ON A THEOREM OF STEINITZ AND LEVY

BY
GADI MORAN

Abstract

Let $\Sigma_{n \in \omega} h(n)$ be a conditionally convergent series in a real Banach space B. Let $S(h)$ denote the set of sums of the convergent rearrangements of this series. A well-known theorem of Riemann states that $S(h)=B$ if $B=R$, the reals. A generalization of Riemann's Theorem, due independently to Levy [\mathbf{L}] and Steinitz [\mathbf{S}], states that if B is finite dimensional, then $S(h)$ is a linear manifold in B of dimension >0. Another generalization of Riemann's Theorem [M] can be stated as an instance of the Levy-Steinitz Theorem in the Banach space of regulated real functions on the unit interval I. This instance generalizes to the Banach space of regulated B-valued functions on I, where B is finite dimensional, implying a generalization of the Levy-Steinitz Theorem.

1. Let $\omega=\{0,1,2, \ldots\}$ denote the set of natural numbers, B a real Banach space, and let h be a function from ω into B. We say that the series $\Sigma_{n \in \omega} h(n)$ is conditionally convergent if there are two rearrangements of its terms, one resulting in a convergent series and the other a divergent one. It is unconditionally convergent if it is convergent for every rearrangement of its terms. If the series is conditionally (unconditionally) convergent we say that h is conditionally (unconditionally) summable.

Let $S(h)$ denote the set of those v in B that are sums (in the norm) of some convergent rearrangement of $\Sigma_{n \in \omega} h(n)$. It is well known, that if h is unconditionally summable then $S(h)$ has precisely one member. ${ }^{1}$

A hundred years ago Riemann showed:
Theorem 1. Let $B=R$. If $h: \omega \rightarrow B$ is conditionally convergent, then $S(h)=R$.

Levy-Steinitz's Theorem (1905) generalizes as follows:
Theorem 2. Let B be finite dimensional. ${ }^{2}$ If $h: \omega \rightarrow B$ is conditionally

[^0]summable, then B has a subspace N of dimension >0 and a member v_{0} such that
$$
S(h)=v_{0}+N
$$

It is easy to construct an h from ω into any inifinite dimensional Hilbert space such that $S(h)=\{0\}$, but h is not unconditionally convergent (let e_{n} be an orthonormal sequence, and let $h(2 n)=e_{n} / \sqrt{n+1}=-h(2 n+1)$). Thus, Theorem 2 does not generalize to infinite dimensional Banach spaces. (See, however [D1].) It is a long standing conjecture that for arbitrary Banach space B and conditionally summable h from ω into $B, S(h)$ is a displacement of a closed additive subgroup of B.

Another generalization of Theorem 1 emerged from quite a different course of research ([M], see also [G]). It implies that if $h: \omega \rightarrow \boldsymbol{R}$ is conditionally summable, then there is a chain of conditionally convergent subseries of $s=\Sigma_{n \in \omega} h(n)$, order isomorphic to the reals, such that any change in the list of their sums subject to some natural continuity restrictions is achieved by one rearrangement of the series s. A precise statement of this result is given in $\S 2$ as Theorem 3. We now describe it in a way that clarifies its relation with Theorem 2.

Let I denote the closed unit interval $[0,1]$, and let $C(I, B)$ (respectively $\operatorname{Reg}(I, B)$) denote the Banach space of all continuous functions (respectively the functions having left and right limit everywhere) from I into B, endowed with the supremum norm. For $0<x<1, v \in B$ define $J_{x}^{\nu} \in \operatorname{Reg}(I, B)$ by

$$
\begin{aligned}
& J_{x}^{\nu}(t)=0, \quad t<x, \\
& J_{x}^{\nu}(t)=v, \quad x<t .
\end{aligned}
$$

Call a sequence $x=\left(x_{n}\right)_{n \in \omega}$ a dense sequence in I if x enumerates a dense subset of the open interval $(0,1)$ with no repetitions. In the sequel, let x be a fixed dense sequence in I. With every $h: \omega \rightarrow B$ we associate $h^{x}: \omega \rightarrow$ $\operatorname{Reg}(I, B)$ by setting $h^{x}(n)=J_{x_{n}}^{h(n)}$. The generalization of Theorem 1 to the present context depends on a proper notion of "conditionality" for h. We define it first in case $B=R$.

We call $h: \omega \rightarrow R x$-conditional iff:
(1) for every $\varepsilon>0,\{n:\|h(n)\|>\varepsilon\}$ is finite,
(2) for every $0 \leqslant a<b \leqslant 1$, we have

$$
\begin{aligned}
\sum\{h(n) & \left.: a<x_{n}<b, h(n)>0\right\} \\
& =-\sum\left\{h(n): a<x_{n}<b, h(n)<0\right\}=\infty .
\end{aligned}
$$

Clearly if h is x-conditional, it is conditionally summable. It follows from [G, Theorem 3], that h^{x} is also conditionally summable.

Theorem 3 [M]. Let $B=R$, and let $h: \omega \rightarrow B$ be x-conditional. Then there is an $s_{0} \in \operatorname{Reg}(I, B)$ such that

$$
S\left(h^{x}\right)=s_{0}+C(I, B) .
$$

Stated this way, Theorem 3 is an instance of Theorem 2 in the infinite dimensional Banach space $\operatorname{Reg}(I, R)$. In $\S 3$ it is generalized as an instance of Theorem 2 in $\operatorname{Reg}(I, B)$, where B is finite dimensional (Theorem 4). In $\S 4$ we derive Theorem 5, which is another generalization of Theorem 1, from Theorem 4. Theorem 5 is then combined with Steinitz's work [\mathbf{S}] to give the main result of this paper, Theorem 6, extending Theorem 2.

It is well known that the convergence of every subseries of a series in a Banach space is equivalent to its unconditional convergence (see e.g. [H]), and so every subseries of such a series is also unconditionally convergent, hence has one sum. Theorem 6 implies, by a way of contrast, that a conditionally convergent series in a finite dimensional Banach space B admits a nontrivial subspace $N \subseteq B$ and a chain of (conditionally convergent) subseries, order isomorphic to the reals, such that every continuous change in N of the sums of those subseries is accomplished by some rearrangement of the terms of the given series (Theorem 6^{\prime}). We now turn to make these remarks precise.
2. We develop first some notation. Let \prec be an ω-ordering of ω, i.e. a linear ordering of ω every intiial segment of which is finite. We denote by $n^{<}$ the nth member of ω under \prec, and for $C \subseteq \omega$ we set

$$
{ }_{C}^{<, n}=C \cap\left\{0^{<}, 1^{<}, \ldots,(n-1)^{<}\right\} .
$$

$[A]^{<\omega}$ denotes the family of all finite subsets of the set A. If $h: \omega \rightarrow B$, $F \in[\omega]^{<\omega}$ we set $h(F)=\Sigma_{n \in F} h(n)$.

We say that the ω-ordering $<$ sums h over $C \subseteq \omega$ if the sequence

$$
v_{n}=h\left(\stackrel{C}{C}_{C}^{<, n}\right)
$$

has a limit in B. If \prec sums h over C we write

$$
\sum_{n \in C}^{\prec} h(n)=\sum_{C}^{\prec} h=\lim _{n \rightarrow \infty} h\left({ }^{<, n}\right) .
$$

Whenever $<$ is the natural ordering of ω we omit it from the notation.
Let C be a family of subsets of ω. We say that $<$ sums h over C iff for every $C \in C, \prec$ sums h over C. We say that \prec sums h uniformly over C iff for every $\varepsilon>0$ there is an $n \in \omega$ such that for every $C \in C, n<k, l$ we have:

$$
\left\|h\left({ }^{<, k}\right)-h\left(C^{<, l}\right)\right\|<\varepsilon .
$$

Thus, h is unconditionally summable if and only if the natural order sums h over $P(\omega)$, the set of all subsets of ω (by the equivalence of subseries convergence and unconditional convergence). We leave to the interested reader the verification that if h is unconditionally summable, then the natural order sums h uniformly over $P(\omega)$, as does every other ω-ordering of ω, and that if any ω-ordering sums h over $P(\omega)$ then h is unconditionally summable.

We call $\mathrm{C} \subseteq P(\omega)$ a chain iff for any $C_{1}, C_{2} \in \mathrm{C}$ we have $C_{1} \subseteq C_{2}$ or $C_{2} \subseteq C_{1}$. We consider a chain C as a linearly ordered set, with set-inclusion as the order. Every chain is order isomorphic to a subset of I (Proof. Let $g(n)=2^{-(n+1)}$. Then $C \rightarrow \Sigma_{C} g$ is an order isomorphism of C into I.) Conversely, if T is a subset of I, then there is a chain C in $P(\omega)$ order isomorphic to T.

An I-chain is an indexed chain $C=\left\{C_{t}: t \in I\right\}$ satisfying $C_{0}=\varnothing, C_{1}=\omega$ and $C_{a} \subsetneq C_{b}$ whenever $0<a<b<1$.

Assume now that $x=\left(x_{n}\right)_{n \in \omega}$ is a dense sequence in I. For $t \in I$ let $C_{t}=\left\{n \in \omega: x_{n}<t\right\}$. Then $\mathrm{C}=\left\{C_{t}: t \in I\right\}$ is an I-chain.
Let $h: \omega \rightarrow B, h^{x}: \omega \rightarrow \operatorname{Reg}(I, B)$ be as in §1. If for some ω-ordering $<$ of $\omega, t \in I, \prec \operatorname{sums} h^{x}(n)(t)=J_{x_{n}}^{h(n)}(t)$ in B, then

$$
\sum_{n \in \omega}^{\prec} h^{x}(n)(t)=\sum_{n \in C_{t}}^{\prec} h(n)=\sum_{C_{t}}^{\prec} h .
$$

Thus, \prec sums $h^{x}(n)(t)$ for every $t \in I$ iff \prec sums h over C; that is, $<$ sums pointwise h^{x} iff $<$ sums h over C. Similarly, $<$ sums h^{x} in $\operatorname{Reg}(I, B)$ -i.e., uniformly on I-iff \prec sums h uniformly over C.

We leave the easy proof of the following proposition to the reader. The nonbelievers are referred to Lemma 3 in $\S 4$, that extends it.

Proposition 1. Let $h: \omega \rightarrow R$ be conditionally summable. Then there is a dense sequence x in I such that h is x-conditional.

If \prec sums h over C, then a sum-function \prec is defined over C by:

$$
\jmath^{\prec}(C)=\sum_{C}^{<} h \quad(C \in \mathrm{C}) .
$$

We are now ready to eliminate h^{x} from the statement of Theorem 3:
Theorem 3'. Let $B=R$. Let $h: \omega \rightarrow B$ be conditionally summable. Then there is an I-chain $\mathrm{C}=\left\{C_{t}: t \in I\right\}$ such that:
(i) There is an ω-ordering \prec_{0}, that sums h uniformly over C . Set

$$
s_{0}(t)=\varsigma^{0}\left(C_{t}\right) \quad(t \in I)
$$

(ii) For every continuous $g: I \rightarrow R$ with $g(0)=0$ there is an ω-ordering $<$
that sums h uniformly over C, satisfying for every $t \in I$:

$$
s\left(C_{t}\right)=s_{0}(t)+g(t) .
$$

(iii) For every ω-ordering $<$ of ω that sums h uniformly over C there is a continuous $g: I \rightarrow R$ satisfying $g(0)=0$ such that for every $t \in I$

$$
\prec{ }_{s}\left(C_{t}\right)=s_{0}(t)+g(t) .
$$

It is easy to derive Theorem 1 from (i) and (ii) as follows. Let $a \in R$. We have to show that for some ω-ordering \prec of ω we have $\sum_{\omega} h=a$. Let $b=a-s_{0}(1)$. Let $g(t)=t b$. By (ii) pick an ω-ordering $<$ satisfying

$$
\prec C_{t}\left(C_{t}(t)+g(t) .\right.
$$

Then

$$
\sum_{\omega}^{\prec} h=ふ\left(C_{1}\right)=s_{0}(1)+g(1)=a .
$$

3. To generalize Theorem 3 we first extend the notion of being x conditional to h from I into arbitrary Banach space B. Fix $h: \omega \rightarrow B$ and a dense sequence $x=\left(x_{n}\right)_{n \in \omega}^{\cdot}$ in I. Let $F \in[\omega]^{<\omega}$, and assume $F=$ $\left\{n_{1}, \ldots, n_{r}\right\}$, where $x_{n_{1}}<x_{n_{2}}<\cdots<x_{n_{r}}$. We shall say that F is proper for h with respect to \boldsymbol{x} if:

$$
\max _{1<i<r}\left\|\sum_{j=1}^{i} h\left(n_{j}\right)\right\|<2\|h(F)\| .
$$

Geometrically, F is proper for \boldsymbol{h} w.r.t. \boldsymbol{x} if the polygonal line from 0 to $\boldsymbol{h}(\boldsymbol{F})$ through $h\left(n_{1}\right), h\left(n_{1}\right)+h\left(n_{2}\right), h\left(n_{1}\right)+h\left(n_{2}\right)+h\left(n_{3}\right), \ldots$ never gets out or the ball centered at 0 and of radius $2\|h(F)\| .{ }^{3}$

We set $C_{t}=\left\{n: x_{n}<t\right\}$ for $t \in I$.
We say that $h: \omega \rightarrow B$ is x-conditional if h satisfies (1) and:
(3) For every $0<a<b \leqslant 1,\left\{h(F): F \in\left[C_{b}-C_{a}\right]^{<\omega}, F\right.$ is proper for h w.r.t. $x\}$ is dense in B.
(1) and (3) are equivalent to (1) and (2) if $B=R$. An x-conditional h : $\omega \rightarrow B$ exists if and only if B is a separable Banach space.

A straightforward generalization of the proof of Theorem 3 gives [M, Theorem 5]:

Theorem 4. Let B be arbitrary Banach space and assume that $h: \omega \rightarrow B$ is x-conditional. Then there is an $s_{0} \in \operatorname{Reg}(I, B)$ such that

$$
S\left(h^{x}\right)=s_{0}+C(I, B)
$$

[^1]4. Let B be arbitrary Banach space. Define a constant K_{B} as the smallest K such that for every finite sequence $\left(v_{1}, \ldots, v_{n}\right)$ in B satisfying $v_{1}+\cdots+v_{n}$ $=0$, there is a rearrangement $\left(1^{\prime}, \ldots, n^{\prime}\right)$ of $(1, \ldots, n)$ such that
$$
\max _{1<i<n}\left\|\sum_{j=1}^{i} v_{j}\right\| \leqslant K \max _{1<i<n}\left\|v_{i}\right\| .
$$

Clearly, $1 \leqslant K_{B} \leqslant \infty$. In [B1] Bergström bases his proof to Theorem 2 on the following Lemma (found also in [S]):

Lemma 1. Let B be finite dimensional. Then $K_{B}<\infty$.
Remark. 1. In [B2] Bergström shows that if E^{d} denotes the d-dimensional Euclidean space, then $K_{E^{2}}=\sqrt{5} / 2$ and in general $K_{E^{d}} \sim \sqrt{d}$.
2. From Dvoretzky-Rogers' Theorem [D2] it follows that conversely, if $K_{B}<\infty$ then B is finite dimensional.

The following lemma is equivalent to Lemma 1.
Lemma 2. Let B be finite dimensional Banach space. Then there is a finite K such that whenever $v=v_{1}+\cdots+v_{n}$, there is a rearrangement ($\left.1^{\prime}, \ldots, n^{\prime}\right)$ of $(1, \ldots, n)$ such that

$$
\max _{1<i<n} \min _{0<t<1}\left\|\sum_{j=1}^{i} v_{j^{\prime}}-t v\right\|<K \max _{1<i<n}\left\|v_{i}\right\| .
$$

The smallest such K is K_{B}.
(Hint. Let $k \in \omega$ satisfy $\|v\| \leqslant k \cdot \max _{1<i<n}\left\|v_{i}\right\|$.
Set $u=(1-1 / k) v$ and apply Lemma 1 to the $(n+k)$-sequence $\left.\left(v_{1}, \ldots, v_{n}, u, \ldots, u\right).\right)$

Corollary. If B is finite dimensional, $v=v_{1}+\cdots+v_{n},\left\|v_{i}\right\| \leq\|v\| / K_{B}$ then there is a rearrangement $\left(1^{\prime}, \ldots, n^{\prime}\right)$ of $(1, \ldots, n)$ such that

$$
\max _{1<i<n}\left\|v_{1^{\prime}}+\cdots+v_{i^{\prime}}\right\| \leq 2\|v\|
$$

Proof. Let ($1^{\prime}, \ldots, n^{\prime}$) be given by Lemma 2. Let $1 \leqslant i \leqslant n$. Choose $0 \leqslant t \leqslant 1$ with

$$
\left\|v_{1^{\prime}}+\cdots+v_{i^{\prime}}-t v\right\| \leq K_{B} \cdot \max _{1<j<n}\left\|v_{j}\right\| \leq\|v\|
$$

Then $\left\|v_{1^{\prime}}+\cdots+v_{i^{\prime}}\right\|=\left\|\left(v_{1^{\prime}}+\cdots+v_{i^{\prime}}-t v\right)+t v\right\| \leqslant 2\|v\|$.
Proposition 2. Let B be arbitrary Banach space. Let $h: \omega \rightarrow B$ satisfy: $\left\{h(F): F \in[\omega]^{<\omega}\right\}$ is dense in B. Let $A \subseteq \omega$ satisfy $\Sigma_{n \in A}\|h(n)\|<\infty$. Then $\left\{h(F): F \in[\omega-A]^{<\omega}\right\}$ is dense in B.
(We shall need the proposition only for finite A.)

Proof. Let $v \in B, \varepsilon>0$ be given. We shall find $F \in[\omega-A]^{<\omega}$ with $\|h(F)-v\|<\varepsilon$. Fix n such that

$$
\sum_{n<m}\|h(m)\|<\frac{\varepsilon}{2}
$$

Let $A^{\prime}=A \cap\{0, \ldots, n-1\}$. For $G \subseteq A^{\prime}$ define:

$$
V_{G}=\left\{h(F): F \in[\omega]^{<\omega}, F \cap A^{\prime}=G\right\} .
$$

Since $\left\{G: G \subseteq A^{\prime}\right\}$ is finite, and $\left\{h(F): F \in[\omega]^{<\omega}\right\}=\cup_{G \subseteq A^{\prime}} V_{G}$ is dense in B, there is a $G_{0} \subseteq A^{\prime}$ such that $V_{G_{0}}$ is dense in B. Choose $F \in[\omega-A]^{<\omega}$, $H \in\left[A-A^{\prime}\right]^{<\omega}$ such that $v_{1}=h\left(G_{0} \cup F \cup H\right)=h\left(G_{0}\right)+h(F)+h(H)$ satisfies $\left\|v_{1}-\left(v+h\left(G_{0}\right)\right)\right\|<\varepsilon / 2$. Then we have:

$$
\begin{aligned}
\|h(F)-v\| & =\left\|\left(h(F)+h\left(G_{0}\right)+h(H)\right)-\left(v+h\left(G_{0}\right)\right)-h(H)\right\| \\
& \leqslant\left\|v_{1}-\left(v+h\left(G_{0}\right)\right)\right\|+\|h(H)\|<\varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

A corollary of Theorem 4 and the preceding remarks is
Lemma 3. Let B be finite dimensional. Let $h: \omega \rightarrow B$ satisfy (1) and

$$
\begin{equation*}
\left\{h(F): F \in[\omega]^{<\omega}\right\} \text { is dense in } B . \tag{4}
\end{equation*}
$$

Then there is a dense sequence $x=\left(x_{n}\right)_{n \in \omega}$ in I such that h is x-conditional.
Proof. Let V be a countable dense set in B. Let $\left(v_{n}\right)_{n \in \omega}$ be an enumeration of V such that for each $v \in V,\left\{n: v_{n}=v\right\}$ is infinite. Let $B_{n}=\{u \in B$: $\left.\left\|u-v_{n}\right\|<1 /(n+1)\right\}$.
We construct the sequence x in steps, defining in each step x_{p} for p in a fresh finite subset of ω. Assume that x_{p} is already defined for $p \in A$, where A is a finite subset of ω.
Step $2 k$. Let $\delta=\max \{\|h(n)\|: n \in \omega-A\}$. Let $F=\{n \in \omega-A:\|h(n)\|$ $=\delta\}$. Since h satisfies (1), F is finite. Pick $x_{n} \in(0,1)$ for $n \in F$ so that $x_{n} \neq x_{p}$ for $p \in A$, and $x_{n} \neq x_{m}$ for $n \neq m(n, m \in F)$.

Step $2 k+1$. Let I_{1}, \ldots, I_{r} be the components of $I-\left\{x_{p}: p \in A\right\}$. By Proposition 2, choose $F_{q} \in[\omega-A]^{<\omega}$ for $q=1, \ldots, r$ so that $q \neq q^{\prime}$ implies $F_{q} \cap F_{q^{\prime}}=\varnothing$ and $h\left(F_{q}\right) \in B_{k}$.

Let $F_{q}=\left\{n_{1}, \ldots, n_{k}\right\}$ where the indices are chosen so that for $i=$ $1, \ldots, k$ we have:

$$
\left\|h\left(n_{1}\right)+\cdots+h\left(n_{i}\right)\right\|<2\left\|h\left(F_{q}\right)\right\| .
$$

This is possible by the col clary to Lemma 2. Choose $x_{n_{1}}<x_{n_{2}}<\cdots<x_{n_{k}}$ in I_{q}, dividing I_{q} into intervals of equal length.

It is easy to check that $\left(x_{n}\right)_{n \in \omega}$ enumerates a dense set in I with no repetitions (Step $2 k$ makes sure that x_{n} is defined for every $n \in \omega$).

Given $0<a<b<1$ there is a k_{0} such that for every $k>k_{0}$ one of the
intervals I_{q} considered in Step $2 k+1$ is included in (a, b), and so for some $F \in\left[C_{b}-C_{a}\right]^{<\omega}, F$ is proper for h w.r.t. x and $h(F) \in B_{k}$. It follows that h is x-conditional.

Remark. By an easy modification one shows that given any countable dense set X in I, the dense sequence $x=\left(x_{n}\right)_{n \in \omega}$ of Lemma 3 can be so chosen that $X=\left\{x_{n}: n \in \omega\right\}$.

Combining Lemma 3 and Theorem 4 we have:
Theorem 5. Let B be finite dimensional. Let $h: \omega \rightarrow B$ satisfy (1) and (4). Then there is a dense sequence x in I, and an $s_{0} \in \operatorname{Reg}(I, B)$ such that:

$$
S\left(h^{x}\right)=s_{0}+C(I, B)
$$

5. We combine now Theorem 5 with Steinitz's ideas to generalize Theorem 2 as follows.

Theorem 6. Let B be finite dimensional, and let $h: \omega \rightarrow B$ be conditionally summable. Then there is a subspace N of B of dimension >0, a dense sequence x in I, and an $s_{0} \in \operatorname{Reg}(I, B)$ such that:

$$
S\left(h^{x}\right)=s_{0}+C(I, N)
$$

Proof. It follows from Steinitz [S] that there are subspaces M, N of B such that $B=M \oplus N$, and if $h_{M}: \omega \rightarrow M, h_{N}: \omega \rightarrow N$ are determined by the equations $h(n)=h_{M}(n)+h_{N}(n), h_{M}(n) \in M, h_{N}(n) \in N$, then
(i) $\sum_{n \in \omega}\left\|h_{M}(n)\right\|<\infty$,
(ii) $S\left(h_{N}\right)=N$.
(ii) implies that h_{N} satisfies (1) and that $\left\{h_{N}(F): F \in[\omega]^{<\omega}\right\}$ is dense in N. By Theorem 5 we pick a dense sequence $x=\left(x_{n}\right)_{n \in \omega}$ in I and $s_{2} \in \operatorname{Reg}(I, N)$ such that:

$$
S\left(h_{N}^{x}\right)=s_{2}+C(I, N)
$$

Since $\left\|h_{M}^{x}(n)\right\|=\left\|h_{M}(n)\right\|$, we have $\Sigma_{n \in \omega}\left\|h_{M}^{x}(n)\right\|<\infty$. Thus, there is an $s_{1} \in \operatorname{Reg}(I, M)$ such that every ω-ordering $<$ of ω sums h_{M}^{x} to s_{1} in $\operatorname{Reg}(I, M)$.

Since $h^{x}(n)=h_{M}^{x}(n)+h_{N}^{x}(n)$, we see that an ω-ordering $<$ sums h^{x} iff it sums h_{N}^{x}, and whenever $<$ sums h_{N}^{x} to f it sums h^{x} to $s_{1}+f$.

Let $s_{0}=s_{1}+s_{2}$. Then $s_{0} \in \operatorname{Reg}(I, B)$ and we have:

$$
S(h)=s_{1}+S\left(h_{N}\right)=s_{1}+\left(s_{2}+C(I, N)\right)=s_{0}+C(I, N)
$$

We restate Theorem 6, using the lexicon of §2:
Theorem 6'. Let B be finite dimensional Banach space. Let $h: \omega \rightarrow B$ be conditionally summable. Then B has a subspace N of dimension >0, and there is an I-chain $\mathrm{C}=\left\{C_{t}: t \in I\right\}$ of subsets of ω so that:
(i) There is an ω-ordering $<_{0}$ that sums h uniformly over C. Let

$$
s_{0}(t)=\zeta_{0}\left(C_{t}\right) \quad(t \in I) .
$$

(ii) For every continuous $g: I \rightarrow N$ satisfying $g(0)=0$ there is an ω-ordering $<$ that sums h uniformly over C, satisfying for every $t \in I$

$$
\stackrel{\prec}{s}\left(C_{t}\right)=s_{0}(t)+g(t) .
$$

(iii) For every ω-ordering \prec that sums h uniformly over C there is a continuous $g: I \rightarrow N$ satisfying $g(0)=0$, such that for every $t \in I$

$$
\stackrel{\zeta}{s}\left(C_{t}\right)=s_{0}(t)+g(t) .
$$

Acknowledgement. We are grateful to Paul Erdös for bringing Steinitz's work to our attention, and to Arie Dvoretzky for several helpful conversations.

References

[B1] V. Bergström, Eine neuer Beweis eines satzes von E. Steinitz, Hamburgische Abhandlungen 8 (1930), 148-152.
[B2] \qquad , Zwei Sätze über ebene Vectorpolygone, Hamburgische Abhandlungen 8 (1930), 205-219.
[D1] V. Drobot, Rearrangements of series of functions, Trans. Amer. Math. Soc. 142 (1969), 239-248.
[D2] A. Dvoretzky and C. A. Rogers, Absolute and unconditional convengence in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192-197.
[G] C. Goffman, G. Moran and D. Waterman, The structure of regulated functions, Proc. Amer. Math. Soc. 57 (1976), 61-65.
[H] T. H. Hildebrandt, On unconditional convergence in normed vector spaces, Bull. Amer. Math. Soc. 46 (1940), 959-962.
[L] P. Levy, Sur les séries semi-convergentes, Nouv. Ann. Math. 64 (1905), 506-511.
[M] G. Moran, Of regulated and steplike functions, Trans. Amer. Math. Soc. 231 (1977), 249-257.
[O] W. Orlicz, Beiträge zur Theorie der orthogonal Entwicklung. II, Studia Math. 1 (1929), 242.
[S] E. Steinitz, Bedingt Konvergente Reihen und konvexe Systeme, J. Mathematik 143 (1913), 128-175.

Department of Mathematics, University of Haifa, Haifa, Israrl

[^0]: Received by the editors May 26, 1977.
 AMS (MOS) subject classifications (1970). Primary 40A99, 46B15; Secondary 46E15.
 Key words and phrases. Conditionally convergent series, rearrangement of terms, finite dimensional Banach space.
 ${ }^{1}$ See [H], [O]. The converse is true if B is finite dimensional, but fails already in any infinite dimensional Hilbert space, as the example following Theorem 2 indicates.
 ${ }^{2}$ The proofs of Theorem 2 [L], [S], [B1] assume the Euclidean norm. Since all norms induce the same topology on $R^{n}, S(h)$ is independent of the particular norm chosen.

[^1]: ${ }^{3}$ The choice of $\mathbf{2}$ here is somewhat arbitrary for the sequel. Any constant $>\mathbf{1}$ could be chosen. See [M, 85].

