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PARABOLIC FUNCTION SPACES WITH MIXED NORM

BY

V. R. GOP ALA RAO

Abstract. The spaces 0Ç£ of parabolic Bessel potentials were introduced by

B. F. Jones and R. J. Bagby. We prove a Sobolev-type imbedding theorem

for DQJ1*2 (multinormed versions of 9C£) when a is a positive integer k,

1 <P\, Pi < oo. In particular this theorem holds for Wfaj, since 9G£, =

W$¡¡. We use the concepts of parabolic Riesz transforms and half-time

derivatives introduced by us elsewhere.

Introduction. Sobolev spaces W^(R") are usually defined as

m(R")= |/:/G F'(F"),    £    \\Dt>f\\p<«>),

where 1 <p < oo, Dp = (d/dxx)ß> . . . (o/dxn)ß% \ß\ = 2/?, and 3//3x, de-

notes the distribution derivative of / for all/ = I, . . . , n. Alternatively they

may be defined as follows. For a > 0, let Ga be defined on F " by

Ga(x) = (4TT)-"/2T(a/2yl  f °° e-^/se-s/4,8(-n+a)/2 dS/s

Let tp(R") = {g: g = Ga * f,f E LP(R")). It is known that (see for example

[12]) ££(F") is a Banach space with norm \\Ga * f\\p¡a = \\f\\p. The functions

Ga * / are called Bessel potentials and are related to the negative fractional

powers of a certain elliptic operator. It is also well known that for integer

values A; of a and 1 <p < oo tpk(R") = !F£(F") both algebraically and

topologically. Therefore we may take this as an alternate definition of the

Sobolev spaces.

This also raises a question. Starting from the heat operator 8/3/ — A (and

9/3/ + / — A) is it possible to define spaces of parabolic Bessel potentials? If

the answer to this question is affirmative than is it possible to identify these

new spaces with "Sobolev spaces" for integer values of a? As it turns out the

answer to the first question is affirmative as was shown in [1], [6], and [10].

However, the answer to the second question is inconclusive. This was shown

in [10]. This inconclusive answer is due to the fact that spaces %p of

parabolic Bessel potentials are indeed different from the usual Sobolev spaces
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Wl for integer values k of a. This difference is made clear in [10]. For integer

values & of a we denote the spaces of parabolic Bessel potentials by

T£(Rn+i). These are analogues to Sobolev spaces and the aim of this article is

to characterize these spaces and obtain an imbedding theorem. In view of the

fact that functions with different orders of integrability in different variables

play an important role in partial differential equations [8], we prove our results

for the more general spaces T["Pl(R" X R), that is, spaces with mixed norm.

The spaces T£(R" + i) are closely related to the spaces WP¡¡(Rn+x) used in

studying parabolic partial differential equations. WPu(R" + x) is defined to be the

Banach space consisting of those elements of Lp(Rn+x) which have generalized

derivatives of the form T>T,DSJ with 2r + s < 21 (cf. [8, p. 5]). The norm is

described there in detail and it is easy to show that TP,(R"+l) = IFf//(Fn+1)

both algebraically and topologically. Our norm employs half-derivatives and is

different from the norm on W^j, but equivalent to it. This may be shown by

employing the closed graph theorem.

All the function spaces mentioned above, the parabolic Riesz and Bessel

potentials, parabolic Riesz transforms and the half-derivative are defined in

§2. Also included in §2 are known and needed results. §3 deals with parabolic

Riesz potentials in multinormed spaces while §4 deals with boundedness of

parabolic Bessel potentials in multinormed spaces. §5 is reserved for the

imbedding theorem.

2. Preliminaries. For (x, t) G F" X F and a > 0 the functions ha and Ha

are defined by

ha(x,t)={c«<ia-"-2)/2e-x2/4'>     <>°> (2.1)

I 0, / < 0,

Ha(x, t) = e-\(x, t), (2.2)

where x2 = 2x2 and C„ = ((4w)"/2r(a/2))_1. The functions h2 and H2 are

fundamental solutions of the equations (3/3/ - A)w = 0 and (3/3/ + I -

A)u = 0 respectively, where A denotes the «-dimensional Laplacian. Corre-

sponding to Ha there is a linear operator Ja on Lp(R"+l) defined by

Ja(f) = Ha **/ where ** denotes convolution in x and / respectively. Ja(f)

is called the parabolic Bessel potential and the space of all such functions, i.e.,

{Ja(f),f E L»(Rn+l)} is denoted by %p(Rn+l). Since ||Fa||, = 1, Ha **/ G

Lp(Rn + l). %p(Rn+l) is a Banach space with norm \\Ja(J)\\pia = 11/11,-

For 0 < a < n + 2 and f G Lp(Rn + '), ha**f is called the parabolic Riesz

potential. Let S denote the space of rapidly decreasing functions defined on

F"+1 and 6D, the space of C0°°-functions. If 4> G § the Fourier transform of <f>

is defined by

¿(x, /) = (2TT)-(n+l)/2ff e-ite-'» <$>($, t) d$ dr.
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It is known that, [6], [11], if ß = (2tt)-("+í)/2, then

Ha(x, t) = ß(l + x2 + it)~a/2,       a > 0, (2.3)

ha(x, t) = ß(x2 + it)~a/2,       0 < a < n + 2. (2.4)

Because of the equations (2.3) and (2.4) it is possible to define negative

fractional powers of (3/3/ + / - A) and (3/3/ — A) by employing Ha and ha.

The following result exposes the relationship between Ha and ha through

their Fourier transforms.

Lemma 2.1 (Sampson). If a > 0, there exist bounded measures ¡l, ¡ix, ¡i2 such

that

(i) (x2 + it)"/2 = (1 + x2 + it)a/2ß, and

(ii) (1 + x2 + itf'2 - j», + (x2 + it)a/2fi2.

Remark 2.2. The expression for ¡i, i.e., ju. = 8 + ^Y=xAJaH2j, 2|/LJ < oo

was obtained by Sampson in [11]. The expression for ju, (and ¡i2) is 5 +

$(x, /) where 0 G Ll(Rn+i) and 5 denotes the Dirac distribution. This fact

may be proved exactly as in [12, p. 134].

The following theorem, which is a special case of a more general result [12],

concerning Riesz potentials will be useful in later sections.

Theorem 2.3. Let 0<y<\, l<p<q<oo and q~l = p~l — y. Then,

forallfELp(Rl)

¡T \s\~l+yf(t - s) ds

C being independent off.

Definition 2.4. Let 1 <p < oo and/ G Lp(Rn+x). Then for/ = 1, . . ., n

define the n parabolic Riesz transforms Px, . . . , P„ associated with the n

coordinates of the space variable by

Pj(f)(x, t) = Urn   ( -¿ (y, s)f(x - y, t - s) d(y, s).     (2.5)

These are generalizations of Riesz transforms to the parabolic case [10]. By

using the Fourier Multiplier theorem it can be shown that these are bounded

operators on Lp(Rn+1), 1 <p < oo. The motivation for this definition is

explained in [10]. There, it is also proved that/ G %P(R"+1) if and only if/,

9(F, **/)/3/ and 3//3x, for/ = 1, . . . , n belong to %p_x(Rn+l). This result

suggests the following definition.

Definition 2.5. Let/ G %P(R"+1), 1 <p < oo, and a > 1. The operator

DQ: %p -» 3C£_i associated with the multiplier it/(x2 + it)1/2 is said to define

a "half-derivative".

It must be noted that D0f is not a half-derivative in the strictest sense of

< C\\f\\p,
i
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the word. For, if / G S, then (D¿f)A = (3//3/)A + (d(h2 ** A/)/3/)A. The

same result which motivated the definition of D0 also motivates the definition

of certain function spaces resembling the Sobolev spaces W^(R").

Definition 2.6. Let ß = (ß0, .. ., ßn), where /?, are nonnegative integers

and A: be a nonnegative integer. If 1 <p < oo, then the class of functions

T£(R"+>) = I /:/ G Lp(R" + >), \\f\\p]k =   £    ||Z>^||, < oo]    (2.6)
I \ß\=o J

is a Banach space, where Dß = D§° ■ • ■ Dß» and for / = 1, . . . , n, Dßi =

3/3x,..
From the main result of [10], it is now easy to conclude that for a = k,

%p = T{ both algebraically and topologically. From the alternate definition

of Sobolev spaces discussed in the introduction and the similar definition of

Tfc introduced above we are forced to conclude that these spaces must be

useful in dealing with parabolic differential equations. A simple application is

included at the end of this article.

In this article we concentrate on the multinormed versions of these spaces.

In other words we deal with the spaces Tg1*2 as subspaces of LPi,P2. The

precise definition is as follows.

Definition 2.7. Let ß and k be as in Definition 2.6. If 1 <px,p2 < oo, the

class of functions

7^(F"+1) = j /:/ G L»>P2(R"+l), \\f\\PlPiik = £    ll^ll,,,, < oo j

(2.7)

is a Banach space. By LPlJ)2(Rn+x) we mean those functions/for which

ii/iu,, = (/(/1/(*> or dxj^' .//j   < «).

A theory of real variables for functions of this type may be found in [3].

3. Parabolic Riesz potentials in multinormed spaces. We present two results

in this section. First, if qx >px and q2 >p2 we will exhibit a necessary and

sufficient condition for ha ** f to be in L9"*2 when/ is in LP"P2. Second, if

1 < px < oo and 1 <p2 < oo then the operators Py. Lp"Pl^Lp"P2 are

bounded. Recall that

(ha **f)(x, t)= r  f   ha(S, r)f{x -Stt~r)d$ dr, (3.1)
•'0      JR"

where ha is as given by equation (2.1).

Theorem 3.1. Let f G Lp"P2(Rn+l) and ha **f be as above. Let 0 < a < n

+ 2,   1 < p, < q¡ < oo,   i-l,  2  and  a/2 = (n/2)(px~l - tff1) + (p2l -
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q2 '). Then

\\K ••/llw, < Q/IU* (3-2)

where the constant C is independent off.

Professor Richard Bagby has informed us that this result has been estab-

lished in [2] and hence no proof will be presented here.

Lemma 3.2. Let 1 <px < oo, 1 <p2 < oo and f E LP'P2(R"+1). Then, for

j = 1, . . . , n, the parabolic Riesz transforms Pj defined by equation (2.5) satisfy

\\Pjf\\Pi,P2 < C||/||,„2, (3.3)

for some constant C independent off.

To prove this lemma one has only to consider the multipliers associated

with the operators F, and apply Corollary 1, p. 234 of Lizorkin [9]. I thank

Professor Richard Bagby for pointing out this work by Lizorkin.

4. Parabolic Bessel potentials. In this section we characterize the space

%pt"P2 for a > 1 and establish the boundedness of the operators /-» ju. **/,

Mi **/> ^2 **/ and A)/. With the exception of D0 all these operators are

defined on LPlJ'2 whereas D0 is defined on %P"P2 for any a > 1.

Theorem 4.1. Let a > 1, 1 <px < oo and 1 <p2 < oo. Then f E

%p"P2(Rn+l) if and only iff, D0f and, for j = 1, . . . , n, 3//3x,. are all in

%p-i(R"*1)- Moreover, the two norms

\\j\\php2;a>

'   ll/IU,;«-! + 2
1

are equivalent.

A detailed proof of this theorem when px = p2 = p is given in [10]. Below

we shall prove Theorem 4.1 in a very brief manner. The following lemma is

needed.

Lemma 4.2. Let f E Lp"P2(Rn+x), 1 <px,p2 < oo. Then the operators /->

ju, ** /, nx ** fand ¡í2 ** fare bounded on Lp"P2(Rn+1).

Proof. Recall that dp. = S + I,AjaH2J(x, t) dx dt from Remark 2.2. Hence

(ju **/)(x, /) = fix, t) + ((2 AJaH2) W)(x, t)

+ ll^o/IU,2;«-I
(4.1)
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and

l*"/ll*Ä< >PlJ>2 1(2^,)-4,

<H/B„a(V+2 Mjbl llalli)

= ll/lu(i + 2KJ)-
This completes the proof of one part of the lemma. As for /x, and ¡i2 we recall

once again from Remark 2.2 that d¡ix = d[i2 = 8 + <I>(x, /) dx dt where <ï> G

L\Rn X R). Thus for i = 1,2

< 11/11,,,, + llalli II/IU,,

= 0 +11*11 .)II/IU,2-

Proof of Theorem 4.1. Let / G %p""2. Then /= Ja(g) for some g G

Lp"P2(Rn+l). Let {gm} be a sequence in S converging tog in Lp,P2-norm and

/m = -/o(gJ-Thenasin[10],[12]

dx.

By Lemmas 3.2 and 4.2 it now follows that

(1;)A = (Jr-1 (g-))A'    g™= ̂ **gJ-

3x, < C||/,
P\,Pï,<*-\

ml\p[j>2;a>

and since § is dense in LP"P2 we immediately have

3/
3x,

< CI
Pi,Pi,<*-i

IP\J>2,<*'

l\p,j>2;a-

(4.2)

(4.3)

Because X^2 c X^f], we also have

ll/ll,,,,;«-!  < C
With regard to D0, as in[10], we have

(!<M*/j)A-(4.-,(i2))A, (4-4)

where g„ = (i ** gm - p ** 2.P/gm. Once again because of Lemmas 3.2 and

4.2, we conclude from (4.4) that

^(A. **fJ
\P\J>2>* -

II &m\\pl#2 < C\\gm\\Pi^= C\\fm\\p^,a   (4.5)

and extend it by continuity to / G %P"P2. By combining inequalities (4.2),
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(4.3) and (4.5) we obtain

P\J>2,«-
+ 2 3/

3Xy
WWp^a-l    <C P\J>2 «    (4.6)

thus completing one half of our theorem.

To prove the converse, as in [10], we first note that if /, 3//3x, for

j = 1, . . . , n and D0f are in %p¿f\ then for some g G Lp^2 and 3g/3x, G

L"", /-/._,(*),   df/dxj = Ja_x(dg/dxj)  for j=l,...,n   and  F0/ =

Ja-ÁDog)-
Since g and 3g/3x, G Lp"Pl(R"+1), there exists a sequence {gm} c ^ so

that gm —» g and 3gm/3xy -» 3g/3x, in F^'-^-norm. Since 7, is an isomorphism

from S -» S, gm = Jx(Um) for some t/m G §, Vm. Therefore gm = (1 + x2 +

it)~ 1/2Um and, as in [10], with the aid of Lemma 2.1 we establish that

ÍA'- &■ ■.   3 ,. J"1'
M2 **um = (ni**gmr +

From Lemmas 3.2 and 4.2 it now follows that

3g„

É3% + ¿03X; 3/

|t/JU,2<c l&r + 2
3x, + IIAsmll/>,,2

/>|J>2

(4.7)

(4.8)

Jm\\p¡j>2;aSince  /m = 7a_,(gJ = Ja-X(Jx(UJ) - ya(I/m),   we   have   ||/m

|| Fm||/,i^,2. Combining this fact with the inequality (4.8) and extending it to the

full space %P"P2 we obtain

PlJ>2."
< C

P¡J>2*-i + 2 3/
3x, + IIA/IU,2;«-i

Pi,2;o_|

This completes the proof of our theorem.

We now single out a part of the above proof and state it as a lemma for

future purposes.

Lemma 4.3. The operator D0: ÍKJ'*J(A"+I)-» %p¡f^(Rn+l) is bounded, pro-

vided a > 1 and 1 <px,p2 < oo.

5. An imbedding theorem. The imbedding theorem we have in mind is

similar to Sobolev's theorem [12]. Specifically it is an imbedding theorem for

the parabolic analogues F£"P2(Fn+1) (in particular for WP,,(Rn+1)) of the

Sobolev spaces W£. Our approach depends on the representation off E T^"P2 in

terms of hx, Pj and D0. This approach is different from that which was

employed in the proof of Sobolev's theorem [12]. There the function / was

given a representation which is a generalization of the one dimensional case

where one represents a function as the integral of its derivative.
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Theorem 5.1. For any integer k > 0 let k/2 = (n/2)(px ' — qx ') + (p2 '
- <72-1)-

(i) //?„ ç2 < oo, then T£"P2(R"+1) Ç L9"i2(F"+1) and the inclusion map is

continuous.

(ii) If qx = q2 = oo, //¡en //ie restriction of an f E TlP"P2+e(R"+l) to any set

R" X F is continuous, F c F being compact.

(iii) If qx = q2= oo, then the restriction of an f E T£"P2+e(Rn + l) to any

compact set E c R"+l is in Lr"r2for all rx, r2 such that 1 < rx, r2 < oo.

(iv) If(n/2px) + (\/p2) < k/2 then the restriction ofanf E Fjf'^(F"+1) to

any compact set E c F"+1 is continuous.

Proof. Assume that k = 1. Our proof depends on the identity

/-«,«{2^(1;)+ D./j (5.1)

which is easily verified by applying Fourier transform if / G S. Since S is

dense in both T^*2 and Txq"q2, equation (5.1) extends to Tx9"q2 by continuity.

From this identity it now follows that

<
2 ifè ) - DJPI.P2

<c\:

< c

3/
3x-

PlJ>2>¡'

+ HA/IU J
p\,pi I

This proves part (i)

Part (ii) also follows from the same identity. In fact, if / G %P "P2 and

g = 2F/3//3X,) + D0f, then

ll^i *g\\aa(T, t - r)dr
0

<>(00||A1IU(T)||g||pi(/-T)¿/T

<C/0    r~*** M,t(t - *) *.

where 11^,11^- is computed as in the proof of Theorem 3.1. Since/has compact

support (as a function of /) in a symmetric interval [ — a, a], g also has

compact support in the same interval as a function of /. This may be verified

by computing the Fourier transforms of / and g and applying the Paley-

Wiener theorem [5]. Thus, the supremum of/over F" X [ — a, a] is given by
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Il       y* CO M
J     rWp^-l\\g\\Pi(t-T)dr\\

KO II oo

<c\\g\\p¡J,2+e<c\\g\\p¡J>2,

where e > 0 and p'2 - ß is the conjugate of p2 + e. The last inequality is a

consequence of the fact that g has compact support with respect to the

variable /.

For part (iii) once again we consider the representation hx ** g. Let sx and

s2 be such that (\/p¡) + (l/s¡) - 1 = (l/r¡) for /' = 1, 2, where rx, r2 < oo

and meet all the requirements of Young's inequality. It is easy to see that the

lower bounds px and p2 are imposed on rx and r2 respectively by Young's

inequality. Now

ll*i*fll„(T,/-T)< IIAJUMHgU^r-T)
= CT(iM) + («/2r,)-.||gU,_T).

Hence

/   IIMUMIIsU'-t)*
KO

< IIMU,J2llslU„2,

where

^Kl/P2)-("/^rí)-i)s2 ß

However, since

IIMU = c{f2a &"*-***-** ¿if

si—+ — - l) = sl--- + —) = — + - -I
S2[p2      2r,        j     Sl\r2      s2      2rx)      2rx       r2

is greater than  — 1, ||A1||il;:,2 < oo. On the other hand if 1 < r, < p¡ then
/ G Lr"r2(R"+l) since LP"P2(E) c Lr"r2(E).

Finally, for part (iv) under the assumption (n/2px) + (\/p2) < 1/2, we

have

PilU(0 = c/*1/2)-^/^')-'.

Bui p'2((\/2) _ (n/2px) — 1) >p'2(\/p2 - 1) = - 1 and hence on any com-

pact set [&,, k2]

2(HMU(0rj        <oo. (5.2)

If {/m} is a sequence in S converging to/in Ff "P2, then in view of (5.2)

Pi ** (ft, - OIL.»  < CWL - fm\\ptJ,z;V
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Thus on compact sets {/m} converges uniformly. Since each/m is a continu-

ous function the limit function/may be taken to be continuous.

To conclude the proof of the theorem we argue by induction and show that

the case of k > 2 may be reduced to the case k > 1. In part (i) / G

T^2(Rn+x) implies that, for / = 1, . . . , n, 3//3xy and D0f belong to

T£!fx2(Rn+l). Hence the induction hypothesis implies that 3//3xy for / =

1, . . . , n and D0f E LX"X2 where

2      ~2\Pi      A-J      \Pi      Ajj'

that is/ G TXX"X2. The case k = 1 now implies that/ G F?1«2, where

2      2\A,      qx)      \X2      q2J

n       J_     k- 1     _«_     J_
2/>,     /?2 2 2<7,      ?2

2\Pi      1\)     \Pz      Ii) 2

which is a simple restatement of the condition imposed in the hypothesis. The

other parts can be proved in a similar manner.

Remark 5.1 (Application). Suppose u E F22(F"+1). Consider the operator

A - 3/3/ = E" a0(x, /)32/3x,3xy - 3/3/ with bounded measurable

coefficients defined in Fn+1. Then it is easy to show that in L2(R"+i)

2K-5,)F,J>y-/](|-A)M

by utilizing the theory of Fourier transforms, with 8¡j denoting the Kronecker

delta. Since F, are bounded on F2(Fn+1), it follows immediately that \\(A —

3/3/)m||2 < C ||(3/3/ - A)m||2, where the constant C depends on the

coefficients aiy Let F = A - 3/3/ and T = A - 3/3/. Then,

fu-Tu = t (a, - 5,)F,F,(-| - AJ«

= -STu,   say.

V \\au ~ ^ylloo 's sufficiently small, then

||f-F|| <C||F||      <«/||F-1||,       0<«<1.

This is possible since the assumption on the size of \\a¡j — ó^H^ allows us the

use of the inequality C||F||||F_1|| < a. By a Neumann series type argument

it is now easy to deduce that T, i.e. A — 3/3/: T2 -» L2 has an inverse. This

argument can easily be extended to operators A — 3/3/: F£"P2 -» F^l^f,

k> 2.

Au
du

dt



PARABOLIC FUNCTION SPACES WITH MIXED NORM 461

References

1. R. J. Bagby, Lebesgue spaces of parabolic potentials, Illinois J. Math. 15 (1971), 610-634.
2. R. J. Bagby and D. R. Adams, Translation-dilation invariant estimates for Riesz potentials,

Indiana Univ. Math. J. 23 (1974), 1051-1067.
3. A. Benedek and R. Panzone, The space Lp with mixed norm, Duke Math. J. 28 (1961),

301-324.
4. A. Benedek, Spaces of differentiable functions and distributions, with mixed norm, Rev. Un.

Mat. Argentina. 32 (1964), 3-21.
5. L. Hormander, Linear partial differential operators, Springer-Verlag, Berlin and New York,

1969.
6. B. F. Jones, Jr., Lipschitz spaces and the heat equation, J. Math. Mech. 18 (1968), 379-410.

7. _, Singular integrals and a boundary value problem for the heat equation, Proc.

Sympos. Pure Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1967, pp. 196-207.

8. O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear

equations of parabolic type, Transi. Math. Monographs, vol. 23, Amer. Math. Soc., Providence,

R.I., 1968.
9. P. I. Lizorkin, Multipliers of Fourier integrals and bounds of convolution in spaces with mixed

norms, Math. USSR-Izv. 4 (1970), 225-254.
10. V. R. Gopala Rao, A characterization of parabolic function spaces, Amer. J. Math. 99 (1977),

985-993.
11. C H. Sampson, A characterization of parabolic Lebesgue spaces, Thesis, Rice Univ., 1968.

12. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ.

Press, Princeton, N. J., 1970.

Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015


