SEMI-ALGEBRAIC GROUPS AND THE LOCAL CLOSURE OF AN ORBIT IN A HOMOGENEOUS SPACE

BY

MORIKUNI GOTO

ABSTRACT. Let L be a topological group acting on a locally compact Hausdorff space M as a transformation group. Let m be in M. A subset Q of M is called the *local closure* of the orbit Lm if Q is the smallest locally compact invariant subset of M with $m \in Q$. A partition

$$M = \bigcup_{\lambda \in \Lambda} Q_{\lambda}, \quad Q_{\lambda} \cap Q_{\mu} = \emptyset \quad (\lambda \neq \mu)$$

is called an LC-partition of M with respect to the L action if each Q_{λ} is the local closure of Lm for any m in Q_{λ} .

THEOREM. Let G be a connected Lie group, and let A and B be subgroups of G with only finitely many connected components. Suppose that B is closed. Then the factor space G/B has an LC-partition with respect to the A action.

1. Introduction. Let G be a locally compact topological group, and let A and B be subgroups of G. A subset P of G is said to be (A, B)-invariant if $APB = \{apb; a \in A, p \in P, b \in B\} = P$. In this case the direct product topological group $A \times B$ acts on the underlying space of G as a transformation group by

$$(a, b)g = agb^{-1}$$
 for $g \in G$, $(a, b) \in A \times B$,

and P is (A, B)-invariant if and only if P is invariant under $A \times B$. For g in G, the double coset AgB is the orbit of the transformation group, passing through g. In this setting, we shall give some definitions.

DEFINITION 1. Let g be in G, and suppose that there exists a minimal, locally compact, (A, B)-invariant subset P containing g. Then the set P is said to be the *local closure* of the double coset AgB.

Since the intersection of two locally compact sets is locally compact, the local closure of AgB is unique, if it exists.

DEFINITION 2. Suppose that G has a partition

$$G = \bigcup_{\lambda \in \Lambda} P_{\lambda}, \quad P_{\lambda} \cap P_{\mu} = \emptyset \qquad (\lambda \neq \mu),$$

where Λ is a set of indices, such that for each $\lambda \in \Lambda$, the set $P_{\lambda} \neq \emptyset$ is the

Received by the editors May 15, 1977 and, in revised form, November 22, 1977.

AMS (MOS) subject classifications (1970). Primary 57E20; Secondary 20G20, 22D05.

© 1979 American Mathematical Society 0002-9947/79/0000-0012/\$05.00

local closure of AgB for every g in P_{λ} . Then the partition (clearly unique) is called the LC-partition of G with respect to the pair (A, B).

Throughout the paper, the identity element of a group in question is always denoted by e; for a topological group L, the identity component, i.e. the connected component containing e, will be denoted by L_e .

A topological group L is said to be *compactly*, *finitely*, or *countably* connected if the factor group L/L_e is compact, finite, or countable, respectively.

The following theorem will be established in this paper:

THEOREM I. Let G be a connected Lie group, and let A and B be finitely connected subgroups of G. Then G has an LC-partition with respect to (A, B).

Next, we shall consider transformation groups.

DEFINITION 3. Let L be a topological group acting on a locally compact Hausdorff space M as a transformation group. Let m be in M. A subset Q of M is called the *local closure* of the orbit Lm if Q is the smallest locally compact, invariant subset of M with $m \in Q$. Also, a partition

$$M = \bigcup_{\lambda \in \Lambda} Q_{\lambda}, \quad Q_{\lambda} \cap Q_{\mu} = \emptyset \qquad (\lambda \neq \mu),$$

is called the LC-partition, of M with respect to the L action, if each Q_{λ} is the local closure of Lm for any m in Q_{λ} .

Let G be a locally compact group, and B a closed subgroup of G. Let $M = G/B = \{gB; g \in G\}$ denote the factor space, and $\pi: G \ni g \mapsto gB \in M$ the natural map. Let A be a subgroup of G. Then A acts on the homogeneous space M by $a\pi(g) = \pi(ag)$ for $a \in A$ and $g \in G$. Now, it is easy to see that for any $g \in G$, a subset G of G is the local closure of the orbit G orbit G if and only if G is the local closure of the double coset G if and only if G is the local closure of the double coset G if and only if G is the local closure of the double coset G if and only if G is the local closure of the double coset G if and only if G is the local closure of the double coset G if and only if G is the local closure of the double coset G if and only if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G if G is the local closure of the double coset G is the local closure of the double coset G if G is the local closure of the double G is the local closure of G if G

THEOREM I'. Let G be a connected Lie group, and let A and B be finitely connected subgroups. Suppose that B is closed, and let M = G/B be the factor space. Then M has an LC-partition with respect to the A action.

Throughout the paper, for a subset X of a topological space, we let \overline{X} denote the closure of X.

Let L be a topological group, and let A and B be subgroups of L. If a locally compact subset P of L is (A, B)-invariant, then P is $(\overline{A}, \overline{B})$ -invariant, see (2.1) below. Also if B is finitely connected, then so is \overline{B} ; see (2.3). Therefore Theorem I' implies Theorem I, i.e. Theorem I and Theorem I' are equivalent to each other.

Next, in Theorem I' we let A be an abelian group and B a connected

group. In this case, each local closure has an extremely simple topological structure.

THEOREM II. Let G be a connected Lie group. Let A be a finitely connected, abelian subgroup and B a closed connected subgroup of G. Then the local closure of any orbit of the transformation group A acting on M = G/B is homeomorphic with the underlying space of a certain abelian Lie group.

If, in particular, A is a one-parameter subgroup, then for any $m \in M$, the local closure of the orbit Am is homeomorphic with either the real line \mathbb{R} or a toral group.

In order to explain the outline of our proof, we shall introduce a notation of an LC-family of subgroups. When a topological space X is a union of countably many compact subsets, X is said to be σ -compact.

DEFINITION 4. Let G be a locally compact, σ -compact topological group. A set \mathcal{F} of subgroups of G is said to form an LC-family of G if the following conditions are satisfied:

- (1) Any member of F is closed.
- (2) $G \in \mathcal{F}$, and for any nonempty subset \mathcal{F}' of \mathcal{F} , the intersection of all members of \mathcal{F}' is contained in \mathcal{F} .
- By (2), to any subgroup H of G, we can associate the \mathcal{F} -hull $\mathcal{F}(H)$, which is the smallest member of \mathcal{F} containing H. By (1), $\mathcal{F}(\overline{H}) = \mathcal{F}(H)$.
 - (3) If $F \in \mathcal{F}$ and $g \in G$, then $gFg^{-1} \in \mathcal{F}$.
 - (4) For F_1 and F_2 in \mathcal{F} , the double coset F_1F_2 is a locally compact set.
- (5) Suppose F_1 and F_2 are closed subgroups of G such that $F_1 \supset F_2$ and the factor space F_1/F_2 is compact and totally disconnected. If one of F_1 and F_2 is in \mathcal{F} , then so is the other one.
- (6) If H is a closed connected subgroup of G, then $\mathfrak{F}(H)$ is connected, and the commutator subgroup of H coincides with the commutator subgroup of $\mathfrak{F}(H)$.
- (7) If H is a compactly connected, abelian subgroup of G, then $\mathfrak{F}(H)$ is abelian.

Suppose that G has an LC-family \mathcal{F} . Let A and B be subgroups of G, and put $A^* = \mathcal{F}(A)$ and $B^* = \mathcal{F}(B)$. By (3) and (4), every double coset A^*gB^* is locally compact, and $G = \bigcup A^*gB^*$ gives a partition of G into locally compact, (A, B)-invariant subsets. Hence we only have to study the action of $A \times B$ in each A^*gB^* . On the other hand, since $A^* \times B^*$ is a locally compact, σ -compact group, the map

$$\xi_{\sigma}: A^* \times B^* \ni (\alpha, \beta) \mapsto \alpha g \beta^{-1} \in A^* g B^*$$

is (continuous and) open, see (2.4), and induces a homeomorphism between the factor space $A^* \times B^*/D(g)$ and A^*gB^* , where D(g) is the isotropy

subgroup of $A^* \times B^*$ at g. We see easily that a subset P of A^*gB^* is locally compact if and only if $\xi_g^{-1}P$ is so, and P is (A, B)-invariant if and only if $\xi_g^{-1}P$ is $(A \times B, D(g))$ -invariant. Thus the existence of an LC-partition of G with respect to (A, B), is reduced to the existence of an LC-partition of $A^* \times B^*$ with respect to $(A \times B, D(g))$ for every $g \in G$.

Next, let us consider the double coset decomposition

$$A^* \times B^* = \bigcup (A \times B) x D(g).$$

When A and B are closed connected subgroups, $A \times B$ is a normal subgroup of $A^* \times B^*$, and $(A \times B)D(g)$ is a group. Therefore each double coset is a coset. It is easy to see that

$$A^* \times B^* = \bigcup x \overline{(A \times B)D(g)}$$

gives the LC-partition. When A and B are compactly connected or when A is abelian, etc., we can modify the connected case and can study the $(A \times B) \times D(g)$ action on $A^* \times B^*$ in details using (5), (6) and (7). The results following from the existence of an LC-family are given in Theorem III, §2.

Now the problem boils down to the following:

Which groups have an LC-family?

First we consider $GL(n, \mathbf{R})$. Let \mathscr{Q}^* denote the set of all algebraic groups in $GL(n, \mathbf{R})$. \mathscr{Q}^* is almost an LC-family, but does not satisfy (5), (6). We shall call a subgroup A of $GL(n, \mathbf{R})$ pre-algebraic if A is an open subgroup of a suitable algebraic group. Let \mathscr{Q} denote the set of all pre-algebraic groups in $GL(n, \mathbf{R})$. Then \mathscr{Q} is known to be an LC-family. For a subgroup H of $GL(n, \mathbf{R})$, let $\mathscr{Q}(H)$ denote the pre-algebraic hull (= \mathscr{Q} -hull) of H.

A notion of (connected) semi-algebraic groups was introduced by the author in [1]. Here we shall extend it to nonconnected groups. A closed subgroup S of $GL(n, \mathbf{R})$ is said to be *semi-algebraic* if the factor space $\mathfrak{C}(S)/S$ is homeomorphic with a euclidean space \mathbf{R}^k . In §3, we shall see that the set S of all semi-algebraic groups forms an LC-family.

Let G be a connected Lie group, and \mathcal{G} its Lie algebra. Then for $g \in G$, the inner automorphism $G \ni x \mapsto gxg^{-1} \in G$ gives rise to an automorphism Ad(g) of \mathcal{G} , and we have a representation (the adjoint representation)

$$G \ni g \mapsto Ad(g) \in GL(\mathcal{G}).$$

If the adjoint group Ad(G) is semi-algebraic, G is said to be adjoint semi-algebraic. In [1], the author proved that for any connected Lie group G, there exists an adjoint semi-algebraic group S containing G as a closed normal subgroup. Then by the nature of our problems, it suffices to consider only adjoint semi-algebraic groups instead of considering general connected Lie groups.

Let G be an adjoint semi-algebraic group. We shall denote $\rho(g) = Ad(g)$

for $g \in G$. A subgroup H of G is called an sa-group if

- (1) $\rho(H)$ is semi-algebraic, and
- (2) H is an open subgroup of $\rho^{-1}\rho(H)$.

In §4, we shall see that the set of sa-groups in G forms an LC-family.

Special cases of our results have been studied in Pukanszky [6] and Goto [1]. In particular, the last part of Theorem II was given in [1], in a slightly weaker form.

2. Locally compact groups and LC-families of subgroups. First let us recall some results on locally compact Hausdorff spaces and locally compact groups (= locally compact topological groups).

Let M be a Hausdorff space, and let Q be a subset of M. If Q is locally compact, then Q is the intersection of a closed set and an open set. If, in particular, M is locally compact, then the converse is also true. Notice that the intersection, but not the union, of finitely many locally compact sets is again locally compact.

Let G be a locally compact group. Then a subgroup H of G is closed if and only if H is locally compact. Suppose that H is a closed subgroup of G. Let M = G/H denote the factor space, and $\pi: G \ni g \mapsto gH \in M$ the natural map. Then a subset Q of M is open, closed, or locally compact if and only if $\pi^{-1}Q$ is so.

(2.1) Let G be a topological group, and let A and B be subgroups of G. Let P be a locally compact subset of G. If P is (A, B)-invariant, then P is $(\overline{A}, \overline{B})$ -invariant.

PROOF. AP = P implies $A\overline{P} = \overline{P}$, and we have that $A(\overline{P} - P) = \overline{P} - P$. But $\overline{P} - P$ is a closed set, since P is locally compact. Hence $\overline{A}(\overline{P} - P) = \overline{P} - P$, and with $\overline{AP} = \overline{P}$, we have that $\overline{AP} = P$. In a similar way, $P\overline{B} = P$.

(2.2) Let G be a locally compact group, and let D and E be subgroups of G. Suppose that E is a compactly connected, closed subgroup and the identity component E_e of E is a normal subgroup of G. Then the double coset decomposition

$$G = \bigcup Eg \overline{DE_a}$$

is the LC-partition of G with respect to (E, D). Furthermore, each $Eg\overline{DE_e}$ is a closed subset of G.

PROOF. Let $\sigma: G \ni g \mapsto gE_e \in G/E_e$ be the natural homomorphism. We put $Eg\overline{DE_e} = P = P(g)$. Then $\sigma P = \sigma E \cdot \sigma g \cdot \overline{\sigma D}$ is closed, because σE is a compact group. Hence $P = \sigma^{-1}\sigma P$ is closed.

On the other hand, if Q is a locally compact, (E, D)-invariant subset containing g, then Q is (E, DE_e) -invariant, and $Q \supset P(g)$ by (2.1). Hence P(g) is the local closure of EgD. \square

(2.3) Let G be a locally compact group, and H a subgroup of G. If H is compactly or finitely connected, then so is \overline{H} .

PROOF. Suppose that H is compactly connected. For each h in H, we pick a compact neighborhood U(h) of h in the closure \overline{H} of H. Then $V(h) = U(h) \cap H$ is a neighborhood of h in H. Let φ denote the natural homomorphism

$$H \ni h \mapsto hH_e \in H/H_e$$
.

Then $\varphi(V(h))$ is a neighborhood of hH_e in H/H_e . Since H/H_e is compact, there exists a finite set $\{h_1, \ldots, h_k\} \subset H$ such that $\bigcup_{i=1}^k \varphi(V(h_i)) = H/H_e$, i.e. $\bigcup_{i=1}^k V(h_i)H_e = H$. We put $C = \bigcup_{i=1}^k U(h_i)$. Then C is a compact set, and $C \cdot \overline{H_e}$ is closed. Since $\overline{H} \supset C\overline{H_e} \supset H$, we have $\overline{H} = C\overline{H_e}$. But since $\overline{H_e}$ is connected, we have $(\overline{H})_e \supset \overline{H_e}$ and $\overline{H} = C(\overline{H})_e$. Hence \overline{H} is compactly connected.

Next, suppose that H is finitely connected, and $H = \bigcup_{i=1}^{j} a_i H_e$ is the coset decomposition. Then $\overline{H} \supset \bigcup_{i=1}^{j} a_i \overline{H_e} \supset H$, and $\bigcup_{i=1}^{j} a_i \overline{H_e}$ is closed. Hence $\overline{H} = \bigcup_{i=1}^{j} a_i \overline{H_e}$. \square

Next, let G be a locally compact, σ -compact group, and suppose that there exists an LC-family \mathfrak{T} of subgroups of G, satisfying (1), ..., (7) in §1. Let A and B be subgroups of G. First we shall explain our method to study the $A \times B$ action on G.

We put $\mathfrak{F}(A) = A^*$ and $\mathfrak{F}(B) = B^*$. By (3) and (4), for any g in G, we have that $A^*(gB^*g^{-1})$ is locally compact, and so is A^*gB^* . Hence the double coset decomposition

$$G = \bigcup_{g \in G} A^* g B^*$$

is a partition of G into locally compact, (A, B)-invariant subsets. In order to study the $A \times B$ action on each A^*gB^* , we need the following known theorem, see e.g. Helgason [4].

(2.4) Let L be a locally compact, σ -compact group, and let M be a locally compact Hausdorff space. Suppose that L acts on M transitively. For m in M, let L_m denote the isotropy subgroup at m: $L_m = \{x \in L; xm = m\}$. Then the map ξ : $L \ni x \mapsto xm \in M$ is (continuous and) open and gives rise to a homeomorphism between the factor space L/L_m and M.

Since A^* and B^* are closed subgroups of G, they are σ -compact, and so is $A^* \times B^*$. On the other hand, $A^* \times B^*$ acts transitively on A^*gB^* and the isotropy group D(g) at g is given by

$$D(g) = \{(\gamma, g^{-1}\gamma g); \gamma \in A^* \cap gB^*g^{-1}\}.$$

By (2.4), the map

$$\xi = \xi_g : A^* \times B^* \ni (\alpha, \beta) \mapsto \alpha g \beta^{-1} \in A^* g B^*$$

induces a homeomorphism between the factor space $(A^* \times B^*)/D(g)$ and A^*gB^* .

Let P be a subset of A*gB*. If P is locally compact, then so is $\xi^{-1}P$, and conversely. Suppose that P is (A, B)-invariant. Then for $(\alpha, \beta) \in \xi^{-1}P$ and $(a, b) \in A \times B$, we have

$$\xi((a, b)(\alpha, \beta)) = a\alpha g\beta^{-1}b \in APB = P.$$

Hence $\xi^{-1}P$ is $(A \times B, D(g))$ -invariant. Also it is easy to see that if $\xi^{-1}P$ is $(A \times B, D(g))$ -invariant, then P is (A, B)-invariant. Therefore, ξ^{-1} gives a one-one correspondence between the totality of locally compact, (A, B)-invariant subsets of A^*gB^* , and the set of all locally compact, $(A \times B, D(g))$ -invariant subsets of $A^* \times B^*$.

Suppose that B is closed and consider the map

$$\eta = \eta_{\sigma}: A^* \times B^* \ni (\alpha, \beta) \mapsto \alpha g \beta^{-1} B \in A^* g B^* / B \subset G / B = M.$$

The map η is also continuous and open, and gives rise to a homeomorphism between the totality of double cosets $(\{e\} \times B) \setminus A^* \times B^*/D(g)$ and A^*gB^*/B .

Before stating the theorem, we shall prove one lemma. For a subgroup H of G, we shall denote by $\mathcal{F}_e(H)$ the identity component of $\mathcal{F}(H)$.

(2.5) Let H be a compactly connected, closed subgroup of G. Then

$$\mathfrak{F}(H) = H \cdot \mathfrak{F}(H_e), \qquad \mathfrak{F}(H_e) = \mathfrak{F}_e(H).$$

 $\mathfrak{F}(H)$ is compactly connected, and H_e is a normal subgroup of $\mathfrak{F}(H)$.

PROOF. Let N denote the normalizer of H_e in G: $N = \{ g \in G; gH_eg^{-1} = H_e \}$. Then $\mathcal{F}(H_e) \subset N$ by (6). For $g \in N$, by (3) we have

$$\mathfrak{F}(H_e) = \mathfrak{F}(gH_eg^{-1}) = g\mathfrak{F}(H_e)g^{-1},$$

and accordingly $\mathfrak{F}(H_e)$ is a normal subgroup of N. Since $H \subset N$, we have that $H \cdot \mathfrak{F}(H_e)$ is a subgroup of N.

Since H/H_e is compact, there exists a compact subset C of H such that $H = CH_e$. Hence $H \cdot \mathcal{F}(H_e) = C \cdot \mathcal{F}(H_e)$ is a closed subgroup, and we have

$$H \cdot \mathcal{F}(H_e)/\mathcal{F}(H_e) \cong H/H \cap \mathcal{F}(H_e).$$

Since $H \cap \mathfrak{F}(H_e) \supset H_e$, the factor group $H/H \cap \mathfrak{F}(H_e)$ is compact and totally disconnected. Since $\mathfrak{F}(H_e)$ is connected by (6), we see that $H \cdot \mathfrak{F}(H_e)$ is compactly connected, and the identity component of $H \cdot \mathfrak{F}(H_e)$ is $\mathfrak{F}(H_e)$. By (5), $H \cdot \mathfrak{F}(H_e) \in \mathfrak{F}$, and we have $\mathfrak{F}(H) = H \cdot \mathfrak{F}(H_e)$. \square

THEOREM III. Let G be a locally compact, σ -compact group, with an LC-family \mathfrak{F} . Let A and B be subgroups of G.

(a) If A and B are compactly connected, then G has an LC-partition with respect to (A, B).

- (b) Suppose that A is a compactly connected, abelian group and B is a closed, connected group. Then for each $g \in G$, we can find a locally compact abelian group L(g), a closed subgroup L'(g) of L(g), and a homeomorphism φ from $\mathfrak{F}(A)g\mathfrak{F}(B)/B$ onto L(g), such that the image of the local closure of each orbit $Am, m \in \mathfrak{F}(A)g\mathfrak{F}(B)/B$, is a coset of L'(g).
- (c) In (b), if in particular A is a one-parameter subgroup, then the local closure of an orbit Am is homeomorphic either with \mathbf{R} or a certain compact connected abelian group.

PROOF OF (a). By (2.3), \overline{A} and \overline{B} are compactly connected. Hence after this we can suppose that A and B are closed, by (2.1). Then by (2.5), A_e and B_e are normal subgroups of $A^* = \mathcal{F}(A)$ and $B^* = \mathcal{F}(B)$, respectively. Hence $(A \times B)_e = A_e \times B_e$ is a normal subgroup of $A^* \times B^*$. Since $A \times B$ is compactly connected, we can apply (2.2), and for each g in G,

$$A^* \times B^* = \bigcup (A \times B)x \ \overline{D(g)(A_e \times B_e)}$$

is the LC-partition of $A^* \times B^*$ with respect to $(A \times B, D(g))$. Hence

$$A^*gB^* = \bigcup \xi_g \left((A \times B) x \overline{D(g)(A_e \times B_e)} \right)$$

is a partition of A*gB* into minimal, locally compact, (A, B)-invariant subsets. This completes the proof of (a).

PROOF OF (b) AND (c). By (7) and (6), A^* and B^*/B are abelian groups. Hence $(A \times B)D(g)$ is a subgroup of $A^* \times B^*$, and the coset decomposition

$$A^* \times B^* = \bigcup x \overline{(A \times B)D(g)}$$

gives the LC-partition of $A^* \times B^*$ with respect to the pair $(A \times B, D(g))$. Hence G has an LC-partition with respect to the pair (A, B).

Since $(\{e\} \times B)D(g)$ is a closed normal subgroup of $A^* \times B^*$, the set $(\{e\} \times B) \setminus A^* \times B^*/D(g)$ can be identified with the abelian group $L(g) = A^* \times B^*/(\{e\} \times B)D(g)$. Thus the map

$$\eta_{\sigma}: A^* \times B^* \ni (\alpha, \beta) \mapsto \alpha g \beta^{-1} B \in A^* g B^* / B$$

induces a homeomorphism η'_g from L(g) onto A^*gB^*/B .

Let us put $\overline{(A \times B)D(g)}/(\{e\} \times B)D(g) = L'(g)$. Then for each $x \in A^* \times B^*$, we put $x^{\sharp} = x(\{e\} \times B)D(g) \in L(g)$, and get that

$$\eta_g'(x^{\sharp}L'(g)) = \eta_g\overline{(x(A\times B)D(g))}$$

is the local closure of the orbit $A\eta_{g}(x)$.

If, in particular, A is a one-parameter subgroup, then $(A \times B)D(g)/(\{e\}) \times B)D(g)$ is a one-parameter subgroup of L(g), and is dense in L'(g). Hence L'(g) is either **R** or compact. This completes the proof of (b) and (c).

REMARK. Let L be a locally compact, σ -compact group, and G a closed

subgroup of L. Let A and B be subgroups of G. If L has an LC-family \mathcal{F} , then Theorem III, except for the part concerning \mathcal{F} -hulls, holds for G. In fact, if P_{λ} is the local closure of AgB in L for $g \in G$, then $P_{\lambda} \cap G$ is locally compact, (A, B)-invariant, and coincides with P_{λ} . Hence $P_{\lambda} \subset G$.

- 3. Semi-algebraic groups. In this section we shall study subgroups of $GL(n, \mathbf{R})$. A subgroup H of $GL(n, \mathbf{R})$ is said to be *pre-algebraic* if H is an open subgroup of a suitable algebraic group. Since an algebraic group is finitely connected, so is any pre-algebraic group. Let \mathcal{C} denote the set of all pre-algebraic groups in $GL(n, \mathbf{R})$. The following theorem is known; in particular, the proof of (4) for \mathcal{C} can be found in [2].
- (3.1) THEOREM. \mathfrak{A} is an LC-family in $GL(n, \mathbb{R})$. Any member of \mathfrak{A} is finitely connected.

For a subgroup H of $GL(n, \mathbf{R})$, let $\mathcal{C}_e(H)$ denote the identity component of $\mathcal{C}(H)$.

- (3.2) (1) For any subgroup H of GL(n, **R**), $H \cdot \mathcal{C}_{e}(H) = \mathcal{C}(H)$.
- (2) If in particular H is finitely connected, then $\mathcal{Q}_e(H) = \mathcal{Q}(H_e)$.

PROOF. (1) Since $\mathscr{Q}_e(H)$ is a normal subgroup of $\mathscr{Q}(H)$, we have that $H \cdot \mathscr{Q}_e(H)$ is a subgroup of $\mathscr{Q}(H)$. Since $\mathscr{Q}_e(H)$ is contained in $H \cdot \mathscr{Q}_e(H)$, we see that $H \cdot \mathscr{Q}_e(H)$ is open in $\mathscr{Q}(H)$, and is pre-algebraic. Hence $H \cdot \mathscr{Q}_e(H) = \mathscr{Q}(H)$.

(2) It is obvious that \overline{H}_e is the identity component of \overline{H} . Hence it reduces to (2.5). \square

Let H be a closed connected subgroup of $GL(n, \mathbb{R})$. Then H is normal in $\mathcal{C}(H)$, and the factor group $\mathcal{C}(H)/H$ is a connected abelian group by (6). Since $\mathcal{C}(H)/H$ is a Lie group, there exist nonnegative integers k and h such that $\mathcal{C}(H)/H = \mathbb{R}^k \times (\mathbb{R}/\mathbb{Z})^h$. Let K be a maximal compact subgroup of $\mathcal{C}(H)$. Then KH/H is a maximal compact subgroup of $\mathcal{C}(H)/H$; see Iwasawa [5].

In [2], the author defined H to be *semi-algebraic* if H contains all compact subgroups of $\mathcal{C}(H)$. This is equivalent to saying that the factor group $\mathcal{C}(H)/H$ is isomorphic with the vector group \mathbf{R}^k , or that $\mathcal{C}(H)/H$ is homeomorphic with the euclidean space \mathbf{R}^k . Now let us extend the definition to nonconnected groups.

DEFINITION 5. A closed subgroup H of $GL(n, \mathbb{R})$ is said to be *semi-algebraic* if the factor space $\mathcal{C}(H)/H$ is homeomorphic with a euclidean space.

REMARK AND CORRECTION. In [2], the author defined nonconnected semialgebraic groups in a more restrictive manner. However, he later found the new definition more convenient. In the Proposition, p. 72 in [2], "and conversely." must be removed.

(3.3) Let G be a Lie group, and H a closed subgroup of G. If the factor

space G/H is connected and simply connected, then

$$H \cap G_e = H_e$$
 and $G/G_e \cong H/H_e$.

PROOF. Since G/H is connected, we have that $G_eH=G$ and $G/H\sim G_e/H\cap G_e$, where \sim denotes the existence of a homeomorphism. Since G/H is simply connected, $H\cap G_e$ is connected and coincides with H_e . Hence $G/G_e=HG_e/G_e\cong H/H\cap G_e=H/H_e$. \square

(3.4) If S is semi-algebraic, then S is finitely connected and S_e is semi-algebraic, and vice versa.

PROOF. If S is semi-algebraic, then by (3.3), $S/S_e \cong \mathcal{C}(S)/\mathcal{C}_e(S)$ is finite and $\mathcal{C}_e(S) \cap S = S_e$. Hence by (3.2),

$$\mathcal{Q}(S)/S = S \cdot \mathcal{Q}_{e}(S)/S \sim \mathcal{Q}_{e}(S)/\mathcal{Q}_{e}(S) \cap S = \mathcal{Q}(S_{e})/S_{e},$$

and $\mathfrak{C}(S_e)/S_e$ is homeomorphic with a euclidean space.

Conversely, suppose that S is finitely connected and S_e is semi-algebraic. Then $(\mathcal{C}_e(S) \cap S)/S_e$ is a subgroup of $\mathcal{C}_e(S)/S_e = \mathcal{C}(S_e)/S_e \cong \mathbf{R}^k$. Since $(\mathcal{C}_e(S) \cap S)/S_e$ is a finite group, it must reduce to the identity and $\mathcal{C}_e(S) \cap S = S_e$. Then

$$\mathcal{Q}(S)/S = S \cdot \mathcal{Q}_{e}(S)/S_{e} = S \cdot \mathcal{Q}(S_{e})/S_{e} \sim \mathcal{Q}(S_{e})/\left(\mathcal{Q}(S_{e}) \cap S\right)$$
$$= \mathcal{Q}(S_{e})/S_{e} \cong \mathbf{R}^{k}. \quad \Box$$

Let G be a countably connected Lie group. A subgroup H of G is said to be a Lie subgroup if there exists a countably connected Lie group H^* and a continuous one-one homomorphism f from H^* into G such that $f(H^*) = H$. A closed subgroup is a Lie subgroup. Let H be a Lie subgroup of G. Then the Lie group H^* is uniquely determined up to topological isomorphisms. H is called a connected, or a finitely connected, Lie subgroup if H^* is connected, or finitely connected, respectively. H is a connected Lie subgroup if and only if H is arcwise connected. If H_1 and H_2 are Lie subgroups and if H_1H_2 is a subgroup, then H_1H_2 is a Lie subgroup.

Let us denote the set of all semi-algebraic groups in $GL(n, \mathbb{R})$ by S.

(3.5) Let $\{S_{\lambda}\}$ be a subset of S. Then the intersection $\bigcap S_{\lambda}$ is semi-algebraic.

PROOF. Since any semi-algebraic group is finitely connected, S satisfies the descending chain condition. Hence it suffices to prove that $A \cap B \in S$ for A and B in S. We put

$$A_1 = \mathcal{C}(A_e), \quad B_1 = \mathcal{C}(B_e) \quad \text{and} \quad C_1 = A_1 \cap B_1.$$

 B_e is a vector group and $C_1 \cap B_e$ is finitely connected. It, then, follows that $(C_1 \cap A_e)(C_1 \cap B_e)$ is a finitely connected Lie subgroup in C_1 , and so is $(C_1 \cap A_e)(C_1 \cap B_e)/(C_1 \cap B_e)$ in $C_1/(C_1 \cap B_e) = \mathbb{R}^k$. Hence

$$(C_1 \cap A_e)(C_1 \cap B_e)/C_1 \cap B_e \cong C_1 \cap A_e/C$$

is a vector group, where $C = A_e \cap B_e = (C_1 \cap A_e) \cap (C_1 \cap B_e)$. $C_1 \cap A_e$ being finitely connected, so is C by (3.3). Moreover, C is of finite index in $A \cap B$ since A and B are finitely connected. Therefore $A \cap B$ is finitely connected.

Next, we shall prove that $(A \cap B)_e$ is semi-algebraic. Let K be a compact connected subgroup of C_1 . Then $K \subset A_1$, and $K \subset A$. Similarly $K \subset B$. Hence $K \subset (A \cap B)_e$. That is, any maximal compact subgroup of $(C_1)_e$ is contained in $(A \cap B)_e$. It follows from $(C_1)_e$ being pre-algebraic that $(A \cap B)_e$ is semi-algebraic. \square

(3.6) Let A and B be in S. Then the double coset AB is locally compact. PROOF. As before, we put $\mathcal{C}(A) = A^*$, $\mathcal{C}(B) = B^*$ and

$$D = \{(\gamma, \gamma); \gamma \in A^* \cap B^*\} \subset A^* \times B^*.$$

Since A*B* is locally compact, the map

$$\xi: A^* \times B^* \ni (\alpha, \beta) \rightarrow \alpha\beta^{-1} \in A^*B^*$$

is continuous and open, and gives rise to a homeomorphism between the factor space $A^* \times B^*/D$ and A^*B^* . Hence it suffices to prove that $\xi^{-1}(AB) = (A \times B)D$ is closed in A^*B^* .

Since A, B and D are all finitely connected, $(A \times B)D$ is a finite union of the sets of the form

$$\varepsilon(A_e \times B_e)D_e\delta, \quad \varepsilon \in A \times B, \delta \in D.$$

On the other hand, $(A_e \times B_e)D_e$ is a connected Lie subgroup of $(A^* \times B^*)_e$ containing all compact subgroups, and is closed. \square

From (3.1), (3.4), (3.5) and (3.6), we have the following theorem:

- (3.7) THEOREM. S is an LC-family in $GL(n, \mathbf{R})$, and any member of S is finitely connected.
- (3.8) Let φ be a rational homomorphism from an algebraic group A into $GL(j, \mathbb{R})$. Let S be a semi-algebraic group in A. Then $\varphi(S)$ is semi-algebraic.

PROOF. Since S is finitely connected, so is $\varphi(S)$. Hence it suffices to prove that $\varphi(S_a)$ is semi-algebraic. Therefore, we may suppose that S is connected.

Let N be the kernel of φ restricted to $\mathscr{C}(S)$. Then N is pre-algebraic, and is finitely connected. Hence NS/S is a finitely connected Lie subgroup of $\mathscr{C}(S)/S$. Since $\mathscr{C}(S)/S$ is a vector group, so is NS/S, and NS is closed and

¹(3.6) was proved in [2] under a slightly stronger condition.

connected. Hence $\varphi(S) = \varphi(NS)$ is closed in $\varphi \mathcal{C}(S)$. Since $\varphi \mathcal{C}(S) = \mathcal{C}\varphi(S)$, see [3], we have

$$\Re \varphi(S)/\varphi(S) = \varphi \Re(S)/\varphi(S) \cong \Re(S)/NS.$$

Thus, recalling $\mathcal{Q}(S)/NS = \mathcal{Q}(S)/S/NS/S$ is a vector group, it follows that $\varphi(S)$ is semi-algebraic. \square

4. sa-groups in an adjoint semi-algebraic group. Let G be a connected Lie group, G its Lie algebra, and let ρ denote the adjoint representation of G:

$$G \ni g \mapsto \rho(g) = Ad(g) \in Ad(\mathcal{G}) \subset GL(\mathcal{G}).$$

The kernel of ρ is the center Z of G. The connected Lie group G is said to be adjoint semi-algebraic if the adjoint group Ad(G) = Ad(G) is semi-algebraic. By (3.8), a connected semi-algebraic group is adjoint semi-algebraic, and the converse is given by the following:

- (4.1) Let G be an adjoint semi-algebraic group. Then there exists a semi-algebraic group $G' \subset GL(n, \mathbb{R})$, for a sufficiently large n, such that G is locally isomorphic with G'.
 - (4.1) was proved in [2], along with (4.2).
- (4.2) Let G be a connected Lie group. Then there exists an adjoint semi-algebraic group S containing G as a closed normal subgroup.

After this, we assume that G is an adjoint semi-algebraic group, \mathcal{G} its Lie algebra, ρ the adjoint representation of G and Z is the center of G.

DEFINITION 6. A subgroup H of G is said to be an sa-group if

- (i) $\rho(H)$ is semi-algebraic, and
- (ii) H is open in $\rho^{-1}\rho(H)$.

If H is an sa-group, then

(ii') H is closed and $H \supset Z_e$.

Conversely, (i) and (ii') imply (ii) obviously. Let \$ denote the set of all sa-groups in G.

- (4.3) Let S be an sa-group.
- (1) If S' is an open subgroup of S, then S' is sa.
- (2) If S'' contains S as a subgroup of finite index, then S'' is an sa-group.

PROOF. If S is an sa-group, then $\rho(S)$ is semi-algebraic and

$$\rho(S'') \supset \rho(S) \supset \rho(S') \supset \rho(S_{\epsilon}) = \rho(S'')_{\epsilon}.$$

Hence $\rho(S')$ is open in $\rho(S)$, and is semi-algebraic. Also $\rho(S)$ is of finite index in $\rho(S'')$, and $\rho(S'')$ is semi-algebraic.

Next, S' and S'' are closed subgroups and contain $S_e \supset Z_e$. Hence S' and S'' are sa-groups. \square

(4.4) If $\{S_{\lambda}; \lambda \in \Lambda\}$ is a nonempty subset of \mathfrak{S} , then $\bigcap S_{\lambda} \in \mathfrak{S}$.

PROOF. We put $S'_{\lambda} = S_{\lambda} Z = \rho^{-1} \rho(S_{\lambda})$ for $\lambda \in \Lambda$. Then it is obvious that

$$\bigcap \rho(S'_{\lambda}) = \rho(\bigcap S'_{\lambda})$$
 and $\rho^{-1}\rho(\bigcap S'_{\lambda}) = \bigcap S'_{\lambda}$.

Since $\rho(S'_{\lambda}) = \rho(S_{\lambda})$ is semi-algebraic, so is $\bigcap \rho(S'_{\lambda})$. Hence $\bigcap S'_{\lambda}$ is an sa-group.

Next, since S_{λ} is open in S'_{λ} , the identity components of the two groups coincide, and $(\bigcap S_{\lambda})_{e} = (\bigcap S'_{\lambda})_{e}$. Therefore $\bigcap S'_{\lambda} \supset \bigcap S_{\lambda} \supset (\bigcap S'_{\lambda})_{e}$, and $\bigcap S_{\lambda}$ is an open subgroup of $\bigcap S'_{\lambda}$. By (4.3), $\bigcap S_{\lambda}$ is an sa-group. \square

By (4.4), for any subgroup H of G, there corresponds the \hat{s} -hull $\hat{s}(H)$, the smallest sa-group containing H. Let $\hat{s}_e(H)$ denote the identity component of $\hat{s}(H)$.

(4.5) (1) If H is a connected subgroup of G, then

$$\mathfrak{S}(H) = \left(\rho^{-1} \mathfrak{S} \, \rho(H)\right)_{e}.$$

(2) If H is a finitely connected, closed subgroup of G, then

$$\hat{\mathbf{g}}(H) = H \cdot \hat{\mathbf{g}}_e(H), \qquad \hat{\mathbf{g}}_e(H) = \hat{\mathbf{g}}(H_e),$$

 $\mathfrak{S}(H)$ is finitely connected, and H_e is a normal subgroup of $\mathfrak{S}(H)$.

PROOF. (1) We put $S = (\rho^{-1} \mathcal{S} \rho(H))_e$. Then

$$\rho(S) = S \rho(H)$$
 and $\rho^{-1}\rho(S) = S$,

and S is an sa-group.

Next, suppose that T is an sa-group containing H. Then

$$\rho(T) \supset \mathbb{S} \rho(H)$$
 and $\rho^{-1}\rho(T) \supset \rho^{-1}\mathbb{S} \rho(H) \supset S$.

Since T is open in $\rho^{-1}\rho(T)$ and S is connected, we have that $T\supset S$.

(2) Let $\mathcal K$ be the Lie algebra of H, and let N be the normalizer of H_e in G. Then $M = \{x \in GL(\mathcal G); \ x\mathcal K = \mathcal K\}$ is an algebraic group, and $\rho(N) = Ad(\mathcal G) \cap M$ is a semi-algebraic group in $GL(\mathcal G)$. Hence

$$\rho(N) \supset \delta \rho(H_e) \quad \text{and} \quad N = \rho^{-1} \rho(N) \supset \rho^{-1} \delta \rho(H_e).$$

Since $\rho(H_e)$ is a normal subgroup of $\rho(N)$, for $x \in \rho(N)$

$$\delta \rho(H_e) = \delta \left(x \rho(H_e) x^{-1} \right) = x \delta \rho(H_e) x^{-1},$$

and $\Im \rho(H_e)$ is a normal subgroup of $\rho(N)$. Hence N normalizes $\rho^{-1} \Im \rho(H_e)$, and its identity component $\Im (H_e)$. Since H is contained in N, $H \cdot \Im (H_e)$ is a subgroup of N. By $\Im (H_e) \supset H_e$, $\Im (H_e)$ is of finite index in $H \cdot \Im (H_e)$. Hence $H \cdot \Im (H_e)$ is an sa-group, by (4.3) (2), and $\Im (H) = H \cdot \Im (H_e)$. Thus $\Im (H_e)$ is a closed connected subgroup of finite index in $\Im (H)$, and so $\Im (H) = \Im (H_e)$. That $N \supset \Im (H)$ implies that H_e is normal in $\Im (H)$. \square

For a group L, let [L, L] denote the commutator subgroup of L. If, in particular, L is a connected Lie group with Lie algebra \mathcal{L} , then [L, L] is a connected Lie subgroup of L and the Lie algebra of [L, L] is $[\mathcal{L}, \mathcal{L}]$.

(4.6) Let H be a connected Lie subgroup of G. Then $[\mathfrak{S}(H), \mathfrak{S}(H)] = [H, H]$.

PROOF. First suppose that G is a semi-algebraic group in $GL(n, \mathbb{R})$. We put S = S(H)Z. Then [S, S] = [S(H), S(H)] = [H, H]. By (3.8), $\rho(S) = \rho S(H)$ is semi-algebraic. Hence $S = \rho^{-1}\rho(S)$ is an sa-group, and $S \supset S(H)$. Therefore $[S, S] \supset [S(H), S(H)] \supset [H, H]$ and [S(H), S(H)] = [H, H].

Now, we shall consider the general case. By (4.1), there exists a connected semi-algebraic group G' which is locally isomorphic with G. Let us identify \mathcal{G} with the Lie algebra of G'. Let \mathcal{K} be the Lie algebra of H, and let H' be the connected Lie subgroup of G' corresponding to the Lie algebra \mathcal{K} . Then by (4.5) (1), the Lie algebra of $\mathcal{G}(H')$ coincides with the Lie algebra $\mathcal{G}(\mathcal{K})$ of $\mathcal{G}(H)$. Thus $[\mathcal{G}(H'), \mathcal{G}(H')] = [H', H']$ implies $[\mathcal{G}(\mathcal{K}), \mathcal{G}(\mathcal{K})] = [\mathcal{K}, \mathcal{K}]$, whence $[\mathcal{G}(H), \mathcal{G}(H)] = [H, H]$. \square

(4.7) If H is a finitely connected, abelian subgroup of G, then $\mathfrak{S}(H)$ is abelian.

PROOF. Because $\overline{HZ_e}$ is finitely connected and abelian, we can suppose that H is closed and $H \supset Z_e$, without loss of generality. By (4.5) (2),

$$\hat{\mathbf{g}}(H) = H \cdot \hat{\mathbf{g}}_{e}(H), \qquad \hat{\mathbf{g}}_{e}(H) = \hat{\mathbf{g}}(H_{e}),$$

where $\mathfrak{S}_{e}(H)$ is abelian, by (4.6).

Let A be an abelian group in $GL(n, \mathbb{R})$, and let C be the center of the centralizer of A. Then C is an abelian algebraic group and $C \supset A$. Therefore $\mathfrak{C}(A)$ is abelian, and so is $\mathfrak{S}(A)$. That is, the \mathfrak{S} -hull of any abelian group is abelian. Since H is abelian, so is $\rho(H)$, and $\mathfrak{S}\rho(H)$ is an abelian group. Hence $[\mathfrak{S}(H), \mathfrak{S}(H)] \subset Z$.

Let \mathcal{K} and $\mathfrak{F}(\mathcal{K})$ denote the Lie algebra of H and $\mathfrak{F}(H)$, respectively. $\mathfrak{F}_e(H)$ being a normal subgroup of $\mathfrak{F}(H)$, $\rho(H)$ leaves $\mathfrak{F}(\mathcal{K})$ invariant. For $h \in H$, let $\mu(h)$ denote the restriction of $\rho(h)$ to $\mathfrak{F}(\mathcal{K})$. Since $\mathfrak{F}_e(H)$ is abelian and $H_e \subset \mathfrak{F}_e(H)$, the kernel of μ contains H_e , and μ induces a representation of the finite group H/H_e . Therefore, the representation $\mu\colon H\to \mathrm{GL}(\mathfrak{F}(\mathcal{K}))$ is completely reducible. Owing to $\mu(H)\mathcal{K}=\mathcal{K}$, we can find a subspace (subalgebra) \mathfrak{M} of $\mathfrak{F}(\mathcal{K})$ such that $\mathfrak{F}(\mathcal{K})=\mathcal{K}\oplus \mathfrak{M}$, $\mu(H)\mathfrak{M}=\mathfrak{M}$. For any h in H, we have $(\mu(h)-1)\mathcal{K}=0$ because H is abelian, and $(\mu(h)-1)\mathfrak{F}(\mathcal{K})\subset \mathfrak{M}$.

On the other hand, for any $X \in \mathfrak{s}(\mathfrak{K})$ and the real parameter t,

$$a(t) = h(\exp tX)h^{-1}(\exp(-tX)) = \exp(t(\mu(h) - 1)X + O(t^2))$$

is a curve in Z, and belongs to Z_e . Since $Z_e \subset H$ and the tangent vector to a(t) at t=0 is $(\mu(h)-1)X$, we have that $(\mu(h)-1)X \in \mathcal{H}$, and $(\mu(h)-1)\tilde{s}(\mathcal{H}) \subset \mathcal{H}$. It follows that $(\mu(h)-1)\tilde{s}(\mathcal{H})=0$ since $\mathcal{H} \cap \mathcal{H}=\{0\}$. Hence h commutes with every element of $\tilde{s}_e(H)$. Therefore $\tilde{s}(H)=H \cdot \tilde{s}_e(H)$ is abelian. \square

REMARK. The semi-algebraic hull of an abelian group is abelian as we saw in the proof above. But this is not true for the \(\mathscr{g} \)-hull. For example,

$$G = \begin{cases} g(x, y, z) = \begin{cases} e^x & 0 & 0 & 0 \\ 0 & \cos x & \sin x & y \\ 0 & -\sin x & \cos x & z \\ 0 & 0 & 0 & 1 \end{cases}; x, y, z \in \mathbf{R} \end{cases}$$

is an adjoint (semi-)algebraic group, and

$$H = \{ g(x, y, z); x \in 2\pi \mathbb{Z}, y \in \mathbb{Z}, z \in \mathbb{Z} \}$$

is an abelian subgroup of G, but $\mathfrak{S}(H) = G$ is not abelian.

Thus we have

(4.8) THEOREM. Let G be an adjoint semi-algebraic group, and let \$ be the totality of sa-groups in G. Then \$ is an LC-family.

ADDED IN PROOF. The author learned from Philip Green that he had proved in his unpublished paper that any connected Lie group can be embedded as a closed normal subgroup in a suitable Lie group whose adjoint group is pre-algebraic. By his theorem, the main results of this paper can be established without semi-algebraic groups. But the author thinks the theory of semi-algebraic groups itself has some significance, so he leaves the paper in the original form.

BIBLIOGRAPHY

- 1. M. Goto, Orbits of one-parameter groups. III. Lie group case, J. Math. Soc. Japan 23 (1971), 95-102.
 - 2. _____, Products of two semi-algebraic groups, J. Math. Soc. Japan 25 (1973), 71-74.
- 3. M. Goto and H. C. Wang, Non-discrete uniform subgroups of semisimple Lie groups, Math. Ann. 198 (1972), 259-286.
 - 4. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
 - 5. K. Iwasawa, On some types of topological groups, Ann. of Math. 50 (1949), 507-558.
- L. Pukanszky, Unitary representations of solvable Lie groups, Ann. Sci. École Norm. Sup. 4 (1971), 457-608.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA 19174