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CONTINUITY OF THE DENSITY OF A GAS

FLOW IN A POROUS MEDIUM1

BY

LUIS A. CAFFARELLI AND AVNER FRIEDMAN

Abstract. The equation of gas in a porous medium is a degenerate

nonlinear parabolic equation. It is known that a unique generalized solution

exists. In this paper it is proved that the generalized solution is continuous.

0. Introduction. The density u(x, t) of gas in a porous medium satisfies the

equation

du/dt = Aum       (m > 1) (0.1)

for x G R", t > 0, and an initial condition

m(x, 0) = m0(x). (0.2)

Here u0(x) > 0 and u(x, t) > 0. The equation (0.1) is a nonlinear parabolic

equation, degenerating at the points where u = 0. The concept of a solution

of (0.1), (0.2) is taken in some weak sense (to be defined precisely in §1). The

purpose of this paper is to prove that

m(x, t) is continuous. (0.3)

This result is known for n = 1; see [9], [10], [1] and [5].

In § 1 we state this result more precisely, giving also a uniform modulus of

continuity. In §§2 and 3 we establish preliminary estimates. The proof of (0.3)

for t > 0 is given in §4 and, for / = 0, in §5.

1. The main results. Let m0(x) be a function defined in R" and satisfying:

0 < m0(x) < TV       (TV < oo), (1.1)

f  (u0(x))2 dx < oo, (1.2)

u0(x) is continuous in R", and uniformly Holder

continuous in every compact set where m0 > 0.
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We consider the Cauchy problem

du/dt = Aum       in R" X (0, oo), (1.4)

m(x, 0) = Mq(x)       inR", (1.5)

where m is a fixed number, m > 1.

By a solution of (1.4), (1.5) we mean a function u(x, t) such that, for any

T < oo,

fT f  \(u(x, t))2 + \Vxum(x, t)\2] dxdt<<x> (1.6)
J0 JR»L

and

/oX("í " V*"m ' Vx/) dX dt + hUo(x)Áx) ** = ° (1-7)

for any continuously differentiable function / with compact support in

R" X [0, T).

We recall [11] that under the conditions (1.1), (1.2), there exists a unique

solution.

Other concepts of a solution can be given which allow for a different decay

condition at x = oo than in (1.2). The results of this paper are not affected by

working with these other concepts of a solution.

The solution u(x, t) can be obtained as a limit of solutions m,(x, t) (tj|0) of

the equation (1.4) with the initial condition

u(x, 0) = m0(x) + 7]       in R"; (1.8)

see [11]. Notice that the solution uv of (1.4), (1.8) is taken in the classical

sense, uv < u^ if tj < 17', and

tj < uv(x, t) < TV + 7}       in R" X (0, 00). (1.9)

We define the parabolic distance between two points (x1, f1), (x2, t2) by

d((x\t>),(x2,t2))=\x>-x2\+\tl-t2\X/2.

When we shall speak of a modulus of continuity of a function v(x, t), we shall

always mean the distance between two points to be the parabolic distance.

We now introduce two moduli of continuity:

<oe(/-) = qiogr|"e       (0<6<2/h), (1.10)

<b(r) = C2-cllos'l'/2 (1.11)

where C > 0, c > 0.

The main result of the paper is stated in the following theorem.

Theorem 1.1 (i) The solution u of (1.4), (1.5) is continuous in R" X [0, 00);

(ii) For any 80 > 0, um has a modulus of continuity ae(r) in R" X [8Q, 00) for

any 0 < e < 2/n, if n > 3, and a modulus of continuity <b(r) in R" X [50, 00) if

« = 2.
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The proof of continuity for t > 0 and the proof of (ii) are given in §4. It

will become obvious from the proof that the condition (1.3) is not required

for this part of the theorem.

The proof of continuity for t = 0 is given in §5.

§§2 and 3 develop some estimates needed in §4.

2. Preliminary lemmas. In this section and in §3 we obtain various auxiliary

results for the solution ^(x, t) of (1.4), (1.8). For simplicity we shall denote

this solution by u(x, t); we also take 0 < tj < 1.

All the estimates which we shall obtain, and all the constants will be

independent of tj. We set M = TV + 1, so that, by (1.9),

0 < m(x, t) < M. (2.1)

Lemma 2.1. The following inequalities hold:

'£■>-"-7, (2-2)
at m — I

dum m        _ ,„ _,,
t-r- >-r Um. (2.3)

at m — I

This result is due to Aronson and Benilan [4]. Since the proof is short, we

briefly give it here. The function w = t(du/dt) satisfies

dw/dt = mA(um~lw) + Am™.

The function z = — u/(m — 1) satisfies the same equation, and z(x, 0) < 0

= w(x, 0) (w is continuous at t = 0 if m0(x) is smooth). By comparison, then,

(2.2) follows if u0(x) is smooth; for general m0, one uses approximation.

The inequality (2.3) follows immediately from (2.2).

Let ô0 be a fixed positive number. For any x° G R", t° > 250, we introduce

the sets

Cr,h{x°, t°) = {(x, t); \x-x°\<r,t°-h<t< t°},

Br(x°)={x;\x-x°\<r},

where h < 80. Denote the volume of Br(x°) by \Br(x°)\. Set

C0 = m/ (m - l)80 (2.4)

and let h0 = h0(S0) be any positive number satisfying:

e2C°*°<f,       h0<80. (2.5)

Lemma 2.2. For any x° G Rn, t° > 250, X>0, r > 0, 0 <h < h0(80), the

following is true: if

-i-—   f        um(x, t°- h)dx>X (2.6)
\Br(x°)\ Jb,^

and if

h > Mynr2/X, (2.7)
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then

um(x°, t°) > i X; (2.8)

here yn is a positive number depending only on the dimension n.

Proof. By (2.3), (2.4), dum/dt > - (m/(m - \)t)um > - C0um if t° - h0

<t<t° (since t > 280 - h0 > 80). Hence

Mm(x°, t°) > e-co<'-'°+A>M'"(x0, t) > e-c^">um(x0, t). (2.9)

Again, by (2.3), (2.4), the function

1
w(t) =-— f        um(x, t) dx

|Rr(x°)|V°)

satisfies

<p'(t) > - (m/(m - l)t)tp(t) > -C0tp(0

so that

<p(t) > e-c»('-'°+*V('o - h)> e-c^(t0 - h)> e~c^X,     (2.10)

where (2.6) was used in the last inequality.

Suppose n > 3 and let

C7(P) = p2'" - r2'" - ((n - 2)/2)r-"(r2 - p2),       p = |x - x°|.    (2.11)

Notice that G(r) = 0, G'(r) = 0 Since G'(p) < 0 if p < r, G(p) is positive in

Br(x°). By Green's formula,

um(x°, t)=\y(        GAum dx + —i— f        um(x, t) dx  (2.12)
JBr{x°) \Br(x°)\ JBr(X»)

where y„ is a positive constant depending only on n.

Suppose now that the assertion (2.8) is not true. Then (2.9) gives

um(x°, t) < i Xec^o.

Substituting this and (2.10) into (2.12) and using the first inequality of (2.5),

we obtain

Ï A < i y„ f        GAum dx.
JBr{x°)

Integrating this inequality with respect to t, t° — h < t < t°, we get

Xh<y„['      [        G(p)Aum(x, t) dx dt
Jt°-h JBr(x°)

Jt0-h JBr(x°) ot

<yn[        G(p)u(x, t°) dx < ynM f        G(p) dx.
JB,(x°) JBr(xa)
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Since the right-hand side is bounded by y „Mr2, with another constant y„, we

obtain a contradiction to (2.7). This completes the proof in case n > 3. For

n = 2 the proof is the same provided we replace G(p), defined in (2.11), by

G(p) = log(r/p) - \ r-\r2 - p2).

In the next lemma we take h0 = h0(80) to satisfy, in addition to (2.5), the

inequality

h0 < 2n(m - l)80c/M,       c> 0, (2.13)

and let C, be any constant satisfying:

C, - 1 > 2M+1,       C, - 1 > ynM2n+2. (2.14)

Lemma 2.3. Let t° > 80, 0 < h < h0(80), X = ca(h) where a(h) > 0, a(h) -> 0

if h -» 0. Let x° be any point in R " such that

\x°\<hl/2(a(h))l/2 = r. (2.15)

V
Mm(x°, /°) > CXX, (2.16)

then

um(0, t° + h)> X. (2.17)

Proof. Let v(x) = Mm(x, r°) + c,|x - x°|2, c, > 0. Then by Lemma 2.1

and (2.1),

Av = 3m/3í + 2ncx > -M/(m - l)8Q + 2ncx = 0

provided

c, = M/2n(m - l)80. (2.18)

Thus, v is subharmonic. This imphes that, for any r > 0,

—f- /        v > v(x°) = «"(x0, Z0) > CXX,
\B,(x°)\ JBr(X0)

where (2.16) was used. Since the left-hand side is bounded above by

cr2 +-— f        um,
\Br(x°)\ Vo)

we obtain, if r is taken as in (2.15),

/ =-î—  (        um > C.Ä - cxr2 = C.À - cxha(h).
\Br(x°)\ Jb^

Recalling the definition of X, cx and the restriction (2.13), we find that

I > (Cx - l)X. If we now assume that |x°| < r then B^O) d Br(x°), and we

conclude that

—lm f       u™>(Cx-l)X±.
\B2rW\    JB2r(Q¡) ¿
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We now wish to apply Lemma 2.2 with X, r replaced by X' = (Cx — 1)a2~",

r' = 2r, and with t° — h replaced by t°. The condition (2.7) is satisfied by

virtue of the second inequality in (2.14). We conclude that Mm(0, t° + h)

> j X' > X, where the last inequality is a consequence of the first inequality in

(2.14).
We conclude this section with the following lemma.

Lemma 2.4. Let 80 > 0 and let

c, = l/mMm~\ (2.19)

Then, for all t > 80,

Aum > -M/(m- l)80, (2.20)

Aum - c.dum/dt > -M/(m- l)80. (2.21)

Proof. By Lemma 2.1,

,   _      3m                 m M
Aum « — > --— >

dt (m - l)t (m - 1)S0 '

and (2.20) follows. To prove (2.21), we can write

.   „ dum      du __,  3m      /, m_,\du
Au - c*sr - ¥ - c*mu    * --.C1 - c*mu   h

u-0
*""*      '(m-l)t'

since 1 - c%mum~x > 0 by (2.19). Since the right-hand side is > - u/(m —

l)t > - M/(m - l)80, (2.21) follows.

3. A priori estimates. The main result of this section is stated in Lemma 3.3.

Let e be any positive number such that e < 2/n.

Fix a point (x°, r°) in R" X (2á0, oo) and define

Rk = {(x, t): \x - x°\ < 2~k, t° - 2~2k < t < t0},

where k is a positive integer. In Lemma 3.1 we shall be interested only in

k > k*. Here A:* is a positive number sufficiently large, to be determined in

the proof of Lemma 3.1. It depends only on e, 50, TV and it also satisfies the

inequality 2~2** < h0 where h0 = h0(S0) is the number satisfying all the

restrictions imposed in Lemmas 2.2, 2.3.

Define

¡ik = sup um,   Mk = max{ ¡ik, 4Cxk~e},

where C, is the constant appearing in Lemma 2.3.

Lemma 3.1. Suppose

um(x°, t°) < Ve (3-1)
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for some k0 > k*. Then, for any k* < k < k0,

lik+i < Mk(l - Ck~^2) (3.2)

where C is a constant depending only on t, 80, TV.

Proof. We wish to apply Lemma 2.3 with a(h) = |logA|_£, h = 2-2*,

c = (21og 2)' (so that X = k'e). The lemma asserts that if um(x, t° - 2~2k) >

CXX for some x such that |x - x°| < 2~kk~'/2, then u(x°, f°) > X. Since the

last inequality contradicts (3.1) (since k < k0), it follows that

um(x, t° - 2~2k) < Cxk~°   if |x- x°| <2-*/rc/2 (3.3)

for all k* <k < k0.

Let

v(x) = um(x, t°- h) + cx\x - x*\2   where |x* - x°| < } 2~k;   (3.4)

c, is chosen as in (2.18), so that At; > 0.

Denote by B the ball with center x* and radius \2~k, and denote by B'

the ball with center x° and radius 2~kk~c/2. Then B' is contained in B (if

k > k*).
Since ü is subharmonic,

Mm(x*, t°- h) = v(x*, t° - h) < rii   /" ü(x) ¿x
I-0!  -'s

< c,(f 2"*)2 + rir  f «m(x, t° - h) dx.        (3.5)
\B\   Jn

Using the inequahty (3.3) in B', and the inequality um(x, t° — h) < Mk in

R - B', we can estimate the last term in (3.5) by Mk(\ - k'm/2) +

Cxk~m/2k~\ Substituting this estimate in (3.5) we get

um(x*, t° - h) < Mk(l - k~m/2) + 2Cxk~a,/2k-'.

Recalling the Mk > 4Cxk~\ we conclude (if k > k*) that

Mm(x*, t° - h) < Mk(l - \ k-m'2)   if |x* - x°| < \ 2~k.       (3.6)

Let x' = (x - x°)/2k, t' = (t - i°)/22*, w(x', t') = um(x, t).

By Lemma 2.4,

(A - c,3/3/')w = 2"2*(A - c.d/dt)um > - C2~2k (3.7)

where C = M/(80(m - 1)).

Consider the function

z = I - w/Mk (3.8)

in the cylinder |x'| < 1, - 1 < /' < 0. Clearly z > 0 in this cylinder. Also, by

(3.6),

z(x', - 1) > \ k-01'2   if|x'|<i. (3.9)
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By (3.7) we further have

(A - c,3/3r')z < C2~2k/Mk. (3.10)

Denote by G(x', £', t') the Green function of A — c^(d/dt') in the cylinder

|x'| < 1, — 1 < t' < 0. Representing z in terms of Green's function, and using

(3.9), (3.10), we get

r''    r C2'2k
z(x', t')> - f      f        —jrj— G(x', I', t' - s) d? ds

j-x J\ç\<\    Mk

+ {- k~m'2 ( G(x', f. t' + 1) </f. (3.11)
•'iri<i/3

We restrict (x', /') to the set |x'| < \, —\<t'<0. Then the last integral is

larger than a positive constant 4c, and

('   (       G(x', f. s) d? ds < C,
J-\ JW\<\

where c and C depend only on c+, n. It follows that

z(x', t') > 2ck~m/2 - CC2~2k/Mk > ck-°"/2, (3.12)

where the inequality Mk > 4Cxk~* was used; here again we take k > k* with

k* sufficiently large.

Recalling now (3.8), the assertion (3.2) follows from (3.12).

Lemma 3.2. Under the assumptions of Lemma 3.1,

Hk<Ck-e   forallk<k0 (3.13)

where C is a constant depending only on e, 80, TV.

Proof. We choose C so large that (3.13) holds for all 1 < k < k* + 1 and

C > 1. Next we proceed by induction on k. Suppose (3.13) holds for some k,

k* < k < k0; we shall prove it for k + 1. In view of the definition of Mk,

Mk < Ck~'. Substituting this into (3.2) we get

ftt+i < Ck~e(l - Ck'"1'2) < C(k + l)"e

provided

*"/*      I     k    j    '

which is certainly the case if k* is sufficiently large (depending on e, C) since

en/2 < 1.

Lemma 3.3. For any 0 < e < 2/n, S0 > 0 there exists a constant C* > 1 +

TV, depending only on e, 80, TV, such that for any (x, t), (x°, t°) in R" X (Sq, oo),

Mm(x, t) < C*max{|log(|x - x°| + |/ - r°|I/2)re, mot(x°, r0)}. (3.14)
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Proof. We may assume that um(x°, t°) < 1.

Let k0 be a positive integer such that

(ko + I)"' < Mm(x°, i°) < (koy\ (3.15)

Consider the first case where k0 > k*. By Lemma 3.2,

Mm(x, t) < Ck~E   if |x - x°| < 2~k, t° - 2'2k < t < t°,      (3.16)

provided k < k0. This gives

um(x, t) < C|log(|x - x°| + \t - tY2)\~e

as long as (x, t) does not satisfy: |x - x°| < 2~k°, t° - 2~2k° < t < t°. If, on

the other hand |x - x°| < 2~k°, t° - 2"2*» < t < t°, then (3.16), with k = k°,

gives

um(x, t) < C(koye < Cum(x°, t°),

where (3.15) has been used. Thus we have proved (3.14) if t < t° and k0 > k*.

If ¿o < k* then Mm(x°, t°) > (k* + 1)~° and (3.14) follows by choosing

C* > M(k* + If. We have thus completed the proof of (3.14) in case t < t°.

In particular it follows that

Mm(x, t°) < C*|log|x - x°| |-£ + C*Mm(x°, /°). (3.17)

Let v be the solution of

3t> M „„        . n       .

Aü - C*Tt = - 2(m - l)O0        -^X('°'-)'

ü(x, /°) = Mm(x, /°)       in Rn.

Since um satisfies (2.21), we can compare v with um and conclude that

um(x, t) < v(x, t). (3.18)

Representing v in terms of the fundamental solution of A — c„(3/3/) and

then using (3.17), we find that

v(x, t) < C*|log(|x - x°| -I- |/ - t°\l/2)\-< + C*um(x°, t°)   iît> t°,

with another constant C*. Using (3.18), the inequality (3.14) then follows

(with yet another constant C*) for t > t°.

4. Proof of Theorem 1.1 for r > 0. We begin by deriving another version of

Lemma 3.3.

Lemma 4.1. For any 0 < e < 2/n, 80 > 0, // (x1, t') G R" X (28^, oo) for

i = 0, 1 and if

llogflx1 - x°| + If1 - f°|1/2)re < (l/C*)Mm(x', t') (4.1)

for i = 0 or i = 1, then

l/C* < um(x\ tl)/um(x°, t°) < C*. (4.2)

Here C* is the same constant as in Lemma 3.3.
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Proof. It suffices to prove (4.2) when (4.1) holds for i = 0, that is,

llogflx1 - x°| + \f - /°|1/2)f ' < (l/C*)um(x°, t°). (4.3)

The inequality um(x\ r1) < C*Mm(x°, t°) is of course a consequence of (3.14)

and (4.1) (for i = 0). To prove that um(x\ tx) > Mm(x°, t°)/C*, we proceed

by assuming that

um(xt, /') < (1/C*)m(x°, t°) (4.4)

and deriving a contradiction.

We write (3.14) with (x, /) and (x°, t°) replaced, respectively, by (x°, t°)

and (x1, /') and then use the relations (4.3), (4.4). We obtain um(x°, r°) <

Mm(x°, f°), which is impossible.

Take now any point (x°, /°) with t0 > 250, and let k0 be a positive integer

such that

Mm(k0 + l)~' < Mm(x°, t°) < Mmkçj'. (4.5)

Define
20 = {(x, r): |x - x°| + \t- i°|'/2 < 2-^o, t > 80) (4.6)

where c and p. are positive numbers to be determined below (independently of

k0), and p. > 2.

If (x, t) $ So, / > 8„. then |log(|x - x°| + \t - t°\x/2)\-' > (kolu: log 2)"'.

Recalling (4.5) and using Lemma 3.3, we then obtain Mm(x, t) < C|log(|x —

x°\ + \t — r°|1/2)|_e where C is a positive constant depending on

80, e, TV, ¡i, c. Since the same inequality holds also for um(x°, f°), we obtain

|Mm(x, t) - um(x°, t°)\ < 2C|log(|x - x°| + \t - t°\x/2)\~'.      (4.7)

We shall now evaluate the left-hand side for (x, t) G 20. By (4.5) and

Lemma 4.1,

1/C* < um(x, i)/um(x°, t°) < C* (4.8)

provided

|log(|x -x°| + k-f°|1/2)r < (TV"/C*)(A:0 + 1)"',

that is, provided |x — x°| + \t — t°\1/2 < 2~ck° where c is a positive constant

depending on e, 80, TV. We now choose, in (4.6), c = c. It follows that if

|x -x°| < 2-ck",       \t -1°\ < 2~2ck° (4.9)

then (4.8) holds.

Introduce variables

x' = (x - x°)/2-c*°A,       t' = (t - t°)/2-2ck°,

where A = kô(m-X)t/2m and let c(x', t') = u(x, t). Then

dv/dt' =V(a(x',t')Vv') (4.10)

where a = mum~xk{fm~X)/m.
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If

|x'|<Ä:0(m-1)/m,        |f'|< 1, (4.11)

then

|x - x°\ < 2-c*»A2/t0(m-1)/m = 2~ck°,       \t - t°\ < 2~2ck°,

so that (4.9) holds with (x, t) = (x, t); consequently also (4.8) is thus satisfied.

Then, Cx < a(x', t') < C2 where C,, C2 are positive constants depending only

on e, on, TV. We can now apply the Nash estimate [8] to t> and conclude that

for some a, 0 < a < 1,

\u(x, t) - u(x°, t°)\ = \v(x', t') - o(0, 0)| < C(|x'|° + |i'|a/2)

= c\L^r + c\L^vi (412)
(2-ck°X)a (2-***)"

where C is a generic constant depending only on e, S0, TV.

Now, if we take p. > 4/a then, for (x, /) G 20,

|x - x°|"/2 < (2-^°)a/2 < (2-c*°A)a,

\t _ fit"/* < (2-2,lcÂ:»)o/4 < (2-2ck°)a.

Substituting this into (4.12), we get

|m(x, t) - u(x°, t°)\ < C(|x - x0|°/2 + |/ - iT/4)-

Combining this with (4.7) we find that (4.7) (with a different C) is valid for

all (x, 0, (x°, t0) in Rn X (250, oo).

We now recall that the function u which we have been considering so far is

actually the solution uv of (1.4), (1.8), and uv(x, í)|m(x, t) as 7)4,0. Hence, by

taking t/4,0 in (4.7) (for u ) we obtain the same inequality for u. This

completes the proof of Theorem 1.1 (ii) in case n > 3.

If n = 2 we can improve the modulus of continuity. We take in the proof of

Lemma 3.1 a(h) = 2-|,08*|,/2, h = 2~2*, A = 2~*'/2 and apply Lemma 2.3

(with r = 2~k2~k'/2). The function z defined in (3.8) then satisfies (3.10) and

z(x', -1) > 1 - c2-*1/2/ft > Î    if |x'| < 2-*'/2,

where Mk = max{ p.k,2~ck } and c, C are positive constants. Let f(x') =

z(x', - 1) - (C2~2k/Mk)\x'\2. Then (A - c„3/3r')f < 0. Also

f > i    if |x'| < 2"*,/2,

? > -C2-2k/Mk   if |x'| = 1.

We compare £ with the function

I   log|x'|    _ C2-2*

"KX)     4log2-^ Mk    ■
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By the maximum principle, f > n if 2~k>/1 < |x'| < 1. Hence, if |x'| < \,

z(x>    na l log(V2)     C2-2*    C2-2*    p
Z(X'     !)>2log2-^ ^    +    ^    1*1

C   -C2"*>    C

fcl/2 ¿1/2 '

where C is a generic constant depending on 50, TV.

We can now proceed as in (3.11) and obtain

z(x',t') >C/k,/2       if |x'| <{, -i<f'<0.

Therefore ju¿+, < Af^l - C/kl/2) for any A: > Â:*.

Proceeding analogously to the proof of Lemma 3.2, we establish by

induction on k that

¡xk < C2~c'km       (k* <k < k0). (4.13)

provided C is chosen sufficiently small.

With (4.13) at hand, we can now proceed as in the case n > 3, replacing

everywhere the modulus of continuity C|log r\~' by C2_c|log''l'/\

5. Continuity at t = 0. We first prove continuity at a point (y, 0) where

u0(y) > 0. Consider the function

1      / Ixl2      \1/(m_1)

^'^ÏÏTTT^-^Tir) («>M>0).   (5.1)
By direct calculation we find that in the region where |x|2</lf+l,0<i<

8: Awm - w, > 0 provided B =Am+a~l and a satisfy B > 2mn/(m - 1),

aB < 4m/(m — 1), and provided 8 is sufficiently small. Define

wcAx> *) = cw(Lx, cm-lL2t),       c>0,L>0. (5.2)

Then (cf. [6])

A(wC)Z.)m - dwcL/dt > 0   if |x|2 < Acm-Xt + L~2, t < Sq,       (5.3)

where 50= 8/(cm-xL2).

Consider the function

v(x, t) = f W<¿X> l)     «W2<^-i + L-2, (54)
(O if |x|2 >Acm~xt + L~2.

Since vm vanishes on |x|2 = Acm~xt + L~2 to an order larger than 1, it is

clear that u is a subsolution of (1.4). Further,

v(x, 0) = 0       if |x| > 1/L,

v(x, 0) < c       if |x| < 1/L. (5.5)
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Now, since m^) > 0, we have m0(x) > c if |x — y\ < l/L for some c > 0,

L > 0. We can therefore compare the solution uv(x, t) with £>(x, t) = v(x —

y, t), and conclude that

m,(x, t) > v(x, t)   if 0 < t < 80.

Consequently u^x, t) > c/2 if \x - y\ < 1/2L, 0 < t < 8' (8' small

enough).

We can now apply the Nash estimate [8] and deduce a uniform Holder

continuity on the uv(x, t) for

|x - y\ < 1/3L,       0 < t < ±5', (5.6)

with exponent and coefficient which are independent of t;. Taking tj -» 0, we

conclude that u(x, t) is also Holder continuous in the set (5.6).

It remains to prove continuity at a point (y, 0) for which u0(y) = 0. For

any e > 0 there is a 8 > 0 such that

M0(x)<e       if|x-y|<o. (5.7)

Consider the parabolic problem

dw/dt = Awm        if |x - y\ < 8, t > 0,

w(x, 0) = 2c       ii\x -y\< 8,

w(x, t) = TV + e       if |x - y\ = S, t > 0.

This problem has a classical solution. We shall compare this solution with the

function Uy(x, t) for tj < e. In view of (5.7),

m,(x, 0) < w(x, 0)    if \x - y\< 8.

Since also m,(x, t) < w(x, t) when \x — y\ = 8, t > 0, we conclude that

m,(x, t) < w(x, t). Taking tj -> 0 and noting that w(x, t) is continuous at

(y, 0), we get

lim       m(x, t) <       lim       w(x, t) = 2e.
(x, t)^(y, 0) (*' 0-K* °)

Since e is arbitrary, u(x, t) -» 0 = u0(y) if (x, /) —> (y, 0). This completes the

proof.

Remark 1. Consider the case n = 1. Then uxx > — c and, since um is

bounded, ux must then be bounded. Using the relation uj" > — cum we then

deduce that if t2> t then

m"-(x2, t2) > um(xx, tx) - C(\x2 - x,| + \t2 - tx\). (5.8)

If vxx - c+v, = - C (c„ > 0, C > 0) and v(x, tj) = um(x, tj), then we get,

upon using (5.8) with t2 = /,, that

\v(x, t) - v(xx, tx)\ < C(\x - xx\° + \t- »//*)        (/ > tj)

for any 9 <\. Since uxx — cmuj" > — C for some cM > 0, C > 0, we con-

clude that um < v, so that
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um(x2, t2) < um(xx, tx) + C(\x2 - xj* + |r2 - txf2).

Together with (5.8) we thus obtain a modulus of continuity Are for um, for

any 9 < I. Actually, in this case of n = 1, a better modulus of continuity is

known (Aronson [1], Gilding [5]): \(um~x)x\ < C, and

|m(x2, t2) - m(x„ r,)| < C(|x2 - xx\* + \t2 - ttf'2)

where v = min(l, l/(m — 1)).

Remark 2. Theorem 1.1 implies that the sets

ñ = {(x, r) G R" X (0, oo); m(x, t) > 0),

Q(t) = {x G R"; u(x, t) > 0}

are open subsets of R " X (0, oo) and R ", respectively. The relation (2.9) (for

u , t] —> 0) implies

Mm(x, t) > C(t, t0)um(x, t0)

where C(f, i0) > 0. It easily follows that

ß(i) is increasing with t; (5.9)

it is not necessarily strictly increasing (see [2], [3], [7]).

Remark 3. The results of this paper extend to the more general equation

u, = A<p(m)

where <p(0) = 0, <p'(0) = 0, <p'(u) > 0. The analog of Lemma 1.1, for this case,

is proved in [4].
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