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LIFTINGS AND THE CONSTRUCTION OF

STOCHASTIC PROCESSES

BY

DONALD L. COHN

Abstract. It is shown that if the continuum hypothesis holds, then the use

of liftings to construct modifications of stochastic processes can replace

measurable processes with nonmeasurable ones. The use of liftings to

choose the paths, rather than the random variables, of a stochastic process is
investigated.

1. Definitions and introduction. Let AT be a compact metric space, let $ (K)

be the a-algebra of Borel subsets of K, let (fi, &, P) be a probability space,

and let T be a nonempty set of real numbers. A stochastic process on

(B, &, P) with values in K and parameter space T is an indexed family

{^,),er of ÄT-valued functions on B that are measurable with respect to &

and tS>(K). Recall that a stochastic process {X,}teT is separable if there is a

/'-null subset N of B and a countable subset D (called a separating set) of T

such that for each w in B — N the graph of the restriction of the path

th+X,(u>) to D is dense in the graph of tH>X,(u>). Recall also that the process

{i,),er is Borel measurable if the parameter space T is a Borel subset of R

and the map (/, o))r^>X,(ui) is measurable with respect to the product a-algebra

%(T) X & (here <S(7") is the a-algebra of Borel subsets of T). Likewise the

process {X,}t&T is Lebesgue measurable if the parameter space T is a

Lebesgue measurable subset of R and the map (t, cS)r^Xt(u) is measurable

with respect to the completion of <ÜílK(T) X & under the product measure

A X P (here 911^(7") is the a-algebra of Lebesgue measurable subsets of T and

À is Lebesgue measure). Finally recall that processes {X,}ieT and { Y,)teT on

a common probability space (B, 6E, P) are modifications of one another if

P(Xt ¥= Y,) = 0 holds for each t in T, and that processes {X,}ieT and

{ y,},e7- on possibly different probability spaces are versions of one another if

they have the same finite dimensional distributions.

For a finite or a-finite measure space (E, &, ¡i) let £™(E, &, ¡i) be the

vector space of bounded real-valued S-measurable functions on E, and let

L0C(E,S,ix) be the quotient space formed by identifying functions in

tx(E, &, ju) that agree ju-almost everywhere. For functions / and g on £ we
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shall write / = g to indicate that / and g agree ft-almost everywhere, and

/ = g to indicate that/and g agree everywhere. We shall occasionally denote

by /~ the class in LCC(E, S, p) determined by the function /. A lifting of

£X(E, S, ft) is a map p: £°°(£, S, ft) -> Ê°°(£, S, /x) that satisfies

(i) p(af + bg) = ap(f) + bp(g),

(ii) p(fg) = p(f)p(g),
(iii)p(l)=l,

(iv)p(/) = p(g)if/ = g, and

(v) P(/) =/
for all/, g in £,°°(E, S, ju.) and all a, b in R. In view of condition (iv), a lifting

induces a map from LX(E, S, ft) to £°°(ii, ê, jtt); it is easy to check that this

correspondence provides a bijection between the set of liftings of t°°(E, S, p)

and the set of algebra homomorphisms of L°°(E, S, p.) into £°°(E, &, p.) that

preserve the identity and map each equivalence class in Lco(E, &, p.) to one

of its members. It is known that if the finite or a-finite measure space

(E, S, ft) is complete, then there is a lifting of t°°(E, &, ft) (see [6] and the

references contained therein).

We shall be dealing with an extension of the notion of lifting to functions

that are not real-valued. Consider the following special case of a construction

given by A. and C. Ionescu Tulcea [5]. Let (E, £, ft) be a measure space for

which t°°(E, g, ft) has a lifting, say p. Let 9H(/i, g, ft, K) be the set of all

AT-valued functions on E that are measurable with respect to S and <3à (K).

Let C(K) be the (real) Banach algebra consisting of all continuous real-

valued functions on K. Given a point t in E and a function F in

91t(£, S, ft, K), consider the real-valued algebra homomorphism on C(K)

defined by g^>p(g ° F)(t). According to elementary Banach algebra theory,

this homomorphism is given by evaluation at some point in K; call this point

p'(F)(t). This gives a function p'(F) from E to K that is easily seen to be

S -measurable. The map p' from ?ÏÏL(E, &, p, K) to ty¡L(E, &, p, K) that

takes F to p'(F) then satisfies (for all F, G in 9H(£', &, p, K) and all g in

C(K))
(l)g°p'(F) = p(g°F),
(2) p'(F) = F, and

(3) if F = G, then p'(F) = p'(G).
Furthermore p' is uniquely determined by these conditions. The map p' will

be called the lifting of 911 (£, &, p, K) induced by p.
Now suppose that the probability space (B, 6B, P) is complete, that p is a

lifting of £°°(B, &, P), that p' is the lifting of 9H(B, &, P, K) induced by p,
and that T is a subinterval of R. A. and C. Ionescu Tulcea [5] have shown

that if {Xt}teT is a stochastic process on (B, (£, P) with values in K, then

{p'(X,))ieT is a separable modification of {Xt},sT. We show that this

construction need not produce a measurable process. More precisely, we shall
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show that if the continuum hypothesis holds, then there is a complete

probability space (B, &, P), a lifting p of £°°(B, &, P), and a [-00, 00]-

valued stochastic process {Xt}tfET on (B, 6B, P) that is Borel measurable but

for which the modification {p'(Xt)}ieT is not even Lebesgue measurable. This

proof depends on a construction due to R. M. Dudley [2] and a theorem due

to G. Mokobodzki [9]; the details are given in §2 below.

In §3 we change our point of view, and instead of applying liftings of

£°°(B, &, P) to the random variables X„ producing random variables p'(X,),

we apply liftings of t°°(T, 911^, X) (where <DHA is the a-algebra of Lebesgue

measurable subsets of the interval T, and X is Lebesgue measure on ^lt^) to

the paths t\-+X,(w), producing paths tv^p'(X(u>))(t). The main properties of

this construction are given in §4; some similar results have been obtained by

Itô ([7] and [8]), using classical analysis.

This paper is a revision of a part of the author's 1975 Harvard thesis. The

author wishes to thank his advisors, Professors R. M. Dudley and A. M.

Gleason, for their comments and encouragement, and to thank Professor A.

Bellow (then A. Ionescu Tulcea) for her advice and for pointing out reference

[9].

2. Liftings and nonmeasurable processes. We turn to the details of the

construction of a complete probability space (B, â, P), a lifting p of

£°°(X, &,P), and a stochastic process {X,}teT on (B, &, P) that is Borel

measurable but for which the process {p'(X,)},eT *s not Lebesgue measur-

able.

Let T = R and let K = [ — 00, 00]. Dudley [2] has shown that if the

continuum hypothesis holds, then there is a regular Borel measure p on the

product space KT such that the process {TT,},eT, where it, is the projection of

KT onto the tth coordinate, has a Borel measurable version, and hence a

Borel measurable modification (that every process that has a Borel measur-

able version has a Borel measurable modification follows, for example, from

the main theorem of [3]), but is not itself even Lebesgue measurable. Let

{Z,},er be a Borel measurable modification of {it,},ST. Let B be the support

of the measure p, let & be the a-algebra of subsets of B that belong to the

completion under ft of the Borel a-algebra on KT, and let P be the restriction

to 6B of the completion of p. Then (B, &, P) is our probability space. The

required process {X,}teT is the restriction of {Z,},eT to B; it is Borel

measurable. We shall also need the process { Y,},eT formed by restricting the

process {tt,},£T to B; it is not Lebesgue measurable.

Mokobodzki [9] has shown that if the continuum hypothesis holds, if S is a

compact Hausdorff space whose topology has a basis of cardinality at most

that of the continuum, if j» is a regular Borel measure on the a-algebra % (S)

of Borel subsets of S, and if the support of v is S, then there is a lifting p of

£°°(S, %(S), v) that satisfies p(f) = / for each continuous real-valued func-
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tion/on S. Let ® (S)~ be the completion of %(S) under v, and let v~ be the

completion of v. It is clear that p induces a lifting of £°°(S, ^(5)", v~),

again called p, that satisfies p(/) = / for each continuous / It is easy to check

that if K is a compact metric space, then the lifting p' on

cyi(S,%(S)~,v~,K) that is induced by p satisfies p'(F) = F for each

continuous /f-valued function F on S.

Note that the space KT, and hence the space B, has a basis whose

cardinality is that of the continuum. Hence we can use Mokobodzki's

theorem to obtain a lifting p of £°°(B, &, P) that satisfies p(f) = f for each

continuous function/ on B. Let p' be the lifting of ^(B, &, P, K) induced

by p. Since for each / the random variable Y, is continuous and the random

variables X, and Y, satisfy X, = Y„ it follows that p'(X,) = p'(Y,) = Y,. Thus

the modification of the process {X,},eT provided by p' is the nonmeasurable

process {Y,},eT.

3. The construction of p-canonical processes. We turn to the application of

liftings to the paths t\-^X,(u), rather than to the random variables X„ of the

stochastic process { X,}, e T.

Recall that K is a compact metric space. Henceforth we shall suppose that

T is a subinterval of R, that ÍB (T) is the a-algebra of Borel subsets of T, that

911^, or G%k(T), is the a-algebra of Lebesgue measurable subsets of T, and

that X is Lebesgue measure on G]\LX.

Definition. Let p be a lifting of tx(T, 911^, X) and let p' be the associated

lifting of 9t(r, 91tx,A, K). Let Sp be the set of all functions F in

911(7, 91Lx, X, Ä") for which p'(F) = F. Give Sp the topology of convergence

in measure on compact subsets of T (equivalently, the topology defined by

the metric

(F, G)^ [ dist(F(t), G(t))—^— dt,
■> 1 + r

where dist is the metric in K). Finally let &p be the o-algebra on Sp generated

by this topology.

Note that Sp contains exactly one function from each equivalence class

(under a.e. equality) of measurable functions from T to K. Thus the pseudo-

metric defined above is indeed a metric on §p. Also note that a measurable

function F from T to K satisfies p'(F) = F if and only if it satisfies

p(q> ° F) = <p ° F for each continuous real-valued function <p on K.

Definition. Let (B, &, P) be a probability space and let p be a lifting of

t°°(T, GfiLK, X). A p-canonical process on (B, &, P) is a map from B to Sp that

is measurable with respect to â and & .

Thus a p-canonical process is a measurable choice of paths; the paths

chosen are "nice" to the extent that functions satisfying p(/) = / are nice.

If .Y is a p-canonical process, then X(a>) is a function from T to K, and for t
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in T we can consider the map taking co to X(u)(f); call this map X,. Note that

the definition of a p-canonical process does not require that each map X, be

measurable; that is, {X,},£T is not required to be a stochastic process.

However, see Theorem 4.1.

It appears that for some liftings p the p-canonical processes may not be

very tractable. The rest of this section is devoted to the construction of

liftings for which p-canonical processes are relatively tractable. The properties

of p-canonical processes are then the subject of the next section.

Definition. Let / be an element of T. A sequence {/„} of bounded

subintervals of T approaches (or converges to) t if t is an element of each /„,

and if the length of /„ approaches 0 as « approaches oo.

Definition. Let / be a bounded Lebesgue measurable function from T to

R. The function f+ is defined on T by letting f+(t) be the infimum of those

real numbers a for which

>fen/-h»)).0
X(I„)

holds for each sequence {/„} of bounded subintervals of T that converges to

t. Likewise the function f~ is defined by letting f~(t) be the supremum of

those real numbers a for which

Ihn M/, n/-■(-■.)).,
n^°° KO

holds for each sequence {/„} of bounded subintervals of T that converges to

/.

For each t in T, we certainly have - oo <f~(t) < f+(t) < oo. The follow-

ing deeper result will be used later.

Lemma 3.1. Let f be a bounded Lebesgue measurable function from T to R.

Thenf~(t) = fit) = f+(t)for almost every t in T.

Proof. For each pair of rational numbers u, v for which u < v, let

T(u, v) = {t El T: u <f(t) <v}. By Lebesgue's differentiation theorem al-

most every point of T(u, v) is a point of density of T(u, v). If we let N be the

union of the countable collection of negligible exceptional sets arising in this

way, it follows that/~(/) = fit) = f+(t) for each t outside N.   O

We need the following calculation of f+(t), which was given by Itô [7].

Since the proof was omitted by Itô, I shall sketch it.

Let % be the collection of those nondegenerate compact subintervals of T

whose end points are rational or are end points of T. Let *$ be the collection

of finite unions of elements of %. Certainly every bounded measurable subset

of T can be approximated in measure by elements of ®j.

If F is a bounded nonempty subset of R, define the length of F to be

sup F — inf F.
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Lemma 3.2. Let f be a bounded Lebesgue measurable function on T and let t

be an element of T. Then

f+(t) = sup inf sup! -^- f/(f) df.F 6Î.ÎË F,
k      " {X(ï)JF

length(F) < ^,X(F) > j- length(F)J.

Proof. Certainly f+(t) is the supremum of those real numbers a for which

there is a sequence {/„} of bounded subintervals of T that converges to / and

satisfies

— X(/„n {/>*})

f -KÖ-> °-
This supremum is equal to the supremum of those real numbers a for which

there is a sequence {En} of bounded nonnegligible measurable subsets of T

and a positive number e satisfying

(\/X(En))fEJ(t)dt > a for each n, X(E„) > e ■ length(£„)

for each n, t E E„ for each n, and X(En) —> 0 as n —> oo.

Since arbitrary bounded measurable subsets of T can be approximated by

elements of *3", this supremum is equal to the number on the right hand side

of the equation in the statement of the lemma.   □

Now we can use/+ and/" to construct liftings p for which p-canonical

processes have desirable properties. This construction was suggested by a

related construction of A. and C. Ionescu Tulcea (see [6, Proposition 2 of

Chapter V]).

Theorem 3.3. There is a lifting p of £°°(r, 911*, X) such thatf~(t) < p(/)(0

< f+(t) holds for each t in T and each f in £°°(F, 911*, X).

Proof. For each / in T, let /, = {f~ELx(T, 911*, X): f+(t) = f~(t) = 0).
Note that if / and g are equal almost everywhere, then f+(t) = g+(t) and

/~(0 = £-(0; consequently the definition of /, is meaningful. It is easy to

check that each I, is a proper ideal in LX(T, 911*, X). For each t, choose a

nonzero algebra homomorphism x, of L°°(F, 911*, X) into R that vanishes on

/,; that this can be done follows from the elementary theory of complex

Banach algebras, once LX(T, 911*, X) is embedded into the corresponding

complex Banach algebra. Now define the function p(f) by setting p(/)(i) =

X,(/~). We need to check that p is the required lifting. Properties (i)-(iv) °f a

lifting follow immediately. The following argument shows that f~(t) <

P(f)(t) < f+(t) holds for every / and every t. Fix / in T and / in

£"(7, 9R*, X). Define a function g on F by setting g(s) = max(/(s), /+(0)-

On the one hand, fis) < g(s) for every s, and so p(/)(i) < p(g)(t). On the

other   hand,  g+(t) = g~(t) = f+(t),   from   which   it  follows   that  (g -
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f+(t))~El, and hence that p(g)(t) =f+(t). Consequently p(f)(t) < f+(t). A

similar argument shows that/~(r) < p(f)(t). Hence/"(/) < p(/)(0 < /+(0-

From this and Lemma 3.1 it follows that p(/) =/ and hence that p(/) is

measurable.   □

Note that if p is a lifting of £°°(T, 91*, X) that satisfies/"(0 < p(/)(0 <

f+(t) for each/and /, then each bounded continuous real-valued function/

on T satisfies p(f) = /; it follows that Sp contains all the continuous AT-val-

ued functions on T.

It is often convenient to consider paths starting at time t instead of time 0.

This suggests considering along with the sample path F the path F, defined by

F,(s) = F(s + t). The following lemma characterizes those liftings for which

Sp is closed under such translations. (A lifting p of £°°(R, 911*, X) or of

£°°([0, oo), 911*, X) commutes with translations if p(Ft) = (p(F)), holds for each

F in £°°(R, 911*, X) or in £°°([0, oo), 91*, X) and each t in R or in [0, oo).)

Lemma 3.4. Suppose that the compact metric space K contains at least two

points. Let TbeR or [0, oo), and let p be a lifting of £°°(F, 9R*, X). Then Sp is

closed under each of the translations Fr-*F, if and only if p commutes with

translations.

This result is not needed for the main results of this paper; hence its proof,

which is straightforward, is omitted.

It is known [4] that there are liftings of £°°(R, 9U*, X) that commute with

translations, but the following slightly stronger result seems useful in connec-

tion with p-canonical processes.

Theorem  3.5.  Let   T be  R  or  [0, oo).   Then  there  is  a  lifting p of

£°°(F, 911*, X) that commutes with translations and satisfies f'(t) < p(/)(/) <

f+(t) for all t in T and all f in £°°(F, 911*, X).

Proof. First suppose that T = R. Recall the proof of Theorem 3.3 and in

particular the characters x, of L°°(F, 911*, X). For each / in T define a

character v, of L°°(F, 91t*, X) by setting v,(f~) = Xo((/,)~)- Let p(/) be defined

by setting p(f)(t) = v,(f)- Since /"(0) < Xo(f) < /+(°) holds for each / h

follows that/~(i) < p(f)(t) < f+(t) holds for each t and/. It follows as in

Theorem 3.3 that p is a lifting. It is easy to check that p commutes with

translations.

The proof is similar in case T = [0, oo); in checking f~(t) < p(f)(t) <

f+(t) one now uses the relations/"(0 < (/,)"*(0) and/+(r) > (f,)+(0) instead

of the relations/"(i) = (/,)-(0) and/+(i) = (/)+(0).   □

4. The relationship between p-canonical processes and stochastic processes.

We turn to the main results, and consider first the stochastic process induced

by a p-canonical process (Theorem 4.1), and then the p-canonical process

induced by a measurable stochastic process (Theorem 4.2).
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Theorem 4.1. Let p be a lifting of £°°(F, 9R*, X) that satisfies f~(t) <

p(f)(t) < /+(0 M ail f in £°°(F, 911*, X) and all t in T, let (B, <$, P) be a
complete probability space, and let X: B -» Sp be a p-canonical process. Let

N = {t E T: X, is not &-measurable}. Then

(i) the set N is of zero Lebesgue measure,

(ii) the stochastic process {X,}IST_N is Lebesgue measurable, and

(iii) if the stochastic process [X,},eT_N is continuous in probability, then it is

separable. Furthermore, every countable dense subset of T — N is a separating

set for {X,},ST_N.

Proof. First note that if «p is a continuous real-valued function on K and if

F G ÍF, then the map Gh>f Fcp(G(t)) dt is a continuous, hence measurable,

function on §p. Consequently for each F in S the map 4>F: ÜXÍ^R

defined by

<*V(«> ') = ^JrtXM)*    XtEF,

- oo if / £ F,

is & X <35 ( F)-measurable. Lemma 3.2 implies that

(<p ° A'/co))"'" (í) = sup inf sup[<Ev(«, t): F6Î, length(F) < -,
k        " v "

X(F)>{length(F)},

and hence that (<p ° Ar(w))+(/) is an & X ift(F)-measurable function of (co, /)•

From   the   relation  f~(t) = - (~/)+(0>   which   holds   for   every /  in

£°°(F, 9R*, X) and every t in T, it follows that (<p ° A'Xco))-^) is also an

& X © (F)-measurable function of (to, *)•

Now Lemma 3.1 implies that for each to we have

(«p ° x. M)"(o-i> » *. («)) +(0
for almost all r. Since the functions involved are measurable (with respect to

& X 1(F)), Fubini's theorem implies that the equality holds for almost all

(to, t).

Since X(u) E Sp we have <p ° A",(co) = p(tp ° X(u))(t), and so

The results of the two preceding paragraphs therefore imply that

(cj, t)r^><p(X,(w)) is measurable with respect to (& X %(T))~, the completion

of 3, X 'S) (T) under P X X. Since the Borel a-algebra on K is generated by

the functions <p, it follows that (to, t)\-^>X,(a) is itself measurable with respect

to (& X <$> (T))~. The theory of product measures now implies that u\-*X,(ui)

is 6E-measurable for almost every / (recall that 6B is complete under P).

Finally, since (co, t)\-*X,(u) is measurable with respect to (6£ X ®(F))", its
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restriction to B X (T — N) is measurable with respect to (& X 9R*(F —

N))~. Thus assertions (i) and (ii) are proved.

Now suppose that the process {X,},eT_N is continuous in probability. Fix

a countable dense subset D of T — N. Define the function H on B X (T —

N)by

//(co, t) = Hm (inf{dist(A",(<o), Xs(u)): s E D, \s - t\ < l/n}),

where dist is the metric in K. Since the process {X,}lfET_N is Lebesgue

measurable, H is measurable with respect to (& X 91t*(F - N))~. For each /

in T — N, we can use the fact that {A",},^.^ is continuous in probability to

choose a sequence {sn} in D approaching / so fast that {Xs^(o>)} approaches

X,(u) for almost every u. Thus for each t in T — N, we have //(co, t) = 0

almost surely. Fubini's theorem now implies that almost every co is in

B0 = {a: //(co, /) = 0 for almost all t}.

Now we need only show that for each co in B0 the graph of the restriction of

X (co) to D is dense in the graph of the restriction of X (co) to T — N. For this,

fix co in B0, t in T — N, an open interval / containing /, and an open

neighborhood U of X,(u). Choose a continuous real-valued function <p on K

such that <p(A",(co)) = 0 and <p(x) =1 if x $ U. Since A" is a p-canonical

process, we have

«p(*,(«)) = p(<p o Xfcc))(t),

and so (<p ° A"(co))~(i) < <p(A",(co)) = 0. Thus for all open intervals J contain-

ing t the set J n {s: ^(A^co)) < 1} has positive Lebesgue measure. Choose

such a J that is included in /. Since the complement of {s: //(co, s) = 0} is of

measure zero, we can choose an element s of J such that tr^A^co)) < 1 and

//(co, s) = 0. Since //(co, s) = 0 and t^A^co)) < l,we can choose r in J n D

such that <p(A"r(co)) < 1. Thus (r, Ar(co)) is in the neighborhood / X U of

(/, A,(co)). Since the point t and the neighborhood / X U are arbitrary, the

proof is complete.   □

Theorem 4.2. Suppose that p is a lifting of £°°(F, 911*, X) such thatf~(t) <

P(f)(0 < f+(t) holds for all fin £°°(F, 911*, X) and all t in T, and suppose that

(B, &, P) is a complete probability space. Let {X,},eT be a Lebesgue measur-

able stochastic process on (B, éE, P) with values in K. Then there is a p-canoni-

cal process Y on (B, &, P) such that P(X, =■ Yt) «■ 1 holds for almost every t. If

Z is another p-canonical process with the same property, then Y(to) = Z(co)

holds for almost every co in B.

Proof. Since (co, O^A^co) is (& X <$>(T))~-measurable, the paths A"/co)

are Lebesgue measurable for almost all co. For such co, let y(co) = p'(A"(co)).

Choose some function F in Sp, and let y(co) = F for all other co. Certainly Y

is a function from B to Sp. We need to show that it is measurable with respect
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to & and &p. Choose a function U: B X T^>K that is $X®(7>

measurable and satisfies l/(co, r) = A",(co) for almost all (co, f). It is not too

hard to check that coH>p'( i/(co, • )) is measurable with respect to & and &p

(see, for instance, the proof of Theorem 3 in [1]). However p'(U(u, • )) =

y(co) for almost all co, and so Y is measurable. Since both X,(<S) and y,(co) are

(6E X %(T))~-measurable functions of (co, t), it follows from Fubini's theo-

rem that F(A", = y) = 1 for almost all t.

Finally, if Y and Z are two such p-canonical processes, then (co, t)h+ Y,(œ)

and (co, t) -* Z,(co) are (äxi(F))"-measurable functions such that P(Y, =

Z,) = 1 for almost every t. Then y(co) = Z(co) holds for almost every co, and

for each such co we have y(co) = p'( y(co)) = p'(Z(co)) = Z(co).   □
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