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SEMI-ALGEBRAIC GROUPS AND THE LOCAL CLOSURE

OF AN ORBIT IN A HOMOGENEOUS SPACE
BY

MORIKUNI GOTO

Abstract. Let L be a topological group acting on a locally compact

Hausdorff space M as a transformation group. Let m be in M. A subset Q

of M is called the local closure of the orbit Lm if Q is the smallest locally

compact invariant subset of M with m £ Q. A partition

m= u ev eAne„=0 ft*»»)
xeA

is called an LC-partition of M with respect to the L action if each Qx is the

local closure of Lm for any minQx.

Theorem. Let G be a connected Lie group, and let A and B be subgroups of

G with only finitely many connected components. Suppose that B is closed.

Then the factor space G/ B has an LC-partition with respect to the A action.

1. Introduction. Let G be a locally compact topological group, and let A

and B be subgroups of G. A subset F of G is said to be (A, B)-invariant if

A PB = {apb; a E A, p E P, b E B) = P. In this case the direct product

topological group A X B acts on the underlying space of G as a trans-

formation group by

(a, b)g = agb~x    for g E G,       (a, b) E A X B,

and P is (A, F)-invariant if and only if P is invariant under A X B. For g in

G, the double coset AgB is the orbit of the transformation group, passing

through g. In this setting, we shall give some definitions.

Definition 1. Let g be in G, and suppose that there exists a minimal,

locally compact, (A, 5)-invariant subset P containing g. Then the set P is said

to be the local closure of the double coset AgB.

Since the intersection of two locally compact sets is locally compact, the

local closure of AgB is unique, if it exists.

Definition 2. Suppose that G has a partition

G = U Px,   Pxn P, =0       (X + u),
xeA

where A is a set of indices, such that for each A G A, the set Px =^0 is the
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local closure of AgB for every g in Px. Then the partition (clearly unique) is

called the LC-partition of G with respect to the pair (A, B).

Throughout the paper, the identity element of a group in question is always

denoted by e; for a topological group L, the identity component, i.e. the

connected component containing e, will be denoted by Le.

A topological group L is said to be compactly, finitely, or countably

connected if the factor group L/ Le is compact, finite, or countable, respec-

tively.

The following theorem will be established in this paper:

Theorem I. Let G be a connected Lie group, and let A and B be finitely

connected subgroups of G. Then G has an LC-partition with respect to (A, B).

Next, we shall consider transformation groups.

Definition 3. Let L be a topological group acting on a locally compact

Hausdorff space Af as a transformation group. Let m be in Af. A subset Q of

Af is called the local closure of the orbit Lm if Q is the smallest locally

compact, invariant subset of Af with m E Q. Also, a partition

m = U Qx,   Qxn ß„ =0     (X * fi),
AEA

is called the LC-partition, of Af with respect to the L action, if each Qx is the

local closure of Lm for any m in Qx.

Let G be a locally compact group, and B a closed subgroup of G. Let

Af= G/B = {gB; g E G} denote the factor space, and tr: G 3 g^gB E

M the natural map. Let A be a subgroup of G. Then A acts on the

homogeneous space Af by 077(g) = tr(ag) for a E A and g E G. Now, it is

easy to see that for any g E G, a subset Q of Af is the local closure of the

orbit A77(g) = -n(Ag) if and only if 77_1g is the local closure of the double

coset AgB. Therefore from Theorem I we have

Theorem I'. Let G be a connected Lie group, and let A and B be finitely

connected subgroups. Suppose that B is closed, and let M = G/B be the factor

space. Then M has an LC-partition with respect to the A action.

Throughout the paper, for a subset X of a topological space, we let X

denote the closure of X.

Let L be a topological group, and let A and B be subgroups^ of L. If a

locally compact subset P of L is (A, 5)-invariant, then F is (A, 2?)-invariant,

see (2.1) below. Also if B is finitely connected, then so is B; see (2.3).

Therefore Theorem I' implies Theorem I, i.e. Theorem I and Theorem I' are

equivalent to each other.

Next, in Theorem I' we let A be an abelian group and B a connected
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group. In this case, each local closure has an extremely simple topological

structure.

Theorem II. Let G be a connected Lie group. Let A be a finitely connected,

abelian subgroup and B a closed connected subgroup of G. Then the local closure

of any orbit of the transformation group A acting on M = G/B is

homeomorphic with the underlying space of a certain abelian Lie group.

If, in particular, A is a one-parameter subgroup, then for any m E M, the

local closure of the orbit Am is homeomorphic with either the real line R or a

toral group.

In order to explain the outline of our proof, we shall introduce a notation

of an LC-family of subgroups. When a topological space X is a union of

countably many compact subsets, X is said to be a-compact.

Definition 4. Let G be a locally compact, a-compact topological group. A

set 5" of subgroups of G is said to form an LC-family of G if the following

conditions are satisfied:

(1) Any member of ÇF is closed.

(2) G E f, and for any nonempty subset 9' of Sr, the intersection of all

members of l3r' is contained in 5'.

By (2), to any subgroup H of G, we can associate the 9-hull 15(H), which

is the smallest member of 9 containing H. By (1), <3(H) = <5(H).

(3) If F E 9 and g E G, then gFg~x E $.

(4) For F, and F2 in 9:, the double coset FXF2 is a locally compact set.

(5) Suppose F, and F2 are closed subgroups of G such that F, D F2 and the

factor space Fx/F2 is compact and totally disconnected. If one of F, and F2 is

in <?, then so is the other one.

(6) If if is a closed connected subgroup of G, then ^(H) is connected, and

the commutator subgroup of H coincides with the commutator subgroup of

nu).
(7) If H is a compactly connected, abelian subgroup of G, then 9(H) is

abelian.

Suppose that G has an LC-family <$. Let A and B be subgroups of G, and

put A* = 9(A) and B* = ^(B). By (3) and (4), every double coset A*gB* is

locally compact, and G = U A *gB* gives a partition of G into locally

compact, (A, ¿?)-invariant subsets. Hence we only have to study the action of

A X B in each A*gB*. On the other hand, since A* X B* is a locally

compact, a-compact group, the map

Çg-.A* X B*3 (a,ß)r->agß-1 E A*gB*

is (continuous and) open, see (2.4), and induces a homeomorphism between

the factor space A* X B*/D(g) and A*gB*, where D(g) is the isotropy
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subgroup of A* X B* at g. We see easily that a subset P of A*gB* is locally

compact if and only if ^~'F is so, and F is (A, 2?)-invariant if and only if

Of XP is (A X B, D ( g))-invariant. Thus the existence of an LC-partition of G

with respect to (A, B), is reduced to the existence of an LC-partition of

A* X B* with respect to (A X B, D(g)) for every g E G.

Next, let us consider the double coset decomposition

A* X B* = (J(A X B)xD(g).

When A and B are closed connected subgroups, A X B is a normal subgroup

of A* X B*, and (A X B)D(g) is a group. Therefore each double coset is a

coset. It is easy to see that

A* X B* = ox (A X B)D(g)

gives the LC-partition. When A and B are compactly connected or when A is

abelian, etc., we can modify the connected case and can study the (A X B) X

D(g) action on A* X B* in details using (5), (6) and (7). The results

following from the existence of an LC-family are given in Theorem HI, §2.

Now the problem boils down to the following:

Which groups have an LC-family?

First we consider GL(«, R). Let &* denote the set of all algebraic groups in

GL(n, R). &* is almost an LC-family, but does not satisfy (5), (6). We shall

call a subgroup A of GL(n, R) pre-algebraic if A is an open subgroup of a

suitable algebraic group. Let â denote the set of all pre-algebraic groups in

GL(n, R). Then & is known to be an LC-family. For a subgroup H of

GL(n, R), let &(H) denote the pre-algebraic hull (= £-hull) of H.

A notion of (connected) semi-algebraic groups was introduced by the

author in [1]. Here we shall extend it to nonconnected groups. A closed

subgroup S of GL(n, R) is said to be semi-algebraic if the factor space

&(S)/S is homeomorphic with a euclidean space R*. In §3, we shall see that

the set S of all semi-algebraic groups forms an LC-family.

Let G be a connected Lie group, and § its Lie algebra. Then for g E G, the

inner automorphism G 3 x>->gxg~x E G gives rise to an automorphism

Ad( g) of %, and we have a representation (the adjoint representation)

G 3 g^Ad(g)EGL(g).

If the adjoint group Ad(G) is semi-algebraic, G is said to be adjoint semi-

algebraic. In [1], the author proved that for any connected Lie group G, there

exists an adjoint semi-algebraic group 5 containing G as a closed normal

subgroup. Then by the nature of our problems, it suffices to consider only

adjoint semi-algebraic groups instead of considering general connected Lie

groups.

Let G be an adjoint semi-algebraic group. We shall denote p(g) = Ad(g)
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for g E G. A subgroup H of G is called an sa-group if

(1) p(H) is semi-algebraic, and

(2) H is an open subgroup of p~xp(H).

In §4, we shall see that the set of sa-groups in G forms an LC-family.

Special cases of our results have been studied in Pukanszky [6] and Goto

[1]. In particular, the last part of Theorem II was given in [1], in a slightly

weaker form.

2. Locally compact groups and LC-families of subgroups. First let us recall

some results on locally compact Hausdorff spaces and locally compact groups

( = locally compact topological groups).

Let M be a Hausdorff space, and let Q be a subset of Af. If Q is locally

compact, then Q is the intersection of a closed set and an open set. If, in

particular, Af is locally compact, then the converse is also true. Notice that

the intersection, but not the union, of finitely many locally compact sets is

again locally compact.

Let G be a locally compact group. Then a subgroup H of G is closed if and

only if H is locally compact. Suppose that if is a closed subgroup of G. Let

M = G/H denote the factor space, and it: G B g^>gH E M the natural

map. Then a subset Q of Af is open, closed, or locally compact if and only if

m~xQ is so.

(2.1) Let G be a topological group, and let A and B be subgroups of G. Let

F_be_ a locally compact subset of G. If P is (A, F)-invariant, then P is

(A, F)-invariant.

Proof. AP = P implies AP'= P, and we have that A(P -_P) = P - P.

But F — F is a closed set, since F is locally compact. Hence A(P — P) = P

— P, and with AP = P, we have that AP = P. In a similar way, PB = P.

D
(2.2) Let G be a locally compact group, and let D and E be subgroups of G.

Suppose that F is a compactly connected, closed subgroup and the identity

component Ee of F is a normal subgroup of G. Then the double coset

decomposition

G = U EgD~We

is the LC-partition of G with respect to (E, D). Furthermore, each EgDEe is a

closed subset of G.

Proof. Let a: G 3 g*->gEe E G/Ee be the natural homomorphism. We

put EgDEe= P = P(g). Then aP = oE • og- oD is closed, because oE is a

compact group. Hence P = a~xaP is closed.

On the other hand, if g is a locally compact, (E, £>)-invariant subset

containing g, then Q is (E, ßFJ-invariant, and Q D P(g) by (2.1). Hence

P(g) is the local closure of EgD.   □
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(2.3) Let G be a locally compact group,_and H a subgroup of G. If H is

compactly or finitely connected, then so is H.

Proof. Suppose that H is compactly connected. For each h in H, we pick a

compact neighborhood U(h) of h in the closure H of H. Then V(h) = U(h)

n H is a neighborhood of h in /f. Let <¡p denote the natural homomorphism

H 3 h^>hHe E H/He.

Then <p(V(h)) is a neighborhood of hHe in H/He. Since H/He is compact,

there exists a finite set {/*„ . . ., hk) c H such that U?=, <p(K(A,.)) = H/He,

i-e- Uf.j^WÄ, = #. We_put C_= U-=,t/(/i,). Then Cjs a compact_set,

and C • He is closed. Since // D C//eD _f/, we have H = Cifel_But since He is

connected, we have (H)e 3He and if = C(H)e. Hence H is compactly

connected.

Next, suppose that Hjs finitely connected, and H = \JJ¡_xa¡He is the coset

decomposition. Then H Z) \JJ¡^xa¡He d if, and \Jji^xaiHe is closed. Hence

H= Uúxa¿fe.   D

Next, let G be a locally compact, a-compact group, and suppose that there

exists an LC-family 9 of subgroups of G, satisfying (1), . . . , (7) in §1. Let A

and B be subgroups of G. First we shall explain our method to study the

A X B action on G.

We put 9(A) = A* and 9(B) = B*. By (3) and (4), for any g in G, we

have that A*(gB*g~ ') is locally compact, and so is A*gB*. Hence the double

coset decomposition

G = U   A*gB*
gee

is a partition of G into locally compact, (A, 5)-invariant subsets. In order to

study the A X B action on each A*gB*, we need the following known

theorem, see e.g. Helgason [4].

(2.4) Let L be a locally compact, a-compact group, and let M be a locally

compact Hausdorff space. Suppose that L acts on Af transitively. For m in Af,

let Lm denote the isotropy subgroup at m: Lm = {x E L; xm = m). Then the

map £: L 3 x\-+xm E M is (continuous and) open and gives rise to a

homeomorphism between the factor space L/Lm and Af.

Since A * and B* are closed subgroups of G, they are a-compact, and so is

A* X B*. On the other hand, A* X B* acts transitively on A*gB* and the

isotropy group D ( g) at g is given by

D(g) = {(y,g-xyg);y E A* C\ gB*g~x).

By (2.4), the map

^ = ^:A* X B* 3 (a, ß)^agß~x E A*gB*
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induces a homeomorphism between the factor space (A* X B*)/D(g) and

A*gB*.

Let F be a subset of A*gB*. If F is locally compact, then so is ¿ ~'F, and

conversely. Suppose that F is (A, 2?)-invariant. Then for (a, ß) E £~'F and

(a, b) £ A X B, we have

€((fl, £>)(«> ¿8)) = aagß'xb E APB = F.

Hence £ " 'F is (A X B, D( g))-invariant. Also it is easy to see that if £ " XP is

(A X B, D( g))-invariant, then F is (A, 5)-invariant. Therefore, £ " ' gives a

one-one correspondence between the totality of locally compact, (A, B)-

invariant subsets of A*gB*, and the set of all locally compact, (A X B,

D ( g))-invariant subsets of A * X B*.

Suppose that B is closed and consider the map

Tj = T)g:A* X B* 3(a,ß)^agß-xBEA*gB*/B C G/B = Af.

The map tj is also continuous and open, and gives rise to a homeomorphism

between the totality of double cosets ({<?} X B) \ A* X B*/D(g) and

A*gB*/B.
Before stating the theorem, we shall prove one lemma. For a subgroup H of

G, we shall denote by 9e(H) the identity component of 9(H).

(2.5) Let if be a compactly connected, closed subgroup of G. Then

9(H) = H ■ 9(He),       9(He) = 9e(H).

9(H) is compactly connected, and He is a normal subgroup of 9(H).

Proof. Let N denote the normalizer of He in G: N = {g E G; gHeg~x =

He}. Then 9(He) c N by (6). For g E N, by (3) we have

9(He) = 9(gHeg-x) = g9(He)g~x,

and accordingly 9(He) is a normal subgroup of N. Since H c N, we have

that H ■ 9(He) is a subgroup of N.

Since H/ He is compact, there exists a compact subset C of H such that

/f = CHe. Hence H ■ 9(He) = C • 9(He) is a closed subgroup, and we have

H- 9(He)/9(He) a ///// n ^(//c).

Since if n 9(He) D ife, the factor group H/H n ^(iQ is compact and

totally disconnected. Since 9(He) is connected by (6), we see that H ■ 9(He)

is compactly connected, and the identity component of H ■ 9(He) is 9(He).

By (5), H ■ 9(He) E 9, and we have 9(H) = H ■ 9(He).   \J

Theorem III. Let G be a locally compact, a-compact group, with an LC-

family 9. Let A and B be subgroups of G.

(a) If A and B are compactly connected, then G has an LC-partition with

respect to (A, B).
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(b) Suppose that A is a compactly connected, abelian group and B is a closed,

connected group. Then for each g E G, we can find a locally compact abelian

group L(g), a closed subgroup L'(g) of L(g), and a homeomorphism <p from

9(A) g9(B)/ B onto L(g), such that the image of the local closure of each orbit

Am, m E 9(A)g9(B)/B, is a coset ofL'(g).

(c) In (b), if in particular A is a one-parameter subgroup, then the local

closure of an orbit Am is homeomorphic either with R or a certain compact

connected abelian group.

Proof of (a). By (2.3), A and B are compactly connected. Hence after this

we can suppose that A and B are closed, by (2.1). Then by (2.5), Ae and Be

are normal subgroups of A* = 9(A) and B* = 9(B), respectively. Hence

(A X B)e = Ae X Be is a normal subgroup of A* X B*. Since A X B is

compactly connected, we can apply (2.2), and for each g in G,

A* x B* = U(A X B)x D(g)(Ae X Be)

is the LC-partition of A* X B* with respect to (A X B, D(g)). Hence

A*gB* = U^{(A X B)xD(g)(AeXBe))

is a partition of A*gB* into minimal, locally compact, (A, F)-invariant

subsets. This completes the proof of (a).

Proof of (b) and (c). By (7) and (6), A* and B*/B are abelian groups.

Hence (A X B)D(g) is a subgroup of A* X B*, and the coset decomposition

A* X B* = \Jx(A X B)D(g)

gives the LC-partition of A* X B* with respect to the pair (A X B, D(g)).

Hence G has an LC-partition with respect to the pair (A, B).

Since ({e} X B)D(g) is a closed normal subgroup of A* X B*, the set

({e} X B)\A* X B*/D(g) can be identified with the abelian group L(g) =

A* X B*/({e] X B)D(g). Thus the map

t]g:A* X B* 3(a,ß)^agß-xB EA*gB*/B

induces a homeomorphism i]'g from L(g) onto A*gB*/B.

Let us put (A X B)D(g)/({e) X B)D(g) = L'(g). Then for each x E A*

X B*, we put xs = x({e} X B)D(g) E L(g), and get that

y¡'g{x*L'(g)) = y]g(x(AXB)D(g))

is the local closure of the orbit Ar¡g(x).

If, in particular, A is a one-parameter subgroup, then (A X B)D(g)/({e)

X B)D(g) is a one-parameter subgroup of L(g), and is dense in L'(g).

Hence L'(g) is either R or compact. This completes the proof of (b) and (c).

D
Remark. Let L be a locally compact, a-compact group, and G a closed
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subgroup of L. Let A and B be subgroups of G. If L has an LC-family 9,

then Theorem III, except for the part concerning 'í-hulls, holds for G. In fact,

if FA is the local closure of AgB in L for g E G, then Px n G is locally

compact, (/Í, B)-invariant, and coincides with Px. Hence Px c G.

3. Semi-algebraic groups. In this section we shall study subgroups of

GL(«, R). A subgroup H of GL(n, R) is said to be pre-algebraic if H is an

open subgroup of a suitable algebraic group. Since an algebraic group is

finitely connected, so is any pre-algebraic group. Let & denote the set of all

pre-algebraic groups in GL(«, R). The following theorem is known; in

particular, the proof of (4) for & can be found in [2].

(3.1) Theorem, â is an LC-family in GL(n, R). Any member of & is finitely

connected.

For a subgroup H of GL(h, R), let &e(H) denote the identity component

of â(H).

(3.2) (1) For any subgroup H of GL(n, R), H ■ &e(H) = &(H).

(2) If in particular H is finitely connected, then &e(H) = &(He).

Proof. (1) Since &e(H) is a normal subgroup of &(H), we have that

H- &e(H) is a subgroup of &(H). Since &e(H) is contained in H- âe(H),

we see that H- &e(H) is open in &(H), and is pre-algebraic. Hence H-

&e(H) = &(H).

(2) It is obvious that He is the identity component of H. Hence it reduces to

(2.5).   □
Let if be a closed connected subgroup of GL(«, R). Then H is normal in

&(H), and the factor group â(H)/H is a connected abelian group by (6).

Since &(H)/H is a Lie group, there exist nonnegative integers k and h such

that &(H)/H = Rk X (R/Z)\ Let AT be a maximal compact subgroup of

&(H). Then KH/H is a maximal compact subgroup of &(H)/H; see

Iwasawa [5].

In [2], the author defined H to be semi-algebraic if H contains all compact

subgroups of &(H). This is equivalent to saying that the factor group

&(H)/H is isomorphic with the vector group R*, or that &(H)/H is

homeomorphic with the euclidean space R*. Now let us extend the definition

to nonconnected groups.

Definition 5. A closed subgroup H of GL(n, R) is said to be semi-algebraic

if the factor space &(H)/H is homeomorphic with a euclidean space.

Remark and Correction. In [2], the author defined nonconnected semi-

algebraic groups in a more restrictive manner. However, he later found the

new definition more convenient. In the Proposition, p. 72 in [2], "and

conversely." must be removed.

(3.3) Let G be a Lie group, and H a closed subgroup of G. If the factor
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space G/H is connected and simply connected, then

H n Ge = He   and   G/Ge * H/He.

Proof. Since G/H is connected, we have that GeH = G and G/H ~

GJ H n Ge, where ~ denotes the existence of a homeomorphism. Since

G/H is simply connected, /í n Ge is connected and coincides with He.

Hence G/Ge = HGe/Ge at H/H n Ge = H/He.   D

(3.4) If S is semi-algebraic, then S is finitely connected and Se is semi-

algebraic, and vice versa.

Proof. If S is semi-algebraic, then by (3.3), S/Se = &(S)/&e(S) is finite

and âe(S) n S = Se. Hence by (3.2),

&(S)/S = 5- ÉEe(S)/S~ &e(S)/&j(S) n 5 = <2(Se)/Se,

and &(Se)/Se is homeomorphic with a euclidean space.

Conversely, suppose that S is finitely connected and Se is semi-algebraic.

Then (&e(S) n S)/Se is a subgroup of &e(S)/Se = &(Se)/Se a R*. Since

(âe(S) n S)/Sf! is a finite group, it must reduce to the identity and &e(S) n

S = Se. Then

&(S)/s = s- &e(S)/se = s- &(se)/se~&(se)/(&(se)ns)

= <£(Se)/Se^Rk.   D

Let G be a countably connected Lie group. A subgroup if of G is said to be

a Lie subgroup if there exists a countably connected Lie group H* and a

continuous one-one homomorphism / from H* into G such that f(H*) = H.

A closed subgroup is a Lie subgroup. Let if be a Lie subgroup of G. Then the

Lie group H * is uniquely determined up to topological isomorphisms. H is

called a connected, or a finitely connected, Lie subgroup if H* is connected, or

finitely connected, respectively, if is a connected Lie subgroup if and only if

H is arcwise connected. If Hx and H2 are Lie subgroups and if HXH2 is a

subgroup, then HXH2 is a Lie subgroup.

Let us denote the set of all semi-algebraic groups in GL(«, R) by S.

(3.5) Let {Sx} be a subset of S. Then the intersection f] Sx is semi-

algebraic.

Proof. Since any semi-algebraic group is finitely connected, S satisfies the

descending chain condition. Hence it suffices to prove that A n B E S for A

and B in S. We put

Ax = &(Ae),     Bx = &(Be)   and   C, = Ax n Bx.

Then C, is pre-algebraic and is finitely connected. Therefore AeCx is a finitely

connected Lie subgroup of Ax, and so is AeCx/Ae in Ax/Ae. Since ^,/^4e is a

vector group, so is AeCx/Ae. Thus C,/C, n >le = /4eC,//le is a vector group.

By (3.3), C, n Ae is finitely connected since C, is. In a similar way, Cx/Cx n
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Be is a vector group and C, n Be is finitely connected. It, then, follows that

(C, n Ae)(Cx n Be) is a finitely connected Lie subgroup in C„ and so is

(C, n Ae)(Cx n Be)/Cx n Fe in Cx/Cx nSe = R*. Hence

(C, n Ae)(cx n f,)/c, nfi^c.n Ajc

is a vector group, where C = Ae n Be = (Cx n Ae) n (C, n Be). C, n ^

being finitely connected, so is C by (3.3). Moreover, C is of finite index in

A n B since /I and B are finitely connected. Therefore A f\ B is finitely

connected.

Next, we shall prove that (A n B)e is semi-algebraic. Let AT be a compact

connected subgroup of C,. Then K c Ax, and K c A. Similarly K c B.

Hence K c (A r\ B)e. That is, any maximal compact subgroup of (C,)e is

contained in (A n B)e. It follows from (Cx)e being pre-algebraic that (A n

F)e is semi-algebraic.   □

(3.6) Let A and B be in S. Then the double coset /IF is locally compact.1

Proof. As before, we put &(A) = A*, &(B) = B* and

D = {(y, y); y e a* n F*} c A* x B*.

Since /i*F* is locally compact, the map

£:A* X B* 3 (a,/?) —a/?"1 E ^*F*

is continuous and open, and gives rise to a homeomorphism between the

factor space A * X B*/D and A*B*. Hence it suffices to prove that £ ~ X(AB)

= (A X B)D is closed in A *B*.

Since A, B and D are all finitely connected, (A X B)D is a finite union of

the sets of the form

e(Ae X Be)DeS,       e E A X B, S E D.

On the other hand, (Ae X Be)De is a connected Lie subgroup of (A* X B*)e

containing all compact subgroups, and is closed.   □

From (3.1), (3.4), (3.5) and (3.6), we have the following theorem:

(3.7) Theorem. S is an LC-family in GL(n, R), and any member of S is

finitely connected.

(3.8) Let <p be a rational homomorphism from an algebraic group A into

GL(j, R). Let S be a semi-algebraic group in A. Then <p(S) is semi-algebraic.

Proof. Since S is finitely connected, so is <p(S). Hence it suffices to prove

that <p(Se) is semi-algebraic. Therefore, we may suppose that S is connected.

Let N be the kernel of rp restricted to &(S). Then N is pre-algebraic, and is

finitely connected. Hence NS/S is a finitely connected Lie subgroup of

&(S)/S. Since &(S)/S is a vector group, so is NS/S, and NS is closed and

'(3.6) was proved in [2] under a slightly stronger condition.
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connected. Hence <p(5) = <p(NS) is closed in <pâ(S). Since <p(£(S) = GUp(S),

see [3], we have

<2,q>(S)/<p(S) = <p&(S)/<p(S) = &(S)/NS.

Thus, recalling â(S)/NS = &(S)/S/NS/S is a vector group, it follows that

q>(S) is semi-algebraic.    □

4. sa-groups in an adjoint semi-algebraic group. Let G be a connected Lie

group, § its Lie algebra, and let p denote the adjoint representation of G:

G 3 $^p(g) = Ad(g) E Ad(g) c GL(S).

The kernel of p is the center Z of G. The connected Lie group G is said to be

adjoint semi-algebraic if the adjoint group Ad(G) = Ad(S) is semi-algebraic.

By (3.8), a connected semi-algebraic group is adjoint semi-algebraic, and the

converse is given by the following:

(4.1) Let G be an adjoint semi-algebraic group. Then there exists a

semi-algebraic group G' c GL(n, R), for a sufficiently large n, such that G is

locally isomorphic with G'.

(4.1) was proved in [2], along with (4.2).

(4.2) Let G be a connected Lie group. Then there exists an adjoint

semi-algebraic group S containing G as a closed normal subgroup.

After this, we assume that G is an adjoint semi-algebraic group, § its Lie

algebra, p the adjoint representation of G and Z is the center of G.

Definition 6. A subgroup H of G is said to be an sa-group if

(i) p(H) is semi-algebraic, and

(ii) H is open in p ~ xp(H).

If H is an sa-group, then

(ii') H is closed and H d Ze.

Conversely, (i) and (ii') imply (ii) obviously. Let § denote the set of all

sa-groups in G.

(4.3) Let S be an sa-group.

(1) If S" is an open subgroup of S, then 5" is sa.

(2) If S " contains 5 as a subgroup of finite index, then S " is an sa-group.

Proof. If S is an sa-group, then p(S) is semi-algebraic and

p(S") D p(S) D p(S') D p(Se) = p(S")e.

Hence p(S') is open in p(S), and is semi-algebraic. Also p(S) is of finite index

in p(S"), and p(S") is semi-algebraic.

Next, S' and S" are closed subgroups and contain Se D Ze. Hence S' and

S " are sa-groups.   □

(4.4) If {Sx; X E A} is a nonempty subset of §, then D Sx E è.
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Proof. We put S{ = SXZ = p~xp(Sx) for X E A. Then it is obvious that

np(5A) = p(nsA) and p'xp(ns{)= ns{.

Since p(Sx) = p(Sx) is semi-algebraic, so is fl p(S{). Hence fl Sx is an

sa-group.

Next, since Sx is open in S{, the identity components of the two groups

coincide, and (n Sx)e = (n SA)e. Therefore n Sx D H SA 3 (fl% and

Pi Sx is an open subgroup of (~) S{. By (4.3), 0 SA is an sa-group.   □

By (4.4), for any subgroup H of G, there corresponds the â-hull è(H), the

smallest sa-group containing H. Let äe(H) denote the identity component of

ê(H).

(4.5) (1) If if is a connected subgroup of G, then

ë(/f) = (p-'Sp(f/))e.

(2) If H is a finitely connected, closed subgroup of G, then

ê(H) = Hèe(H),       èe(H)=è(He),

è(H) is finitely connected, and He is a normal subgroup of ê(H).

Proof. (1) We put S = (p-'Sp(//))e. Then

p(5)- Sp(/f)   and   p-'p(S)e=S,

and S is an sa-group.

Next, suppose that T is an sa-group containing H. Then

p(T)D^p(H)   and   p~'p(F) 3 p_lSp(/f) D 5.

Since F is open in p ~ 'p( F) and 5 is connected, we have that T 3 S.

(2) Let % be the Lie algebra of H, and let N be the normalizer of He in G.

Then Af = {x E GL(S); xDC = 3C} is an algebraic group, and p(N) =

Ad(S ) n Af is a semi-algebraic group in GL(S ). Hence

p(N)D%p(He)   and   N = p~lp(N) D p-'Sp(//e).

Since p(ife) is a normal subgroup of p(N), for x E p(A/)

Sp(//e) = S(xp(//e)x-') = *Sp(/f>-',

and Sp(ife) is a normal subgroup of p(A/). Hence N normalizes p~x'Sp(He),

and its identity component è(He). Since H is contained in N, H • è(He) is a

subgroup of /V. By è(He) 3 ife, §(//e) is of finite index in H ■ è(He). Hence

H ■ è(He) is an sa-group, by (4.3) (2), and è(H) = H ■ §,(He). Thus ê(He) is a

closed connected subgroup of finite index in 3(H), and so äe(H) = è(He).

That N D è(H) implies that He is normal in è(H).   \J

For a group L, let [L, L] denote the commutator subgroup of L. If, in

particular, L is a connected Lie group with Lie algebra £, then [L, L] is a

connected Lie subgroup of L and the Lie algebra of [L, L] is [£, £].
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(4.6) Let H be a connected Lie subgroup of G. Then [ê(/f ), ê(if )] =

[#, H).
Proof. First suppose that G is a semi-algebraic group in GL(n, R). We put

S=S(tt)Z. Then [S, S] = [§(//), §(//)] = [H, H]. By (3.8), p(S) -

pS(if) is semi-algebraic. Hence 5 = p~1p(5') is an sa-group, and S 3 §(ff).

Therefore [S, S] 3 [ê(#), è(H)] 3 [#, //] and [è(H), è(H)] = [7/, 7/].

Now, we shall consider the general case. By (4.1), there exists a connected

semi-algebraic group G' which is locally isomorphic with G. Let us identify §

with the Lie algebra of G'. Let % be the Lie algebra of H, and let H' be the

connected Lie subgroup of G' corresponding to the Lie algebra %. Then by

(4.5) (1), the Lie algebra of §(//') coincides with the Lie algebra 3(%) of

ê(H). Thus [ê(H'), è(H')] = [H', H'] implies [ä(%), è(%)] = [%, %],

whence [ê(H), è(H)] = [#, H].   □

(4.7) If if is a finitely connected, abelian subgroup of G, then è(H) is

abelian.

Proof. Because HZe is finitely connected and abelian, we can suppose that

H is closed and H 3 Ze, without loss of generality. By (4.5) (2),

ä(H) = H%(H),       èe(H) = è(He),

where §>e(H) is abelian, by (4.6).

Let A be an abelian group in GL(«, R), and let C be the center of the

centralizer of A. Then C is an abelian algebraic group and C 3 A. Therefore

&(A) is abelian, and so is S(A). That is, the c>-hull of any abelian group is

abelian. Since H is abelian, so is p(H), and c>p(H) is an abelian group. Hence

[ê(//), §(//)] c Z.
Let % and è(%) denote the Lie algebra of H and 3>(H), respectively. èe(H)

being a normal subgroup of §>(H), p(H) leaves §>(%) invariant. For h E H, let

/i(/i) denote the restriction of p(h) to êC3C). Since èe(H) is abelian and

He c %e(H), the kernel of u contains ife, and u induces a representation of

the finite group H/He. Therefore, the representation ju: H —>GL(§(3C)) is

completely reducible. Owing to ¡i(H)% = %, we can find a subspace

(subalgebra) 9H of g(3C) such that è(%) = SC 0 9IL, u(if)91t = 911. For
any /i in if, we have (ju,(/i) - 1)3C = 0 because H is abelian, and (n(h) —

l)â(DC) c 9H.
On the other hand, for any X E â(%) and the real parameter t,

a(t) = h(exp tX)h~x(exp(-tX)) = exp(/(/t(/i) - \)X + 0(t2))

is a curve in Z, and belongs to Ze. Since Ze c if and the tangent vector

to a(f) at t = 0 is (/¿(/i) - \)X, we have that (u(/i) - 1)* E 9C, and

(¡i(h) - l)ê(X) c OC. It follows that (u(/i) - 1)8(3C) = 0 since % n 9H =

{0}. Hence A commutes with every element of ê>e(H). Therefore £>(H) = H ■

§e(H) is abelian.   □
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Remark. The semi-algebraic hull of an abelian group is abelian as we saw

in the proof above. But this is not true for the §-hull. For example,

G = g(x,y,z) =

?x 0

0 cos x

0 — sin x

[0 0

0
sin x

cos x

0

x,y,z R

is an adjoint (semi-)algebraic group, and

H = {g(x,y, z); x E 2nZ,y E Z, z E Z)

is an abelian subgroup of G, but è(H) = G is not abelian.

Thus we have

(4.8) Theorem. Let G be an adjoint semi-algebraic group, and let § be the

totality of sa-groups in G. Then è is an LC-family.

Added in proof. The author learned from Philip Green that he had

proved in his unpublished paper that any connected Lie group can be

embedded as a closed normal subgroup in a suitable Lie group whose adjoint

group is pre-algebraic. By his theorem, the main results of this paper can be

established without semi-algebraic groups. But the author thinks the theory of

semi-algebraic groups itself has some significance, so he leaves the paper in

the original form.
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