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ORTHOGONAL POLYNOMIALS DEFINED BY A

RECURRENCE RELATION

BY

PAUL G. NEVAI1

Abstract.  R.  Askey has conjectured that if a  system of orthogonal

polynomials is defined by the three term recurrence relation

xp„-,(x) = -^ p„(x) + an_xPn_x(x) + -^- pn-2(x)
In tn-\

and

(-0
<x„ = - const +

" n
»(*)•

- = x +- const +
r„+i      2 n

"(i>

then the logarithm of the absolutely continuous portion of the correspond-

ing weight function is integrable. The purpose of this paper is to prove R.

Askey's conjecture and solve related problems.

Let a be a nondecreasing function defined on the real line. Such a function

a is called weight function if it takes infinitely many values and all its

moments are finite.2 For a given weight a there exists a unique system of

polynomials {pn(da)}™=0 such that p„(da, x) = yn(da)x" + . . . (y„ > 0)

and

/oo
PnPmd0i = 8„m.

- m

These orthogonal polynomials satisfy the recurrence formula

yn_x(da)
xp*-\ida' x)   = --TTV- Pn(d», x) + a„_,(da)p„_,(da, x)

In \""/

:t~¿daj p*-¿da>*} (1)

for n = 1, 2, . . . where/?0 = Yo'/'-i = 0 and

aÁda) = (     XPn(da' x) da(x)-
J — (VI
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370 P. G. NEVAI

It is well known that if supp(da) is compact then

y„-i(¿«)
sup\a„(da)\ < oo,
n>0

sup
n>l

<  00. (2)
yn(d<*)

On the other hand, if we take two sequences of real numbers {a„}"_0 and

{Y„>0}?=o such that

Y„-i
sup|a„| < oo,
n>0

sup
n>\ yn

<  00

and we build up a system of polynomials {p„}™=0 defined by

Y«-i
%-iW Pn(X) + *n-\Pn iW + 7.- Pn ,(x), (3)

n tn-\

n = 1, 2, . . . ,p0 = y0 and p_x = 0 then these polynomials are orthogonal

with respect to some uniquely determined weight a having compact support

[2]. Therefore every information concerning a and pn is contained in the

recurrence relation (1) whenever (2) is satisfied. It is very likely that one of

the main tasks of the theory of orthogonal polynomials in the near future will

be to squeeze out that information from the recurrence formula. At the

present time very little is known about solutions of second order linear

difference equations. There is a special case, however, when something can be

said about polynomials satisfying (3). In [3], [4] and [5] a number of results

were proved concerning the class M which is defined by

■■W     i
2

M = { a:   lim  aJda) = 0,  lim
Yn(da)

Let us mention that M contains many weight functions. In particular, the

Szegö class S is contained in M. Here

S= {a: supp(ifa) =[-1, l],loga'(cos0) e L1}.

Another example is the Pollaczek weight which belongs to M \ S. (See e.g.

[3], [6].) Also, from a E M does not follow that the support of da is contained

in [- 1, 1]. If, for instance, a jump is added to the Chebyshev weight then the

new weight still belongs to M. Actually, M \ S must be large since from

a E S the convergence of series

-,2

al +
k = 0

Jk_

y*+i
- i

and

2   '
k = 0

■k>
k = 0

JYk_

Y*+i
- 1

follows. (See [3].) This suggests that investigation of the class Mx containing
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those weights a for which

S    K(da)\ +
k = 0

<  00

is a good starting point. It was shown in [3] that if a E Mx then one can get

asymptotic formulas for the corresponding orthogonal polynomials. It turns

out, however, that M, is relatively small. If a E Mx then a must be absolutely

continuous on (— 1, 1) and a' is positive and continuous on (— 1, 1). Despite

of this it is not clear whether a E Mx implies log a'(cos 9) E Lx. K. M. Case

[1] suggested that

(A: = 1,2,...) should imply the integrability of log a'(cos 9). In [4] we

proved that a' is greater than a Jacobi weight whenever (4) is satisfied.

Therefore K. M. Case was right. In this work we will show that log a'(cos 9)

is integrable provided that series

2   log*
fc = 3

\ak(da)\ +
1kida)

1k + \(da)

- 1

converges. However, the true purpose of this paper is to solve some problems

posed by R. Askey.

Let ß be defined by supp(dß) = [-1,1] and

dß(x) = \x\a(l - x2)"dx       (-1<x<1) (5)

where a > - 1 and b > - 1. It is clear that an(dß) = 0 for every n. R. Askey

noticed that yn(dß) satisfy the condition

Udß)

yn+Adß) 2 n °ti)
(n=l,2,...)

where B is some fixed real number. This led R. Askey to the conjecture that

log a'(cos 9) should be integrable whenever

and

(-l)"D
an(da) = —;— +

yn(da)

°ti)

Y»+i(d")       2 n
•(*)

(6)

(7)

(n = 1, 2, . . . ) is satisfied with some fixed numbers D and E. Let us note

that (6) and (7) are stronger than the condition
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2;
y-1

\aj(da) + aj+x(da)\ + 1 -4
yÁda)

yj+2{da)

+ a2(da) + 1 -2
Y;W

Y/+i(¿«)
< const • log n       (8)

for n = 3, 4, . . . . We will show that from (8) follows that da is greater than a

dß defined by (5). Hence log a'(cos 9) is far from being nonintegrable if (6)

and (7) hold. R. Askey had felt in the same way since he also conjectured the

following. Let

a„(da) =
(-!)"/>

+ °(¿)

and

Y„W l   |   (-!)"£  |
Y„+.(y«)    "2 h

°(±)

for some^ > 1. Then log a'(cos 9) is integrable. We will prove that R. Askey

was again right. Actually, log a'(cos 9) is integrable whenever

2   logj\\aj(da) + aJ+x(da)\ +
7 = 3

+ a2(da) +

1 -4
Y7+2W

1 -2

.21

< 00. (9)

We will also investigate orthogonal polynomials corresponding to weights a

satisfying

2
y=o

\ctj(da) + o,+ 1(«fa)| + 1 -4
yAda)

yj+i{da)

+ a2(da) + 1 -2
Y/W

Y,+ i(^ö)
< 00. (10)

Let us note that if a E Mx then (10) holds.

Before going into more details let us mention a third conjecture of R.

Askey which we cannot solve at the present time: if
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«.(*>-£ +0(í2)

and

%.(<**)

+ 1(í/a)       « \ n2 I

with Z)2 + E2 > 0 then log a'(cos 9) is not integrable.

In the following by constants we mean positive numbers which are inde-

pendent of x and n. The symbol A will always denote a closed interval. The

measure of A is |A|. If x E [-1, 1] then x = cos 9 with some 9 E [0, it]. This

correspondence between x and 9 is taken for granted. Therefore a statement

like f(9) is continuous, on A c [ —1, 1] means that f(9) is continuous for

cos 9 = x E A. We will always assume that all weights considered belong to

M. The only exception is Lemma 1.

Lemma 1. Let s\xpp(da) be compact. Then

\pn(da, x) - 2 cos 29pn^2(da, x) + p„_4(da, x)\

< 8n[\pn-3(da, x)\ + \pn_4(da, x)\]

and

\pn(da, x) - 2 cos 29p„_2(da, x) + pn-A(da, x)\

<   8n[\Pn-l(.da> X)\  +  \Pn-Áda'X)\]

for n = 4, 5, . . . and \x\ < 1 where x = cos 9 and

n-2

j = n — 4

\aj(da) + aj+x(da)\ +

+ a2(da) +

1 -4

1 -2

YyW
Jj+iida)

yAda)

yJ+Ád<*)

with  K depending only  on  the smallest  interval containing supp(da) and

suP*>o{Y*+i(¿«)/Y/t(¿«)}.

Proof. Using repeatedly the recurrence relation we can expand x2pn_2 into

Fourier series in {/»,■}. We have
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2_ Yn-2 Yn-2  r -■
X7n-2 =  —— Pn  +- [«„-1  + *»-l\Pn-\

In Yn — 1

v2 V2Yn-2     ,     Yn-3     ,       2-y- + T~ +«„-2

Yn-1 Y„-2
Pn-2

,     Y„-3   r H Yn-4
+-[«n-2 + an_3]p„_3 +-¿>„_4.

Yn-2 Yn-2

Therefore

Pn -2(2x2- l)p„-2+pn_4

1 -4
Yn-2

Y„
Pn-^TT^l^-l  + «n-2]/>„-l

In —1

-4
Iy„-,       Y„-2/       2\   y„_,        ;       -

"n-2

_4rî-1 [«n-2 + Otn_3]p„_3 +
Yn-2

1 -4
Yn-4

Yn-2
Pn-4-

The first part of the lemma will be proved if we show that

|A(*)| < const[|/>„_3(x)| + \pn.4(x)\] (11)

for k = n — 2, n — 1, n when n = 4, 5, . . .  and — 1 < x < 1. Rewriting the

recurrence formulas as

Pn-2(X) =
In-2

Yn-3
(x - otn_3)p„_3(x)

Yn-4

Y„-3
Pn-*(X)

we see that for k = n — 2 (11) holds with a constant depending on A D

supp(úfa) and supA.>0{y>t+1/Yyt}. Using induction we obtain (11) also for

k = n - 1 and k = n. The second part of the lemma follows from

\Pk(x)\ < const[ 1^-2(^)1 + 1^-3(^)1]

(k = n - 4, n — I, n; n = 4, 5, . . .  and — 1 < x < 1) which can be proved

in the same way as (11).

Lemma 2. If Tn is a trigonometric polynomial of degree at most n then from

the inequality

follows.

max   173,(0 sin 32/1 < 1
0<r<2i7 '

max   \Tn(t)\<12(n + l)
0< t <2tt
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Proof. Let D„(t) = 2£= _„<?'*' be the nth Dirichlet kernel. Then \Dn(t)\ <

Dn(0) = 2n + 1 and

±f2*Dn2(t)dt = 2n + l. (12)

Since Tn convolved with D„ equals T„ the inequality

\T„(t)\<l^ j^\Tn(9)\d9 (13)

holds for every /. Therefore

fjTn(9)\d9 < \E\^^- j^\Tn(9)\d9

for every measurable set E, that is

(2"\Tn(9)\d9<[ \Tn(9)\d9 + \E\^+lf2,T\Tn(9)\d9.

Thus we obtain that

(2"\Tn(9)\d9<2f \Tn(9)d9
J0 j[0,2tt]\E

whenever the measure of E is less than tr/(2n + 1). Using (13) we get

\Tn(t)\<^1(        \T„(9)\d9

if 0 < t < 2m and \E\ < ir/(2n + 1). Now let us replace here T„(9) by

Tn(9)D2(t - 9). Since the latter is a trigonometric polynomial of degree at

most 3« we have

\Dn2(0)Tn(t)\<^±lf \Tn(9)\D2(t-9)d9
K JlO,2ir]\E

for 0 < t < 2it and \E\ < ir/(6n + 1). Consequently by (12)

max   17.(01 <6     sup     |7„(0l
°<<<2" tf=lO,2v]\E

provided that \E\ < 7r/(6« + 1). Let us choose E to be

3

u
* = 0

klT IT klT    ,

2       8(6« + 1) *   2       8(6« + 1)

Then \E\ — ir/(6n + 1) and
i •   1.1 ^ 2 2tt 1
|sin 2t\ > —

TT    8(6/i + 1)       2(6« + 1)

for t E [0, 2tt\ \ E. Thus

max   |7„(0| < 12(6« + 1)     sup     |7„(0sin2i|
°<'<2" te[0,2v]\E

which proves the lemma.
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Lemma 3. Let $„(da) be defined by

Uda, 9) = Pn(da, x) - e2Wpn_2(da, x), (14)

x = cos 9 and let 8j be the numbers introduced in Lemma 1. Then for — 1 < x

< 1 the inequalities

|*,(<fa, #)|'+!*,_,(*, «)|

<[\*»-2{dcL,0)\ + \*H_3{da,9)\]   1

\^n-2(da,9)\ + \^n_3(da,9)\

Isin20|

and

<[\Mda,9)\ + \*,.-l(da,9)\]\\ +

M*9*<*^[wmji*}

\*H(da,0)\ < C2expjC32 ßj
y=4

8. + 8,n-l

Isin20|

(15)

(16)

(17)

(18)

hold for « = 10, 11, . . .  where the constants C„ C2 and C3 do not depend on «

and x.

Proof. Since

«fc, - e~2%-2 =Pn~2 cos 29p„_2 + pn_4

we have by Lemma 1

\^n-e-2%.2\<8n[\pn_3\ + \Pn_4\],

that is

|Im(e-2'V„-3)l + |Im^„_2|

Similarly

Therefore

|t/>„ - e~2%_2\ < 8n

l*.-i - «'"Vw-J < «L

|sin20|

|Im^,_2| + |Im^_3|

Isin20|

(19)

(20)

and

l^nl  <   l^n-2l + 5„ -^-2^-

IJ |   <   |l I** I^-2J +  l^-3l
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Adding the last two inequalities together we obtain (15). Inequality (16) can

be proved in the same way. Repeated application of (15) yields

I*i + i*i-ii<ci«p{l5r5#[^*}

which implies (17). To prove (18) we use Lemma 2. We have by (19) and (20)

lOfc, - e~2i\_2) sin 20| < S„[max|^_3| + max|^_2|]

and

!(>„_, - e~2%_3) sin20| < «...[max^l + max|^_2|].

Consequently by Lemma 2

max|^ - e~2%_2\ < 72(« + l)5n[max|^„_3| + max|^„_2|]

and

max\ip„_l - e-2%_3\ < 72«5„_1[max|i/'n_3| + max|^n_2|].

From the last two inequalities we obtain

max|^| + max|^n_,|

<[max|^_2| + max|^_3|][l + 72(« + 1)«„ + 72«5„_,].

Applying repeatedly this inequality we get (18).

Lemma 4. Let (10) be satisfied and let $n(da) be defined by (14). Then

4>(da, 9) = tan  ein9xp„(da, 9)

exists for x E A = (— 1, 1)\0 and the convergence is uniform inside A. The

limit function ip is continuous on A and its absolute value satisfies the inequality

\4>(da, 0)|±] < exp{const/|sin 201} (21)

for x E A. Furthermore

n- |*|(i - x2)1/4

hK<fa,*)| = 2iM       IV- (22)

for x E A. In particular, a' is continuous and positive for x E A.

Proof. It follows from (10) that

8=2   8j < »•
7=4

Therefore by (17)

\M0)\< C,exp{5/|sin2Ö|} (23)

for   « = 10, 11, . . .    and   — 1 < x < 1   (x = cos 9).   Consequently   the
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inequality

p. G. nevai

\Pn(X)\

c.
Isin20|

exp
1 |sin20| J (24)

(« = 10, 11, . . . and — 1 < x < 1) also holds since sin 29pn(x) —

Im{e-2'V„(Ö)}.Wehave

e2m%n(0) = 2  e2ike[^2k(9) - e-2<%k_2(9)] + el0%0(9).    (25)

A: = 6

By Lemma 1 and (24) the series

2  e2ik»[t2k(9) - e-2%k_2(6)]
Ar = 6

converges uniformly inside A = (-1, 1) \ 0. Thus

<K0)=„lim e2**t2n(9) (26)

exists and it is continuous for x E A. By (23)

\\b(9)\ < C, exp{ô/|sin20|}.

The next step is to show that ei2n+])'%2n+x(9) converges to the same function

\¡/(9) when « -^ oo and again the convergence is uniform inside A. By the

recurrence formula

2^2„+1(0)-^„(0)-^2„+2(0)

= 2*/>2n+1(x) -P2„(x) - P2n+2(x)

- e2i9[2xp2n_x(x) - p2n_2(x) - p2n(x)]

-  Y2n+1   _   .

Y2n + 2
P2n + 2(x) + 2a2n+1y72„+,(jc) +

Y2n

Y2n+1
P2n(X)

-e Hi

Y2n
p2„(x) +2a2n_xp2n_x(x)

Y2n-2
+ -   1

Y2n-1
P2n-2(X)

Thus by (24)

fen \2x^2n+x(9) - *2n(9) - ^2n+2(9)\ = 0

uniformly inside A. Therefore (26) implies that

*(0)=Hm  e(2n+1),V2n+.(0)
n—»oo

is also true and the convergence is uniform inside A. Applying (16) repeatedly
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we obtain

\M*)\ + l*.o(*)l <[I*B(*)I + hfw.WI] expj ̂201 X M

where n > 11 is any odd integer. Therefore

[\M»)\ + hM*)l]< 2 lim suPK(0)|-expí^-r7   2   «W }-    (27)
n->oo ^  |smzc|  ¿_jj        J

We have

|sin20|[|/>9(*)| + \Pxo(x)\] < |*9(0)| + |^1O(0)|.

Since two consecutive orthogonal polynomials have no common zero we get

const • |sin20| < |^9(0)| + l^o^)!-

Thus by (26) and (27)

\\¡>(9)\~l < exp{const/|sin20|}

for* E [-1, 1].

Now we will show (22). From

l*n(0)|2 = Pn(x) - 2 cos 29p„(x)Pn_2(x) + p2_2(x)

we obtain

\t(9)\2=lim I  2 [p2k{x)-2cos29pk(x)Pk_2(x)+p2k_2(x)}.

It was shown in [3, Theorem 4.1.19] that if / is a fixed nonnegative integer

then

2UoPk(x)Pk+t(x)
hm- = cos 19

?l-oP2k(x)

provided that a E M, x E [ — 1, 1] and a is continuous at x. Thus

2*-1[/>*(*) - 2 cos 29Pk(x)Pk_2(x) + P2k_2(x)]
lim-i - 2(1 - cos2 20)

Vk-iPK*)

for almost every x E [— 1, 1]. Therefore

in particular,

|^(0)|2 = 2sin220nlim I  2 Pl(xl

hK0)|2 = 2sin220 1immf \ 2 Pl(x)
k= 1

for almost every x E [ - 1, 1]. By Theorem 6.2.54 of [3]
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im inf -   2 Pk(x) =
"^°°   n *-i wa'(x)VrT?

for almost every x E [— 1, 1] whenever a E M. Consequently

|^(0)|2 =
_ 8x2Vl - x2

Tra'(x)

for almost every x E [-1, 1]. Changing a' on a set of measure zero we get

(22) for every x E A.

Theorem 5. Let (10) be satisfied. Then da can be written in the form

da(x) = w(x)dx + "Z{jumps outside (— 1, 0) U (0, 1)}

where w is a continuous function on (— I, 0) U (0, 1) and satisfies the inequality

w(x)±1< exp!
const

\x\VY x̂2

for — 1 < x < 1. For the corresponding orthogonal polynomials the asymptotic

formula

^w(x)VT^7~p„(da, x) ~V=-    cos[«0 + T(0)] + o(l)

(jc = cos0)     (28)

as n —> oo holds uniformly inside (-1, 0) U (0, 1) where T is a continuous

function on (- I, 0) U (0, 1).

Proof. The asymptotic formula (28) follows immediately from Lemma 4

since sin 29pn = -Im \pn+2. Because ip is continuous and different from 0 for

x E (- 1, 0) u (0, 1) the argument of \L is also continuous for x E (— 1, 0) u

(0, 1). Thus T is a continuous function on (— 1, 0) u (0, 1). Now assume that

a has a jump at some x* E (— I, 0) u (0, 1). Then

2    Pn(X*)  <   «
n = l

has to be true. (See e.g. [3].) Thus

nhm pH(x*) = 0

must hold. Consequently ^(0*) = 0 (x* = cos 0*) should be satisfied. But

this contradicts (22). Therefore a has no jump in (— 1, 0) u (0, 1). By

Theorem 3.3.7 of [3] the absolutely continuous and the singular components

of da are supported in [—1, 1] whenever a E M. Therefore the theorem will
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be proved if we show that

f da, = 0 (29)

for every interval A c (— 1, 1). We can assume without loss of generality that

0 E A. By Theorem 4.2.14 of [3] if a E M then

lim   f plda = - [     , dx        . (30)
n^ccJAr" m JA  y/l  _ x2 V     '

We obtain from the asymptotic formula (28) that

lim i  2 pI{x) = -! PO
— "¿,Äl }      ma'(x)XÍY^V2

uniformly for x E A. Therefore

Ä -n K £*«*<*) = \ L a,{x)^-2    *«

= U~7= + U-7=T^s(x).      (32)
" J* Vl - x2        * Jà a'(x)Vl - x2

Using (30) and (32) we get

/-j=f d«s(x) = 0
^ a'(jc)Vl - x2

which implies (29) since o'(x)Vl-72  is uniformly bounded for x E A.

Theorem 6. If (9) holds then log a'(cos 0) is integrable on [0, 2ir].

Proof. Since sin 0a'(cos 0) is integrable the function log+ a'(cos 9) is

certainly integrable. Therefore we have to show that

/"'"log*        * ¿0<oo. (33)
J0 a(cos0)

From (9) follows that

2  log jSj <oo (34)
y-4

where the numbers 5, were defined in Lemma 1. Let « = 5, 6, . . . the sets e„

be defined by

e„=U
*=o

kir km 1

10«2 '   2        IQ«2
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Then e„ c e„_, and \e„_2 \ en\ < 32(n - 2)~\ We have by (15)

log+[W)l + K-,(»)l] < log+[ 1^-2(0)1 + l*-3(*)l] +:jsin

for« = 10, 11,_Therefore

f log+[|^(0)| + |^_ x(9)\]d0
J[0M]\e„

<[ log+[\h_2(9)\+tt„_3(9)\]d9
•/[0,2ir]\e„_2

+ |en_2\en|maxlog+[|^-2l + Ww-sl]

+ a + 5"-l)í,2^Ñn%i-

By (18) and (34)

max log+[|i//„_2| + h/»„_3|] < const(« - 2).

By the construction of en

dB
í i •   -mi < const l^i" - !)•

J[oM\e„  |sin20|

Hence we obtain

j log+[k(0)| +1^,(0)1 ]¿0
•/[0,2w]\e„

<f l0g+[|Vn-2(ö)l + 1^-3^)1]^
•/[0,2^]\«„_2

2 +5„_,log(«- l) + 5„log«+ const

»-j

1

t (» - 2)

Repeated apphcation of this inequality gives us

f     ,     log+[K(ö)| + |^_1(0)|]rf0<f log+[|^o(e)l + |^
•/[0,2d\e„ J\0,2ir]\e,n

+ const 2^+2   logA:5,
* = io k      *-io

Recall that |c„| —* 0 when « -» oo. Thus by (34)

f2* liminf log+[|^n(0)| + \*n-x(9)\]d0 < oo.
,/q n-»oo

Consequently (33) follows from Lemma 4.
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Theorem 7. If (8) is satisfied then there exist three positive numbers a, b and

c such that

p2n(da, x) < c\x\-"(l - x2)~"       (-1< x < 1) (35)

for « = 1,2,... and

a'(x) > c~x\x\a(l - x2)"       (-1<X<1). (36)

Proof. It follows from (8) that
n

2 j8j < const log « (37)
j~A

where 5, were defined in Lemma 1. Therefore by (18)

\un < nc<,
« = 10, 11,. . . and — 1 < x < 1 with some fixed constant c4. Since

|sin 29pn\ = |Im e~2'fyn| inequality (35) will hold if we can show that from the

estimate

|sin 20|C5|4-n(0)| < const «c< (38)

(« = 10, 11,. . . and -1 < x < 1) the inequality

Í const if 0 < cfi < 1,
|sin20rU(0)|< (39)

( const «c'   l/z    if c6 > 1

(« = 10, 11,... and -1 < x < 1), follows whenever (37) is satisfied. We
have

\M»)\ < 2 \M*) - e-2%-2(8)\ + \M<>)\ + \M*)\-
k~\0

Thus by Lemma 1

\M0)\ < 2   Sk[\Pk-i(x)\ + \Pk-3(x)\] + const.
* = io

3Therefore we obtain

|sin2ty„(0)| <  ¿   8k[\*k_2(9)\ + |**_3(0)|] + const.
A = 10

Using (38) we get

|sin20|C5+'|^„(0)| < const

If 0 < c6 < 1 then by (37)

2   kc< 8k + 1
* = io

2   kc<8k < oo"k
k~l0
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and (39) follows. Otherwise

2 k<>$k < «c<-'/2 2  V^5,.
¿=10 * = 10

Since by (37)

2   Vk8k<oo
k=W

inequality (39) follows again. Thus we have proved (35). The estimate (36) for

a' follows immediately from (35) and (31).
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