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RESULTS ON WEIGHTED NORM INEQUALITIES
FOR MULTIPLIERS
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DOUGLAS S. KURTZ AND RICHARD L. WHEEDEN'

ABSTRACT. Weighted L?-norm inequalities are derived for multiplier opera-
tors on Euclidean space. The multipliers are assumed to satisfy conditions of
the Hormander-Mikhlin type, and the weight functions are generally re-
quired to satisfy conditions more restrictive than 4, which depend on the
degree of differentiability of the multiplier. For weights which are powers of
| x|, sharp results are obtained which indicate such restrictions are necessary.
The method of proof is based on the function f¥ of C. Fefferman and E.
Stein rather than on Littlewood-Paley theory. The method also yields results
for singular integral operators.

1. Let m(x) be a bounded function on R” and consider the multiplier
operator Tf defined initially for functions f in the Schwartz space & by
(Tf)(x) = m(x)f(x), where & is the Fourier transform of g. Denote by s a real
number greater than or equal to 1, / a positive integer, and a = (a, . .., a,)
a multi-index of nonnegative integers o; with length |a| = a; + - - - +a,. We
say m € M(s, ) if

. 1/s
sup (R’lal—"f | Dm(x)|’ dx) < +o0 forall|a|<I (L.1)
R>0 R<|x|<2R
The condition (1.1) has been known to be related to multipler theorems for
some time. The classic works in this direction are the theorems of Marcin-
kiewicz (see [18]) and Hormander-Mikhlin (see [7]):

THEOREM A. Let n =1, 1 <p < 00, and m € M(1, 1). Then there exists a
constant C, independent of f, such that || If||, < C||f||,-

THEOREM B. Let I > n/2,1 <p < o0,and m € M(2, I). Then there exists a
constant C, independent of f, such that || If||, < C||f||,-

Much work has been done to extend these results. Using interpolation
methods, Calderén and Torchinsky [2] have considered the condition m €
M(s, ) for s > 2 and / > n/s. Hirschman [6], Krée [11], and Triebel [20]
have extended these results in various directions to weighted L? spaces for
weights which are powers of |x|. More recently, Kurtz [12] extended Theo-
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344 D. S. KURTZ AND R. L. WHEEDEN

rems A and B to L? spaces with more general weights by using the weighted
norm inequalities derived in [15] for the function g¥.

The purpose of this paper is two-fold. We consider s < 2 and present a
method of proof based on the function f*# of Fefferman and Stein [5] rather
than on Littlewood-Paley theory.

Wesay f € LE(R"), 1 < p < o0 and w(x) > O, if

Voo = ([ W0Pwx)ax)” < oo

The weights w we will consider satisfy an 4, condition; i.e., w € 4, if there is
a constant C such that

(ILQlfgw(x) dx)(l—é—l-fgw(x)_'/("” dx)’—l <C, 1<r< oo,

I—élfQW(x) dx < C essQinfw, r=1,

for all cubes @ C R"”. When r = 1, the condition that w € 4, means w*(x) <
Cw(x) for almost every x, where g* is the Hardy-Littlewood maximal func-
tion of g. Finally, w € A4, if there exist positive constants C and & such that
for any cube Q C R” and for any measurable set £ C Q,

s
m(E) C(Jﬂ) ’
m,(Q) |2l

where m,(E) = [ w(x) dx. Results concerning 4, functions can be found in
Muckenhoupt [13] and Coifman and Fefferman [3]. Note, in particular, that
w € A, implies w € 4,

We use p’ to denote the index conjugate top: 1/p + 1/p’ = 1,p > 1.

The main result of this paper is:

THEOREM 1. Let 1 <s < 2,n/s <l < n,and m € M(s, I). If
(Dn/l1<p< wandw € 4,,,, or
@ 1<p<(n/lyandwV/*Ve4,,,
then there is a constant C, independent of f, such that
7Aoo < CliAllp.w-
When | < n, we may takep = n/lin (1) andp = (n/1y in (2). If
B)w'l € 4,
there is a constant C, independent of f and A, such that

m((x € R [T > N) < S flw A >0,

Using interpolation, other conditions on the weight can be found which
guarantee that T is a bounded operator. One result which we will prove is:
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THEOREM 2. If 1<p< o0, 1<s<2, n/s<I<n m¢€M(s,!), and
w"/! € A, then

17w < ClAAlpw
for a constant independent of f.

This result does not give the best possible condition on the weight. When
w(x) = | x|, we have w € A, if —n < B <n(p — 1). Interpreting Theorem 1
for such w and using interpolation with change of measures, we will show:

THEOREM 3. Let 1 <5 <2, n/s <I<n,and m € M(s,!). If 1 <p <
and max{—n, —Ilp} < B < min{n(p — 1), [p}, then there is a constant C,
independent of f, such that

ITAlex12 < ClAlp.1xi2-
In particular, if n/1 <p < (n/ly, we get —n < B <n(p — 1); we may also
takep =n/landp = (n/ly ifl <n.

We will show that this result is sharp with the possible exception of the
endpoint values of B.

Let g denote the inverse Fourier transform of g. If we set K = m, then for
fES, TAx) = (K * f)(x). Our proof of Theorem 1 is based on using
information about m to get estimates on approximations to K, so it is not
surprising that the technique carries over to convolution operators.

Denoteby2 =3, _,={xE€R" |x|=1},x' = x/|x| €EZ(x #0),and p
any rotation of 3 with magnitude |p| = sup,csjox — x|. Let 1 <r < o0 and
Q € L'(Z) be positively homogeneous of degree zero. We say that  satisfies
the L"-Dini condition if

flw,(S)%< +o,
0

where

, 1/r
0,(8) = .Z,“fs( L9 - aG ds,) .

Set K(x) = Q(x")/|x|", with f5 Q(x)do, = 0, and Tf(x) = (K * f}(x) in the
usual principal-value sense. If Q satisfies the L’-Dini condition then it also
satisfies the L'-Dini condition, which by [1] implies T is a bounded operator
on L?, 1 <p < . Recently, Kaneko and Yano [10] have shown that if Q
satisfies the L*-Dini condition then T maps L? into itself for 1 <p < o0 and
w € A4,. We have extended this to:

THEOREM 4. Let 1 <r < o0, & € L'(Z), and (5 Ux) do, = 0. Suppose Q
satisfies the L"-Dini condition. If
r<p< wandweAd,,,or
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@Q1<p<randw V/¢"De4d,,
then there is a constant C, independent of f, such that

1Al < CllAlow-

When r < oo, we may takep = r' in (1) andp = rin (2). If
B)w"” € A,, then

C
m,({x € R |Tf(x)| > A}) < T"f“l,w’ A>0,
where C is independent of f and .

Theorem 4 is a direct analogue of Theorem 1. (We could also have stated a
version of Theorem 3. See also [14].) In fact, when r > 2, 7’ plays the same
role as n/1. For example, notice the similarity between m € M(s, n), 1 <s <
2, and © satisfying the L*-Dini condition. Our technique, however, does not
allow for either r or s to be equal to 1.

§2 contains the basic lemma and a collection of results used in the proof of
Theorem 1. This theorem and Theorems 2 and 3 are proved in §3. The proof
of Theorem 4 is found in §4. The paper concludes with a counterexample
showing Theorem 3 is best possible except for the question of endpoint
equalities for 8. The basic lemma and the counterexample are generalizations
to n > 1 of results in [16], and we gratefully acknowledge many helpful
discussions with W.-S. Young and B. Muckenhoupt.

2. Following [7], we select an approximation to the identity

+ o0 .
> ¢277x)=1, x#0,
Jj=—o0
where ¢ is an infinitely differentiable, nonnegative function supported in
1 < |x| < 2. Let m(x) = m(x)@(27’x), so that

+ o0
m(x) = > m(x), x#0.
Jj=—o0
Notice that my(x) is supported in 27! < |x| <2 *! and that for such x,
m(x) = 0 unless k = j — 1, j, or j + 1. It follows easily that if m € M(s, /)
and |a| </, then

|Dmy(x)|" ax 1/s < cEy” e,
R" J

with C independent of j.
We also have that m; € L' n L*. Define ki(x) by k;(x) = r(x), and let
N N

m®(x) = Eij(X), KN(X)=(mN)'(X)=j_2 ki(x)-

j=— -N
It follows that ||m”||, < C, uniformly in N, and that m™(x) —» m(x), x # 0,
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as N - co. Now define Tyf by Tyf = (m™f), so that Tyf = f+ K,, for
f € L?, say. The following lemma shows how conditions on m can be
interpreted as conditions on K.

LeMMA 1. Let 1 <s < 2, m € M(s, ]) for a positive integer I, and let K, be
defined as above. If d is an integer such that 0 <d < 1,1 <t <s,n/t <d <
n/t+ l,and1 < p <, then

1/p
(f |Ky(x = ¥) = Ky(x)[ dx) < CR -d+n/p—n/t"y|d—n/¢
R<|x|]<2R

Jor all |y|<£-,

with C independent of N, R, and y.

PROOF. Since Ky (x) = 2. _ k(x),
1/p
( S |Kn(x = ») = Ky(x)’ dx)
R<|x|<2R

1/p
<2 (fx<|x|<lekf(x =) = kGf dx) - @

J
Also, |y] <R/2and R < |x| < 2R imply R/2 < |x — y| < 5R/2, so that

(fx<|x|<lek’(x =)~ kG dx)w
/p /p.
< (j;!<|x|<2R|19(x - y)[’ dx)l M (“/;(<|x|<2Rij(x)|p dx)l

1/p
<2 k(x) dx) .
(j;(/2<|x|<5R/2| () )
Therefore, we need to estimate

1/p Y,
('[R/2<|x|<5R/2|kj(x)r dx) and ([quKmV‘j(" -») — k)| dx) p.

Let d be an integer such that 0 <d </and 1 <t < ssuch thatp < 7. Itis
easy to see that m € M(¢t, d). Let x* = x{' - - - x. Then

|k (x)f" dx)w < CR -d( fR |1 ol dx)l/p

/2<|x|<5R/2

/p
<CR™? ( x%;(x dx) .
|¢i|2-d 'l;!/2<|x|<5R/2| j( )r

Using the fact that m; = k;, Holder’s inequality, and the Hausdorff-Young

(fx/2<|x|<5x/2
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theorem, we have for |a| = d that

e or ax) = (f.

1/p
- R"/’(R ""L/2<|x|<5R/2|(D"ny)"(x)|’ dx)

((Dm) dx)'/'

(L/z< |x|<5R/2 /2<|x|<5R/2

< CR"/'(R - (DY (x)|” dx)w

/2<|x|<5R/2
1/t
< CR"/P"'/"( [ |pom ()|’ dx)
Rﬂ

< CR™P=n/t(2/)"/t=4d,
Combining these estimates gives
1/p
(f k) dx) < CR-4rn/ QY4 (22)
R/2<|x|<5R/2
For the integral of the difference of the k;’s we have

1/p
(fx<|x|<zn|k’(x =) = kI dx)
1/p
(] o1 )
< CR _d(j;<|x|<2R| |x|¢ {m,(x)(e™” — 1)}'|’ dx)l/p

1/p
< CR"?P=4 3 [R~" |x= {m(x)(e*> — D} dx)
jo|=d R<|x|<2R

- 5 1/p
comr 3 (8, J ke - )T )

) 1/¢
CR"/?—4 R™" D% m; e ) ) ! dx)
<RI 2 R e P = DI

. 1/t
& CR"/P—d-n/¢ Ialz-d(jl;”lpa["fi(x)(e‘x.y - l)]l dx)

1/t
< CR™/P—d4-n/t 2 (f |Dp'nl(x) . DY(ei"')’ - l)l' dx) .
Bl +[v|=d \"R"
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Consider first |y| = 0, | 8] = d. Since |e*” — 1] < |x| ||,
1/t
([ J@omexes> - ol ax) "< ([ |1l piptmol o)

< Czjlyl(zj)n/t—d = Clyl(zj)n/t—d+l.
If [y| > 0,|D"(e™ — 1)| < |y|" and | B| = d — |y], so that

(L'D""’f(xf D(e - 1 dx)'/' < (f,,l ™ D#m ()] dx)

< Cb;|""(2f)"/"'p'= Cly""(zj)"/'-d*-lvl_

1/t

1/t

Adding these estimates, we obtain

1/p d
(f |k(x = ) = k(x)f dx) < CR™MP=4=7/0 3 (@) A,
R<|x|<2R <,
(23)
But, if 2/ < |y|7' (] < 27),
lyl’”(zj)n/t—d+m < Iyl(2j)n/t—d+l,

so for these values of j, the estimate (2.3) becomes
CR n/p—d—n/t’lyl(2j)n/t-—d+l.
Using (2.2) and (2.3) in (2.1), we get

1/p
(f [Ky(x —y) — KN(x)lp dx)
R<|x|<2R
<C 2 Rn/P—d—n/t’Iyl(zj)n/t—d+l +C 2 Rn/p-—d—n/t’(zj)n/td
Y<p™! Yy

< CRn/p—d—n/r’lyld-"/‘

aslongasn/t <d < n/t + 1. This completes the proof of Lemma 1.
Although we will not use it, we would like to point out that if / >
max{n/p’, n/s}, then

1/p
( f | Ky ()] dx) < CR™?P",
R<|x|<2R
This follows from (2.2) with d = / and the estimate
1/p )
(ot a)” <coms
R<|x|<2R
which is a consequence of |ki(x)| = |ri(x)| < ||m|l, < C2™".

REMARK 1. We may replace the domain of integration in Lemma 1 by
{x € R": R < |x|}; that is, under the conditions of Lemma 1,
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1/p
(f |[Kn(x —y) — K~(x)|’ dx) < CR -d"'n/p—n/t'lyld—n/t.
R<|x|

For, if ¢, d, and y satisfy the conditions of Lemma 1,

('l;!<|xIIKN(x - KN(x)lp dx)l/p

00

1/p
< Ky(x — y) — Ky(x)° dx
jgo( j;fk<|x|<2/+'xl (= ») = Ky(0)| )

)
< jzo C(2JR )—d+n/p-n/t'ly|d—n/t

= CR —d+n/P—n/l’ly|d—'l/t § (2j)-d+"/P—"/"
Jj=0

= CR —d+n/p-n/t’ly|d—'l/f’

since —d + n/p — n/t <Oforn/t <d.

REMARK 2. The Hérmander-Mikhlin theorem follows easily from Lemma 1.
To see this, let m € M(s,1), 1 <s <2 and ! > n/s. Choose ¢ < s so that
n/t <I1<n/t+ 1. By Remark 1 withp = 1 and R = 2|y|, we have

f IKN(x “_V) - KN(x)ldx < C(2|.y|);l+n-n/l'l)’ll—n/l = C.
[xI>2p|
Thus, the kernels K, satisfy, uniformly in N, the Hormander condition
[ |K(x =)= K(x)|dx < C forally %0,
Ix1>2y|

so that Tyf = K, * fis bounded on L?, uniformly in N, for 1 <p < co.
For f € S, we have Tf = (mf)". It follows that

17 = Tufll <[l = m™)), >0
since m" converges pointwise and boundedly to m. Then, applying Fatou’s
lemma, we get
1Tl < ClAl»

for f € &, where C is the uniform bound for the T, on L”. The result
extends to all of L? by continuity.

Part (1) of Theorem 1 is proved using Lemma 1 and the following three
known results.

LemMa 2. Set f*(x) = (f)*)/"(x). If 0 <r <p < o0 and w E 4, ,, then

I e < ClAllp.w
with C independent of f.
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This is an immediate corollary of results in [13].
LEMMA 3. Let

fix) = ;l;lllQl"fQLf(y) — avy f dy,

where avy, f = |Q|™"! [, f(z) dz. Let 0 <p < o0 and w € A . Then

¥l < CllF*lpm
with C independent of f.

This is proved in [4]. The following result is a special case of interpolation
with change of measures. It is proved in [17] and [19].

LEMMA 4. Let 1 <r < q < o0 and let wo and w, be two positive weights. If T
is a bounded linear operator from L, into itself and L} into itself, then T is
bounded from LE into itself for r < p < q and w = wow' !, provided t =
(@—p)/(q—nrforr#~qand0<t <1 forr=q.

We would like to point out that w"// € 4,,n/1 > 1,if and only if w € 4,
and satisfies the reverse Hélder’s inequalities

|LQ| j;z w™!(x) dx < C(I—éT wi(x) dx)n/l
and
B [ e < o B f w0 )

when p = 1, we only need the first inequality. For p > 1, if w € 4, and
satisfies the above inequalities, then

T e |

< C('—él wi(x) dx)"/l(ﬁ j;? w(x)~ V@D dx)

so that w"!/ € 4,. For p =1, if w € 4, and satisfies the first inequality
above, then

@®-hn/l

1 1 /1!
— | w"!(x)dx < C(—-—- w(x)dx)
A 012
< C(ess inf w)"/' = Cess inf w"/,
o Q

so that w"/! € A,. For the other implication, note first that w"// € A, implies
w € A4, since n/l > 1. If p > 1, by the 4, condition,
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W/ l(x) dx) < C( w(x) /1A= 1) dx)
( |2l f |2l f
Thus, the first reverse Holder’s inequality will follow if we show

{/me-1
(g7 S e ae) T < o ot

or equivalently

1 1 —n/l(p—1)
1< (— w(x) dx)(—— w(x)™" dx
|Q] fQ |0 fQ
But, if s > 1, using Holder’s inequality, we have

1= @ f - g f w5 (x)w=V5(x) dx

<(rfrs) (rgrforeo )

Setting s — 1 =Il(p — 1)/n,or s =1+ I(p — 1)/n > 1, we get the desired
inequality. Since w"// € A, implies (w~'/®~Dy"/! € 4, we also obtain the
other reverse Hoélder’s inequality from the argument above. Finally, when
p = 1, by the 4, condition

=(/m-1)

)I(p—l)/n

G—1)/s

n/l
lf w!(x)dx < cess inf w*/! = ¢(ess inf w)"/' < c( fw(x)dx) .

|2l
Notlce that the above is true if we replace n// by any ¢ > 1.

3. We begin the proof of Theorem 1 by noting that (2) is a consequence of
(1) by duality. To see this, suppose 1 <p < (n/l) and w ¢~V e 4,,,.
Then, forf € S,

1/p
T, = Tf(x)| w(x)dx = su Tf(x)g(x)dx|,
1D = ( [T wxdax) ™ = s [ T
where the supremum is taken over all functions g € & such that || g|l,,-1e-»
=1
Let T be the operator with multiplier 77, the complex conjugate of m. Then
m satisfies the same estimates as m and we have

1Tl = sup| [ J0)Tg(x)dx
< C|fllp.wsup|lgllpw-rer-» = Clifllpw

by (1), sincep’ > n/landw= /"D € 4,,,,.
Turning to the proof of (1), fix p >n/l and w € 4,,,. Choose an r <
such that n/r is not an integer, n/l <r <p and w € 4,,,. There is an

< sup"j]lp,w" Tg "p',w‘l/(’- H
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integer d < / for whichn/r <d <n/r + 1. We will show

(Tnf)(x) < CfH(x) 3.1)
with a C independent of fand N.
Fix x € R” and let Q be a cube centered at x with diameter §. Write

1) = ) + 3 50

where
fo(¥) =f)x({y ER™ |x — y|<28})
and

FO) =fO({y ER: 26 <|x —y|<2*B}), j=12,....
Fory € Q,

(K + N0) = (B 1)) + 3, (K 1))

By Holder’s inequality and Remark 2, for any ¢ > 1 we have
1 1 a . \*
& L& 00N < (1 [ [ = DO B)
i1 J )& + DO < | 5 [ (K + D)

< CTIQV% <o),

with C independent of N. For any j,
(K *£)() = (Ky + £)(x) + [{Kn(¥ = 2) = Ky(x = 2)} f(2)dz
= ¢ + €,

say. Note that ¢; is independent of y and

ol < f2’8<1x—z|<zf+'s|K”(y = 2) = Ky(x = 2)| |f(2)|dz
A 1/r
< (fz,sqx_qq,ﬂleN(y - z) — Ky(x — 2)| )

' (f.x_,,q“.slf(z)l' dz)'/'.

Applying Lemma 1 with p = 7 and ¢ = r and noting that |x — y| <8, we
obtain

< Clx — y|*™"(28) 42+ "/’{ 2+lg)"
ol < Clx =y @)@y @

[f(z)]' dz}l/’

< C)" ().
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Therefore,

o f (K +£)(») = ‘, <)) — 2

f (K + S|y + 2 f |(Ky *£)(») = ¢| &

o 112
<Cfr(x)+C 21 @)"Rr(x) = (),

since n/r — d < 0. The fact that this estimate is true for any cube centered at
x implies (3.1). Now, using Lemmas 2 and 3, since w € 4, ,,, we obtain

1Ky * oo <Ky *5)*lpw < UKy * 5 ¥lpe < CIfF e < ClAllpiws
uniformly in N. Arguing as in Remark 2, we have

7Aoo =K * )llp < CllAlpw-

When / < n and p = n/I, the above proof fails. However, using Lemma 4
and the fact that w € 4, implies there is a b > 1 such that w® € 4,, we will
prove the result. So, fix such a b. Then w® € Ay, for any g > n/l. Setting
we(x) = 1 and w;(x) = w®(x), we need to find g and r so that r <n/l <gq
and w(x) = (w¥(x))"/!=P/@=9_ Thus we need b((n/l —1)/(g—r) =1 or
b(n/1 — r) = q — r. Then, choosing r, 1 <r < n/l, and solving for ¢, which
is necessarily greater than n// since b > 1, completes the proof.

The proof of Theorem 1 will be finished once we show the weak-type (1, 1)
result. This will be done using standard techniques which are included for
completeness. Fix a nonnegative f in L' N L! and A > 0. Applying the
Calderon-Zygmund decomposition to f, we get a sequence of disjoint cubes
{ O« } and functions g and b, f(x) = g(x) + b(x), satisfying

@ 1l < (C/N)f g, Sy,

(i) | 130 < AllSfNl1,wo

(i) B(y) =f(») = |Ql™" Jo f(2)dz for y € Q;, suppbC U @, and

Jo, b(»)ay = 0.
Since Tyf = Tyg + Tyb,

m,({x € R™: |Tyf(x)| >2A})
< m,({x ER™ |Tyg(x)| > A}) + m,({x € R™ |Tyb(x)| > A}).

We can apply (1) of Theorem 1 to the first term on the right because
w € A,. Then, using (ii), we get

i C C
m,({x €R™: | Tyg(x)|>A}) < ;Ilglliw < 5 lw-

Let QF be Q, expanded concentrically twice. Then using (i) and the fact that
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w € A,, we have

m,(U 02) < m (0 <CTm(Q)<C % fg,,f(y) m, ()

|l

&y

C C
<3 2 LSOO & < W
Thus, we have only to show
C
m,({x & U 0 |Tyb(x)| > 1}) < Wl (3.2)
Let y, and 8, be the center and diameter of Q,. Then

LQUQ:ITNb(X)IW(X)dx =LeUQ:lL"KN(x — »)b(y)dy|w(x)dx

w(x)dx

S [ Ky(x = »)b(n)d
Ok

xEUQO| k

S [ {Ku(x =) = Ky(x = y)}b(2)d
Ok

x€&uUQg| k

> ( [, JKelx =) = Kt - y,,)|w(x)dx)|b(y>|dy.

w(x)dx

If we can show, for any y € Q,, that the inner integral is bounded by a
constant independent of k and N times ess inf, w, then our result will follow,
as we now show. For, by (iii),

m{x e U o8 111> A) <5 f ML OGS
< Ezf |b(x)|essinf wdx < —Zf |6(x)|w(x) dx

<$3 [ s + £ 3 [ (5[ fedd i) s

’”w(Qk)
| Ol

<;mm+72&mwma<Tmm.

Aunl.w+—2ff()

Therefore,

m((x € R | Tuf(0)| > N)) < £ Wl (33)

with a constant independent of N, f, and \. If f € S, f = f+ — f~ where f*
and f~ and nonnegative and in L' N L], so that (3.3) holds for f € S. Then
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m,({x € R™: |Tf(x)|>A})
<m,({x ER™ |Tyf(x)| +|Tf(x) — Tnf(x)| > A})
< m,({x € R™: |Tyf(x)| > %})

+ mw({x € R™ |Tf(x) — Tpf(x)| > % })

Since Tyf converges uniformly to Tf for f € S, choosing N large enough the
second term on the right is zero. By (3.3),

m,((x € R |Tf(x)| > A)) < %Wl forf €5,

which extends to L}.
To complete the proof of Theorem 1 we need to show

f |Ky(x — y) — Ky(x — y)|w(x) dx < Cessinf w ify € @,
x& 02 Ox

with C independent of k and N. Choose r < sso thatn/r <!/ <n/r + 1 and
w” € A4,. Then, using Lemma 1 with p = and ¢ = r and noting that
x & Qg implies |x — y,| > 26,, we have for y € Q, that

'Il‘x—y 1>28 | Ky (x = ») = Ky(x — )| wlx)dx

[ |Kn(x = ») = Ky(x = y)|w(x) dx
Jj=1 218k<|x—yk|<2/“8,‘

e 1/
< Ky(x — — Ku(x — r’dx)
igl ('/;’Gk<|x—)’kl<2’”8kl w ») o yk)l
1/r
: w'(x)dx
(‘ll'x—yk|<2/"'8,‘ ( ) )
<C % (28.)7'(8 )'—"/’(2j+18k)n/r{(2“'3/:)_” f w’(x)dx}]/’.
Jj=1 * k [x =y <2+ 18,

Thus, since w” € 4,,

flx—y |>28 |Kn(x = y) = Ky(x = yi)|w(x)dx

o0
<CY @)/" essinf w(x)

j=1 |x—ye <2*'8

0
<C essinf w(x)> @)/ ' <cC esstinf w
j=1

|x —y,‘l <8k
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with C independent of k and N. This completes the proof of Theorem 1.

We will derive Theorem 2 from Theorem 1 by using Lemma 4 and a
characterization of 4, functions proved by P. Jones [9]. He has shown that if
w € A, then there are A, weights u and o such that w = up' >,

Fix p, 1<p < o, and w so that w"' € 4,. We have w"/' = uo'~?,
u,0 € A;, or w = u'/"'1-P)/" Next, write this as

w = u'/"p! =P/ = (4%P) (u®)' ™" = wiw) .
For this to make sense, we need

at+y(1—1) = %, (349

B+ 6(1-1)=2(1-p). (3.5)

Then, in order to use Lemma 4 for weights which satisfy Theorem 1, we
require

we/¢ Ve 4,,, 1<r<min (;) } (3.6)
A n
W € Ay g>max{F,p}, G.7)
I 4 P
=L, (3.8)

Recall that ¥ € 4, (similarly v € A4,) implies
Lf u(y) dv < Cu(x) for almostall x € Q.
12| /e

Therefore, if « > 0 and B < 0, letting s = r'//n, we have

(ILQI f we(x) ™V ""’dx)(ﬁ f wo(x) 1/ = DX1/Gs= 1) dx)“'
e 0
1 _ _ -
(_ (x)(a/(r D)(1/(s—-1)) v(x)(ﬁ/(r—l))(l/(,_l» dx)
o1
—a/(r=1)
< (b ) (L f ot )

. (|_é| va( x) dx)ﬂ / "'"(ﬁ f u(x)(@/ = DX/ 6= 1) dx)’_l
0
= C,
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a=(r- l)(%l— )—%I—r+l and B=—(r—-1);

that is wy '/*~V € 4,,, for these values of a and B. Similarly, we can show
wy €Ay, if y=1and § = — ((¢//n) — 1). Using these values of a and v,
we have (3.4) if # = 1/r. Next, solving (3.5) for ¢, we get ¢ = r(p — 1). This
value of g also satisfies (3.8). Therefore, if we choose r < min{(n/I), p} so
close to 1 that ¢ = r(p — 1) > max{n/l,p}, we can satisfy (3.4)~(3.8),
proving Theorem 2.

Before proving Theorem 3, notice that —n > — lp if n/l < p, and
n(p — 1) < pif p < (n/ly. Therefore, for I < n the conclusion of Theorem 3
can be divided into three cases:

l<p<% and —-p<B<n(p-1), (3.9)

%<p<(?), and —-n<B<n(p-1), (3.10)
(§y<p<w and —n <B <. (3.11)

Since (3.11) is the dual of (3.9), we need only concern ourselves with (3.9) and

(3.10).

Next, let us interpret Theorem 1 when w(x) is a power of |x|. Because
|x|f € 4, if and only if —n <8 <n(p — 1), we have (/ <n) that T is
bounded on Lf, s if

%<p<oo and —-n<B<pl—n, (3.12)

l<p<(%)l and —n+pn—-1)<B<n(p-1). (3.13)

However, combining (3.12) and (3.13), we have (3.10) and are left with only
proving (3.9).

Let g =n/l and r <n/I; then also r < (n/1y. By (3.13) and (3.10), T is
bounded on Liso and L, for —n+ r(n — ) < By <n(r —1)and —n <
B <n(q — 1). Using Lemma 4, if r <p < q we see that T is bounded on

Lfys for
B=a(1=2)+ B (2=5).

Thus S satisfies
{- n+r(n-—1)}(q p) (
<B<n0—l%

)

) + n(qg — l)(
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Simplifying and using the fact that ¢ = n/I, we get
n(r=1)  pir(l = n)
p— 7 <B <n(p 1). (3.149)
But, as r — 1, the left-hand side of (3.14) approaches —lp. So, taking r
sufficiently close to 1 allows us to choose any B satisfying —lp < 8 <
n(p — 1.
When / = n, the restriction in Theorem 3 is —n <8 <n(p — 1) for
1 <p < co. But, when / = n in Theorem 1, we require w € 4,, and |x|? €
A, if —n<B<n(p-—1).
4. The proof of Theorem 4 is based on an analogue of Lemma 1.

LEMMA 5. Let @ € L'(Z) and satisfy the L’-Dini condition. Set K(x) =
Q(x")/|x|". There exists a constant ay > 0 such that if |y| < ayR, then

(-/;<|x|<2R|K(x —) - KT dx)l/r

< CRY"" { by [
Ry

w (@) |

|/2R<8<|y|/R

PROOF. We may choose a, < 3; then, since |x| > R, |x — y| is equivalent to
| x|. Therefore,

Qx —y) _ 2Ax)
x =" le"

<C {|Q(x)| x 'n_H

|K(x —y) — K(x)|=

L=y - nun}

%"

It follows that

1/r
(’fR<|x|<2RIK(x ~) ~ K@ dx)

<C —QL— dx
(j}'!<|x|<2kI I |* |(""")’ )

2(x — y) = 2|’ )’
* C(L<|x|<2R |x]™ e B @

The first term on the right side of (4.1) is bounded by

Cl2 by |R ™+ PRY" = R"/’_"(lezl)'
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Changing to polar coordinates, we see the second term equals

C(L’Rt—mn—l(leﬂ(tx' —y) — Q@) do{) dt)vr

cer{ {23 ol )2

|x" = of
where a = y/t. Arguing as in Calder6n, Weiss, and Zygmund [1, pp. 65-72],
we see the inner integral is bounded by

¢ sup [ |atex) - )| do, = cur(L])

el <l
as long as |a| = |y|/t < a,. Thus, the second term is bounded by

2R 1/r 1/r
CR"/""( f w,’(m)ﬂ) = CR"/""( PR (8 )ﬁ)
R t]t /2R 8

< CR"/"‘"( f w,(S)Q),
WI/2R<8<|y|/R 6

since w, is essentially constant on intervals of the form (a, 2a), a > 0. Lemma
5 is now proved.
Notice that when R = 2/|y|, with a j such that 1/a, < 2/, we get

1/r
('/;jl”|<lxl<2f+llyllK(x - ) — K(x)]| dx)

(L (7 5%

< Cc@p)) [21 + f2 QRS
Theorem 4 is proved in exactly the same manner as Theorem 1. Using

Lemma 5, we show

(K * f)}(x) < CfH(x),
which proves the result for p > r’. The only change necessary is in the
decomposition f = f, + 2 f.. For Theorem 4,

Jo(¥) =f(y)x([y ER™ |x — y|< is })

and the sum of f’s is over j > log,(1/a). We get the case p =r by
interpolation, and 1 < p < r follows by duality. In the weak-type (1, 1) proof,
we may have to replace the weak-type (2, 2) result for the good function by a
weak-type (7, r’) result.

S. We conclude by showing that Theorem 3 is best possible, except for
endpoint equalities for 8. We prove the result for p > (n/l); the case
p < n/l follows by duality. For n/! < p < (n/1), the Riesz transforms and
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an argument like that in [8] show the range of B is best possible.

Let1<s<2,n/s<l<n,(n/l)y <pand B > lp. Define a multiplier m
by

m(x) = e=7(1 +|x) "2

for a fixed n of length 1. Note that ni(x) = G,(x — 1) (the Bessel kernel of
order /) and that |D%m(x)| < C,/(1 + |x])), so m € M(s,I), 1 <s < o0.
Moreover, G, > 0 and there exist ¢, p > 0 such that G/(x) > c|x|'"~"if |x| < p
(see Stein [19, p. 132] for details).

Set

f(x) =|x"((n+ﬂ)/}’)|log|x| I—Gx({x € R": le < #})
I8 > 1, € LEs(R"). Since Tf(x) = (G- —1) * f)x),

Tf(x) = fw |<“b»|_«"+”)/”lloglyl 7%, (x —y —m) &

= | < Ix -7 - Z|—(("+B)/p)l10g|x -7 - zl |—GGI(Z) dz
x—n—z|<p
by setting z = x — 7 — y. Now, if we restrict the integration to |z| <
3lx = ml, |x — n — 2| is equivalent to |x — q| and, if |x — 9| < p/2,

—(n _ dz
Tf(x) > CIX _ nl « +ﬁ)/P)|log|x _ nl ' sf l —
|zl <zlx=ml |z|

= CIX _ nll—(('l*'ﬁ)/}’)lloglx _ ,',I |—3.
Therefore, If & Lfs(R") if {/ — (n + B)/p)}p < — n; ie,if B > Ip.
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