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UNIFORMLY CONTINUOUS FUNCTIONALS ON THE
FOURIER ALGEBRA OF ANY LOCALLY COMPACT GROUP

BY

ANTHONY TO-MTNG LAU1

Abstract. Let G be any locally compact group. Let VN(G) be the von

Neumann algebra generated by the left regular representation of G. We

study in this paper the closed subspace UBC(G) of VN(G) consisting of the

uniformly continuous functional as defined by E. Granirer. When G is

abelian, UBC(G) is_precisely the bounded uniformly continuous functions

on the dual group G. We prove among other things that if G is amenable,

then the Banach algebra UBC(G)* (with the Arens product) contains a

copy of the Fourier-Stieltjes algebra in its centre. Furthermore, UBC(G)* is

commutative if and only if G is discrete. We characterize fV(G), the weakly

almost periodic functional, as the largest subspace X of VN(G) for which

the Arens product makes sense on X* and X* is commutative. We also show

that if G is amenable, then for certain subspaces Y of VN(G) which are

invariant under the action of the Fourier algebra A(G), the algebra of

bounded linear operators on Y commuting with the action of A(G) is

isometric and algebra isomorphic to X* for some X Q UBC{G).

1. Introduction. Let G be a locally compact group and let VN(G) denote

the von Neumann algebra generated by the left regular representation of G,

i.e. the closure of the operators (A(/); / G LX(G)} on L2(G) where \(f)(h) =

f*h for each h G L2(G) in <3à {L2(G)} the algebra of bounded linear

operators from L2(G) into L2(G) in the weak operator topology. Let A(G)

denote the linear subspace of C0(G) (bounded continuous complex-valued

functions on G vanishing at infinity) consisting of all functions of the form

h * k where h, k G L2(G), and k(x) =k(x~i). Each <f> = h * k in A(G) can

be regarded as an ultraweakly continuous linear functional on VN(G) defined

by

<t>(T) = (Th, k}   for each T <EVN(G).

P. Eymard [10, p. 210 and p. 218] proved that each ultraweakly continuous

linear functional on VN{G) is of this form. Furthermore, A(G) with point-
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wise multiplication and the norm ||4>|| = sup{||<K*)||} where the supremum

runs through all x G VN (G) with ||x|| < 1 is a commutative Banach algebra,

called the Fourier algebra of G.

There is a natural module action of A(G) on VN(G) given by: (<f>-x,

y> = <(/>7, x) for each <p, y G A(G) and each x G VN (G). Then \\<f>- x\\ <

\\<t>\\ \\x\\ [10, p. 224]. Recently E. Granirer [12] has defined the subspace

UBC(G) of VN(G) as the norm closure of A(G) ■ VN(G). Then UBC(G) is

a linear space (see footnote on p. 373 in [12]) and elements in UBC(G) are

called uniformly continuous functionals on A(G). In case G is abelian then

UBC(G) is isometric algebra isomorphic to the algebra of bounded uniformly

continuous function on the dual group G of G. Granirer [12, Proposition 1]

showed that if G is amenable then UBC{G) = A{G)- VN(G). In this case,

UBC(G) contains (as in the abelian case) W(G) the weakly continuous

functionals on A(G) as defined by Dunkl and Ramirez [7]. Furthermore, the

quotient space UBC(G)/ W(G) is not norm separable unless G is discrete. If

G is amenable and discrete then UBC(G) = W{G) = AP(G) where AP(G)

is the almost periodic functionals on G (see §2). Figà-Talamanca has proved

that if G is the free group on two generators, then A{G)- VN(G) is not

closed, and hence not equal to UBC(G). (We would like to thank Professor

E. Granirer for kindly informing us of this result, and Professor Figà-Tala-

manca for communicating the proof to us.)

It is the purpose of this paper to extend the study of the space UBC(G)

and other related subspaces of VN(G). In §3, we shall discuss various notions

of convergence on B(G) that are important to us. In §4, we shall outline in

greater detail the relationship among UBC(G) and other subspaces of

VN(G). We show in particular that (in case G is amenable) UBC{G) is

isometric isomorphic to a closed subspace of 5(G)*, where B(G) denotes the

linear span of the continuous positive definite functions on G. In §5, we

define on each of the dual spaces UBC(G)*, W(G)* and AP(G)* the Arens

product turning them into a Banach algebra. We show that UBC(G)* is

commutative if and only if G is discrete. We also show that W(G) (resp.

AP(G)) is the maximal subspace X of VN(G) for which the Arens product

makes sense on X* and the product on X* is separately (resp. jointly)

continuous with respect to the weak*-topology on bounded spheres of X*. §6

is devoted to the study of operators on certain invariant subspaces X of

VN(G) commuting with the action of /1(G) on X (i.e. T(<¡> • x) = <f> • T(x) for

each <j> G A(G), x G X) with G amenable. We show that the algebra of such

operators on X can be realised as the dual space of certain subspaces of

UBC(G). In particular, operators on VN{G) commuting with the action of

A(G) is isometric to UBC(G)*. This later result has been obtained indepen-

dently by Carlo Cecchini (private communication). It generalises a result of
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Curtis and Figà-Talamanca [4, Theorem 3.3] for abelian G. We identify those

T on VN(G) commuting with the action of A (G) and ultraweakly continuous

with B(G), and those T that are in additional compact (or equivalently

weakly compact) with A(G) when G is discrete. Finally in §7 we show that if

G is amenable, then means on UBC(G) (i.e. elements <(> G UBC(G) such that

II^H = </>(l) = 1) can be approximated by extreme points of the set ^(G),

continuous positive definite functions <i> such that <|>(e) = 1, in the weak*-

topology of UBC(G)* (P,(G) considered as functionals on UBC(G)).

Applications are given to characterize closed convex subsets A{G) invariant

under action of A (G) and multipliers on A (G).

It is our pleasure to thank Professor Granirer for his many valuable

suggestions on the first version of this paper and also for bringing our

attention to the work of K. McKennon.

2. Preliminaries. Let E be a linear space, and <¡> be a linear functional on E,

then the value of <¡> at an element x in E will be written as <j>(x) or <<>, x>. If F

is a subspace of the algebraic dual of E, then o(E, F) will denote the weakest

locally convex topology on E such that each of the functionals in F is

continuous.

If AT is a subset of a [normed] linear space E, then co K [co K] will denote

the [closed convex hull] convex hull of K.

Throughout this paper, G denotes a locally compact group with a fixed left

Haar measure ju,. Integration with respect to n will be denoted by / . . . dx.

Let C(G) denote the Banach space of bounded continuous complex-valued

functions on G with the supremum norm. Then G is amenable if there exists a

positive linear functional <> on C(G) of norm one such that </>(</) = <K/) f°r

each a G G and each / G C(G), where J(t) = f(at) for each t G G.

Amenable groups include all solvable groups and all compact groups. How-

ever, the free group on two generators is not amenable. For more information

on the subject we refer our readers to Geeenleaf s excellent survey [13].

As usual, we denote C*{G) to be the completion of LX(G) with respect to

the norm ||/||c = sup{||7}||} where the supremum is taken over all nowhere

trivial ^representations T of LX(G) as an algebra of bounded operators on

Hubert space. Also, we let C*(G) denote the closure of (A(g);/ G LX(G)} in

ÍB(L2(G)), the algebra of bounded linear operators from L2(G) into L2(G),

and A(/)(/z) =/* h for each h G L2(G). Clearly ||/||c > ||X(/)|| for each

/ G L](G). The two norms agree if ^nd only if G is amenable (see [13, p. 63]).

Let P(G) denote the subspace of C(G) consisting of all continuous

positive definite functions on G, and let 5(G) be its linear span. Then B(G)

can be identified with the dual of C*(G), and P(G) is precisely the positive

linear functionals on C*(G). Also if / G LX{G), and <> G B(G), then [10, p.

192] <<*>,/> = //(¿>K0¿í.
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As proved in [10, Proposition 2.16], B(G) with pointwise multiplication and

the dual norm:

';/G L,(G) and ||/||c< 111*11 -sup \\jf(t)<t>{t)dt

is a commutative Banach algebra called the Fourier-Stieltjes algebra of G.

Let Pp(G) denote the closure of 5(G) n Coo(G) in the compact open

topology, where C'oo(G) denotes all functions in C(G) with compact support,

and let Bp(G) denote the linear span of Pp(G). Then Bp(G) is a closed ideal

in 5(G) and Bp(G) is precisely the dual of C*(G) [10, p. 191 and

Propositions 2.1 and 2.16]. Also, if <j> G Bp{G), then the norm of <> as an

element of 5(G) is the same as

sup Uff(t)<t>(t)dt;/GE ¿,(G), HXC/)!!, < lj

(see [10, p. 193]). As known [13, p. 61], 5p(G) = 5(G) if and only if G is

amenable.
The Fourier algebra A(G) as defined in §1 is the closed linear span of

P{G) n Cno(G). Then A(G) Q Bp{G) and it is a closed ideal in B(G) (see

[10, p. 208]).
The set of all x in VN(G) for which the operator from A(G) to VN(G)

given by <}>—><t>-x is weakly compact [compact] is denoted by W{G)

[AP(G)], the weakly almost periodic [almost periodic] functionals in VN(G).

(See Dunkl and Ramirez [7, Definition 2.1, Proposition 2.2 and Chapters 7,

8].)
If X Ç VN(G) is a closed subspace of VN(G) containing 1 = X(e) such

that <j> • X <Z X for each <$> G A (G), a linear functional m on X is called a

topological invariant mean if ||m|| = m(l) = 1 and m(<¡>- x) = m(x) for each

<f>G5(G)n^(G) and <M» ■ 1. It has been shown by Renaud [25] that

VN(G) always has a topological invariant mean. Furthermore, the topologi-

cal invariant mean is unique if and only if G is discrete. Also Dunkl and

Ramirez [7, Theorem 2.11 and Chapter 8] proved that the subspace W(G)

always has a unique topological invariant mean (see also [12, Proposition 5]).

3. Convergence in B(G). In this section, we discuss various notions of

convergence in B(G). Following [3], we let w~ denote the topology on B{G)

such that convergence of a net {<¡>a} in B(G) to an element <¡> in B{G) means

(i) <<i>a, x> converges to <<>, x> for each x G C*(G),

(ii)||<f>J| converges to ||4||.

Lemma 3.1. Let K be a compact subset of G and let {<¡>a} be a net of states in

A(G) with support in K. If {<>„} converges uniformly to some <j>in A(G), then <#>„

converges to <i> in norm.
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Proof. Let {hß} C C^G) be an approximate identity in LX(G) such that

|| Ays Hi < 1. By passing to a subnet if necessary, we may assume zß, the image

of hß in VN(G), converges to 1 = A(e) in the ultraweak topology. Let e > 0.

Then since

Km *((1 - zys)*(l - zß)) = lim <¡>(l - z$zß) = 0

(note that \<f>(zß)\2 < <f>(z^zß) < 1 and <j>(zß) -» </>(l) = 1), we may find ß0 such

that <¿>((1 - zß)*(l - zß))1/2 < e/4. Now for each a and each x G VN{G)

with ||jc|| < 1, we have

|<*„ -<t>,x- x- zßo)\ < |<*«, x(í - zßo)}\ + |<<¡>, x(l - zßo)}\

< *«(o - **)*o - ^o))1/2+ m - **ro - ^„))1/2

by an application of the Cauchy-Schwarz inequahty. Since <</>„ — <J>, /> -» 0

for each/ e -i-i(G) and </>„(l) -»</>(l), it follows that we may find a0 such that

if a > a0, and* G VN (G), \\x\\ < 1, then

Kfc, - $, x - X • zßo}\ < e/2.

Let a, be chosen such that a, > a0, and if a > a1; then |<j>a(f) — </>(0l <

e/A for all t G K with y4 = 2(||AA||2 + l)(m(K) + 1)1/2, then for each/ G

Li(G), ||X(/)|| < 1 and a > a„ we have

!<*«-*,/• VI < ll+a-*ll2ll/*AA,ll2

< II*« - «IWIVIk < £A

Hence \($a - </>,/>| < e for all / G LX(G) with \\\(f)\\ < 1 and all a > a,.

An application of the Kaplansky density theorem shows that \\ij>a - *| < e

for all a > a,.

Theorem 3.2. Let {<>„} be a net in 5(G), and </> G P(G). The following are

equivalent:

(a) <j>a converges to <j> in the compact open topology.

(b) <(>a converges to <j> in the w~-topology.

(c) 11*«'/' - * • *ll -» Ofor each ̂  G A(G).
(d) <<f»at// - <f>^, x> -» 0/or eacA ̂  G A(G) and each x G VN (G).

Proof. The equivalence of (a) and (b) is precisely Raikov's theorem [24].

That (b) implies (c) is due to McKennon [23, Theorem 5.5]. By first

considering elements t|> in P(G) n Coo(G) it can easily be seen to follow from

Lemma 3.3. That (c) implies (d) is trivial.

Finally if (d) holds, and/ G Cnn(G), choose <// G /1(G) which assumes the

value one on the support of/ (see [10, p. 208]). Then <*„-^,/> = <*„,/>

converges to (<f> •*,/) = <*, /). Also, if e is the identity of G, and tj is a state,

then <4>aTj, 1> = <pa(e) = ||«f>„|| converges to <<*>• tj, 1> = <p(e) = ||<f>||. Since the



44 A. T.-M. LAU

o(B(G), CqoÍG)) agrees with the weak*-topology on bounded spheres, we

have <j>a -> <f> in the vf~-topology; hence (b) holds.

4. UBC(G) and other subspaces. We denote by C*(G) the C*-subalgebra of

%(L2(G)) generated by the left translations (X(g); g G G) on L2(G), where

Hg)f(0 = /(g0 for each / G G and / G L2(G). We first establish some

relationships between UBC(G) and the C*-algebras Q(G), C*(G). We begin

with:

Proposition 4.1. (a) The C*-algebra Cg(G) is contained in AP(G).

(b) 77t<? C*-algebra C*(G) is contained in W(G).

Proof, (a) Let g G G be fixed. If y G A{G) and ||y|| < 1, then for each

* G A{G),

<y • X(g), <í»> = <X(g), <í»y> = *(g)y(g) = <Y(g)X(g), *>•

Consequently {y • X(g); ||y|| < 1} C {a- X(g); |a| < 1} which is relatively

norm compact and X(g)G^45(G). Since g is arbitrary, it follows that

Q(G) C AP(G).
(b) is due to Dunkl and Ramirez (see [7, Theorem 2.8 and Chapter 8]). For

the sake of completeness, we provide a proof.

It suffices to show that if/ G LX(G), then X(/) G W(G). Let/ G LX(G) be

fixed. If <i> G 5p(G), then

<*M/). y> =//(0*('M0 dt = <x(#), y>

for each y G .4(G). Consider the map from Bp{G) into VN(G) defined by

*->*(*•/).
This map is continuous when Bp(G) has the a(Bp(G), Cp(G)) topology

and VN(G) has the weak topology. In fact, let {<j>a} be a net in Bp(G) such

that <0a, x> -> <<i>, jc> for each x G C*(G), then for each functional / in

FAf(G)*, let 4> G 5p(G) such that </, X(A)> = / A(í)*(0 <íí for each A G

L,(G). Hence

<M*« •/), /> =/ *«(0/C>K0 * = <* •/, *«>

which converges to <i|/ •/,<*>> = <</>•/, />. It follows that {<> • X(/); $ G 5p(G)

and 11011 < 1} is relatively compact in the weak topology of VN{G). Since

A(G) C Bp(G), the assertion follows.

Let JPn(G^ denote the closed linear subspace of W(G) consisting of all

x G W{G) such that m(x) = 0, where m denotes the unique invariant mean

on W{G). Using Proposition 3.1 and the proof of Theorem 12 in [25] we

have:

Proposition 4.2. // G is nondiscrete, then C*(G) Ç W0(G).
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Corollary 4.3. G is discrete if and only if\(e) G C*(G).

Proof. If G is discrete then C*(G) = Q(G). If X(e) G C*(G), then

m(\(e)) = 1 which implies that G must be discrete by Proposition 4.2.

Remark. Corollary 4.3 is precisely the Corollary in [3, p. 457] when G is

amenable, since in this case C*(G) = C*(G).

If G is amenable, it follows from Proposition 4.1 and Granirer [12,

Proposition 1] that UBC(G) contains Q*(G) and C*(G). The next

proposition proves slightly more.

Proposition 4.4. For any locally compact group G, UBC(G) is a *-subspace

of VN{G) containing Q(G) and C*(G).2

Proof. To see that UBC(G) is a *-subspace, it is sufficient to show that if

v = <j> ■ x, where <¡> G A(G), and </> is positive, and x G VN (G), then v* G

UBC(G). Indeed, if y G A(G), and y is positive, then

<y*. Y> = <y,7> = <* • x, y> = <*T*Y> = <* • x*, y>.

Hence v* G UBC(G).

If g G G, let <j> G .4(G) such that <K<?) = 1. Let \p(t) = <p(gt) for each

t G G, then $ G .4(G) [10, p. 199] and *(g) = 1. Then *• X(g) = X(g).

Hence X(g) G C/5C(G). Since g is arbitrary, it follows that Q(G) Ç

UBC(G).

Also if / G CqoÍG) vanishes outside the compact set a, let <j> G A (G) such

that 0(0 = 1 for all t G a (see [10, p. 208]). Then 0 • X(/) = X(/). Hence

X(/) G UBC(G). Consequently Q(G) Ç UBC(G).

Proposition 4.5. // G is discrete, then C*{G) = Q(G) = UBC(G).

Conversely, if UBC(G) is contained in C*(G) or C*(G), then G is discrete.

Proof. Assume that G is discrete, and a G G. Let \a denote the function

which is one at a and zero elsewhere. Then \a G A(G) [10, 3.2, p. 208].

Let x G VN(G). Then for each (/> G ^(G), <lfl -x,<¡>) = (x, *(a)la> =

<í>(a)<>, la> = <cX(a), <|>> where c = <x, la>. Hence la • x = cX(a) G CÄ*(G).

Let y G .4(G), and y„ G A{G) be elements with compact support such that

IIY« - Yll -» 0 (see [10, p. 208(3.4)]). Then [Jy„ • x - y • x\\ -*0. Since y„ • x G
C£(G) for each « by the above argument, it follows that y • x G Cg(G).

Consequently UBC(G) G Q(G). By Proposition 4.4, UBC(G) = Q(G) =
C*P(G).

Conversely, if UBC(G) £ Q(G) or UBC(G) Q C^G), then UBC(G) is

2Professor E. E. Granirer has kindly informed us that UBC(G) is even a C*-subalgebra of

VN(G) (see Proposition 2(a) in E. E. Granirer,Density theorems for some linear subspaces and

some C*-subalgebras of VN(G), Symposia Mathematica, Vol. 22, Istituto Nazionale di Alta

Matemática, 1977).
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contained in W(G) by Proposition 4.1. Hence by Theorem 12 in Granirer

[12], G is discrete.

If G is abelian, then UBC(G) may be regarded as functionals on M(G) by

defining (x, ju> = fGx(t) dfi(t) for each x G UBC(G) and each regular Borel

measure ¡i on G. Since M(G) includes all point evaluations, it follows that the

map x -h> x is a linear isometry of UBC(G) onto a closed subspace of

M(G)*. We shall show that for any amenable locally compact group G, there

exists a linear isometry from UBC(G) onto a closed subspace of W*(G), the

second conjugate algebra of C*{G). Note that W*(G) is isometric isomorphic

to M (G)* when G is abelian.

If G is amenable and x G UBC(G) and x = <p-y with <i> G .4(G), v G

KJV(G), define x on 5(G) by:

<x, <//> = < v, <M>   for each 4> G B(G).

Then x is well defined, since if x = y • z, y G A (G) and z G VN (G), then for

each i// G ^(G), we have < v, #> = <z, y^>. If \fr G 5(G), let »/>„ be a net in

5(G) n CqoÍG) converging to \p in the compact open topology, then we have

by Theorem 3.2:

lim < v, <f>xpa) = < v, <W)   and    lim<z, y^a> = <z, y*>.

Consequently (y, <f>- <//> = <z, yi|/>. Since the linear span of P(G) is 5(G),

this last equation holds even for all t^ G B{G). It is easy to see that x is linear

on B(G) for each x.

Theorem 4.6. If G is amenable, there exists a linear isometry U from

UBC(G) onto a closed subspace of W*(G) such that n(x) is the point

evaluation at a whenever x = X(a), a G G, and II extends the natural embed-

ding of C*(G) into W*(G). Furthermore, n is onto if and only if G is compact.

Proof. If x G UBC(G), define U(x) = x. We first show that ||jc|| = ||i||.

Clearly \\x\\ > \\x\\. On the other hand, since G is amenable, A(G) has an

approximate identity bounded by one (see [21] and Lemma 7.2), given any

8 > 0, we can find $ G .4(G), y G VN (G) such that x = <¡>-y, \\<f>\\ < 1 and

||jc - y\\ < S (see [15, 32.50]). Hence if \¡> G 5(G), and ||t|/|| < 1, we have:

|<x, *>| = |<v, <i»*>| < \\y\\ < \\x\\ + S.

Consequently, ||x|| < ||x|| + 8. Since 5 > 0 is arbitrary, it follows that ||x|| <

n*n.
If a G G, and x = X(a), then x = <f>- x where <J> G .4(G) with ${a) = 1.

Hence <x, *> = <<#>• x, »//> = <x, <H/> = *(<z).

If x = X(/) and / G C^/G) vanishing outside the compact set a. Let

<¡>e A(G) such that 0(0 = 1 for each t G a. Then if uV G B(G),

<i, ̂> = <*, h> = J/(O0(O*(O * =//(')*(') * = <*> *>•
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Hence n agrees with the natural embedding of C*(G) into W*(G) on the

dense set (X(/);/ G C^G)}. Consequently n must agree on C*(G).

Now if G is compact, then 1 G A(G) and x — 1 • x f or each x G VN (G).

Hence VN (G) = UBC{G) (see [12, p. 373]). Also A{G) = B{G) (see [10, p.

209]). Hence U(UBC(G)) = .4(G)* = 5(G)* = W*{G).
Conversely, if U(UBC(G))= W*(G), and «f0 G 5(G), «p0^vi(G), let

x = <j> ■ y, 0 G A (G), y G VN(G) such that <x, t|/0> =£ 0, and <jc, *> = 0 for

ail \p G .4(G). Let i//„ be a net in ^(G) n P{G) which converges to t//0 in the

w~-topology [3, Lemma 2]. Then (x, <//„> -<>,*• <í>0> = lim„< v, <j> • *„> = 0

by Theorem 3.2, which is impossible. Hence P(G) Q .4(G) and A(G) =

B(G). In particular /1(G) has an identity. Consequently G, which is the

spectrum of A(G) [10, Theorem 3.34], must be compact.

5. The Banach algebras UBC(G)*, W(G)* and AP(G)*. A subset X of

VN{G) is topologically invariant if 0 • x G X for each ij>£^(6) and each

x G A'. If X is a topologically invariant linear subspace of VN(G), we say

that Z is topologically introverted if for each m E X* and each x G X, the

functional y—»<m, y • x> on .4(G), denoted by mOx, also defines an

element in X. When G is abelian, our definitions coincide precisely with the

topologically invariant and topologically introverted subspaces of LX(G) as

defined by Wong [29, p. 356].

Lemma 5.1. Let X be a topological invariant subspace of VN(G). Then X is

topologically introverted if and only if for each x G X, K(x)°, the ultraweak

closure of the set K(x) = {<j>- x; 0 G PX(G) n A{G)}, is contained in X, where

PX(G) = {0 G P(G); 11*11 = 1}.

Proof. If X is topologically introverted, and v G K(x)°, x G X, then there

exists a net {<&,} in PX(G) n A(G) such that <f>a ■ x converges to v in the

ultraweak topology. Let m be a weak*-cluster point of {<£„} in VN(G)*. Then

for each y G .4(G),

< v, y> = lim <0a • x, y> = lim <yx, 0a> = <yx, w> = (mOx, y>.

Hence7 = mOx G X Conversely if K(x)a C X for each x E X, let w be a

state on VN(G); we can find a net {</>„} of ultraweakly continuous states

such that {</>„} converges to m in the weak*-topology of VN{G)* (see [12,

Proposition 3]). Consequently if y G A (G),

(möx, y> = <m, y • x> = lim^, y • x) = lim<<i>a • x, y>.

Hence mOx G K(x)a C X. Since every functional in A'* is extendable to a

functional on VN(G), and each element in VN{G)* is the linear combination

of states, it follows that /«Ox G X for each m G X* and each x G X.
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Proposition 5.2. The spaces UBC(G), W(G), AP(G) and C*(G) are

topologically invariant and topologically introverted.

Proof. That the spaces are topologically invariant is trivial. To see that

UBC(G) is topologically introverted, let m G UBC(G)*. If x = y0- z, y0 G

A(G) and z G VN(G), then mOx = y„- (mOz). Hence mOx G UBC(G).

If x G UBC(G), let {x„} be a sequence in A(G) ■ VN{G) such that ||x„ - x||

-h>0. Then ||/mOx„ - wOx|| < \\m\\ ||x„ - x|| -h> 0. Hence mOx G

UBC(G).
To see that W(G), .45(G) and C*(G) are introverted, it is sufficient, by

Proposition 4.1, to show that any closed topologically invariant subspace X of

W(G) is topologically introverted. Indeed, let x G X. Using the notation of

Lemma 5.1, the convex set K(x) is relatively compact in the weak topology of

VN(G). Hence the ultraweak and the weak topology agrees on K(x), the

norm closure of K(x). Consequently K(x)a =K(x) is contained in X. By

Lemma 5.1, X is topologically introverted.

In [1] Arens shows that given a Banach algebra 5, it is possible to define a

multiplication on 5** which extends multiplication on 5. In case 5 = A(G),

m,n G VN (G)*, the Arens product m O n is defined by the formula:

<mO«, x> = <m, nOx>   for each x G VN(G).

This same formula certainly makes sense when VN(G) is replaced by a

topologically invariant and introverted subspace X of VN(G). This product

also turns X* into a Banach algebra. Note that if m, n G X*, and m, ñ are

extensions of m, n to KA^G), then mOñ is also an extension of mOn to

VN(G).

Proposition 5.3. Arens' product on C*(G)* = Bp(G) is precisely the point-

wise multiplication on Bp(G).

Proof. If i// G A{G) and x G C*(G), then «|/©x = * • x. If ^ G Pp(G), let

\pa be a net in P(G) n C^G) such that ^a converges to * in the compact

open topology. Then by Theorem 3.2, we have:

<^Ox, y> = <*, y • x> = lim <*„, y • x> = lim <*„ • y, x>
a oc

= <* • Y, x) = <t// • x, y>

for each x G C*(G) and y G .4(G). Since the span of Pp(G) is Bp{G), it

follows that »//Ox = 4>■ x for each $ G Bp(G) and each x G C*(G). Now if

0, i// G Bp(G) and x G C*(G), we have

<0Oi//, x> = (ft, xpOx} = (0,t-x) = (9- *, x>.

Hence 9Q^ = 0 • t//.

If G is amenable and </> G 5(G), let * denote the functional on UBC(G)

defined by <<£, x> = <nx, </>> for each x G t75C(G), and n is the linear
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isometry of UBC(G) into W*{G) as defined in Theorem 4.6. Our next

proposition lists some properties of the Arens product C/5C(G)*:

Proposition 5.4. (a) For each m G UBC(G)*, the map n^nOm from

UBC(G)* into UBC(G)* is weak*-weak* continuous.

(b) If G is amenable, then for each * G B(G), the map m —» *0 /w from

UBC(G)* into UBC(G)* is weak*-weak* continuous.

(c) If<f>, y G B(G) and G is amenable, then *y = *0 y.

Proof, (a) is trivial.

(b) We first observe that if m G UBC(G)*, then <*Om, x> = (m, *• x>

for each x G UBC{G). Indeed, if x is of the form y0 ■ z with y0 G A (G) and

z G VN {G), then mOx = y0- (mOz). Hence

<*Ow, x> = <*, y0- (/wOz)>

= (mOz, y0*> = (m, (y0*) • z> = (m, * ■ x>.

Now let {ma} be a net in UBC(G)* converging to m G UBC(G)* in the

weak*-topology. Then <*0 m, x> = (ma, * • x> which converges to (m, * •

x> for each x G UBC(G), since the element * • x is also in UBC(G).

(c) If *, y G B(G), and x = y0 • z, y0 G A (G) and z G VN (G). Then

<*Oy, x> = <*, yOx> = <*, y0- (yOz)> = (<¡>yo> yOz>

= <*YoY. z) = <x, <¡>y} = <*y, x>.

The assertion now follows.

Theorem 5.5. Assume that G is amenable. Then the map Q: * -» <£ is a linear

isometry and an algebra homomorphism from B(G) into UBC(G)*. The image

of B(G) under Q is contained in the centre of the algebra UBC(G)*. Further-

more, UBC(G)* is commutative if and only if G is discrete.

Proof. That Q is an algebra homomorphism follows from Proposition

5.4(c). Now if * G B(G), and x G tV5C(G) with ||x|| < 1, then

|<*, x>| = |<nx, *>| < HILxll 11*11 = ||x|| ||<i»|| < ||*||

by Theorem 4.6. Hence ||*|| < ||*||. On the other hand, since C*(G) Ç

UBC(G), and <*, x> = <*, x> if x G C*(G) (Theorem 4.6), it follows that

11*11 = ||*||.
If m G UBC(G)*, let {*a} be a net in .4(G) such that *„ converges to m in

the weak*-topology. Then if y G B(G), and x G UBC(G), we have

<wO y, x> = lim <*„© y, x> = lim <*ay, x>

= lim <yO*„, x> = (yOm, x>

by Proposition 5.4. Hence y is contained in the centre of UBC(G)*.
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If G is discrete, then UBC(G) = C*(G) by Proposition 4.5. Hence Q is

onto and UBC(G)* is commutative. Conversely, if UBC(G)* is commuta-

tive, let mx, m2 be distinct topological invariant means on VN(G); then mx,

m2 are also distinct topological invariant means on UBC(G). But mxOm2 =

m2 and m2Omx = mx. Hence m2 = mx when restricted to UBC(G), which is

impossible. By [25, Theorem 11], G is discrete.

Theorem 5.6. Let X be a closed topologically invariant and topologically

introverted subspace of VN(G). The following are equivalent:

(a) X ç W(G).

(b) The product in X* is separately continuous with respect to the weak*-

topology on bounded spheres.

(c) A"* is a commutative Banach algebra.

Proof, (a) =>(b). It is clear that if m G X*, the map n^nOm from X*

into X* is weak*-weak* continuous. To prove continuity in the other variable,

let {«„} be a net in X* converging to some n G X* in the weak*-topology

and ||/ij| < M and ||n|| < M for some M > 0. We may assume that M = 1.

For each x G X, the net {naOx} converges to «Ox in the ultraweak

topology (denoted by o) on VN(G). Let Ä"(x) = (*-x; * G A(G) and

||*|| < 1), and K(x), K(x)° denote the norm and a-closure of A^(x) in

VN(G). Since A"(x) is relatively compact in the weak topology of VN(G), it

follows that the weak and a-topologies agree on K(x) and K(x)=K(x)°.

Consequently the net {naQx} (which is in AT(x)0) also converges to «Ox in

the weak topology. So if m G X*, then (mOna, x> = (m, n„Ox> converges

to  (m, wOx> = (mOn, x> also.

(b) => (c). Let m G X*, y be the restriction of an element in A (G) to X, and

{*„} be a net in A{G) such that <*a, x) converges to (m, x> for each x G X

and ||*J| < \\m\\ for each a, then

<mOy, x> =lim <*aOy, x> = lim <yO*a, x> = <yOwi, x>

by (b). Hence mOy = yO/w. A second application of (b) and the weak*-

denseness of A(G) (restricted to A") in A"* shows that mOn = nOm for each

m,n G X*.

(c) => (a). Let x G X and consider the map/?: m -> /«Ox from X* into A1.

If {ma} is a net in X* converging to m in the weak*-topology, then for each n

in A"*, <maOx, n} = (nOma, x> = (maOn, x> converges to (mOn, x> =

(nOm, x) = </mOx, «> by (c). Hence p is weak*-weak continuous.

Consequently, the set {mOx; m G X* and \\m\\ < 1}, which includes

{*Ox; * G .4(G) and ||*|| < 1} is relatively compact in the weak topology

of X (hence of VN(G)). So x G W(G).

Corollary 5.7 [7]. W(G) has a unique topological invariant mean.
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Proof. If mx, m2 are topological invariant means on W(G), then m2 =

mxOm2 = m2Omx = mx by Theorem 5.6.

Remark. See [12, Proposition 5] for a different proof of Corollary 5.7.

The following is an analogue of Theorem 5.6:

Theorem 5,8. Let X be a closed topologically invariant and topologically

introverted subspace of VN(G). The following are equivalent:

(a) A" CAP(G).
(b) Multiplication in X* is jointly continuous with respect to the weak*-

topology on bounded spheres.

Proof. (a)=>(b). Let {ma}, {nß} be nets in X* converging to m, n in X*

respectively in the weak*-topology such that ||mj| < M and \\nß\\ < M. We

may assume that M = 1. Let x G X. The set K(x) = {*• x; * G A(G) and

||*|| < 1} is relatively compact in the norm topology of VN(G). Hence the

norm and the ultraweak topologies agree on K(x) and K(x) = K(x)°. As in

the proof of Theorem 5.6, the net nßQx converges to w©x in the norm

topology. Hence

\(maönß, x> - (mön, x>|

< \(maOnß, x> - (maQn, x>| + \(maQn, x> - (mOn, x>|

< HnyjOx - nOx|| + \(mtt, «Ox> - (m, «Ox>|

which converges to zero.

(b) => (a). If (b) holds, then X Ç W(G) by Theorem 5.6. Hence if x G X,
K{x) = K{x)a = {mOx; m G A"* and ||m|| < 1}. Let {maOx} be a net in

K(x). There exists a subnet {my} of the net {ma} which converges to some m

in the weak*-topology. We shall show that the net {myOx} converges to

m O x in norm. If not, we may by passing to a subnet if necessary assume that

there exist e > 0 such that \\myOx - mOx|| > e > 0 for all y. For each y

pick ny G X* such that ||nj < 1 and ||myOx - wOx|| = |<mY©x-

mOx, ny}\. Again, by passing to a subnet if necessary, we may assume that

the net {ny} converges to some «El*in the weak*-topology. Now for each

Y.

e < |<wyOx - mOx, n>| < |<«YOmy, x> - (nOm, x>|

+ \(nOm, x> - (nyOm, x>| < e

for y far out enough. But this is impossible. Hence {n^Ox} converges to

mOxin norm. Consequently K(x) is norm compact, i.e. x G AP(G).

6. Operators commuting with action by A (G) on subspaces of VN(G). Let X

be a closed topologically invariant subspace of VN(G). Say that an operator

T: X -* X commutes with action by A (G) if it satisfies
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5(* • x) = * • T(x)   for ail * G A (G) and all x G X.

We shall now give a characterization of the space of all such operators in

terms of the dual of certain subspaces of UBC(G).

Assume that G is amenable. Then the existence of an approximate identity

in A(G) and the Cohen factorization theorem show that A{G) ■ X is a closed

linear subspace of VN{G). Furthermore, A(G) • X is topologically introverted

if X is topologically introverted.

For each m G (.4(G) ■ X)*, define a bounded linear operator mL from X

into X by (mL(x), y> = (m, y ■ x> for each y G A (G) and x G X.

Lemma 6.1. Assume that G is amenable, then:

(a) mL commutes with action of A{G) on X.

(b) \\mL\\ = ||m||.

Proof, (a) is trivial.

(b) It is clear that ||mL|| < ||m||. To prove the converse, let {*„} be an

approximate identity in A(G) and ||*a|| < 1. Then for each z G .4 (G) •A',

||*„-z - z||->0. Hence

ll»fc(*)ll > \<jnL{z), *tt>| = |<m, *a • z>|

which converges to \(m, z>|. Hence \\mL\\ > ||#n||.

Theorem 6.2. Assume that G is amenable. Let X be a topological invariant

and topologically introverted closed subspace of VN(G). Then the map t:

m —» mL is a linear isometry and algebra homomorphism from (.4(G) ■ X)* onto

the space of all bounded linear operators commuting with the action of A(G) on

X.

Proof. By Lemma 6.1, it is sufficient to show that r is onto. Let {*„} be a

bounded approximate identity on A(G), and T be a bounded linear operator

commuting with action of A (G) on X. Then T maps A (G) • X into A (G) • X.

Let m be a weak*-cluster point of the net {5*(*„)} in (A(G)-X)*. Then if

x G A", and y G A (G), we have

<5(x), y> = lim <5(x), *„ • x> = lim <y • T(x), *a>

= lim <5(y • x), *a> = (mL(x), y>.

Hence T = mL. To see that t is an algebra homomorphism, let n, m G (A (G)

■ X)*, then for each y G A (G) and x G X:

((nOm)L(x),y) = ((nom), y • x> = (n, mL{y ■ x)>

= <»» Y • fnL(x)} = (nL{mL)(x), y>

i.e. (nOm)L = nL(mL).
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Corollary 6.3. If G is amenable, and X is a topologically invariant

topologically introverted closed subspace of UBC(G), then X* is isometric and

algebra isomorphic to the algebra of bounded linear operators commuting with

action of A(G) onX.

Proof. It is sufficient to show that A(G) • X = X. Indeed, if x G X, and

{*„} is an approximate identity for A(G), then ||*0 • x — x|| ->0. Since

A (G) • X is closed, x G A (G) • X.

Corollary 6.4. If G is amenable, then UBC(G)* is isometric and algebra

isomorphic with all bounded operators commuting with action of A(G) on

VN(G).

Corollary 6.5. // G is amenable, then B(G) is isometric and algebra

isomorphic to all bounded operators commuting with action of A(G) on C*(G).

Remark. Carlo Cecchini has proved independently most of Corollary 6.4:

If G is amenable, then UBC(G)* is isometric with all bounded operators T:

VN(G) -> VN(G) commuting with the action of .4(G) (private communi-

cation). When G is abelian, Corollary 6.4 is due to Curtis and Figà-

Talamanca [4]. Also, Theorem 6.2 is an analogue of our result in [19] for

subspaces of LX(G).

Theorem 6.6. If G is amenable, then the map m -» mL is a linear isometry

and an algebra isomorphism from B(G) onto the algebra of all ultraweakly

continuous bounded linear operators commuting with the action of A(G) on

VN(G).

Proof. It is easy to see that if m£ B(G), then mL is ultraweakly

continuous. Conversely, if T: VN(G)^> VN(G) is ultraweakly continuous

commuting with action of A(G) on VN(G) and {*„} is a bounded approxi-

mate identity of A(G), then 5*(*a) G A(G) for each a. By passing to a

subnet if necessary, we may assume that the net { 5*(*a)} converges to some

m G B(G) in the weak*-topology of B(G). If x G C*(G), and * G B(G),

then

(mL(x), *> = (m, x^> = <x, m*> = lim<x, 5*(*a)*>

= lim <x, r*(*„*)> = lim <5(x), *„*> = <5(x), *>

using Propositions 4.1, 5.3 and Theorem 5.6. Since C*(G) is ultraweakly

dense in VN(G) and the operators mL and T are ultraweakly continuous, it

follows that mL = T.

Corollary 6.7 (McKennon [23]). Assume that G is amenable. Let T be a

bounded linear operator from A(G) into A(G). Then the following are equiva-

lent:
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(a) 5(* • y) = * • T(y)for each *, y G .4(G).

(b) There exist m G B(G) such that T(y) = m • y for each y G A(G) and

\\T\\ = \\m\\.
Consequently the algebra of all multipliers on A(G) (i.e. operators satisfying

condition (a)) is isometric and algebra isometric to B(G).

Proof, (b) implies (a) is trivial. Conversely, if T satisfies (a), then T*:

VN(G) -> VN(G) commutes with the action of .4(G). By Theorem 6.6, there

exists m G B(G) such that mL = T*. Then m can easily be verified to satisfy

(b).
Remark, (a) Hively [16, Theorem 5.4] proved, using the lifting theorem,

that if G is abelian and nondiscrete, then there exists a bounded linear

operator T from LX(G) into LX(G) which is not weak* continuous and

commutes with translations. Since B(G) is properly contained in UBC(G)*

when G is nondiscrete, Theorem 6.6 implies Hively's result.

(b) Corollary 6.7 is due to Wendel [28] for G abelian.

If m is a topological invariant mean on UBC(G) (which always exists [25,

Theorem 4]) then mL is a compact linear operator commuting with action of

A(G) on VN(G). We shall show such operators cannot be ultraweakly

continuous unless G is discrete. We first establish the following lemma, which

is proved for abelian groups in [20]:

Lemma 6.8. If G is discrete, then for each y G A(G), the set 0(y) = {* • y;

* G A (G) and ||*|| < 1} is relatively compact in the norm topology of A(G).

Conversely, if there exist a nonzero y G A (G) such that 0(y) is relatively

compact in the weak topology ofA(G), then G is discrete.

Proof. If G is discrete, and y = la, then *• \a = *(a)la for each * G

A(G). Hence O(y) Q {Xla; |X| < 1} which is compact. It follows that O(y) is

relatively compact in the norm topology for each y G <la; a G G>. If y G

A (G), then there exists a sequence y„ such that ||y„ — y|| -» 0 and each y„ has

finite support. An argument similar to [14, Theorem 18.3(iv)] shows that 0(y)

is also relatively compact in the norm topology.

Conversely, if y is a nonzero element in A(G) such that O(y) is relatively

compact in the weak topology of A(G), let K =0(y). Then K is & convex

weakly compact subset of .4(G). Let a G G such that y (a) =£ 0 and consider

the set S = {* G .4(G), *(a) = 1 and ||*|| = 1}. Let S = {7^; * G A(G)}
where T^(\p) = *• * for each * G A(G). Then S is a commuting semigroup

of affine continuous mappings from (K, weak) into (K, weak). By the

Markov-Kakutani fixed point theorem [6, p. 456], there exists *0 G K such

that *• *0 = \j/0 for each * G S. Let ipx(t) = *(a_I0 for each t G G. Then

*, G A(G), \px is nonzero, and *■*, = *, for each state * in A(G). Repla-

cing *, by its real or imaginary part, we may assume that *[ is selfadjoint.
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Write *i = *,+ - *f. Since ||*- *1+|| = \\xl>x+\\ and ||*- *f || - ||yYI| for each
state *, it follows that * • *t+ = ** and * • *f = *f for each state *. Since

either \px+ or *f is nonzero, it follows from [25, Proposition 5] that G is

discrete.

Proposition 6.9. If G is nondiscrete and T is a weakly compact multiplier on

A(G), then 5=0. Consequently, there exist no nonzero operators commuting

with action of A(G) on VN(G).

Proposition 6.10. If G is discrete and amenable, then m^*mL is a linear

isometry and an algebra isomorphism from A(G) onto the algebra of all

ultraweakly continuous (weakly) compact operators commuting with the action of

A(G)on VN(G).

Proof. If m G A(G), and K(*) = m • * for each * G .4(G), then V* =

mL. Since V is compact by Lemma 6.8, it follows that mL is compact.

Conversely, if T is a weakly compact ultraweakly continuous operator

commuting with the action of .4(G) on VN(G), and {*a} is a bounded

approximate identity on .4(G), let W be the restriction of 5* to A(G). Then

W is also weakly compact. Hence by passsing to a subnet if necessary, we

may assume that W(<j>a) converges to some element m in .4(G). Then

T= mL.

Using Proposition 6.10, we can obtain easily:

Proposition 6.11. If G is discrete and amenable, then A(G) is isometric and

algebra isomorphic to the algebra of all (weakly) compact multipliers on A(G).

Remark. When G is abelian, Proposition 6.9 is due to Sakai [27, Theorem

1], and Proposition 6.11 is due to Akemann [2], Kitchen [18] and Gaudry [11].

Proposition 6.12. If there exists a nonzero element m G A (G) such that the

"wp 1m- * -> * • m from B(G) into A(G) is weak*-weak continuous, then G is

discrete. If G is discrete and amenable, then qm is weak*-weak continuous for

each m G A(G).

Proof. The first statement follows from Lemma 6.8. If G is discrete and

amenable, then UBC(G) = C*(G) = C*(G) by Proposition 4.5. Hence if

m G A(G), and {*a} is a net in B(G) such that <*a, x> -> <*, x> for each

x G C*(G), then for each x G VN(G), <*a • m, x> = <*„, m • x> converges

to <*, m • x) since m- x G C*(G).

7. Means on UBC(G). We assume throughout this section that G is

amenable. An application of the Hahn-Banach extension theorem shows that

if G is commutative, then the functionals {8t; t G G) where 5,(x) = x(t) for

each x G UBC(G) are weak*-dense in the set of all functionals * on
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UBC(G) such that ||*|| = *(1) = 1 (see for example [13, p. 1]). In this section,

we shall generalise this result to UBC(G) for amenable G and give some

applications.

We let

M = {* G UBC(G)*; ||*|| = *(1) = 1},

5, (G) = {* G B(G); * > Oand ||*|| = 1},

E(G) = extreme points of 5, (G).

Elements in M are called means.

Lemma 7.1. (a) If m G M, íAe« m(x*) =m(x) for each x G UBC(G).

Furthermore, m(x) > 0 if x G UBC(G) and x is positive (as an element of

VN(G)).

(b) //* G PX(G), then * G M.

Proof, (a) Extend m to VN(G) retaining the norm, and use [26,

Proposition 1.5.2].

(b) Write 1 = y • 1, where y G A(G) and y is a state. Then <*, y • 1> =

<*y, 1> = <Ke)y(e) = 1.
Leptin [21] proved that for amenable locally compact group G,A(G) has a

bounded approximate identity. We need the following slightly stronger

assertion.

Lemma 7.2. A(G) has an approximate identity contained in PX(G).

Proof. Given e > 0, and a compact set o ç G, we can find by Reiter's

condition [13, p. 44], a function A G LX(G) such that A > 0, ||A||, = 1 and

||,A - A||, < e for all t G a. Define k = A1/2 and set *(£a) = k*k then

||*(e, 0)|| = *(<;) = ||fc||2 = 1, *(eo) > 0, and {*(ea)} converges to 1 in the

open-compact topology as shown in [13, p. 61]. Hence by Theorem 3.2, the

net is also an approximate identity in A (G).

Lemma 7.3. Given * G PX(G), there exists a net {*„} in co(E(G) u {0}) [or

in A(G) n P\(G)] such that *a converges to * in the weak*-topology of

UBC(G)*.

Proof. Since A = {* G P(G); ||*|| < 1} is weak*-compact, we can find a

net of convex combinations *„ = 2"=iX,y„ such that each y, is an extreme

point of A and *a converges to * in the weak*-topology of B(G). By passing

to a subnet, we may assume that *a converges to * in the w~-topology. Also

each y, is either zero, or has norm 1. Hence y, G E(G) U {0}.

An application of Thoerem 3.2 shows that *a converges to * in the

weak*-topology.

To show that a similar net {*„} can be chosen from A (G) n P\(G), we let
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{*„} G PX(G) n A(G) be an approximate identity for .4(G) (Lemma 7.2);

then *„ = *a • * G PX(G) n ^4(G), and *a converges to * in the weak*-

topology.

Theorem 7.4. Each of the following sets is weak*-dense in the set of means

on UBC(G):

(a)co{y;y G 5(G)}.

(b) {y; y G A(G) n PX(G)}.

(c) {y: y G PX(G)).

Proof, (a) Let K denote the weak*-closure of co{y; y G E(G)). Clearly

K ç M. If m G M and m G K, by the Hahn-Banach theorem [6, V.2.10],

there exist y G UBC(G) such that

Re(m,y) > sup{Re<y, v>; y G5(G)}.

Write x = ( v + y*)/2. Then, by Lemma 7.1,

(m, x> > sup{<y, x>; y G E(G)) = a

and x is selfadjoint. Write z = a • 1 — x. Then z is a positive element in

VN(G). In fact, <y, z> > 0 for each y G E(G). If y G PX(G) n A(G), by

Lemma 7.2, we can find a net ya G co(£(G) u {0}) such that ya converges to

y in the weak*-topology. Hence <y, x> = <y, x> > 0. By Lemma 7.1(a),

(m, z> > 0, but (m, z) < 0, which is impossible. Hence m G K.

Proof of (b) is similar, and (c) follows from (b).

Corollary 7.5. If x is a selfadjoint element in UBC(G), then

||x|| = sup{|<y,x>|;yG5(G)}.

Proof. By [26, 1.5.4], ||x|| = sup{|<w,x>|; m G VN(G)*, \\m\\ = m(l) =

1}. Use Theorem 7.4.

Corollary 7.6. Let K be a closed convex subset of A(G), then the following

are equivalent:

(a) * • K C Kfor each * G A (G) n P\(G).

(b) * • K Q Kfor each * G PX(G).

(c) * • K Ç Kfor each * G E(G).

Proof, (a) => (b). Let * G PX(G). By Theorem 7.4, there exists a net {*a} in

PX(G) n A(G) such that *a -»* in the weak*-topology of UBC(G)*. Hence

if y G K, and x G VN (G), the net <*a • y, x> = <*a, y • x> converges to

<*, y • x> = <* • y, x>. Since *a • y G K for each a and K is closed, it follows

that * • y G K, that (b) => (c) is trivial, and (c) => (a) can be done by an

argument similar to that of (a) => (b).
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Corollary 7.7. Let * G .4(G). Then

cë{*-*;*G£(G)} =cë{*-*;*G5,(G)}

= cö" {* • *; * G 5, (G) n A(G)}.

Proof. Let K be any of the sets and use Corollary 7.6.

Using an argument similar to that for Corollary 7.6, we can also prove:

Corollary 7.8. Let T be a bounded linear operator from A(G) into A(G),

the following are equivalent:

(a) 5(* • y) = * • T(y)for each *, y G .4(G).

(b) 5(* • y) = * • T(y)for each * G B(G) and y G A(G).

(c) 5(* • y) = * • T(y)for each * G E(G) and y G A(G).

Remark. When G is abelian, elements in E(G) correspond to point

evaluations at elements in G. Hence for G abelian, Corollary 7.6 and

Corollary 7.7 are generalisations of our results in [20, Theorem 4.1(a) and

Corollary 4.2(a) with/? = 1], and Corollary 7.8 is a generalisation of Wendel's

result [15, Theorem 35.5]. Also, for the special case that G is abelian and K a

closed linear subspace of .4(G), Corollary 7.6 (a)<=>(c) is found in [22,

Theorem 3IF].

We thank the referee for his many valuable suggestions and for correcting

an error in the proof of Proposition 5.3.
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