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EVEN TRIANGULATIONS OF S3 AND

THE COLORING OF GRAPHS

BY

JACOB ELI GOODMAN AND HIRONORI ONISHI

Abstract. A simple necessary and sufficient condition is given for the

vertices of a graph, planar or not, to be properly four-colorable. This

criterion involves the notion of an "even" triangulation of S3 and general-

izes, in a natural way, a corresponding criterion for the three-colorability of

planar graphs.

0. Introduction. With the Appel-Haken solution to the Four Color Problem

[2], the question remains open of characterizing those graphs, planar or not,

that are 4-colorable. This paper represents a step toward a solution by

offering a new criterion for the 4-colorability of a graph embedded in 3-space,

which was suggested by an analogous criterion for the 3-colorability of a

graph embedded in the plane. The main result is that a graph in the 3-sphere

S3 is (vertex) 4-colorable if and only if it is a subcomplex of the 1-skeleton of

an "even" triangulation of S^-one in which every edge has an even number

of faces incident to it.

The corresponding result one dimension lower is well known [4, Theorem

7.4.3]. In §1, we present a summary of this theory with some auxiliary results,

and in §2 we present the parallel theory in 3 dimensions.

Since the original submission of this paper, Robert D. Edwards has

announced an (independent) proof of the main result, following an idea of P.

Deligne, R. MacPherson, and J. Morgan (see Notices Amer. Math. Soc. 24

(1977), A-257).
The beautiful sequence of papers by Steve Fisk entitled Geometric coloring

theory, which has begun appearing still more recently in Advances in Math.

(24 (1977), 298-340, et seqq.), also contains ideas which overlap ours to some

extent.

We express our gratitude to the referee for his helpful suggestions about

tightening the exposition of the paper.
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1. 3-coloring. (1) Let T be a triangulation of a region in the sphere S2.

Suppose T is 3-colored, i.e., the vertices of T are colored by three or fewer

colors so that no two adjacent vertices have the same color. Then it is clear

that every interior vertex of T is even, i.e., has even degree: look at the

alternating colors of its neighbors. The converse is also true, in the following

sense:

Theorem 1.1. Let T be a triangulation of a disk or of S2. If T is even, i.e.,

every interior vertex of T is even, then T can be 3-colored and a 3-coloring is

unique up to a permutation of the colors (cf. [4, Theorem 7.4.3]).

Proof. If the region is S2, remove one face from T; there remains an even

triangulation of a disk. Thus we may assume the region is a disk. We may

also assume T has at least two faces. It is clear that T has a face whose

removal leaves an even triangulation of a disk. Thus by induction on the

number of faces we arrive easily at the conclusions.

(2) A topological property of the triangulated region needed in Theorem

1.1 is that it is simply-connected. For example, Figure 1.1 shows an even

triangulation of an annulus which cannot be 3-colored. For the uniqueness of

the 3-coloring, all we need is that the region be the closure of an open

edge-connected set.

Figure 1.1

(3) Let Tx be a triangulation of the circle Sx. It is trivial to 3-color r1.

Once Tx is 3-colored, there are two types of vertices: one whose neighbors

have different colors is of type XYZ, and one whose neighbors have the same

color is of type XYX.X Clearly a 3-coloring of Tx which induces a given typing

is unique up to a permutation of the colors.

(4) Let T be a triangulation of the disk B2, and let Tx be the induced

boundary triangulation; we call T an extension of Tx. It is clear that if T is

3-colored, then a vertex of T1 is of type XYZ or XYX according as it is even

or odd in T.

lS. Fisk calls these "nonsingular" and "singular", resp. (see Introduction).
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(5) Let T and T1 be as in (4). Suppose Tl is 3-colored in such a way that a

vertex of T1 is of type XYZ if and only if it is even in T. If T is even, then

there is a unique 3-coloring of T extending that of Tx. In fact, take any

3-coloring of T and note that the new typing coincides with the original by

(4). Then permute the colors.

(6) Let Tx be a triangulation of Sx and consider an assignment of the

symbols £ or 0 to the vertices of Tx. Such an assignment satisfies the mod 2

condition if the number of O-vertices is even. Assume the mod 2 condition.

Choose an is-vertex Vx and assign +1 or - 1 to each £-vertex V according as

the number of O-vertices between Vx and V is even or odd. Because of the

mod 2 condition this is independent of the direction around Tx. The E-0

assignment satisfies the mod 3 condition if the sum of the numbers +1 and

— 1 over all £-vertices is a multiple of 3. The significance of these conditions

is apparent in the following:

Theorem 1.2. Let Tx be a triangulation of Sx. Given an E-0 assignment on

(the vertices of) Tx, there is a 3-coloring of Tx which induces the assignment

(i.e., a vertex is of type XYZ or XYX according as it is an E- or O-vertex) if

and only if the E-O assignment satisfies the mod 2 and mod 3 conditions.

Proof. Suppose Tl is 3-colored by A, B, and C. The cyclical orientation

ABC induces an orientation of each edge. A vertex of T1 is of type XYX if

and only if the two edges incident to it are oppositely oriented. This gives the

mod 2 condition on the induced E-O assignment. The mod 3 condition

follows from the fact that the number of positively oriented edges and the

number of negatively oriented edges are congruent mod 3, since the coloring

can be thought of as a map from Sx to the (oriented) triangle ABC.

Conversely, suppose that the E-0 assignment satisfies the mod 2 and

mod 3 conditions. Let Vx,. .., Vn be the vertices of T1 in a cyclical order.

Color Vx A and V2 B. Then color V3 C or A according as V2 is an E- or

O-vertex. Continue this. The mod 2 and mod 3 conditions guarantee that this

can be done consistently, i.e., the color of Vn is C or B according as Vx is an

E- or O-vertex. Tx is now 3-colored and the coloring induces the given E-0

assignment.

(7) Let T be an even triangulation of the disk B2. A 3-coloring of T induces

an E-O assignment on the boundary Tx as in Theorem 1.2. By (4), a vertex of

Tx is an E-vertex if and only if it is even in T. The converse is also true:

Theorem 1.3. Let Tx be a triangulation of Sx with an E-O assignment

satisfying the mod 2 and mod 3 conditions. Then Tx can be extended to an even

triangulation T of the disk inside Sx in such a way that a vertex of Tx is even in

T if and only if it is an E-vertex. Moreover, we can make sure that (i) and (ii)

are satisfied or, alternatively, (in):
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(i) Thas only one interior vertex if Tx has no E-vertices. (This is trivial)

(ii) T has no interior vertices if Tx has at least one E-vertex (cf. [3]).

(iii) TVo interior edge of T joins vertices of Tx.

(8) In view of Theorems 1.1 and 1.2, Theorem 1.3 is equivalent to the

statement: Any 3-colored triangulation Tx of Sx can be extended to a

3-colored triangulation T of the disk inside S ' (satisfying (i) and (ii), or (iii)).

(9) We prove (ii) of Theorem 1.3 in a slightly more general form: Let k > 3

and let Tx be a /¿-colored triangulation of Sx involving all k colors. Then Tx

can be extended to a ^-colored triangulation T of the disk inside Sx without

any interior vertices.

Proof. Let n be the number of vertices of Tx. We may assume n > 3.

Choose three consecutive vertices Vx, V2, V3 having three distinct colors A, B,

C. If V2 is the only vertex of color B, then join it to every other vertex of Tx.

If not, join Vx and V3. This gives a triangle VXV2V3 and a ^-colored

triangulation Tx of a circle not containing V2. Since T¡ has n - 1 vertices

and k colors, we can extend it by induction on n, and we obtain a desired

triangulation T.

Proof of (iii). Let m be the number of ¿s-vertices of Tx. We may assume

m > 2. Let Vx,. .., V„ be the vertices of r1 in a cyclical order, and suppose

that  Vx  and  Vk (k > 2) are ^-vertices and that  Vi for  1 < i < k are

O-vertices. Vx.Vk have only two colors, say A and B. Introduce an

interior vertex W, color it C, and join W to all the V¡ for 1 < i < k. Consider

the triangulation T¡: VxWVkVk+x • • • Vn. Since Vk and Vx are E-vertices,

the color of Vk+X and Vn is C. Thus Vk and Vx are O-vertices of T¡. W is an

E- or O-vertex according as k is even or odd. Thus the number of £-vertices

of Tx is m — 1 or m — 2 according as k is even or odd. In either case, by

induction on m we obtain a desired 3-colored triangulation T.

(10) In the proof of (iii), if n ^ 0 (mod 3), then we can choose Vx such that

k is odd, so that m decreases by 2. Thus by induction on m we obtain a

desired T with at most [2m/3] + 1 interior vertices.

Theorem 1.4. Any 3-colored graph G in S2 can be extended to an even

triangulation T of S2 so that G is an induced subgraph of T.

Proof. Embed O in a triangulation of S2 (without disturbing the edges of

G). A new edge may join two vertices of the same color. Introduce a new

vertex on each such edge and color it by one of the two remaining colors.

Extend each 3-colored "triangular" polygon to a 3-colored triangulation of its

inside without any diagonals by (iii) of Theorem 1.3. This gives a desired T.

2. 4-coloring. (1) Let T be a triangulation of a region in the 3-sphere S3.

Suppose T is (vertex) 4-colored. Then it is clear that every interior edge L of
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T is even, i.e., the number of faces incident with L, called the degree of L, is

even: look at the alternating colors of the vertices adjacent to L, i.e., adjacent

to both ends of L.

Theorem 2.1. Let T be a triangulation of a simply-connected region R in S3

(R being the closure of an open connected set). If T is even, i.e., every interior

edge of T is even, then T can be 4-colored, and a 4-coloring of T is unique up to

a permutation of the colors.

Proof. The condition that every interior edge of T is even implies that to

every simple loop Jx, . . . ,Jd of 3-simplices around an interior edge, any

4-coloring of any J¡ induces a unique 4-coloring of the "wheel" Jx U • • . U

Jd. Since R is simply-connected, every loop of 3-simplices is a sum of simple

loops. Thus we arrive at the conclusion.

(2) Unlike the 2-dimensional case, this time the region can have holes. For

example a spherical shell is simply-connected. But a solid torus is not, and it

is easy to construct an even triangulation of a solid torus which cannot be

4-colored.

(3) Let T2 be a triangulation of the sphere S2. It is not trivial to 4-color T2;

the Four Color Theorem [2] says it can be done. Once T2 is 4-colored, there

are two types of edges: one whose neighboring vertices have different colors

we will call of type XYZ, and one whose neighboring vertices have the same

color we will call of type XYX. A 4-coloring of T2 which induces a given

typing is unique up to a permutation of the colors.

(4) Let T be a triangulation of the ball B3 and let T2 be the induced

boundary triangulation; we will call T an extension of T2. If T is 4-colored,

then an edge of 7"2 is of type XYZ or XYX according as it is even or odd in

T.

(5) Let T and T2 be as in (4). Suppose T2 is 4-colored in such a way that an

edge of T2 is of type XYZ if and only if it is even in T. If T is even, then

there is a unique 4-coloring of T extending that of T2. The reason is exactly

the same as in (1.5).

(6) Let T2 be a triangulation of S2 and consider an assignment of E or O

to the edges of T2. We say that such an assignment satisfies the mod 2

condition or the mod 3 condition if, for every vertex V of T2, the E-0

assignment on the spokes of the wheel about V satisfies the mod 2 or mod 3

condition in the sense of (1.6).

Theorem 2.2. Let T2 be a triangulation of S2. Given an E-O assignment on

(the edges of) T2, there is a 4-coloring of T2 which induces the assignment (i.e.,

an edge is of type XYZ or XYX according as it is an E- or O-edge) if and only

if the assignment satisfies the mod 2 and mod 3 conditions. Moreover the

4-coloring is unique (up to a permutation of the colors).
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Proof. Suppose that the E-O assignment is induced by a 4-coloring of T2.

For each vertex V of T2, the rim R of the wheel about V is 3-colored and the

induced E-O assignment on the vertices of R coincides with the E-O

assignment on the corresponding spokes, and hence the mod 2 and mod 3

conditions are satisfied.

Conversely, suppose that the E-O assignment satisfies the mod 2 and

mod 3 conditions. Take a vertex V and 3-color the rim about V so that it

induces the E-O assignment on R corresponding to the E-0 assignment of

the spokes about V. Color V by the 4th color. Since S2 is simply-connected, it

follows that this 4-coloring of the wheel about V spreads to a unique

4-coloring of T2, and that the latter induces the given E-O assignment.

(7) Let T be an even triangulation of the ball B3. A 4-coloring of T induces

an E-O assignment on the boundary T2 as in Theorem 2.2. By (4), an edge of

T2 is an £-edge if and only if it is even in T.

Theorem 2.3. Let T2 be a triangulation of S2 with an E-O assignment

satisfying the mod 2 and mod 3 conditions. Then T2 can be extended to an even

triangulation T of the ball inside S2 in such a way that an edge of T2 is even in

T if and only if it is an E-edge. Moreover, we can make sure that (i) and (ii) are

satisfied or, alternatively, (iii):

(i) T has only one interior vertex if T2 has no E-edges. (This is trivial: T2 is

3-colorable.)

(ii) T has no interior vertices if T2 has at least one E-edge.

(iii) TVo interior edge of T joins vertices of T2.

(8) In view of Theorems 2.1 and 2.2, Theorem 2.3 is equivalent to the

statement: Any 4-colored triangulation T2 of S2 can be extended to a

4-colored triangulation T of the ball inside S2 (satisfying (i) and (ii), or (iii)).

(9) We prove (ii) of Theorem 2.3 in a slightly more general form: Let k > 4

and let T2 be a /¿-colored triangulation of S2 involving all k colors. Then T2

can be extended to a fc-colored triangulation T of the ball inside S2 without

any interior vertices.

Proof. We use induction on n, the number of vertices of T2. If n — 4, there

is nothing to do. Let n > 4, and consider three cases:

(a) Suppose T2 contains a triangle VXV2V3 colored (say) A, B, C which

separates vertices of colors other than A, B, C. Then fill in face VXV2V3 and

use the induction hypothesis to get a colored triangulation of the ball

bounded by the new face and each of the resulting hemispheres. The

triangulations then patch together along face Vx V2 V3.

(b) Suppose T2 contains a triangle VXV2V3 colored (say) A, B, C which

separates vertices, but such that the only colors appearing on the hemisphere

S, on one side of the triangle are A, B, C (see Figure 2.1(a)). Fill in face

Vx V2 V3 and use the induction hypothesis to get a colored triangulation T2 of



EVEN TRIANGULATIONS OF S3 507

the ball bounded by the new face and the opposite hemisphere S2. In T2, face

Vx V2 V3 is joined to a vertex V0, necessarily of a different color; let J be the

tetrahedron V0VXV2V3 and let Bx be the ball bounded by Sx and face

VXV2V3. Now remove face VXV2V3, and triangulate Bx u J by joining V0 to

every vertex in Sx (see Figure 2.1(b)); call the resulting triangulation Tx. Then

r, u (T2 — J) is the desired triangulation T.

(a) (b)

Figure 2.1

(c) Suppose, finally, that T2 contains no triangle separating vertices. Then

in the wheel around any vertex, no two vertices can be joined by an edge

external to the wheel. Note that there is a vertex Vx of T2 such that the wheel

about Vx involves at least 4 colors. In fact, choose any two faces of T2 which

together involve at least 4 colors. By considering a chain of edge-connected

faces between them, we see that some pair of adjacent faces together involve

4 colors, and we get a desired vertex Vx.

Figure 2.2

Let A be the color of Vx. If Vx is the only vertex of color A, then join Vx to



508 J. E. GOODMAN AND HTRONORI ONISHI

every other vertex of T2. Suppose some other vertex is colored A. Consider

the rim T¿ of the wheel about Vx. T¿ has at least 3 colors. Thus by (1.9) T¿

can be extended to a colored triangulation T$ of the disk B2 inside T¿,

without any interior vertices (see Figure 2.2). Tj1 together with the wheel

about Vx give a fc-colored triangulation Tx, without any interior vertices, of

the ball inside the hemisphere Sx bounded by the wheel and the "flat" disk

B2.

Consider the other hemisphere 52. Tq together with the restriction of T2 to

S2 give a À>colored triangulation T2 of S2 with n — 1 vertices and k colors.

By induction on n, T2 can be extended to a A:-colored triangulation T2 of the

ball inside S2 without any interior vertices. Patching Tx and T2 together along

Tq we obtain a desired triangulation T, which is proper because no two

vertices of Tq were connected by an edge outside Tj.

Proof of (iii). Color each face of T2 by the color missing from its vertices.

Then call a maximal edge-connected set of faces of the same color a

"continent". Let m be the number of continents in T2. We may assume

m > 2. Since m < oo, it is clear that there is a simply-connected continent K.

Let A be its color. Introduce an interior vertex W, color it A, and join W to

every vertex of K. The boundary of K is a triangulated circle and this, with

W, forms a wheel Tq about W. The wheel Tq cuts S2 into two spheres, Sx and

S2; say Sx = K u T¿. Let Tx be the triangulation of the ball inside Sx

induced by K u 7q and the edges joining W to the vertices of K (see Figure

2.3).

Figure 2.3

Let r22 be the 4-colored triangulation of S2 consisting of 7q and the

restriction of T2 to S2. Let L be a boundary edge of Tq. The vertex V of T2

across L from W is colored A because L is on the continental boundary of K.
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Thus L is not on a continental boundary in T2. It follows that T2 has fewer

than m continents. By induction on m, we obtain a 4-colored triangulation T2

of the ball inside S2 extending T2, and with no interior edge joining a pair of

vertices of T2. Patching Tx and T2 together along Tq, we obtain a desired T.

(10) It is clear from the proof of (iii) above that the triangulation T

obtained has at most m interior vertices. It may have fewer than m, and in

fact the number of continents may decrease by more than 1 in the induction

step.

Theorem 2.4. Any 4-colored graph G in S3 can be extended to an even

triangulation T of S3 so that G is an induced subgraph of T.

Figure 2.4

Proof. By [1, Corollary VII.3], we can embed G in a triangulation Tx of S3

(without disturbing the edges of G). Assign colors to the new vertices in T,

randomly using the 4 colors of G. On each xx-colored edge of Tx (it cannot

be an edge of G), introduce a new vertex and color it y =£ x. On each face of

Tx which (including the new vertices) has only 2 colors (necessarily as in

Figure 2.4(a) or (b)), introduce a new vertex and color it z ^ x,y. In each

3-simplex of T which (including the new vertices) has only 3 colors, introduce

a new vertex and give it the remaining color. Now subdivide the edges of Tx

at the new vertices (if any); subdivide the faces of Tx according to the scheme

in Figure 2.5; and subdivide the 3-simplices of Tx (whose faces have now

been triangulated and properly 4-colored) by Theorem 2.3(iii).2 Since no two

vertices of any 3-simplex are joined by an edge not on the boundary, we get a

proper triangulation T of S3 when we glue all the separate triangulations

together along the common faces. And since no original edge has been

tampered with, G is embedded in T. The evenness of T is a consequence of

(2.1).

Corresponding to the six possibilities for a face shown in Figure 2.5, there are 48 inequivalent

cases of an (improperly) 4-colored 3-simplex whose edges and faces have been subdivided and

the new vertices colored to provide a proper 4-coloring in accordance with the scheme given here.
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Figure 2.5
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