mathbb{C}^4 \odot (\mathbb{R} \times \mathbb{R})$, $Z(G) = \{e\}$, and G is non-(CA).

This example shows that L_1 and L_2 both have trivial center and both possess G as a dense analytic subgroup; yet, L_1 and L_2 do not even have the same dimension. Thus, the condition in Theorem 3.3 that L_1 and L_2 both be (CA) cannot be removed. It is also true that the conditions on $Z(L_1)$ and $Z(L_2)$ in Theorem 3.3 cannot be removed, as we see by observing that T^2 and T^3 both possess a dense one dimensional vector subgroup.

BIBLIOGRAPHY

- 1. M. Goto, Analytic subgroups of GL (n, R), Tôhoku Math. J. (2) 25 (1973), 197-199.
- 2. W. T. van Est, Dense imbeddings of Lie groups, Nederl. Akad. Wetensch. Proc. Ser. A 54 = Indag. Math. 13 (1951), 321-328.
- 3. _____, Dense imbeddings of Lie groups. II, Nederl. Akad. Wetensch. Proc. Ser. A 55 = Indag. Math. 14 (1952), 255-274.
- 4. _____, Some theorems on (CA) Lie algebras. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 55 = Indag. Math. 14 (1952), 546-568.
- 5. D. Zerling, Some theorems on (CA) analytic groups, Trans. Amer. Math. Soc. 205 (1975), 181-192.
 - 6. _____, Some theorems on (CA) analytic groups. II, Tôhoku Math. J. (2) 29 (1977), 325-333.
 - 7. D. Zerling, Dense subgroups of Lie groups, Proc. Amer. Math. Soc. 62 (1977), 349-352.

DEPARTMENT OF MATHEMATICS AND PHYSICS, PHILADELPHIA COLLEGE OF TEXTILES AND SCIENCE, PHILADELPHIA, PENNSYLVANIA 19144