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RATIONAL SUBSPACES OF INDUCED REPRESENTATIONS

AND NILMANIFOLDS

BY

R. PENNEY

Abstract. Recently, Ausländer and Brezin developed a technique of dis-

tinguishing between certain unitarily equivalent irreducible subspaces of L2

of the Heisenberg nilmanifold. In this paper we extend the Auslander-Brezin

technique to arbitrary induced representations of arbitrary locally compact

groups. We then return to nilmanifolds, showing that the existence of a

"nice" theory of distinguished subspaces is equivalent to the existence of

square integrable representations for the group.

Introduction. In [2], Auslander and Brezin in studying the Heisenberg

nilmanifold discovered a technique of distinguishing between certain unitarily

equivalent irreducible subspaces of F2(r \ G) on a group theoretical basis. In

this paper we develop a technique of distinguishing between certain equiv-

alent subspaces which applies to any induced representation on a locally

compact topological group. Our technique is equivalent to the Auslander-

Brezin technique for the Heisenberg nilmanifold. Our technique also yields in

a large number of cases new realizations of certain irreducible representations

on the groups in question and, in the case of nilmanifolds, simplifications in

the description of the harmonic analysis of the L2 space.

To describe our idea, let G be a locally compact, a-compact, separable

topological group, and let F be a closed subgroup of G. Let Q and w denote

the respective modular functions for G and K. Let U be a unitary representa-

tion of K. We shall adopt the notation %(U) for the representation space of

U. Let ind(F, G, U) (or simply ind(G, U) or ind U when context is clear)

denote the unitary representation of G induced by U, as realized by right

translation in the space of 3C(t/)-valued functions F satisfying F(kx) =

(u/Q,)l/2(k)V(k)F(x) and the usual integrability condition (see [4]). Now if W

is a subrepresentation of U, then ind W is, in a natural way, a subrepresenta-

tion of ind U. In fact 3C(ind W) is just the space of functions in X(ind U)

taking values in %( W). Conversely, whenever IF is a subrepresentation of

ind U and ind U is realized as above, it makes sense to ask when %(W) is

DC (ind W) for some subrepresentation W of U. This, of course, is a rare
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circumstance. However, let F be a closed subgroup of G containing K. Then

ind(L, G, ind(F, L, U)) is, in a natural way, isomorphic with ind U. (The

reader may write down the isomorphism between the two realizations if he

wishes.) It makes sense to ask, for a given subrepresentation W of ind U, does

%(W) equal %(ind(L, G, W)) for some subrepresentation W of

ind(F, L, U). In this case we say that F is IF inductive or, equivalently IF is F

inductive. If W is finite dimensional we say that IF is a rational subrepresen-

tation and that F is IF rational. In this case we define dim W to be the

rational dimension of IF.

In § 1 we prove that for any such subrepresentation IF there is a unique,

minimal, IF-inductive subgroup F d K. It is the unique minimal inductive

subgroups which serve to distinguish between equivalent subspaces; for

clearly L depends on how IF sits in ind U. From F one can derive many

interesting parameters. For example, let F0 be the identity component of L.

Let A0 be the algebra of continuous functions on G which are constant on

right cosets of L0 and let A be the subalgebra of A0 consisting of the functions

which are constant on right cosets of L. Then A0 is an A module. If A0 is

finitely generated over A, then the minimal member of generators gives an

index which may be used to distinguish between equivalent subspaces. This is

essentially the Auslander-Brezin index (see Lemma 1 below). Another possi-

bility is the number of components of K \ L. In the case of the Heisenberg

group this agrees with the index defined above, although it is probably

different in general.

In §11 we consider L2 of a compact nilmanifold. SpecificaUy, let G be a

connected, simply connected nilpotent Lie group and let T be a uniform

subgroup. Then T \ G is compact and has a unique regular G invariant IF

probability measure ¡x. We may define a representation Rq of G in F2(r \

G, /x) which acts by right translation. FG is canonically isomorphic with

ind(T, G, 1) so the above comments apply to subrepresentations of FG. We

are interested in computing the inductive subgroups for the irreducible

subrepresentations of Rc and in determining which irreducible subrepresen-

tations are rational. On the rationality question our main result is

Theorem. Let W be an irreducible subrepresentation of RG. W is rational iff

W is square integrable modulo its kernel.

The proof leans heavily on the main result of [11] which is essentially the

above theorem for maximal primary representations instead of irreducible

representations. The maximal primary case is somewhat easier than the above

theorem due to the uniqueness of the primary decomposition.

On the question of actually computing the minimal inductive subgroups,

our results are less complete. We are only able to treat the so called

"constructible" subspaces and these only in the case that there is a normal
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rational subgroup H and an integral character x of H which induces a

representation equivalent to IF.

I. In this section we prove

Theorem I. Let notation be as in the introduction. Then there is a unique

minimal W-inductive subgroup containing K.

Proof. Let K, U, W, etc. be as above. Let V = ind U. Let tt be the

orthogonal projection of %(V) onto %(W). Let A be the space of continu-

ous bounded functions on G which are constant on right cosets of K. For

/ E A, let B(f) be the operator on %(V) given by pointwise multiplication

by /. (Recall that %(V) is a space of %(U) valued functions.) Let

Av be the set of fin A for which B(f) commutes with tt. A„ is a subalgebra of

A under the pointwise operations. Let L be the set of x for which f(x) = f(e)

for all / in An. It is easily verified that V(x)B(f)V(x~l) = B(h) where

h = /(-x). It follows that A„ is right translation invariant, and hence that F is

a closed subgroup of G such that each element of An is constant on right

cosets of F. We shall show that F is the desired minimal inductive subgroup.

Lemma I. Am is the set of all continuous bounded functions which are constant

on right cosets of L.

Proof. Let CB(L \ G) denote the continuous bounded functions on F \ G,

with the topology of uniform convergence on compacta. Since each element

of Av is constant on cosets of L, we may consider Av as a subspace of

CB(L \ G). It is in fact a closed subspace; for let /„ -»/ in CB(L \ G),

f„ E A„. Let g E %(V) be such that || g(-)|| has compact support modulo K.

(There is a dense set of such g.) Then /„ (now considered as a sequence of

functions on G) converges uniformly on the support of || g()||. Hence B(f„)g

converges in %(V) to B(f)g. Since each B(fn) commutes with tt, B(f)

commutes with tt at g. Hence, by the density of the g, B(f) commutes with tt.

Hence / is in Am.

Furthermore Am is a conjugate-closed subalgebra of CB(L \ G) which

contains the constant functions and which (by definition) separates points. It

follows from the Stone-Weierstrass theorem, the a-compactness of G and a

Cantor-diagonal argument that An is dense in CB(L \ G). This proves the

lemma.

Corollary. Iff is a bounded measurable function constant on right cosets of

L, then B(f) commutes with tt.

The fact that L is a minimal inducing subgroup is a consequence of the

above corollary and the imprimitivity theorem of Mackey. To see this, let/»:

G -» L \ G be the projection. For any measurable subset Y of L\ G, let fY
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denote the characteristic function of p~l(Y) and let <p(Y) — B(fY). Then

Y -^ <£( F) is a system of imprimitivity for V. It is in fact the system

canonically associated with the realization of V as ind(F, G, (ind(F, F, U))).

Furthermore, the imprimitivity theorem yields a one-to-one correspondence

between invariant subspaces of ind(F, F, U) and invariant subspaces of V

which are invariant under </>. In fact if OCq is an invariant subspace of

%(inà(K, L, U)), then the space %x of ÍKg-valued functions in

%(ind(F, G, ind(F, F, U))) is a subspace of %(V) invariant under </>, and

the imprimitivity theorem asserts that these are the only such subspaces. By

definition F is 3C, inductive. We conclude that any invariant subspace of V

which is also invariant under <¡> is F-inductive. The corollary now implies that

IF is L-inductive.

To see that F is minimal, let F' be another IF inductive subgroup. Then by

the above reasoning, if <j>' is the system of imprimitivity for V associated with

the realization of V as ind(L', G, ind(K, L', U)), then </>' leaves %(W) in-

variant. Hence <j>' commutes with tt. This implies that multiplication by

elements of CB(L' \ G) commutes with tt and hence CB(L' \ G) c A„. Thus

L' D L. This also shows uniqueness. Q.E.D.

II. In this section we compute the minimal inductive subgroups for certain

irreducible representations. First a general proposition. Let G be as in §1, and

let K and H be closed subgroups with H normal and KH = G. Let U, V, W,

etc. be as in §1. Let KH = K n H, UH = U\KH and VH = \nd(KH, H, UH).

For the sake of simplicity we shall assume that all of the subgroups defined

above are unimodular. Then V\H is isomorphic with VH, the isomorphism

being restriction of functions in %(V) to H. If /is in %(V), k E K, h E H,

then

V(k)f(h) = f(hk) = U(k)f(k~lhk).

It follows that under the above defined isomorphism of %(V) with %(VH),

V\K is isomorphic with the representation Fin %(VH) defined by

V(k)f(h) = U(k)f(k-*hk). (*)

Let WH be the image of IF|F in %(VH) (i.e. WH is the restriction of VH to

the image of %(W) in %(VH)). Let LH be the minimal WH inductive

subgroup of H.

Proposition I. LH is normalized by K, and KLH is the minimal W inductive

subgroup of G.

Proof. We shall use the observation made in the proof of Theorem I that

minimal inductive subgroups are "level sets" of certain functions. We shall

assume that the notation of the proof of Theorem I is again in force so that,

for example, the set Am is the set of continuous bounded functions f on G
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which are constant on cosets of F in G for which the pointwise multipUcation

operators B(f) in %(V) commute with the projection tt onto %(W). We

shall denote the corresponding entities on H defined relative to %(WH) and

K n H by affixing the subscript H. Thus, for example, BH(f) is a pointwise

multiplication operator on %(VH) defined by a function constant on cosets

of KH in H.

Now, to show that LH is normalized by K recall that in the proof of

Theorem I we showed that LH is the set of x in H such that/(x) = f(e) for all

/in AmH. In order to show that H is normalized by K, it suffices to show that

/ E AnH implies that/*. = f(k • k'1) also belongs to Awtl for all k E K. This

follows from the easily verified fact that

BH(fk)= V(k)BH(f)V(k~l).

Note that V commutes with tth since V is isomorphic with V and tth is

isomorphic with tt.

To show that L = KLH, we shall show that the restriction map from

functions on G to functions on H maps A„ onto A„tH. It will follow that

LH = L n H. But since Ld K and KH = G, we have L = K(L n H) =

KLH, as desired. To prove the statement about restriction, note that if / E A

(the continuous, bounded functions on G constant on cosets of K) then under

the isomorphism of %(W) with %(WH), B(f) is isomorphic with BH(f\H). It

follows that B(f) commutes with tt iff BH(f\H) commutes with tth. Hence

/ E A„ iff f\H E A„H. Since restriction obviously maps A onto AH, we are

done. Q.E.D.

Another rather obvious comment which is often useful is the following:

Suppose F' d K is IF inductive but not necessarily minimal. Then, as seen

above, there is a well-defined subrepresentation IF' of ind(F, L', U) which

induces IF. Then

Proposition II. The minimal W inductive subgroup equals the minimal W

inductive subgroup.

The proof of this is similar to the proof of Proposition I and will be

omitted.

Example. Suppose that K is normal in G and that K \ G is compact. Let U

be the trivial representation of K in C and let V = ind(F, G, U). Then any

character x of G which is trivial on K belongs to %(V). Let IF be a

subrepresentation of V for which %(W) has an orthonormal basis S =

{XalaeA °f characters of G trivial on K. We shall compute the minimal IF

inductive subgroup L. SpecificaUy, let G* be the character group of G. Let S0

be the set of X in G* such that X ■ S = S. We shall show

Proposition III. L = fl \ker X where X ranges over S0. The W inductive

subspace of ind(F, F, 1) is the closed subspace spanned by the set {xj^} where
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a ranges over A. The rational dimension of W is the number of S0 orbits in S.

(Note that S0 is a subgroup of G*.)

Proof. First note that since K is normal, it suffices to consider the case

where K = {e}; for F is in the kernel of V, so V projects to a representation

V on K \ G = G' (V is the right regular representation of G'); IF projects

to a subrepresentation IF' of V; and if F' is the minimal IF' inductive

subgroup, then the minimal IF inductive subgroup is the pull-back of F' in G.

Now, let tt be the projection onto %(W). Let/be a continuous function on

G such that the operator B(f) commutes with tt. Then for each a G A, F(/)x«

E %(W), so

fXa = ^2Ca,ßXß (ß   G A)

where the sum converges in L2(G). Hence/ = '2caßXßXa- ^n particular,/has

an expression

/ = 2 cxX (X a character of G).

Furthermore, from the uniqueness of Fourier expansion, if cx =£ 0, then for

each a there is a ß such that cx = caß and Ax, = Xß> '-e- A ' S C 5. Also, if

we set 3Q, to be the span of the characters of G in %(V), then the above

expression for / implies that B(f) leaves 3Ç, invariant. B(f) commutes with

I — tt, so B(f) leaves %(W)± n OLq invariant. This space is spanned by the

complement of S in the character group G* of G. Reasoning as above, one

sees that if cx ¥= 0, then X ■ (G* ~ S) c G* ~ S. Hence we have X • S = S.

Conversely, if X E G* is such that X ■ S = S, then B(X) leaves %(W) and

9C( IF)X n %> invariant. Also B(X) leaves %> and D(^ invariant. Hence B(X)

leaves ^(IF)-1 n % + 3Q = ^(IF)-1- invariant, and thus B(X) commutes

with tt. It follows that B(f) commutes with tt iff / has an expression in

L2(G),f = 2cxX (X E SQ). From the proof of Theorem I, F is the set of x for

which/(x) = f(e) for all such/. This is clearly

L = ("I ker X       (X E S0).

The subrepresentation W of ind(F, L, U) = V which induces IF is also

computable. In fact, let IF0 be the subrepresentation of ind(F, G, V) = V0

corresponding to IF under the natural isomorphism of V with F0. Then

IF0 = ind(L, G, W), so %(W0) is the space of functions in %(V0) taking

values in %(W). It follows that %(W) = {f(e)\f E %(W0), f continuous).

Now if / G %(V), we may define a mapping /' of G into %(V) by

f'(x) = f('x)\L- This belongs to %(V) for a.e. x, and /-»/' defines the

isomorphism of %(V) to DC(F). Since 5C(IF) is spanned by the x*. « G A, it

follows that %(W0) is spanned by the (x,)' and hence, that %(W) is spanned

by the (x„)'(<0 = X«|F, as desired.

Note that if we let Fx = {X E G*\X\L = 1), then Lx = SQ and x„|F =
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Xß\L <=> Xa^o = XpSo- Hence the dimension of IF is the number of S0 orbits in

S. Q.E.D.
Now we turn our attention to nilmanifolds. Let G be a connected, simply

connected, nilpotent Lie group. Let T be a closed discrete subgroup for which

T \ G is compact. Then T\ G has an invariant measure. Let RG denote the

right regular representation of G in L2(T \ G). Note that RG = ind(T, G, 1).

Let U be an irreducible representation of G occurring in RG. Let IF be an

irreducible subrepresentation of RG which is equivalent to U. Let F be the

minimal IF-inductive subgroup of G containing T and let WL be the corre-

sponding subrepresentation of ind(r, F, 1) = RL. We shall prove the follow-

ing theorem:

Theorem II. WL is finite dimensional iff U is square integrable modulo its

kernel.

The term "square integrable modulo its kernel" requires some comments.

Let / denote the identity operator and let K = [g E G\U(g) = c(g)I for

some c(g) E C}. Then for any v,wE %(U), g -» \(U(g)v, w)\ is constant on

cosets of K. U is said to be square integrable modulo its kernel iff there is a

choice of v and w for which the above function is nonzero and square

integrable on K \ G.

Proof. We shall first show that rationality implies square-integrability. To

this end let w0 be the projection onto the Uprimary subspace of FG. We shall

apply the main result of [11] which states that IF is square integrable modulo

its kernel iff tt0 maps C(r\G) into C(r\G). It is known [10] that tt0

preserves C(r \ G) iff the projection tt onto %(W) preserves C(r \ G). We

shall sketch a proof of this fact in a moment. In any event, it suffices then to

show that tt preserves C(T\ N). But tt can be expressed in terms of the

projection ttl onto %(WL) in L2(T \ L). To see this it wiU be convenient to

consider RL and RG as induced representations so %(RL) and %(RG) are

thought of as spaces of functions on L and G, respectively. For / G %(RG)

let/': G-+ %(RL) be defined by

f(x) = R(x)f\L.

The mapping/-*/' defines the isomorphism of RG onto ind(F, G, RL). The

inverse mapping is given by

f(x) = f'(x)(e).

The projection tt' onto the subspace of %(ind(L, G, RL)) induced from

%(WL) is given by

(TT'g)(x)  =   TTL(g(x))

for any g G %(ind(L, G, RL)). Since tt is isomorphic with ttl under /->/', it
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follows that

OtfX*) = «L(f'(x))(e)-
Since ttl has finite dimensional range, its range consists entirely of continuous

functions. Hence ttl maps C(r \ F) into C(r \ F) and H^t/)!!«, < CH/H«, for

some constant C and all continuous/ Hence from the above formula for it,

l»t/X*)l-MA*)X*)| < qi/'WIU < qi/ll».
Thus tt preserves C(r \ G), as desired.

To finish the first part of our theorem we should, as promised, sketch the

proof of the fact that the preservation of C(r \ G) under tt is equivalent to

the preservation of C(T \ G) under tt0. This involves an analysis of the

intertwining algebra of RG.

Let x G G be such that Tx = xFx " ' n T has finite index in T. If / is a

function on T \ G, then the function g defined by g(y) = f(Tx ~ y) satisfies

g(yy) = g(y) for y E Tx. Let

M(x)f(Ty) =[TX: T]-1^g(yy)       (v G TX\T).

Then the operators M(x) map L2(T \ G) into L2(T \ G) and intertwine FG. In

fact, the algebra generated by the M(x) is the Hecke algebra of T \ G. It is a

well-known consequence of Moore's multiplicity one theorem [8] that this

algebra is weakly dense in FG's intertwining algebra. We may, in fact, restrict

to rational x in G. For another proof of this fact, see [10].

Now let a be another projection onto another irreducible subspace of FG.

Suppose that the restriction of RG to the image of a is equivalent to IF. There

exist elements A and F in the intertwining algebra of FG such that AttB = a.

In fact there is a unitary map T from the image of 0 to the image of tt which

intertwines R\o and R\tt. Let F = Ta and let A = T~xtt. Now the operators

AttB with A and F in FG's intertwining algebra map %(RG) onto an FG

invariant subspace which, if not zero, transforms according to IF. Since IF

occurs with only finite multiplicity in FG, the set of such operators spans a

finite dimensional space. If A and F range over the Hecke algebra, the

corresponding set of operators forms a dense subspace of a finite dimensional

space-/.e. the whole space. Hence a = AttB with A and F in the Hecke

algebra. It follows that a maps C(r \ G) into C(T \ G). Hence the projection

tt0 onto the IF-primary subspace of F, being a finite sum of such ct's, also

preserves C(r \ G). By similar reasoning tt = Dtt0 for some D in the Hecke

algebra so tt will preserve C(T \ G) if tt0 does. This completes the first part of

our proof.

To see the converse, suppose IF is square integrable modulo its kernel. Let

tt0 be the projection onto the IF primary subspace of FG. Then it is not

difficult to show from [9] (see [11, Theorem 1, (i) => (iv)]) that there is a closed
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subgroup H z> T and a character X of F such that

TT0f(Tx) = f    f(Thx)X(h) dh. (f)

H is, in fact, TK and X is defined by X(yk) = c(&) where K and c are as

above. Let tt be the projection onto %(W). It follows from the finite

dimensionality of the intertwining algebra, that there is an element A of the

Hecke algebra such that Att0 = tt. In fact, we can take

A-t c,.A/(x,.) (•)
¡ = i

where the x, are rational. Note that for some CGC,

M(x)M(y) = C2 M(xyy)       (y G ïx-\ \ T),

so that the Hecke algebra is, in fact, spanned by the operators M(x).

Let F be the subgroup generated by H and the set {xx, . . . , xn).

Lemma. F is closed.

Proof. Let H0 be the identity component of H. TH0 is open in H and

hence is closed. In H0 \ G, H0\ TH0 is uniform. Hence H0\ H is rationally

generated relative to the rational structure on H0\ G defined by H0\ TH0

(see [1]). Thus {F0x,} and H0\ H generate a discrete subgroup of H0\ H

since {H0x¡} are also rational. L is the pull-back of this subgroup.   Q.E.D.

Now in the space of ind(T, F, 1) = RL we may define for any rational

point x G F an operator ML(x) by the same formula that M(x) was defined

by above. Let AL = 2c,ML(x,) where the c, and x, are the same as in (*)

above. Let ttol be defined as in (f) relative to F and let ttl = Alttol. Let WL

be the subrepresentation of RL obtained from restricting RL to the image of

Lemma. L is W inductive and WL is the corresponding subrepresentation of

Rl-

Proof. If/ G C(r \ G),

M(x,)f(Te) = ML(x)f(Ye),

where/ = /|r \ F. Hence

M(x,)f{Tx) = ML(x)(RG(x)f)~ (Te).

It follows that

K)(rx) = ^(FG(x)/)~(Te).

If x G F, the right-hand side of the above equality becomes irJÇFx) so we

conclude that (tt/)~ = ttJ. If irf = /, it follows that (R(x)f)~ E %(WL) for

all   x.   The   map / -» (F (x)f)~   defines   the   isomorphism   of   FG   with
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ind(L, G, RL). Thus/ G SC(ind(F, G, WL)).

To see the converse inclusion, note that ttl is a projection, since for ail

/ G C(T \ G),

*î((R(x)f)~)  =  *L((R(x)TTf)~) = (F(X)^)~= TTL(R(x)f)~.

Hence if/ G 3C(ind IFL),

(Tr(R(x))f)~= TTL(R(x)f)~= R(x)f,

and hence ir(f) = f. This proves the lemma.

To prove the theorem note that WL is a subrepresentation of ind(H, L, X)

and H \ L is finite, so WL is finite dimensional. Hence IF is rational. Q.E.D.

Corollary. Let W be an irreducible subrepresentation of Rq corresponding

to a representation U which is square integrable modulo its kernel. Let L' be the

minimal Winductive subgroup. Then L'0 = K = [g E G\U(g) = c(g)I).

Proof. From the proof of the above theorem and the fact that the

subgroup H constructed in [11] is TK, it follows that F' c F and hence that

L'0 c F0 = H0 = K. On the other hand, FG| IF is scalar on K so K c L'0.

Q.E.D.
The above corollary says that L'Q does not depend on IF. In this case

TL'0 \ L' is finite. [TL'0: L'\ is the natural analogue of the Auslander-Brezin

index in this case.

The above theorem is not very useful for actually computing the minimal

inductive subgroups, for expressing tt as a linear combination of M(x,)a is

difficult. Using the theory developed in the previous section, we can obtain a

computational method which is valid whenever IF is inducible from a suitable

normal subgroup of G. Specifically, it is known that there is a closed

subgroup H of G and a character x of H such that IF is equivalent to

ind(F, G,x) — Ux. Furthermore H may be chosen so that TH is closed and

X is trivial on H n T (see [6] or [12]). Let us suppose also that H is normal.

We may extend x to a function x on TH by setting x(y/i) = x(n)- (x> of

course, is not usually a character). However, x belongs to 3C(ind(r, TH, 1)).

If y G T, the function xy = x(Y • y~ ') is a character of H trivial on H n T

so we may form (xy)~ as above. The closure of the span of the (xy)~ Ui

%(RTH) is RTH invariant and hence restriction of RTH to this subspace

defines a subrepresentation WH.

Lemma. IF„ « ind(F, TH, x).

Proof. Since Ux is irreducible, xY = X iff y e H- Furthermore, the (xY)~
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are orthonormal in %(Ry). Iff E %(ind(H, TH, x)), let

Tf'   2  /(y)(xy)~-
rn//\r

The sum converges in ^(IF^), since by definition of the induced representa-

tion y/112 = 2|/(y)|2. Clearly T defines a unitary isomorphism of representa-

tions. Q.E.D.

It follows that ind WH m Ux, so ind WH is irreducible and defines an

irreducible subrepresentation IF of FG = ind RTH. We shall call IF the

constructible subrepresentation defined by (H, x). It is our goal to compute

the minimal IF inductive subgroup.

From Proposition II, the minimal IF inductive subgroup L is the minimal

WH inductive subgroup. Proposition I applies to WH, with T in place of K.

Specifically, we identify RTH\H with RH = ind(r n H, H, 1). Then %(WH)

is identified with the space spanned by the xY in %(RH). Proposition I says

that L = TL' where F' is the minimal WH\H inductive subgroup of H. L' can

be computed from the above example. Our result is

Theorem III. Let S = {xy\y G T). Let S0 be the set of characters X of H

such that X • S = S. Let L' = fl xker X where X ranges over S0. Then the

minimal W inductive subgroup is L = TL'. The rational dimension of W is the

number of S0 orbits in S.

From the above theorem we may obtain a sharpening of a result of Brezin

[3] and Corwin and Greenleaf [5].

Corollary. ind(F, G, x) w square integrable modulo its kernel iff {xy|y €E

T} is a finite union of cosets of a single subgroup S0 in the group of characters of

H trivial on T n H.
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