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ON A THEOREM OF STEINITZ AND LEVY
BY

GADI MORAN

Abstract. Let 2„eú)A(n) be a conditionally convergent series in a real

Banach space B. Let S(h) denote the set of sums of the convergent

rearrangements of this series. A well-known theorem of Riemann states that

S (h) = B if B = R, the reals. A generalization of Riemann's Theorem, due

independently to Levy [L] and Steinitz [S], states that if B is finite dimen-

sional, then S(h) is a linear manifold in £ of dimension > 0. Another

generalization of Riemann's Theorem [M] can be stated as an instance of

the Levy-Steinitz Theorem in the Banach space of regulated real functions

on the unit interval /. This instance generalizes to the Banach space of

regulated ¿-valued functions on /, where B is finite dimensional, implying a

generalization of the Levy-Steinitz Theorem.

1. Let u = (0, 1, 2,... } denote the set of natural numbers, B a real

Banach space, and let A be a function from <o into B. We say that the series

2n6w/i(/i) is conditionally convergent if there are two rearrangements of its

terms, one resulting in a convergent series and the other a divergent one. It is

unconditionally convergent if it is convergent for every rearrangement of its

terms. If the series is conditionally (unconditionally) convergent we say that h

is conditionally (unconditionally) summable.

Let S(h) denote the set of those v in B that are sums (in the norm) of some

convergent rearrangement of 2„ew/i(n). It is well known, that if h is

unconditionally summable then S(h) has precisely one member.1

A hundred years ago Riemann showed:

Theorem 1. Let B = R. If h: <o-»P is conditionally convergent, then

S(h) = R.

Levy-Steinitz's Theorem (1905) generalizes as follows:

Theorem 2. Let B be finite dimensional.2 If h: u¡—>B is conditionally
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1 See [H], [O]. The converse is true if B is finite dimensional, but fails already in any infinite

dimensional Hubert space, as the example following Theorem 2 indicates.

2 The proofs of Theorem 2 [L], [S], [Bl] assume the Euclidean norm. Since all norms induce the

same topology on R", S(h) is independent of the particular norm chosen.
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summable, then B has a subspace TV of dimension > 0 and a member v0 such

that

S{h) = v0 + N.

It is easy to construct an h from to into any inifinite dimensional Hubert

space such that S(h) = {0}, but h is not unconditionally convergent (let e„ be

an orthonormal sequence, and let h(2n) = e„/V/i + 1 = — h(2n + 1)).

Thus, Theorem 2 does not generalize to infinite dimensional Banach spaces.

(See, however [Dl].) It is a long standing conjecture that for arbitrary Banach

space B and conditionally summable h from co into B, S (h) is a displacement

of a closed additive subgroup of B.

Another generalization of Theorem 1 emerged from quite a different course

of research ([M], see also [G]). It implies that if A: w—»P is conditionally

summable, then there is a chain of conditionally convergent subseries of

s = 2nS<J/i(/j), order isomorphic to the reals, such that any change in the list

of their sums subject to some natural continuity restrictions is achieved by

one rearrangement of the series 5. A precise statement of this result is given in

§2 as Theorem 3. We now describe it in a way that clarifies its relation with

Theorem 2.

Let / denote the closed unit interval [0, 1], and let C(I, B) (respectively

Reg(7, B)) denote the Banach space of all continuous functions (respectively

the functions having left and right limit everywhere) from / into B, endowed

with the supremum norm. For 0 < x < 1, v E B define J* E Reg(7, B) by

/; (/) = 0,   t < x,

J'x (t) = v,    x < t.

Call a sequence x = (xn)nfEu a dense sequence in / if x enumerates a dense

subset of the open interval (0, 1) with no repetitions. In the sequel, let x be a

fixed dense sequence in /. With every h: w-»P we associate hx: «-»

Reg(7, B) by setting hx(n) = J^"\ The generalization of Theorem 1 to the

present context depends on a proper notion of "conditionality" for h. We

define it first in case B = R.

We call h: w -» R x-conditional iff:

(1) for every e > 0, {«: ||A(az)|| > e} is finite,

(2) for every 0 < a < b < 1, we have

2 {h(n):a<xn<b,h(n)>0}

= - 2 {M"): a < x„< b, h(n) < 0} = oo.

Clearly if h is ^-conditional, it is conditionally summable. It follows from [G,

Theorem 3], that h* is also conditionally summable.
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Theorem 3 [M]. Let B = R, and let h: co -» B be x-conditional. Then there

is an s0 E Reg(7, B) such that

S(h*) = s0+C(I,B).

Stated this way, Theorem 3 is an instance of Theorem 2 in the infinite

dimensional Banach space Reg(7, R). In §3 it is generalized as an instance of

Theorem 2 in Reg(7, B), where B is finite dimensional (Theorem 4). In §4 we

derive Theorem 5, which is another generalization of Theorem 1, from

Theorem 4. Theorem 5 is then combined with Steinitz's work [S] to give the

main result of this paper, Theorem 6, extending Theorem 2.

It is well known that the convergence of every subseries of a series in a

Banach space is equivalent to its unconditional convergence (see e.g. [H]),

and so every subseries of such a series is also unconditionally convergent,

hence has one sum. Theorem 6 implies, by a way of contrast, that a

conditionally convergent series in a finite dimensional Banach space B admits

a nontrivial subspace TV ç B and a chain of (conditionally convergent)

subseries, order isomorphic to the reals, such that every continuous change in

TV of the sums of those subseries is accomplished by some rearrangement of

the terms of the given series (Theorem 6'). We now turn to make these

remarks precise.

2. We develop first some notation. Let -< be an «-ordering of w, i.e. a

linear ordering of « every intiial segment of which is finite. We denote by n <

the nth member of to under -< , and for C C w we set

c"=Cn {OM "<,..., (n-1)^}.

[A]<u denotes the family of all finite subsets of the set A. If A: u^*B,

F E [w]<w we set h(F) = 2n6f«(/i).

We say that the to-ordering -< sums h over C Ç to if the sequence

»,-*( c")

has a limit in B. If < sums h over C we write

2   A00-2 A = lim AI   C ).
„se c        n^°°    V       '

Whenever -< is the natural ordering of w we omit it from the notation.

Let C be a family of subsets of u>. We say that -<  sums A over C iff for

every C E C, -< sums A over C. We say that -< sums A uniformly over C iff

for every e > 0 there is an n £ w such that for every C E C, n < k, I we

have:

|A("c*)-A("cAy
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Thus, A is unconditionally summable if and only if the natural order sums A

over P(u), the set of all subsets of a (by the equivalence of subseries

convergence and unconditional convergence). We leave to the interested

reader the verification that if A is unconditionally summable, then the natural

order sums A uniformly over P(u), as does every other to-ordering of u, and

that if any to-ordering sums A over P(u) then A is unconditionally summable.

We call C ç P(to) a chain iff for any C¡, C2 £ C we have C, C C2 or

C2 Ç C,. We consider a chain C as a linearly ordered set, with set-inclusion

as the order. Every chain is order isomorphic to a subset of I (Proof. Let

g(n) = 2_(n+1). Then C->2cg is an order isomorphism of C into I.)

Conversely, if T is a subset of I, then there is a chain C in P(u>) order

isomorphic to T.

An /-chain is an indexed chain C = {C,:fE/} satisfying Co=0,Cx = u>

and Ca c Cb whenever 0 < a < b < 1.

Assume now that x = (xn)neu is a dense sequence in /. For t E / let

C, = {« E to: x„ < f}. Then C = {C,: r E /} is an /-chain.

Let A: to -» B, hx: u>^> Reg(/, B) be as in §1. If for some to-ordering -< of

to, / E /, -< sums hx(n)(t) = J^"\t) in B, then

2 *»(')= 2  *(«)-2*-
new nSC, C,

Thus, -< sums hx(ri%t) for every f £ / iff -< sums A over C; that is, -<

sums pointwise hx iff -< sums A over C. Similarly, -< sums hx in Reg(/, P)

-i.e., uniformly on /-iff -< sums A uniformly over C.

We leave the easy proof of the following proposition to the reader. The

nonbelievers are referred to Lemma 3 in §4, that extends it.

Proposition 1. Let A: u-*R be conditionally summable. Then there is a

dense sequence x in I such that A is x- conditional.

If ■< sums A over C, then a sum-function s is defined over C by:

s(C) = ^h       (CGC),
c

We are now ready to eliminate hx from the statement of Theorem 3:

Theorem 3'. Let B = P. Let A: u^>B be conditionally summable. Then

there is an I-chain C = {C,:í£/} such that:

(i) There is an u-ordering -<0, that sums A uniformly over C. Set

s0(t) = 1°(Ct)     (tel).

(ii) For every continuous g: I —> P with g(0) = 0 there is an (¿-ordering •<
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that sums A uniformly over C, satisfying for every t £ /:

1 (Ç) - *„(/) + g(r).
(iii) For every (¿-ordering -<  of w íAaí íw/ns1 A uniformly over C fAere « a

continuous g: I —> R satisfying g(0) = 0 such that for every t E /

*(Ç) = 'o(0+ *(')•
It is easy to derive Theorem 1 from (i) and (ii) as follows. Let a £ P. We

<

have to show that for some to-ordering -<  of to we have 2 wn = a- Let

b = a — s0(l). Let g(t) = tb. By (ii) pick an to-ordering -< satisfying

1 (C,) = s0(t) + g(t).

Then

2 h=1 (Cl) = s0(l) + g(l) = a.

3. To generalize Theorem 3 we first extend the notion of being x-

conditional to A from / into arbitrary Banach space B. Fix A: u -» B and a

dense sequence x = (x„)neu in /• Let F E [«]<", and assume F =

{«,,..., nr), where xn¡ < x„2 < • • • < xv We shall say that F is proper for

A with respect to x if:

max 2 *C*)
7=1

< 2||A(F)||.

Geometrically, P is proper for A w.r.t. a: if the polygonal line from 0 to A(P)

through h(nx), A(/i,) + hty^, A(/i,) + h(n^) + A(n3), . . . never gets out or

the ball centered at 0 and of radius 2||A(P)||.3

We set C, = {«: x„ < t) for t £ /.

We say that A: w -» P is ^-conditional if A satisfies (1) and:

(3) For every 0 < a < b < 1, (A(P): F £ [C6 - CJ<<0, P is proper for A

w.r.t. x) is dense in P.

(1) and (3) are equivalent to (1) and (2) if B = R. An x-conditional A:

ai-* B exists if and only if P is a separable Banach space.

A straightforward generalization of the proof of Theorem 3 gives [M,

Theorem 5]:

Theorem 4. Let B be arbitrary Banach space and assume that A: u^> B is

x-conditional. Then there is an s0 £ Reg(/, B) such that

_ S(hx) = s0+C(I,B).

3 The choice of 2 here is somewhat arbitrary for the sequel. Any constant > 1 could be chosen.

See [M, §5].
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4. Let B be arbitrary Banach space. Define a constant KB as the smallest K

such that for every finite sequence (u„ . . . , vn) in B satisfying «, + ••• + v„

= 0, there is a rearrangement (V,...,«') of (1,..., n) such that

max
1< /' < n

2 9
7-1

< /?  max   110,11.
1< ii < n

Clearly, 1 < KB < oo. In [Bl] Bergström bases his proof to Theorem 2 on the

following Lemma (found also in [S]):

Lemma 1. Let B be finite dimensional. Then KB < oo.

Remark. 1. In [B2] Bergström shows that if Ed denotes the ¿/-dimensional

Euclidean space, then KEi = V5 /2 and in general KEd ~Vd .

2. From Dvoretzky-Rogers' Theorem [D2] it follows that conversely, if

KB < oo then B is finite dimensional.

The following lemma is equivalent to Lemma 1.

Lemma 2. Let B be finite dimensional Banach space. Then there is a finite K

such that whenever v = v¡ + ■ ■ ■ + v„, there is a rearrangement (V, ...,«')

of (I, ... , n)such that

max     min      T  «,- "~ tv\\< K  max   ||o,||.
I</<»   0</<I    I",    ' Ki<n

The smallest such K is KB.

(Hint. Let k Gu satisfy ||o|| < k • max1<1<n||ü,||.

Set   u = (1 - \/k)v   and   apply   Lemma   1   to   the   (n + &)-sequence

(ü„ . . . , vn, u, . . . , u).)

Corollary. If B is finite dimensional, v = v} + • ■ ■ + vn, ||u,|| < ||u||//sfB

then there is a rearrangement (V, . . ., n') of (I,. . . , n) such that

max   He,. + • • • + tv|| < 2||o||.
KKn

Proof. Let (V,. .. ,n') be given by Lemma 2. Let 1 < / < n. Choose

0 < t < 1 with

«,.+ •••+ vr tv\\< KB-  max   l|c,|| < llcl
" Kj<n

Then ||ür + • • • + «vil = IK»,- +•••+«,- tv) + tv\\ < 2||o||.

Proposition 2. Let B be arbitrary Banach space. Let A: to-»P satisfy:

{h(F): F £ [«]<"} is dense in B. Let A Qu satisfy 2„e^||A(/i)|| < oo. Then

{h(F): F G[u- A]<u) is dense in B.

(We shall need the proposition only for finite A.)
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Proof. Let v E B, e > 0 be given. We shall find F E [u - A]<w with

||A(P) - v\\ < e. Fix n such that

2   l|A(m)||<f.

Let/I' = A n {0, . . ., n - 1}. For G Q A' define:

VG= {A(P):PE[to]<w,Pn^' = G).

Since {G: G Ç A'} is finite, and {A(P): F £ [u>]<a] = UGCAVG is dense in

P, there is a G0 Ç ,4' such that FGo is dense in B. Choose F £ [w - ^]<<J,

// E [/Í - yl']<u such that ü, = A°(G0 Ufu/i) = A(G0) + A(P) + h(H)

satisfies \\v¡ - (v + A(G0))|| < e/2. Then we have:

||A(P) - v\\ = \\(h(F) + h(G0) + h(H)) -(v + h(G0)) - h(H)\\

<\\Vl -(v + h(G0))\\ +\\h(H)\\ < e/2 + e/2 = e.

A corollary of Theorem 4 and the preceding remarks is

Lemma 3. Let B be finite dimensional. Let A: to -» P satisfy (1) and

(4) {A(F): F E [(¿]<a) is dense in B.

Then there is a dense sequence x = (xn)neu in I such that A is x-conditional.

Proof. Let V be a countable dense set in P. Let (v„)„Su be an enumeration

of V such that for each v E V, {«: vn = v) is infinite. Let P„ = {u E B:

||« - cj| < \/(n + 1)}.

We construct the sequence x in steps, defining in each step xp for p in a

fresh finite subset of to. Assume that xp is already defined îoxp E: A, where A

is a finite subset of a.

Step 2k. Let 8 = max{||A(/i)||: n E to - ,4}. Let F = {/i £ to - A: \\h(ri)\\

= 8). Since A satisfies (1), P is finite. Pick xn £ (0, 1) for n E F so that

x„ ^ xp forp E /I, and xn =£ xmîor n =£ m (n, m E P).

Sit?/» 2A: + 1. Let /„..., Ir be the components of / — [xp: p £ A). By

Proposition 2, choose Fq E [to - ^]<w for ç = 1, . . ., r so that q =f= q'

implies P9 n Fq. =0 and A(P9) E P¿.

Let P? = {w,, ..., nk) where the indices are chosen so that for i =

1, . . . , k we have:

HA^,) + • • • + h(nt)\\ < 2||A(PÍ)||.

This is possible by the coi^Jary to Lemma 2. Choose xn¡ < xn¡ < • • • < x^

in Iq, dividing Iq into intervals of equal length.

It is easy to check that (x„)„£ui enumerates a dense set in / with no

repetitions (Step 2k makes sure that x„ is defined for every n E u).

Given 0 < a < b < 1 there is a k0 such that for every k > k0 one of the
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intervals Iq considered in Step 2 k 4- 1 is included in (a, b), and so for some

F E [Cb - Ca]<u, F is proper for A w.r.t. x and A(P) £ Bk. It follows that A

is ^-conditional.

Remark. By an easy modification one shows that given any countable

dense set X in /, the dense sequence x = (x„)n<Eu of Lemma 3 can be so

chosen that X = {x„: n Eu).

Combining Lemma 3 and Theorem 4 we have:

Theorem 5. Let B be finite dimensional. Let A: co^> B satisfy (1) and (4).

Then there is a dense sequence x in I, and an s0 E Reg(/, B) such that:

S(hx) = s0 + C(I, B).

5. We combine now Theorem 5 with Steinitz's ideas to generalize Theorem

2 as follows.

Theorem 6. Let B be finite dimensional, and let h: w-> B be conditionally

summable. Then there is a subspace TV of B of dimension > 0, a dense sequence

x in I, and an s0 £ Reg(/, B) such that:

S(hx) = s0+C(I,N).

Proof. It follows from Steinitz [S] that there are subspaces M, TV of B such

that B = M © TV, and if hM: u>^> M, hN: to-»TV are determined by the

equations h(n) = hM(n) + hN(n), hM(n) £ M, hN(n) £ TV, then

(0 2,=JIAvCOII < °°.
(ii)S(A*)-Jvr.
(ii) implies that hN satisfies (1) and that [hN(F): F £ [w]<u} is dense in TV.

By Theorem 5 we pick a dense sequence x = (xn)nSw in / and s2 £ Reg(/, TV)

such that:

S(h¿) = s2 + C(I,N).

Since ||A¿(»)|| = ||AM(n)||, we have 2w6J|A£(»)|| < oo. Thus, there is an

j, £ Reg(/, M) such that every to-ordering < of u sums A£ to j, in

Reg(/, M).

Since hx(n) = hj¡,(n) + h¿(n), we see that an to-ordering -< sums Ax iff it

sums A^, and whenever -< sums h£ to/it sums hx to s, + /.

Let s0 = i, + s2. Then s0 E Reg(/, P) and we have:

5(A) = j, + S(hN) = 5, + (s2 + C(I, TV)) = s0 + C(I, TV).

We restate Theorem 6, using the lexicon of §2:

Theorem 6'. Let B be finite dimensional Banach space. Let A: co^B be

conditionally summable. Then B has a subspace TV of dimension > 0, and there

is an I-chain C = {C,: t E 1} of subsets ofu so that:
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(i) There is an (¿-ordering <0 that sums A uniformly over C. Let

*(/)-1'(c;)     ce/).
(ii) For every continuous g: I -» TV satisfying g(0) = 0 there is an (¿-ordering

•<  that sums A uniformly over C, satisfying for every t E I

1 (Ç) = sQ(t) + g(t).

(iii) Por eoery (¿-ordering -< íAaí sw/ns A uniformly over C /Aeve « tz

continuous g: I -» TV satisfying g(0) = 0, sucA that for every t E I

1(C,) = s0(t) + g(t).
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