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ON THE EXISTENCE OF UNIFORMLY DISTRIBUTED

SEQUENCES IN COMPACT TOPOLOGICAL SPACES. I
BY

V. LOSERT

Abstract. We prove the existence of uniformly distributed sequences for an

arbitrary probability measure on a separable dyadic space, e.g. on a

separable compact topological group. Some counterexamples for the non-

existence of u.d. sequences in certain dense subsets are given.

Let A' be a compact topological space, p a probability measure on X. A

sequence (x„) in X is called /x-uniformly distributed ( ju-u.d.), if

lim    2 f(x„)=ffdp

holds for any continuous, complex valued function/ on X (see [7, p. 171 ff.]

for basic properties and examples of u.d. sequences).

It follows immediately from the definition that the closure of a u.d.

sequence contains the support of the measure. One can therefore restrict

oneself to the case of separable spaces. It can be shown that for metrizable X

u.d. sequences always exist and behave in much the same way as in the

classical case of the torus group. For compact separable topological groups

and Haar measure it follows from results in [12] (see also [1], [11]) that u.d.

sequences exist. On the other hand it was shown in [9] that on the Stone-Cech

compactification of the integers u.d. sequences exist only if the measure is

concentrated on a countable set. One of the aims of this paper is to give

further conditons for the existence of u.d. sequences.

First we treat the following 'lifting problem': if it: X -» Y is surjective and

continuous, X metrizable and if a sequence (y„) is u.d. with respect to the

image measure ir(p) on Y, does there always exist a ju-u.d. sequence (xn) on

X, for which Tr(xn) = yn1 The special case where X = Y X Z, ir(y, z) = y,

p = v ® p has been considered in [4]. In the general case it turns out that a

lifting is possible for any Tr(p)-\i.d. sequence in Y, iff the map tt is open in

/x-almost all points of X, in particular if tt is an open map.

Using this result, we can show that for dyadic spaces with an open basis of
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cardinality Hx u.d. sequences exist for any measure p (a topological space X is

called dyadic, if it is a continuous image of {0, 1 }7 for some index set /, see

[2], [3]). In particular, if one assumes the continuum hypothesis, u.d. sequen-

ces exist for arbitrary measures on compact separable groups. Finally we give

an example which shows that the dyadic spaces form a proper subclass of

those spaces for which u.d. sequences exist for any measure.

In the last section we give three counterexamples which show that some

properties of u.d. sequences, valid on metrizable spaces, do not carry over to

arbitrary separable spaces: it is in general not possible to choose the u.d.

sequence in the support of the measure p. On a topological group G the u.d.

sequence cannot be chosen in an arbitrary dense subgroup of G. If p is the

Haar measure on G, it has been shown in [11] that it is possible to construct a

u.d. sequence in a given countable dense subgroup, but we show that it is not

possible to choose it in an arbitrary countable dense subset. (On metrizable

groups any dense sequence can be rearranged to a u.d. sequence, compare [7,

p. 185], and [6].)

Proposition 1. Let X, Y be compact, metrizable topological spaces, tt:

XX Y —> X the projection onto the first coordinate, p a probability measure on

X X Y, v = tt(p). If (x„) is p-u.d. in X, there exists a sequence (y„) in Y, such

that (xn,yn) is p-u.d. in X X Y.

Proof. Let Pn be a sequence of partitions of X with the following

properties:

(0 Pn+\ afines Pn;

(ii) each A E P„ satisfies ¡>(dA) = 0 and its diameter is less than n"1. (dA

denotes the boundary of A.)

In a similar fashion we can choose a sequence of partitions Qn of Y. By [7,

pp. 172, 174] a sequence (x„,yn) is p-u.d. iff

lim N'1 2 cA(xn)cB(yn) = p(A X B)

foi A E UPn,BE UQ„.
Put m„ = |F„| \Qn\ (\Pn\ denotes the number of elements of P„). We may

assume that mn tends to infinity. Assume that A E Pn and that M and N are

natural numbers with N > M. Then

(N-M)-1    2     cA(xn)-v(A)
n = M+l

< 2N(N - A/)-1 sup
k>M

K-1   îcA(xn)-v(A)
n=\

and this expression becomes arbitrarily small for large M, provided that the
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quotient (TV - M)/N does not decrease too fast. Using this observation, one

can construct a monotone increasing sequence of natural numbers Nk (Nx =

0), and a nondecreasing map <p: N -» N with the following properties:

(i) |(tf*+i - Afcr'Zfc^, cA(xn) - v(A)\ < mjy holds for all A E F„w.

(ü)#*+i - Mk > m2(ky

(iii)limk^x>Nk+x/Nk = 1.

For A E P9W put IA = {«: Nk < n < Nk+X, x„ E A). For each B E ß9W

we can find a natural number \IAB\ such that | \IAB\ - p(A X B)v(A)  X\IA\ \

< 1 and 1BeQiJIAB\ = \IA\-
Now choose>>„ G Y such that \IAB\ = |{n: Nk < n < Nk+X, (xn,yn) E A X

B}.lt follows that

(Nk+l-Nk)-'    2      ^(W«) - p(A X B)

= \(Nk+l-Nkyl\lAB\-p(AxB)\

< {Nk+i - ^)_1+ /x(^ X B)\(Nk+x - Nk)'\(A)-l\lA\- 1|

< m-(2k)+ p(A X B)v(A)-xm^k)

< 2mr2'<»>(*)•

Since for / > k, P^ (resp. ß^) is a refinement of Pv,k) (resp. ß^) we get:

AT,.

W+> " ty)-' 2   ^XB(xn,.yn) - p(A X B) < 2/íy}).

Since Nm+X/Nm tends to zero we get for JV > N0(l):

N

N- 1 2  cAxB(x„,y„) - p(A X B)
n = \

< 3/n^J).

Remarks. (1) An example in [10] shows that Proposition 1 is not true in

general for nonmetrizable, compact X, even if p — v ® p for some measure p.

(2) If p = v ® p, Ar, F metrizable, it has been shown in [4] that (x„, yn) is

p-u.d. in X for almost all sequences in Y (with respect to the product measure

pN on FN). If /x is not of the form v ® p, it follows that the set of sequences

(yn) for which (x„, yn) is p-u.d. has measure zero in FN with respect to any

probability measure p on Y. For example if X = Y and jk is the diagonal

measure of v, i.e.

f      f(x,y) dp(x,y) = / f(x, x) dv(x),
JXXX Jx

then (xn,yn) is ¿i-u.d. iff for any e > 0 the set {n: d(xn,yn) > e} has density

zero in N.
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Proposition 2. Let X, Y be compact, metrizable spaces, tt: X^Y

continuous, surjective, d a metric for the topology of Y, p a probability measure

on X,v = tt(p). If(y„) is a v-u.d. sequence in Y, there exists a p-u.d. sequence

(xn) in X, such that d(Tr(xn),yn) converges to zero (n -» oo).

Proof. We consider the space C(X) of continuous, real valued functions

on X, equipped with supremum norm. If X is metrizable, this space is

separable. Let (/„)"_ x be a countable dense subset in the unit ball of C (X).

Put Z = Y X [- 1, If. ttx: X^> Z is defined by

TTX(X) = (TT(x),fx(x),f2(x), ...).

Since (/,) is dense in the unit ball of C (A'), ttx is injective and consequently a

homeomorphism onto ttx(X). Let/? be the projection of Z onto Y, px = Trx(p).

Since p ° 77, = tt, we have clearlyp(ii,) = v.

By Proposition 1 we can lift our sequence (y„) to a px-u.d. sequence (z„) in

Z. Since the support of the measure px is contained in ttx(X) and Z is

metrizable, we can find a sequence (x„) in X such that d(Trx(xn), zn) tends to

zero (d denotes again a metric for the topology of Z). It follows easily that

TTx(x„) (and therefore xn) is u.d. with respect to ft, (resp. p).

Definition. We call tt: X -> Y open in x E X if tt(U) is a neighbourhood

of tt(x) for any neighbourhood U of x.

Theorem 1. Let X, Y be compact, metrizable spaces, tt: X ^> Y continuous,

surjective, p a probability measure on X,v = tt (p). The following statements are

equivalent:

(i) if (y„) is v-u.d. in Y, then there exists a p-u.d. sequence (xn) in X, such

that tt(x„) = y„.

(ii) the set of points x E X, where tt is not open has p-measure zero.

Proof, (ii) => (i): We fix metrics on X and Y and denote them by the same

letter d. Let ^(x) be the open ball with center x and radius e. If tt is not open

in x E X, there exists e > 0 such that tt(x) £ ir(Ke(x))° (° denotes the

interior). Put Mt = {x E X: x $ Tr-l(Tr(Ke(x))°)}. By (ii) p(Me) = 0 for all

e > 0.

We claim that M~ Ç Me/2: Assume that u„ E Me converges to u. For each

un there exists a sequence vnm in Y, which converges to ir(un) and does not

belong to ^(IÇ («„)). Selecting an appropriate diagonal sequence, we find

elements w„, which converge to tt(u) and such that wn £ tt(Kc(u„)). If wn =

tt(w'„) with w'n E Ke/2(u), then w'n Ç Ke(un) and consequently

d(u, u„) > d(w'„, un) - d(u, w'n) > e/2.

This means that w„ & Tr(Ke/2(u)) for large n.

Since M~ is compact and satisfies p(M~) = 0, there exists an open set

Ue D M~ with p(dUe) = 0 and p(Ue) < e. There exists a number 5(e) > 0
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such that Ks(tt(x)) C ^(K^x)) for all x G <7£': otherwise we can find a

sequence (un) C t/e', which converges to some element u and for which

Kx/n(Tr(un)) g ir(K2e(un)). This means that we can choose a sequence (t>„) in

Y, which converges to tt(u) and satisfies v„ G ^(K^u^). As above it follows

that v„ $ ir(Ke(u)) for large n, contradicting our construction of Ut.

Now assume that Ue and 8(e) have been chosen for e = l/n (n =

1, 2, . . . ). If (yn) is p-u.d. in Y, there exists by Proposition 2 a /t-u.d. sequence

(z„) in X, such that d(Tr(zn), yn) converges to zero. Since p(dUe) = 0, we have

lim   TV"1 2  cUt(zn) = p(Ue) < e
Ar^°° « = i

for all e > 0. We choose a sequence of indices Nk with the following

properties:

(\) d(TT(zn),yn)<8(\/k) fox n>Nk;

(2)(N - Nk)-lZNn_Nk + x cu¡/k(zn) < 1/kfoTN > (1 + l/k)Nk;

(3)Nk+x>(l + l/k)Nk.

If Nk < n < Nk+l and z„ E U'x/k, we can find x„ E X with d(xn, zn) < 2/k,

and tt(x„) = y„. Otherwise choose an arbitrary xnE X with tt(x^) = yn. By

(2) the set UJtLi{": Nk < n < Nk+X, z„ G Ul/k} has density zero in N. On

the complement of this set the distance from xn to z„ tends to zero. It follows

that (xn) is p-u.d.

(i) => (ii): Assume that Uc>u Me, i.e. the set of points where tt is not open

has positive outer measure. Then there exists e > 0 such that M2t has positive

outer measure. If x G M2t and d(x, y) < e, then Ke(y) C K^x).

Consequently ^'^(^(y))0) Q tt~\tt(K2i:(x))0) and furthermore x G Ke(y)

\TT-l(Tr(Kt(y))°). It follows that M2c C U {Ke(y) \ Tr-l(TT(Kc(y))°)} the

union being taken over a countable dense subset of X. This shows the

existence of an element^ G X, for which p(Ke(y)\ Tr~l(TT(Ke(y))°)) > 0 for

uncountably many e > 0, i.e. we may in addition assume that p(dKe(y)) = 0.

In this way we have found an open subset U of X, with p(dU) = 0 and

it(L/\7r-1(77(C/)°))>0.

Now let f, be the restriction of v to Y \ tt(U)° and v2 = v — vx. Since Y is

metrizable, we can find a p-u.d. sequence (>"n)neN, which is composed of a

»»,-u.d. subsequence (y„)nfEN and a i>2-u.d. sequence (>"„)neN such that

y„E Y\tt(U) for n E N, and>-„ G dTr(U) for n E N2.

Now assume that there exists a ju-u.d. sequence (xn) in A', for which

ir(xn) = >»„. By the regularity of v, there exists an open subset V of tt(U) such

that v(dV) = Oand

j-(tt(í7)0\ V) < p(U\tt-](tt(U)°)).

Since 3 (tt ~ \ V)) Q tt - \d V) we have p(d (tt ~ '( V))) = 0.

ft(3i/) = 0,   consequently   lim^^ N~l'2"_x c^x^ = p(U).   Now   we
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decompose the left side of this equation, using that

C/ = (f7n7r-1(F))u(t/\7r-,(F))

C(U n rr~l(V)) U tt-x(tt(U)\ V).

If x„ G tt~1(tt(U) \ F), then y„ E tt(U). By our construction of yn it follows

that/« G tt(U)° and n E N2. Since v2(d(Tr(U)°)) = 0 and clearly v2(dV) = 0

the limit corresponding to U \tt~1(V) can be estimated by v2(tt(U)° \ V)

and we would get:

p(U) < p(U n 77"'(F)) + v2(tt(U)° \ V)

<p(u n tt-^v)) + p(u xtt-^^u)0))

< p(U)   a contradiction.

Definition [2]. A topological space X is called dyadic, if there exists some

index set / and a continuous surjective map tt: (0, I}1 -* X.

Theorem 2. Let X be a dyadic space with a base of cardinality Hx, p a

probability measure on X. Then there exists a p-u.d. sequence (xn) in X.

Proof. By [2], there exists a set / of cardinality N, and a continuous

surjective map it: (0, I}1 -> X. By the Hahn-Banach theorem there exists a

probability measure v on (0, l}7 such that tt(v) = p. If (yn) is j»-u.d. in

(0, l}7, then (Tr(yn)) is p-u.d. in X. In this way we have reduced the problem

to the case X = {0, l}7. We identify / with the first uncountable ordinal tox.

For a < w, put Xa = (0, 1}". We consider the projections pa: X-^ Xa and

Paß'- Xa ~* Xß (ß < a) and the measures va = pa(v). By induction we define

VU.d. sequences (xna) in Xa such thaipaß(xna) = x„ß: if a = ß + 1 for some

¿8, then we may apply Theorem 1 since X is metrizable andpa/3 open; if a is a

limit ordinal, Xa is the projective limit of the spaces XB (ß < a) and (xnB)ß<a

defines a unique element xm in Xa. By the Stone-Weierstrass theorem (x^) is

pa-u.d. In the same way one gets from the sequences (xm)a<U] a p-u.d.

sequence (x„). (Cf. the last remark in [10].)

Corollary. Let G be a compact separable topological group, p a probability

measure. If we assume the continuum hypothesis, there exists a p-u.d. sequence

in G.

Proof. By [8] any compact topological group is a dyadic space, so the

result follows from our theorem. One can also give a direct proof if one

considers a well-ordered sequence of closed normal subgroups (Ha)a<u , such

that G/Ha is metrizable and D Ha = {*?} (i.e. G is the projective limit of the

groups G/Ha). (Cf. the proof of Lemma 2 in [9].)

Example. If one assumes the continuum hypothesis, there exists a

separable compact space X which is not dyadic and such that any probability

measure on X admits a u.d. sequence.
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Let A be the algebra of almost periodic functions on Z and c0 the algebra

of complex sequences (a„)£L - «, f °r which

Um a„ —   lim    a. = 0.
n-»oo n—> —oo

We consider the subalgebra B of lx(Z) generated by A and c0. B determines a

compactification X of Z. Any maximal ideal in B has either the form / + c0,

where / is a maximal ideal in A or A + J, where J is a maximal ideal in c0. It

follows that X can be written as a disjoint union of G and Z, where G denotes

the Bohr compactification of Z. Z is open in X and X induces the group

topology on G. If p is a probability measure on X, it can be decomposed into

measures on G and Z and by Theorem 2 u.d. sequences exist for both of

them. But X is not dyadic, since it is a nonmetrizable compactification of Z

[3, p. 61].

Some counterexamples. (1) There exists a probability measure p on X =

[0, If which admits a u.d. sequence (under assumption of the continuum

hypothesis), but for which no u.d. sequence exists, which is contained in the

support of p:

Let /?N be the Stone-Cech compactification of the natural numbers and p a

probability measure on /?N, which is not concentrated on a countable subset.

There exists an injective, continuous map/: ßN^>X. By [9, Proposition],

there exists no ju-u.d. sequence in /?N, but by Theorem 2 p admits a u.d.

sequence in X.

(2) Let G be the Bohr compactification of the integers. There exist proba-

bility measures on G, for which no u.d. sequences exist, which are contained

in the dense subgroup Z:

Let p be a point measure, concentrated in a point x E G \ Z. Assume that

(xn) C Z is p-u.d. The dual group of G is the torus group T (with discrete

topology). If x is a continuous character on G, then lim N ~ '2f x(xn) = X(x)-

By duality xn and x can be identified with characters on T. It follows that

N - '2f x„ converges to x, pointwise on T. Since xn E Z, they define

continuous characters on T and so x would be Borel-measurable. But by [5,

Corollary 22.19, p. 346] a Borel measurable character is already continuous,

which contradicts x G Z.

(3) There exists a dense subset M in {+1, - 1}C, such that there exists no

sequence in M, which is u.d. with respect to the product measure:

If (xn) is a dense sequence in ( + 1, - 1}C, it defines a system (Aa)aec of

subsets of N by Aa = {n: x^ = 1} (where x„ = (xmi)aSc). If A is a subset of

N, we use the notation Ax = A, A~l = N\ A. Now if a,, . . . , ak are

different indices in c, and /„..., ik E { +1, - 1}, then A'a\ n • • • n A£ =

Conversely let 91 be a family of subsets of N, with cardinality c and which

is maximal with respect to the property that A'a\ n ■ • • n A'^ =^0 for any
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distinct elements Aa¡, . . ., Aak E 31 and /,,..., ik G { +1, - 1}. (We index

the elements of 21 by the elements of c). 21 defines a sequence (x„) in

{+ 1, - 1 }c by xna = 1 if n E Aa and xna= — 1 if n G A. If a„ . . ., ak E c

and /„..., ik E { +1, - 1} then {n: xna¡ = /„..., x^ = ik) = A'a\

n • • • n A£ ¥^0. It follows that M = {x„} is dense in { + 1, - 1}C.

Assume that (y„) is a u.d. sequence in ( + 1, — 1}C, which is contained in

M, i.e. we have a mapp: N-h>N such that^ = xp(n). Put ßin = n~l\{k < n:

p(k) = /}|. Then 2°°_, ßin = 1 for all n and if n is fixed, ßin =£ 0 holds only for

a finite number of /' G N. We have

Urn   2 WW-Jta «-'2 /U) =//^
/' = 1 A: = 1

for all continuous or Riemann integrable functions/: { + 1, — 1}C -» R. If one

takes the characteristic function of x¡, it follows that lim„_>00 ßin = 0.

Now we claim that there exists a subset B of N for which

OO 00

lim sup  2 ßmcB(0 ~ 1    and    um inf  2 A«cb(0 = °-
n^oo       ,= , «-<»      ,.= ,

The set B is constructed by induction: Assume that a subset Bn of the interval

[1, N], and e > 0 are given. Since limm^M ßim = 0, there exists m > n, such

that ßim < eN'1 for all / < N. Put A/ = max{/: ßim > 0} u {TV}. If we write

Bm for Bn, regarded as a subset of [1, M], then 2°1, ßimcB (i) < e. On the

other hand, if we put Bm = Bn u [N + 1, Ai], then

oo N

2 AmcBm(/) >  2   ßim = i - 2 Am > i - *•
1 = 1 i = Ar + 1 i=l

Both sums do not change their value if we add a subset of [M + 1, oo[ to Bm.

If one applies alternately these two enlargement procedures and e tends to

zero, one gets the desired set B.

If B = Aa G 21, then lim,^ J-, ßmcB(0 = lim^^ m-'p: ^ = 1}|
= 2 ' which is impossible. Since 21 is maximal, there exist a,, . . . , ak E c,

i0, /„..., ik E {+ 1, - 1} such that 5'° n Afa\ n • • • n A£ =0. Replacing

fi by N \ B if necessary, we may assume that i0 = — 1 i.e. 5 C A^ f\ • • • f*l

y4'*. But then
OO

limjup   2 Âm^(0 <Jüm> m-l\[j:yM == /„ ... ,yM = 4} = 2~k

which is again a contradiction.
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