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RESULTS ON WEIGHTED NORM INEQUALITIES

FOR MULTIPLIERS

BY

DOUGLAS S. KURTZ AND RICHARD L. WHEEDEN1

Abstract. Weighted //-norm inequalities are derived for multiplier ppera-

tors on Euclidean space. The multipliers are assumed to satisfy conditions of

the Hörmander-Mikhlin type, and the weight functions are generally re-

quired to satisfy conditions more restrictive than A which depend on the

degree of differentiability of the multiplier. For weights which are powers of

\x\, sharp results are obtained which indicate such restrictions are necessary.

The method of proof is based on the function /* of C. Fefferman and E.

Stein rather than on Littlewood-Paley theory. The method also yields results

for singular integral operators.

1. Let m(x) be a bounded function on R" and consider the multiplier

operator Tf defined initially for functions / in the Schwartz space S by

(Tf)'(x) = w(x)/(x), where g is the Fourier transform of g. Denote by s a real

number greater than or equal to 1, / a positive integer, and a = (a„ . . ., a„)

a multi-index of nonnegative integers a- with length |a| = a, + • • • +a„. We

say m E M(s, I) if

sup[Rs^-"[ |Z)°>M(x)f dx )     < +00   forall|a|</. (1.1)
Ä>0\ JR<\x\<2R J

The condition (1.1) has been known to be related to multipler theorems for

some time. The classic works in this direction are the theorems of Marcin-

kiewicz (see [18]) and Hörmander-Mikhlin (see [7]):

Theorem A. Let n — 1, 1 <p < oo, and m E M(\, 1). Then there exists a

constant C, independent off, such that \\Tf\\   < C||/|L.

Theorem B. Let I > n/2, 1 <p < oo, and m E M(2,1). Then there exists a

constant C, independent off, such that \\Tf\\p < C\\f\\p.

Much work has been done to extend these results. Using interpolation

methods, Calderón and Torchinsky [2] have considered the condition m E

M(s, I) for i > 2 and / > n/s. Hirschman [6], Krée [11], and Triebel [20]

have extended these results in various directions to weighted Lp spaces for

weights which are powers of |x|. More recently, Kurtz [12] extended Theo-
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rems A and B to Lp spaces with more general weights by using the weighted

norm inequalities derived in [15] for the function g£.

The purpose of this paper is two-fold. We consider s < 2 and present a

method of proof based on the function /* of Fefferman and Stein [5] rather

than on Littlewood-Paley theory.

We say/ E L£(R"), 1 < p < oo and w(x) > 0, if

M"w = (¿l/WlM*)**)1 ' < +*•

The weights w we will consider satisfy an Ar condition; i.e., w € Ar if there is

a constant C such that

(iei/B^,*)(á//('r,/<'""*í< C,        1 < r < oo,

1    i*
—— I w(x) dx < C ess inf w,       r = 1,
\Q\JQ Q

for all cubes (2 C R". When r = 1, the condition that w6^, means w*(x) <

Cw(x) for almost every x, where g* is the Hardy-Littlewood maximal func-

tion of g. Finally, w E. Ax ïî there exist positive constants C and 5 such that

for any cube Q c R" and for any measurable set E c Q,

mw{E) i\E\\>

mo)    I loir
where mw(E) = JE w(x) dx. Results concerning A functions can be found in

Muckenhoupt [13] and Coifman and Fefferman [3]. Note, in particular, that

w E A imphes w E. Ax.

We uscp' to denote the index conjugate top: \/p + \/p' = \,p > 1.

The main result of this paper is:

Theorem 1. Let 1 < s < 2, n/s < I < n, and m E M(s, I). If

(1) n/l <p < oo and w E Apl/n, or

(2)\<p< (n/l)' and w-•/</--0 E Ap,/n,

then there is a constant C, independent of f, such that

\\Tf\\P,»<C\lf\\p,w.

When I < n,we may takep = n/l in (1) andp = (n/l)' in (2). If

(3) wn" (EAX,

there is a constant C, independent off and X, such that

mw({x E R": \Tf(x)\ > X}) < j\\f\\x,w,       X > 0.

Using interpolation, other conditions on the weight can be found which

guarantee that T is a bounded operator. One result which we will prove is:
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Theorem 2. If 1 <p < oo,  1 < j < 2, n/s <l < n, m E M(s, /), and
Wn/l E ^ //leTI

I|2JHp.w< qWUw
/or a constant independent of f.

This result does not give the best possible condition on the weight. When

h>(x) = \x\&, we have wEApii—n<ß< n(p — 1). Interpreting Theorem 1

for such w and using interpolation with change of measures, we will show:

Theorem 3. Let 1 <s < 2, n/s < I < n, and m E M(s, I). If 1 <p < oo

and max{ — n, — lp} < ß < miií{n(p — 1), lp}, then there is a constant C,

independent off, such that

\\mP^<c\\f\\PMß.

In particular, if n/l <p < (n/l)', we get —n<ß< n(p — 1); we may also

take p = n/l andp = (n/l)' if I < n.

We will show that this result is sharp with the possible exception of the

endpoint values of ß.

Let g denote the inverse Fourier transform of g. If we set K = m, then for

/ E S, Tf(x) = (K * f)(x). Our proof of Theorem 1 is based on using

information about m to get estimates on approximations to K, so it is not

surprising that the technique carries over to convolution operators.

Denote by 2 = 2„_, = {x E R": |x| = 1}, x' = x/|x| E 2 (x # 0), and p

any rotation of 2 with magnitude |p| = supxE2|px — x|. Let 1 < r < oo and

fi E Z/(2) be positively homogeneous of degree zero. We say that fi satisfies

the Lr-Dini condition if

/•' d8
jr<or(5)^<+oo,

where

<or(S) = sup I [ \Sl(px) - Q(x)\r dox)   '.
|p|<5\-'2 /

Set K(x) = fi(x')/|x|", with /2 ü(x)dax = 0, and Tfix) = (K*f)(x) in the

usual principal-value sense. If fl satisfies the Lr-Dini condition then it also

satisfies the L'-Dini condition, which by [1] implies T is a bounded operator

on LP, 1 <p < oo. Recently, Kaneko and Yano [10] have shown that if fi

satisfies the L°°-Dini condition then T maps L£ into itself for 1 <p < oo and

w E Ap. We have extended this to:

Theorem 4. Let I < r < oo, fi £ Lr(2), and /2 fi(x) dax = 0. Suppose fi

satisfies the Lr-Dini condition. If

(1) r' < p < oo and w E Ap/r,, or
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(2) 1 <p <rand *~l/<*-» E Ap,/r,

then there is a constant C, independent off, such that

\\Tf\\p,»<C\\f\\p,w.

When r < oo,we may takep = r' in (1) andp = r in (2). If

(3)wr' £ A „ then

mj{x £ R": \Tf(x)\ > X}) < ^\\f\\hw,       X > 0,

where C is independent of f and X.

Theorem 4 is a direct analogue of Theorem 1. (We could also have stated a

version of Theorem 3. See also [14].) In fact, when r > 2, r' plays the same

role as n/l. For example, notice the similarity between m E M(s, n), 1 <s <

2, and fi satisfying the L°°-Dini condition. Our technique, however, does not

allow for either r or s to be equal to 1.

§2 contains the basic lemma and a collection of results used in the proof of

Theorem 1. This theorem and Theorems 2 and 3 are proved in §3. The proof

of Theorem 4 is found in §4. The paper concludes with a counterexample

showing Theorem 3 is best possible except for the question of endpoint

equalities for ß. The basic lemma and the counterexample are generalizations

to n > 1 of results in [16], and we gratefully acknowledge many helpful

discussions with W.-S. Young and B. Muckenhoupt.

2. Following [7], we select an approximation to the identity

+ 00

2   <f>(2^x) =1,       x ¥= 0,
j-00

where <p is an infinitely differentiable, nonnegative function supported in

\ < \x\ < 2. Let mj(x) = m(x)<p(2~Jx), so that
+ 00

m(x) =    2    mj(x),       x ¥= 0.
j-oo

Notice that m.(x) is supported in 2J~X < \x\ < 2j+x and that for such x,

mk(x) = 0 unless k = j — 1,7, or/ + 1. It follows easily that if m £ M(s, I)

and \a\ < /, then

(f \Damj(x)\s dx\   \c(2Jy/s~H,

with C independent of/.

We also have that m, E L1 n L°°. Define kj(x) by kj(x) = m,(x), and let

„*(*)-    2   rnj(x),       KN(x) = (mN)\x) =    S   *,«•
j=-N j--N

It follows that ||mN\\x < C, uniformly in N, and that mN(x) -» m(x), x ¥^ 0,



iV/>

WEIGHTED NORM INEQUALITIES FOR MULTIPLIERS 347

as N^oo. Now define TNf by TNf=(mNf)\ so that TNf = / * KN for

/ E L2, say. The following lemma shows how conditions on m can be

interpreted as conditions on KN.

Lemma 1. Let 1 < s < 2, m £ Af(s, /)/or a positive integer I, and let KN be

defined as above. If d is an integer such that 0 < d < I, I < t <s, n/t < d <

n/t + 1, and 1 < p < t', then

I f \KN(x - y) - KN(x)f dx)   " <CR -a*n/P-n/f^é-n/,
\JR<\x\<2R }

forall\y\<j,

with C independent of N, R, and y.

Proof. Since KN(x) = 2*1 _*, kj(x),

If \KN(x - y) - KN(x)\P dxX
\JR<\x\<2R )

< SÍÍ \kj(x - y) - kj(x)\P dx^.    (2n
j   \JR<\x\<2R } V      '

Also, \y\ < R/2 and R < \x\ < 2R imply R/2 < |x - v| < 5R/2, so that

(/ \kj(x - y) - kj(x)f dx\
\JR<\x\<2r' /

< ( / \kj(x -y)\Pdx\/P + If \kj(x)\p dxV'
\JR<\x\<2r' / \JR<\x\<2R J

<2Í/ \kj(x)fdx)1P.

Therefore, we need to estimate

f/ \kj(x)f dxX " and ( f |*,(x -y)- kj(x)\p dxX ".
\JR/2<\x\<5R/2' / \JR<\x\<2R I

Let d be an integer such that 0 < d < I and I < t < s such that/» < /'. It is

easy to see that m £ M(t, d). Let xa = x,a' • • • x¡¡: Then

(/ |*,(x)|* dxY"  < CR -"If | \x\dkj(x)\" dx\ '
\JR/2<\x\<5R/2 / \-/Ä/2<|x|<5Ä/2l '        ' /

<CR-d 2   If \x°kj(x)\P dx)   ".
!„!-</ VR/2<\x\<5R/2 J

Using the fact that m, = kj, Holder's inequality, and the Hausdorff-Young

,»//>
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theorem, we have for |a| = d that

(/ \xakj(x)\P dx)l/P= If \{D"mj)~(x)f dxY'
\JR/2<\x\<5R/2'        ' / \JR/2<\x\<SR/2 J

= R"/"Ir~"( \{D-mj)\xtf dxX'
\ JR/2<\x\<SR/î * /

< CR"/"!R -* f \(D'mjr(x\\' dx)
\ JR/2<\x\<5R/2 ' /

< CRn/p-n/'ÍJ \D"m,(x)\' dx)

< CR"lp~n/''(2J)ntt~d.

Combining these estimates gives

\i/p

\/t

( f \kAx)\P dx)  " <CR -ä+»/p-»/<'(2J)n/'-d.
\J R/2<\x\<5R/r /

For the integral of the difference of the kjs we have

(/ \kj(x - y) - kj(x)\P dxX "
\Jr<\x\<2R[ I

= (/ |{m,(x)(V*'-l)}f dxY'
\JR<\x\<2R j

< CR -4 f | \x\d {m,(x)(e^ - l)}f dx)   '
\JR<\x\<2r' ' I

< CRn'p-d 2  f R "" f |x" {m,(x)(e'^ - l)}'f dx)
|a| = d\ JR<\x\<2r' J

< CRn/p-d 2   Ir~"( UD^mAxXe'*' - 1)1 Vf dx)
\a\ = d\ JR<\x\<2Rl I

<CR"/p-d,2   (r-"( \{Da[mJ(x)(eiX)'- \)}Yf dx)
,a\ = d\ JR<\x\<2R,K I

< CR"lp-d-n"' 2   Í f \Da\m¡(x)(eixy - l)]\'dx)
\a\-d\JR"} /

< CR"/'-'-*/'     2      ( f \Dßmj(x) • D\eixy - 1)|' dx)   '.
|ßi + lYi = rfV-/R" /

(2.2)

i/p
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Consider first |y| = 0, \ß\ = d. Since \eixy - 1| < |x| \y\,

{Sj{DßmM)){eixy - l)\'dxy< ÍJJ |x| \y\Dßmj(x)\' dx^'

< C2J\y\(2J)n/'-d = C\y\(2J)n/'~d+\

If |y| > 0, \D-*(eixy - 1)| < \y\M and\ß\ = d- \y\, so that

If \Dßmj(x) ■ DT(eixy - \)\ dx)   ' < If | |^||Y|D^m,.(x)|' dx)

< C|^|M(2-'')n/'-^= C\y\M(2¡)n/'-d+M.

Adding these estimates, we obtain

( f \kj(x - y) - kj(x)f dx)   " < CR"/»-"-""' 2  \y\m(2J)n/'-d+m.
\JR<\x\<2R I m=l

(2.3)

But,if2>< \y\~x(\y\ < 2~J),

\y\m(2J)n/'-d+m < \y\(2J)n/'-d+\

so    for    these    values    of   /,    the    estimate    (2.3)    becomes

CR 1/P - *- »/«'I y \(2J)"/' - d+ X.

Using (2.2) and (2.3) in (2.1), we get

If \KN(x - y) - KN(x)f dx)   '
\JR<\x\<2R j

< C      2      Rn/P-d-n/''\y\(2j)"/'~d+X +  C      2       R^P-d-n/f (Jjy/'d

V<\y\-' 2^>b-r'

< CR"/p~d~n/''\y\d~n/'

as long as n/t < d < n/t + 1. This completes the proof of Lemma 1.

Although we will not use it, we would like to point out that if / >

max{n/p', n/s}, then

( f \KN(x)f dx)      < CRn/p-".
\JR<\x\<2R /

This follows from (2.2) with d = / and the estimate

| f \kj(x)\P dx)   " < C2inRn'p,
\JR<\x\<2R )

which is a consequence of |A^(x)| = |/h,-(x)| < ||w,||, < C2jn.

Remark 1. We may replace the domain of integration in Lemma 1 by

{x£R":R<|x|}; that is, under the conditions of Lemma 1,
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Mp
I f       \KN(x -y)- KN(x)f dx)   ' <CR -'-/W^-/'.

For, if /, d, and v satisfy the conditions of Lemma 1,

If       \KN(x - y) - KN(x)\P dx)   '
\JR<\x\ I

< SÍ/ \KN(x - y) - KN(x)\P dx)   '
j = 0\J2JR<\x\<2J+'R J

< 2 C(2JR)'d+n/p-n/''\y\d-n/'

00

= CR -d+n/p-n/''\v\d~n/' y Ç)jx~d+nlp~nl''

/-o

=   CR -d+n/P-n/l'\y\d~"/'>

since —d + n/p — n/t' < 0 for n/t < d.

Remark 2. The Hörmander-Mikhlin theorem follows easily from Lemma 1.

To see this, let m £ M(s, I), 1 < s < 2 and / > n/s. Choose t < s so that

n/t < I < n/t + 1. By Remark 1 with/? = 1 and R = 2\y\, we have

f \KN(x - y) - KN(x)\dx < C(2\y\y'+'-n/''\y\l
•/U|>2M

-l+n-n/t',    ,1-n/t =  ç

*\>2\y\

Thus, the kernels KN satisfy, uniformly in N, the Hörmander condition

f \K(x - y) - K(x)\dx < C   for all v ¥= 0,
J\x\>2\y\

so that TNf = KN * /is bounded on Lp, uniformly in N, for 1 <p < oo.

For/ £ S, we have 7/ = (mf)\ It follows that

l|7y-^/lL<IK'"-'"")./ll.^o
since mN converges pointwise and boundedly to m. Then, applying Fatou's

lemma, we get

\\TA\p<C\[f\\p,
for / E S, where C is the uniform bound for the TN on Lp. The result

extends to all of Lp by continuity.

Part (1) of Theorem 1 is proved using Lemma 1 and the following three

known results.

Lemma 2. Setf?(x) = ((/')*) 1/r(x). If 0 < r <p < oo and w E Ap/r, then

ID?IU < cMp.~
with C independent off.
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This is an immediate corollary of results in [13].

Lemma 3. Let

/*(*)- supIßr'ri/trO-aVß/l*,
Q3x JQ

where avß/ = \Q\~X ¡Q f(z) dz. Let 0 <p < oo and w E Am. Then

\\f*l.» < c\[f*l,w
with C independent off.

This is proved in [4]. The following result is a special case of interpolation

with change of measures. It is proved in [17] and [19].

Lemma 4. Let 1 < r < q < oo and let w0 and wx be two positive weights. If T

is a bounded linear operator from Lj, into itself and L£¡ into itself, then T is

bounded from L% into itself for r < p < q and w = w¿w{~', provided t =

(a ~ P)/(l ~ r) for r t^ Q and 0 < f < 1 for r = q.

We would like to point out that wn/l E Ap, n/l > 1, if and only if w E Ap

and satisfies the reverse Holder's inequalities

jQ\Lw""(x)dx<i-khwMdxT
and

when p = 1, we only need the first inequality. For p > 1, if w E A   and

satisfies the above inequalities, then

{w\iw"''M*)(w\Liw"''My'/,'~'>dxr
I   1     /• \"/'(   1     /• , \(p-i)rt/t

<cmLw(x)dx) mfc™    *)
so that w"/' E yip. For /» = 1, if w £ Ax and satisfies the first inequality

above, then

wJew""(x)dx ' iw\^x)dxT

< c( ess inf w)"    = Cess inf wn/l,
v     ß        ' G

so that m>"/' £ ^4,. For the other implication, note first that w"/' £ Ap imphes

w £ A  since «//>!. If/»>!, by the Ap condition,
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l/n

<ciiU"w"K-(«//)(1/(P-1)) ¿x)
-(//»)0»-D

Thus, the first reverse Holder's inequaüty will follow if we show

*) <]Q\JQW(x)dX>

Hp-\)/n

(*-!)/*

or equivalently

,<(à/flwWit)(è4^)""/"",>&)

But, if j > 1, using Holder's inequality, we have

1 - T7ÏÏ f dx - lk Í "i/s(x)»-l/'(x) dx
\Q\JQ \Q\JQ

<(m//H'/'(í¿i//w~,a'~H   •
Setting s — 1 = l(p — \)/n, or s = 1 + l(p — \)/n > 1, we get the desired

inequality. Since wn/l £ Ap implies (w-1/^-1))"/' £ Ap,, we also obtain the

other reverse Holder's inequality from the argument above. Finally, when

p = 1, by the Ax condition

—— f wn/l(x)dx < cess inf wn/l = c(ess inf w)"/l < c\ —- ( w(x)dx I    .

\Q\JQ Q \\Q\JQ )

Notice that the above is true if we replace n/l by any t > 1.

3. We begin the proof of Theorem 1 by noting that (2) is a consequence of

(1) by duality. To see this, suppose 1 <p < (n/l)' and w~x/(p~X) E Ap,,/n.

Then, for/ E S,

\\Tf\\P,w = lfR\Tf(x)\p w(x)dx)1 " = sup f^Tf(x)g(x)dx ,

where the supremum is taken over all functions g £ S such that || g|| -1/0,-1)

= 1.

Let T be the operator with multiplier m, the complex conjugate of m. Then

m satisfies the same estimates as m and we have

\\Tf\\P,„ = sup f f(x)fg(x)dx < sup\\f\\p,w\\fg|Uw-./<,-.

< CII/JIp.H.supllgll^-./o.-D = C\\f\\p,w

by (1), sincep' > n/l and w-x/ip'X) £ Ap,,/n.

Turning to the proof of (1), fix/» > n/l and w E Apl/n. Choose an r < s

such that n/r is not an integer, n/l <r <p and w E y4/,/r. There is an
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integer d < / for which n/r < d < n/r + 1. We will show

(TNf)\x) < Cf?(x) (3.1)

with a C independent of/and N.

Fix x £ R" and let g be a cube centered at x with diameter 8. Write

Ay) -/oO0 + 2 ¿OO.

where

/oOO = ZOOx«* S R": \x-y\< 28 })
and

fj(y) = /(7)x({>' 6 R": y8 <\x-y\< 2>+l8 }),      / = 1, 2, . . . .

For v E ß,

(** */)O0 = (KN *f0)(y) + 2 (KN *fj){y).

By Holder's inequality and Remark 2, for any q > 1 we have

¿f/jUfe •AXjOI* < (|¿| J/** */o)W|>),/?

IßT
with C independent of Ar. For any/,

(*at *¿X.>0 = (** *fj)(x)+f{KN(y - z) - KN(x - z)}fj(z)dz

= CJ + e;>

say. Note that c, is independent of v and

M < f \KN{y -z)~ KN(x - z)\ \f(z)\dz
J2>8<\x-z\<2>+l8

l/r'

< ctS < C£W'

if \KN(y - z) - KN(x - z)\r'dz)
\J2>8<\x-z\<2J*l8 /

(/ U{z)\rdz)   \

Applying Lemma 1 with p = r' and t = r and noting that |x — v| < 5, we

obtain

Í1 'A
(2J+x8)-"f \Kz)\r dz\

J\x-z\<2>+,8 )

< c(2J)n/r-df?(x).
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Therefore,

00 1 /. °° °°

dy2(***¿)O0-2c,
7 = 0 7-1

T^f (KN*f)(y)-2cjdy=±-f
\Q\JQ J-l \Q\JQ

< iTïï/ R*» •/•XjOI* + S T^r/K** »¿XjO - 9l *
|vîI •'e 7-1 |v¿l •'e

< Q?i» + c2 (2Jy/r-"fT(x) = Q?(x),
7-1

since n/r — d < 0. The fact that this estimate is true for any cube centered at

x implies (3.1). Now, using Lemmas 2 and 3, since w E Ap/r, we obtain

IK** */)IU < IK** */)1U < CK** */)'IU < CIL?IU < qi/iu—
uniformly in /V. Arguing as in Remark 2, we have

||v71Uw=||(**/)|U<C|^U^

When I < n and/» = n/l, the above proof fails. However, using Lemma 4

and the fact that w E Ax implies there is a b > 1 such that w* E -4,, we will

prove the result. So, fix such a b. Then w6 £ Aql/„ for any ç > n/l. Setting

wo(x) = 1 aQd w\(.x) = m>*(x), we need to find q and /• so that r < «// < q

and w(x) = (wft(x))(n//-r)/(?-r). Thus we need £»((«// - r)/(q - r)) = 1 or

¿>(«// — r) = q — r. Then, choosing r, I < r < n/l, and solving for q, which

is necessarily greater than n/l since b > 1, completes the proof.

The proof of Theorem 1 will be finished once we show the weak-type (1, 1)

result. This will be done using standard techniques which are included for

completeness. Fix a nonnegative /in Lx n L¿ and X > 0. Applying the

Calderón-Zygmund decomposition to /, we get a sequence of disjoint cubes

{Qk} and functions g and b,f(x) = g(x) + b(x), satisfying

(i)\Qk\<(C/X)SQkf(y)dy,

GO 11*11*, < Will*.
(in)  b(y)=f(y) - \Qk\'x JQtf(z)dz   for  v E Qk,   supp b C U ß*   and

/a 600* = 0.
Since TNf = r„g + TNb,

mw({x(ER»:\TNf(x)\>2X})

< mw({x Ê R": | r„g(x)| > X}) + m„({x E R": | TNb(x)\ > X}).

We can apply (1) of Theorem 1 to the first term on the right because

w E A,. Then, using (ii), we get

mw({x E R": \TNg(x)\ > X}) < ^||g|£„ < ^\\f\\x,w.

Let ß£ be Qk expanded concentrically twice. Then using (i) and the fact that
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w E Ax, we have

mw( U Qt) < 2 mw(Qt) < C2 «U&) < C2 ^/ /OO^^ dy
KJQk \Qk\

<x2/ Ay>{y)dy<^\ l,w

Thus, we have only to show

mw({x £ U ß**= \TNb(x)\ > X}) < ^\\f\\Uw. (3.2)

Letyk and 5* be the center and diameter of Qk. Then

f \TNb(x)\w(x)dx = f ( KN(x - y)b(y)dy

= f 2Í KN(x - y)b(y)dy

\>(x)dx

'läuft'   * JQk

(x)dx

= f 2 [ {**(* -y)~ KN(x - yk))b(y)dy
Jxf£uQt\   k  JQk

w(x)dx

< 2 f I f       \KN(x -y)~ KN(x - yk)\w(x)dx)\b(y)\dy.

If we can show, for any v £ Qk, that the inner integral is bounded by a

constant independent of k and ;V times ess infa w, then our result will follow,

as we now show. For, by (iii),

»J{x <SÉ U Qt- \TNb(x)\ > A}) < ^ f |2y»(x)|H>(x)dx

C      r C      c
< -r- 2 I   \b{*)\ ess inf w dx < -=- 2 /   |¿>(-x:)| w(j»c) dx

A      JQk & A      JQk

< Y 2 f Ax)w(x)dx +^í(¿í /(*)<&)"(*) ¿x
A       JQk A       •/ßAIÖ*|-/ß* /

mÁQk)

Therefore,

^ ciifli       L c V  f  «■ a m»yUk)   ,

mM,({xER":|rjv/(x)|>X})<-^|^|,!,

l.w

(3.3)

with a constant independent of N,f, and À. If/£§,/ = /"*" —/   where/+

and/- and nonnegative and in Lx n L¿, so that (3.3) holds for/ £ S. Then
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it^({* e ir: |r/(*)|> A})

< »l({x ê R": \TNf(x)\ + \Tf(x) - T„f(x)\ > X})

<mw({xER":|^/(x)|>|})

+ m„,({x E R": \Tf(x) - TNf(x)\ > |}).

Since TNf converges uniformly to Tf for/ E S, choosing N large enough the

second term on the right is zero. By (3.3),

/^({x E R": \Tf(x)\>X}) < ^\\f\\hw   for/ Ê S,

which extends to I¿.

To complete the proof of Theorem 1 we need to show

/        \KN(x — y) - Kj„(x — yk)\w(x) dx < Cess inf w   if v £ Qk,
Jx<£Ql!     ' Qk

with C independent of k and AT. Choose r < s so that n/r < I < n/r + 1 and

wr E: Ax. Then, using Lemma 1 with /» = /•' and t = r and noting that

x E ß* implies |x — yk\ > 28k, we have for v £ ßfc that

f \KN(x - y) - KN(x - yk)\w(x)dx
J\x-yk\>28k

= 2  I , \kn(x -y)- KN(x - yk)\w(x) dx
j=\J2lSk<\x-yk\<.V*\

< 2 ( / ,  |**0 - y) - KN(x - yk)\" dx)
j=\\JV8k<\x-yk\<2> + % )

•  ( f w'(x)dx)
\J\x-yk\<2>+% J

< c2 (y8ky'(8ky-^(y+x8ky/ri{y+x8kyn f *'(*)<**)
7 = 1 { J\x-yk\<2J+l8k )

I/r

Thus, since wr E Ax,

f \KN(x - y) - KN(x - yk)\w(x)dx
J\x-yk]>Uk

< C 2 {2J)n/r~'    ess inf      w(x)
7 = 1 \x-yk\<2J+%

oo

< C ess inf  w(x) 2 (2J)"/r~'   < C ess inf w
\x-yk\<8k y-i ßt
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with C independent of k and N. This completes the proof of Theorem 1.

We will derive Theorem 2 from Theorem 1 by using Lemma 4 and a

characterization of A functions proved by P. Jones [9]. He has shown that if

w E A  then there are A, weights u and v such that w = uvx ~p.

Fix /», 1 </» < oo, and w so that wn/l E Ap. We have wn/l = uvx~p,

u,v E Ax, or w = ul/nvKX~p)/n. Next, write this as

w =  u'/nvl(\-p)/n m („<V,*)'(MY0«)«-' = W¿W¡-'.

For this to make sense, we need

«r + y(l-/)-!, (3.4)

¿ + S<1-0-^0-/0. (3.5)

Then, in order to use Lemma 4 for weights which satisfy Theorem 1, we

require

*¿->'0-» E ^//n,       I< r < min {( y )',/»}, (3.6)

Wi 6 ^9//n>       ? > maxj y ,/>), (3.7)

f-£Z£. (3.8)
^ — r v    '

Recall that u E. Ax (similarly v E Ax) implies

1     r
—— j   u(y) dy < Cu(x)   for almost all x E Q.
\Q\ JQ

Therefore, if a > 0 and ß < 0, letting j = /•'//«, we have

= (^í/C"W"a/(r_,)üW"'/(r_I)¿X)

' (îèi^ "(jc)<a/(r"l))(1/(í"i))^)w(r~i))(i/(í"i))^)í"'

= c,
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if

«•(r-l)(^-l)--£-r+l    and   ß = - (r - l);

that is Wg 1/(r_ !) E ^4/z/n for these values of a and ß. Similarly, we can show

w, E v4?//n if y = 1 and 8 = — ((ql/n) — 1). Using these values of a and y,

we have (3.4) if t = 1/r. Next, solving (3.5) for q, we get q = r'(p — 1). This

value of q also satisfies (3.8). Therefore, if we choose r < min{(«//)',/»} so

close to 1 that q = r'(p — 1) > max(n//,/»}, we can satisfy (3.4)-(3.8),

proving Theorem 2.

Before proving Theorem 3, notice that — n > — lp if «//</», and

n(P ~ 1) < 4> it/* < (n/0- Therefore, f or / < n the conclusion of Theorem 3

can be divided into three cases:

1 </» < y    and    -lp <ß <n(p - 1), (3.9)

J<P<(j)     and    -n<ß<n(p-\), (3.10)

(yY </» < oo    and    -n<ß<lp. (3.11)

Since (3.11) is the dual of (3.9), we need only concern ourselves with (3.9) and

(3.10).
Next, let us interpret Theorem 1 when w(x) is a power of |x|. Because

\x\ß EApU and only if -n <ß < n(p - 1), we have (/ < n) that T is

bounded on UL& if

— < p < oo    and    —n<ß<pl-n, (3.12)

1 </» < (y V    and    -/j +p(n-l) <ß <n(p- 1).        (3.13)

However, combining (3.12) and (3.13), we have (3.10) and are left with only

proving (3.9).

Let q = n/l and r < n/l; then also r < (n/l)'. By (3.13) and (3.10), T is

bounded on L^ßo and Lfy, for - n + r(n — I) < ß0 < n(r — 1) and — n <

ßx < n(q — 1). Using Lemma 4, if r </» < q we see that T is bounded on

£f> for

Thus ß satisfies

</><»('-'>(^f) + »<?-.)(f^).
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Simplifying and using the fact that q = n/l, we get

ArjzA + pMLzA<ß<<p_xy (3.14)
n — Ir n — Ir

But, as r-*\, the left-hand side of (3.14) approaches — lp. So, taking r

sufficiently close to 1 allows us to choose any ß satisfying —lp<ß<

n(p - 1).

When I = n, the restriction in Theorem 3 is —n<ß< n(p — 1) for

1 </> < oo. But, when / = n in Theorem 1, we require w E Ap, and |x|^ E

Ap if -n <ß <n(p - 1).

4. The proof of Theorem 4 is based on an analogue of Lemma 1.

Lemma 5. Let fi E 1/(2) and satisfy the Lr-Dini condition. Set K(x) =

fi(x')/|x|". There exists a constant a0 > 0 such that if \y\ < ccqÍ?, then

If \K(x - y) - K(x)\r dx)   '
\JR<\x\<2R J

<C*"/'-fM+/ „r(8)f\.
[   -K J\y\/2R<8<\y\/R °   )

Proof. We may choose a0 < \; then, since |x| > R, \x — y\ is equivalent to

|x|. Therefore,

fi(x - v)      fi(x)
In ii"

|x|
\K(x - y) - K(x)\ =

{ \x\ xfl

It follows that

JA
If \K(x - y) - K(x)\r dx)
\-'ä<|x|<2ä /

<C(/S<H<2JBWI'^Ä)"'

\-/Ä<|Jc|<2Ä |x| /

The first term on the right side of (4.1) is bounded by

c||fi|U^)|7|*_(,,+1)*''A = cä-/'-"(-^V
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Changing to polar coordinates, we see the second term equals

clf2Rrnr+"-xlf\ü(tx'-y) - Ü(tx')\r dax\ dt)

where a = y/t. Arguing as in Calderón, Weiss, and Zygmund [1, pp. 65-72],

we see the inner integral is bounded by

c sup  f |fi(px') - fi(x')f dox, = c«;(M]

as long as |a| = |y\/t < a0. Thus, the second term is bounded by

<Cñ<"- If Hi*)4).
\J\y\/2R<8<\y\/R 0   /

since wr is essentially constant on intervals of the form (a, 2a), a > 0. Lemma

5 is now proved.

Notice that when R = 2J\y\, with a/ such that l/a0 < 2J, we get

If \K(x - y) - K(x)\r dx)

<c<*Mr~{i+£>>f}.
Theorem 4 is proved in exactly the same manner as Theorem 1. Using

Lemma 5, we show

(K * ff(x) < Cf?(x),

which proves the result for p > r'. The only change necessary is in the

decomposition/ = /0 + 2¿. For Theorem 4,

ZoW^Wx^eR": I* ->»|< ±-8 J)

and the sum of fjs is over / > log2(l/a0). We get the case p = r' by

interpolation, and 1 </» < r follows by duality. In the weak-type (1, 1) proof,

we may have to replace the weak-type (2, 2) result for the good function by a

weak-type (/•', r') result.

5. We conclude by showing that Theorem 3 is best possible, except for

endpoint equalities for ß. We prove the result for /> > (n/l)'; the case

/» < n/l follows by duality. For n/l < p < (n/l)', the Riesz transforms and
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an argument like that in [8] show the range of ß is best possible.

Let 1 < s < 2, n/s < I < n, (n/l)' </» and ß > lp. Define a multiplier m

by

m(x) = eixr>{\ +|x|2)~'/2

for a fixed tj of length 1. Note that m(x) = G,(x — ij) (the Bessel kernel of

order /) and that \Dam(x)\ < Ca/(1 + |x|)', so m E M(s, I),  1 < s < oo.

Moreover, G, > 0 and there exist c, /x > 0 such that G,(x) > c|x|/-n if |x| < ¡i

(see Stein [19, p. 132] for details).

Set

/(x) =|xr(("^)/p)|log|x| |-5x({x £ R": |x| < M}).

If 8p > \,f E I£|,(R"). Since Tfix) = (G,(- -v) *f)(x),

Tf(x) = f      M" (("+/?)/*W| \~'0){x -y-n)dy
J\y\<v

-L |x - t, - z|-^p"''|log|x - T, - z\ \-"G,(z) dz
X-T]-Z\<H

by setting z «■ x — ij — y. Now, if we restrict the integration to |z| <

j|x — i)|, |x — 7) — z\ is equivalent to |x — tj| and, if |x — tj| < ¡i/2,

7/(x)>c|x-,r«^>/>g|x-T)||-r      -^
j\z\<î\x-V\ \z\

= C\x - rjl'-^^^^lloglx - T,| f*.

Therefore, Tf £ ¿(^(R") if {/ - ((« + ß)/p)}p < ~ n; i.e., if ß > lp.
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