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Abstract. In the context of abstract model theory various definability

properties, their interrelations and their relation to compactness are investi-

gated.

Introduction. This is the first of three papers on the analogues of the

theorems of Beth and Craig of first order logic in abstract model theory. They

grew out of an unpublished preprint [MSf which was revised and extended

several times by results of both authors as well as other people. They unify

results due to Badger, Ebbinghaus, Friedman, Gostanian, Gregory, Hrbacek,

Hutchinson, Kaufmann, Magidor, Malitz, Makkai, Makowsky, Paulos,

Shelah and Stavi.

In this paper we present the abstract setting; we suppose that the reader is

familiar with a standard text on model theory such as [BS] and [CK], with

Barwise's [Bal] and [MSS]. The main results here are that:

Beth's theorem together with a Feferman-Vaught theorem for tree-like

sums implies a weak form of Robinson's consistency lemma (5.4) and the

Robinson consistency lemma together with the Feferman-Vaught theorem for

pairs implies full compactness (6.2).

In [MS2] and [MS3], the continuations of the present paper, we present

applications of the general theory to particular logics. [MS2] is devoted to

compact logics and some new logics are introduced, and [MS3] is devoted to

infinitary logics and A-logics. Some complicated constructions are presented

in detail there.

There are three aspects of Craig's interpolation theorem and its corollary,

Beth's definability theorem:

(A) Philosophical. Every implicit definition is equivalent to an explicit

definition.
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(B) Mathematical. Although mathematicians never really cared whether

they use explicit or implicit definitions, Beth's theorem tries to explain why

we always have an explicit definition of a concept whenever it is uniquely

describable. The ordering in real closed fields, e.g., is unique and the proof of

this gives us an explicit definition of the ordering. Or formally real fields,

where every element or its inverse can be represented as a sum of squares, can

be uniquely ordered. Again the proof gives us an explicit definition. Another

example: Uniquely orderable groups can be characterized by an Lu¡u-

sentence (cf. Bludov [Bl]) so again there must exist an explicit definition of

this ordering in La¡ül. Since most proofs of Craig's theorem are effective (in

the finitary case, in the infinitary case this is more complicated) the explicit

definition can also be obtained on a purely syntactical level. But we do not

know of any example where this observation gives us anything deeply

mathematical.

The main motivation for this paper, however, stems from the third aspect:

(C) Metamathematical. Craig's theorem holds for predicate logic and sec-

ond order logic as well as for Lu a and LA where A is an increasing union of

countable admissible sets. First order logic can be characterized in terms of

maximality with respect to some model theoretic properties. Now most of the

proofs of such maximality theorems also give a proof of Craig's theorem. So

"maximality" implies "Craig's theorem" sounds like a nice motto. Unfor-

tunately LA does not seem to fit into this picture. More generally we do not

know if there is a maximal logic satisfying the Löwenheim-Skolem theorem

down to w and Craig's theorem; in particular Harrington and Kunen have

shown independently that LU|U is not maximal in a very strong sense. Kunen

uses CH and gets explicit extensions of Lu a adding prepositional connec-

tives. Harrington gives an existence proof of 22"-many other connectives P

such that LUiU(P) shares most of the properties of LU|U without CH. Both

results are presented in [Ha].

Other aspects of maximality in connection with definability properties are

discussed in Feferman [Fel] and Stavi [Stl].

The aim of these papers is twofold: To provide the reader with a reason-

ably complete picture of what logics do or do not satisfy what kind of

definability theorems, providing proofs, counterexamples or references, and

to discuss definability theorems in the setting of abstract model theory. The

two cannot be separated completely. Some abstract theorems give us hints of

how to find counterexamples. Some constructions of counterexamples split

into two different parts one of which can be easily captured as an abstract

theorem. What we hope to show, too, is how this interplay works. In detail

this paper is organized as follows.

In § 1 compactness and Löwenheim-Skolem properties are defined as well
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as the Karp-property. Some theorems relating these properties are studied or

quoted for later use.

In §2 the interpolation and definability properties are introduced for pairs

of logics: Craig's interpolation theorem, Beth's definability theorem, a

weakened version of Beth's theorem. A-interpolation and variations around

Robinson's consistency theorem. Their mutual logical interdependence is

exhibited, and a theorem of Barwise is improved (Theorem 1.2.4 and its

corollaries). Also a new characterization of predicate calculus is given as the

maximal Karp-logic which satisfies Robinson's consistency theorem (Theo-

rem 2.14).

In §3 Feferman-Vaught-type theorems are discussed for pairs of logics and

various sum-like operations on many-sorted structures. Another characteriza-

tion of predicate calculus is given involving the Löwenheim-Skolem theorem,

the weakened form of Beth's theorem and a Feferman-Vaught theorem for

pairs of structures (Theorem 3.3 and Corollary 3.2).

In §4 we review briefly some results due to Feferman and Makowsky on

uniform reduction which relates Feferman-Vaught-type theorems with defina-

bility theorems.

In §5 we describe a construction whose main motivation is to prove not

Beth when not Craig. For credit see there. Variations of this construction will

appear also in [MS2] and [MS3]. Its main content is a way to get implicit

definitions out of counterexamples for definability theorems. It also yields an

abstract theorem: Beth's theorem and a strong form of a Feferman-Vaught

theorem imply the weak Robinson consistency theorem (Theorem 5.4).

In §6 we prove that under some weak assumption on set theory Robinson's

consistency theorem3 implies full compactness. Although not surprising, this

is a highly nontrivial theorem of abstract model theory and shows that with

more effort more abstract theorems should be provable.

In §7 we finally describe a generalization of an old trick to show that

second order logic does not satisfy Beth's theorem, which has been worked

out by Paulos and Burgess.

We conclude the paper with a survey of what logics do or do not satisfy

what kind of definability property and an extensive bibliography.

There are many open problems left in the field: How can one construct

explicitly logics with prescribed properties? We are still in the state of many,

but scattered, examples, sometimes with rather well developed model theory

(cf. [MS2], [Kel], [Ma3] and [BKM] for L(Q) and its extensions and [Ke2],

[Ba2] for infinitary logic), but no coherent theory is in sight. Abstract model

theory had two great impulses from Lindström and Barwise, but the more

'Together with a Feferman-Vaught theorem for pairs of structures.
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intriguing questions, the hard technical results, which give a field its living,

seem to develop slowly. We hope to go an important step in this direction.

Here are some problems:

Problem 1. Is there any fully compact logic which satisfies Craig's theorem

or is there any countably generated logic which satisfies Robinson's con-

sistency theorem and which is different from (extending) predicate calculus?

Problem 2. What are the properties compact logics have in common? What

conditions are needed to prove that the union of two compact logics is again

compact (or similar for other properties than compactness)?

Kueker [Kue] has developed a general theory around the Löwenheim-

Skolem theorem. This is what we have in mind for an answer to Problem 2. A

first step in such a direction has been made by Stavi [St2]. More explicit

problems may be found in [Sh2] or in the remainder of this paper and in

[MS2], [MS3].
Problem 3. What kind of partial isomorphisms generate reasonable logics?

Is there a partial isomorphism relation (game characterization) for any

elementary equivalence relation of an abstract logic? How do the partial

isomorphisms reflect the properties of logics?

Stavi and Nadel [NSt], [Na] have some interesting work in this direction.

An interesting test-case are the various Henkin-quantifiers discussed in [Wa]

and [Ba4]. Very recently Caicedo [Ca] got very general results concerning

Problem 3, part 1.

1. Karp-logics, compactness and cardinality of models. All the definitions of

abstract model theory are taken from [Bal] unless otherwise stated. Note that

our languages are mostly finite and all logics have the finite occurence

property. Infinite languages occur in connection with diagrams. Universes are

many sorted and PC-classes may admit extra universes, so reducts are

relativized reducts. We let L vary over languages and L*, L*, etc. over logics.

We use also L* for the L*-formulas (sentences).4 Satisfaction is denoted by

¥L. or, when no confusion is possible, by N . ¿-structures are denoted by 21, 93,

3ft, SR, etc., their universes by A, B, M, N (or Au . . ., An, etc., for the

many-sorted case).

We denote by Th^St) = {?£ L*\% ¥ <p) and 21 = 93(L*) if ThL.(30 =
ThL.(93). If L* and L+ are two logics, we write L* <•„, Ü if whenever

31 = »(L1) then also 21 = 93(L*).
Let L* be a logic. L* is said to have the Karp-property (is a Karp-logic) if

for every L and two L-structures 2t, 93, 21 —p 93 implies that 21 = 93(L*).

Here 21 »^ 93 means that there is a set of partial isomorphisms with the

Back and Forth Property (cf. [Bal]). By a theorem of Karp [Bal] this is

equivalent to 21 = 93(L00U).

4Note that L* is not always a set.



THEOREMS OF BETH AND CRAIG IN MODEL THEORY. I 219

Theorem 1.1 (Barwise). If L* is a Karp-logic then L* «Cn, L«,w.

A proof may be found in [Ba3].

Theorem 1.2 (Lindström/Barwise). If L* is a Karp-logic in which

<w, < y is not characterizable by a single sentence even with additional predi-

cates, then L* = Lua.

A proof may be found in [Ba2j or [Lil], [Li2].

A logic L is said to be (k, \)-compact (k, X cardinals, k > X) whenever

given a set of sentences 2 of L* of cardinality k such that each subset 20 of 2

of cardinality < X has a model, then 2 has a model. Given two logics L* and

L% we write L* < L* if for every <p G L* there is a <p' e L* with the same

models, L* = L* if L* < L* and L* < L*.

Note that if k, < k and X, > X then (k, X)-compactness implies (k„ Xx)-

compactness.

Proposition 1.3. A logic L* is (w, ui)-compact iff <w,< > is not characteriz-

able by a countable set of sentences of L* for some L, D L.

A proof may be found in [Ba2] or [Fl].

Let X, k, fi be cardinals and L* a logic. We say that L* has the (A, k)-

Lowenheim-Skolem properly for sets of sentences of cardinality ¡x and write

LS^iX, k) if whenever 2 is a set of sentences of L* of cardinality ¡i which has

a model of cardinality X then it has a model of cardinality k. If ¡i is finite we

omit it. LSm(k) stands "for all X > kLSm(X, k)".

Proposition 1.4. Let L* be a fixed logic.

(i) If no < n and L* has LS,,(k, X) then L* has LS^(k, X).

(ii) If L* < iJ and if is (k, X)-compact {has LSM(ic, X)) so L* is (k, X)-com-

pact {has LS^k, X)).

Theorem 1.5. (i) {Barwise) If L* has LS(k, u) for all k > a then L* is a

Karp-logic, provided L is finite.

(ii) If L* has LS^i«, x)for some k > « then L is {u, u)-compact.

(iii) {Lindström) If L* has LS(<o, k) for some k > w and LS(«) then L* =

(iv) {Lindström) If L* is (w, u)-compact and has LS(w) then L = L,^.

Proofs of (i) may be found in [Bal] as well as for (ii), (iii) and (iv) follow

using Theorem 1.2.

Shelah showed that LS(k, a) does not imply LSw(ic, w). A detailed study of

LS(w) may be found in [Kue].

The following is an easy exercise and will be used later.
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Proposition 1.6. If a logic L* staisfies LS(X) then it has up to logical

equivalence at most 2 -many sentences and therefore almost 22 -many complete

theories.

2. Definability and interpolation properties. Let L* be a logic, K a class of

L-structures, and ç> G L*. We define

Mod(<p) = {2t|2t is an L-structure and 21V q>).

lfL0cL,

Mod(<p) f L(¡ = (2I|2Í is an L0-structure which has an expansion

to an L-structure 21' N <p},

K G EC(L*) iff K = Mod(ep) for some <p G L*,

K G PC(L*) iff K = Mod(ç>) f¿ for some <p G Lf, L, D L.

Interpolation properties. Let L* and L+ be two logics, L* < Lt. We say

CRAIG(L*, L*) holds if whenever KX,K2 G PC(L*) and Ä", n K2 = 0 then

there is K3 G EQL1) such that Kt Q K3 and K3 Q K2 {K2 the complement of

K2 with respect to L-structures).

We say A-Int(L*, L*) holds if whenever KX,K2 G PQX*), ^0^ = 0

and Kxö K2 = str(L) (= all L-structures) then Kx = K2E. EQL1). A(L*) is

the smallest extension Lf of L* such that A-Int(L*, L1) holds. (For its

existence and construction, cf. [MSS].)

Definability properties. We say that BETH(L*, Ü) (WBETH(L*, L1))
holds, if given <p G Lf, L, = L u {?}, Pan n-ary predicate symbol, every

L-structure has at most (exactly one) expansion <2t, P> 1= <p; then

(<2t, 5>|2i has an expansion <2t, P > 1= <p and 5 GP*} G EC(Lf).

/o/ni consistency. T Q L* is L*-complete if whenever T is a set, 2Í N T and

93 1= r then 2t = 93(L*). We say that ROB(L*, V) (WROB(L*, Ü)) holds if
whenever T Q L* is L^-complete, L, = Lu{P}, P an /i-ary predicate

symbol, and cp,ij/ G Lf are such that 7" u {<p(P)} and T u (>KP)} have a

model, then T u (O(P), »K^')}) ({<p(P), »KP')}) has a model (where P' is a

new n-ary predicate symbol not in Lx and 4*{P') is the result of substituting P'

for P in ip).

Proposition 2.1. Assume \L\ < p, \L*\ < \ifor some infinite ¡¡. and that if is

(/i, u)-compact; then the following are equivalent:

(i) CRAIG(L+, L%
(ii) ROB(Lf, L*),

(iii) WROB(Lf, L*).

The proof is left as an exercise.

Let DEF be any of the prefixes CRAIG, BETH, WBETH, ROB, WROB or

AInt. The following is immediate:
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Proposition 2.2. // L*, L\ L**, Ln are logics, L** < L* and Lf < Ln,

then DEF(L*, L1) implies DEF(L**, L*).

Theorem 2.3. The following diagrams are true:

CRAIG(L*, Lf)

AInt(L*, L+)        BETH(L*, L*) (i)

WBETH(L*, L+)

CRAIG(L*, tf)       ROB(L*, Lf) (Ü)

WROB(L», Lf)

The proofs are left as an exercise.

Before we can discuss other implications we need some facts from [MSS]:

Every logic L* has a least extension A(L*) which satisfies

AInt(A(L*), A(L*)).

Similarly for BETH(J?(L*), B{L*)) and WBETH(WB(L*), WB(L*)). The

following is taken from [MSS].

Theorem 2.4. Assume that L* is a logic.

(i) IfL* is {k, X)-compact, so are WB(L*) and A(L*).

(ii) IfL* satisfies LSm(k, X) so do A(L*) and WB(L*).

(iii) WB(L*) does not preserve the Karp-property {neither do B{L*) nor

A(L*)).

It is an open question, whether a similar theorem holds for B{L*). There

are many ways to define extensions tf (minimal extensions) of a given logic

L* which satisfy CRAIGfL*, L1). The problem is to define one which is in

some reasonable sense canonical and satisfies an analogue of Theorem 2.4.

Theorem 2.5. (i) BETH(L*, L1) # AInt(L*, L*).

(ü) AInt(L*, L*) #*> BETH(L*, L*).

So no other implication in the diagram of 2.2 does hold.

Proof. To prove 2.5 we shall construct two new logics and calculate their

BETH-closure and A-closure:

(i) Let L*° = L^XQ™] be the logic obtained from L^ by adjunction of a

binary quantifier Qvoxyq>{x,y) which says that <p{x,y) well-orders its field.

Lwo satisfies LS(o>) since it is a special case of a securable quantifier discussed

in [Mai]. Note that by Theorem 6.1 below WBETH(Lwo, Lwo) does not hold.

To calculate B{Lwo) we prove:

Lemma 2.6. If L contains only unary predicate symbob and equality, then
L«. = Lwo = B{LV°).
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Outline of proof. We prove by induction on the explicit construction of

B{Lwo) that for such L as in the hypothesis there are no formulas satisfying

the hypothesis of the Beth-property in the nontrivial way.

To calculate A(Lwo) we observe:

Lemma 2.7. L{Q¿) Q A(Lwo).

Proof. Since <w,< > is characterizable by a sentence of Lwo the class of

finite sets is in PC(Lwo), as well as the class of infinite sets,   fj

Now Lemma 2.6 shows us that L{Q¿) is not a sublogic of B{Lvo), but by

2.7 it is a sublogic of A(Lwo), hence of A(5(Lwo)) * B{Lvo).

(ii) In [MS3] it is proven that AiL^Jg,]) does not satisfy Beth's theorem.

D

Theorem 2.8. (i) CRAIG(L*, L+) +> ROB(L*, L*),

(Ü) ROB(L*, L*) *> WBETH(L*, L%
(iii) AInt(L*, L1) => WROB(L*, L^).

Proof, (i) Put L* = Lu¡a, Ü - Lai„. We have CRAIG^, LaJ by

[Ke2, p. 19] and not ROBÍL^, LUíU) by [Ke2, exercise 4, p. 22] (cf. also 2.14).

(ii) Put

L* = LWitti   and   tf = LM00.

Malitz showed that WBETH(L„iUi, Lœao) fails (cf. [GH, Theorem 2]). To

prove ROB(Lu a, Lœoo) we note first that a complete theory in L^^ is

always categorical, so the Robinson-property follows trivially.

(iii) Hutchinson (cf. [MSS]) showed that ^Lou{Qi)) (with quantifier "there

exist uncountably many") does not satisfy Craig's theorem, in fact not

CRAIGiL^ß), AiL^iß))). But A(L^(Ô)) is (<o, <o)-compact, so by Prop-

ositions 2.1 and 2.2 the result follows, with L* = L^ = ^{L^Q)).   □

Theorem 2.9. (i) BETH(L*, L*) # WROB(L*, L*).

(ii) All possible relations between two definability properties are exhibited.

Proof, (i) Let Lcfl be the logic obtained from L^ by adjunction of a

binary quantifier Qci 1xy<p{x,y) which says that <p{x,y) orders its field in an

(i),-like way. As in 2.4(i) we need a lemma.

Lemma 2.10. If L contains only unary predicate symbols and equality then

£(Ldl) = Ldl = L„tt.

The proof is as for Lemma 2.6. To end the proof of 2.9 we need:

Proposition 111. X,«" does not satisfy WROB(Ld ', V* ').
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Proof. By Lemma 2.10 and first order model theory the L-theory TM of

infinite sets for L = { = } is complete in Lcf '. Let ç>, say that an ordering <,

of a model is co,-like and let <p2 say that an ordering <2 is a proper initial

segment of an Wj-like ordering (using additional predicates). Clearly T^ u

{<p,} has a model for each i = 1,2, but T^ u {<p1( <p2} has no model, n

To prove (ii) of 2.9 one uses a finitary checking argument. □

For the rest of this section we look at Karp-logics, modifying results of

Barwise.

Theorem 2.12. Let L* be a Karp-logic {hence L* <Th Lœ<<)).

(i) BETH(L*, LœJ implies WROB(L*, Lmu).
(ii) WROB(L*, LJ implies that L* satisfies LS(w).

Corollary 2.13 [Ba]. IfL* is a Karp-logic and CRAIG(L*, L*) holds then
LS(w) holds.

The corollary follows from the theorem via Proposition 2.2.

Proof of the theorem, (i) will follow from Theorem 5.3 taking L* = L*
= LMU-

(ii) By 1.2 and 1.5 we may assume that <w,< > is characterizable by

<p G L*. Assume for contradiction that «/- is a formula in L* with no

countable but some uncountable models. Clearly {<p,^} has no model. Let T

be the L^-theory of infinite sets. Since all infinite sets are partially isomor-

phic, T is L^-complete. But T u {<p} and T u {«/'} have models, a con-

tradiction.   □

Theorem 2.14. Assume L* is a Karp-logic, ROB(L*, L*) holds and for every

L-structure 2ft, Th£(2ft) is equivalent to a set. Then L* = L^.

Proof. Again we can assume that <w, < ) is characterizable by a sentence

<p in L*. Put Tll = <«,< , . . . > and SDÎ2 = (C,ca: a < w,>, a pure set with

equality and w,-many distinct constants.

Put ïïl° m \u0\ and Wfi\ = |w,|. Using the Back and Forth characterization

of s, (cf. [Bal]) we get that [3ft„ 3K2, Wl§ m, [2ft„ Wl2, 3Rl3]. Put

T = Thjarc,, 2R2, 2R°] = Th^fïli,, 2ft,, fffll],

so T can be assumed to be a set and T is complete. Let ip, say that g, is a

bijection from |3R,.| to \Ti3\ {i = 1,2). Clearly T u {^,} has a model (/ = 1,2)

but T u {«/'i, <|'2} has no model since SDÎj 1= <p and therefore îft, is countable

and 9K2 is uncountable, a contradiction.   □

Corollary 2.15. Assume L* < Lwa and ROB(L*, LJ. Then L* = L^,.

Proof. Note that for every structure M, Th¿ (M) is equivalent to a set,

and repeat the proof of 2.14.    □
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3. Feferman-Vaught-type theorems. One basis construction in abstract

model theory is the operation of taking sums of given models. In its simplest

form we have the operation of pairing which associates with two structures

21,93 the structure [21, 93] for the language L which is the many-sorted disjoint

union of the languages of 2Í and 93, respectively. Similarly one can form

triplets, etc., or more complicated objects, of which one will be studied in §5.

Definition. Let L„ L2 be languages and Lf, L] (/ = 1, 2) logics with

Lf < if. Let 21,., 2i; be L,-structures. We say that FV^L*, L1) holds if,

whenever 21, = 2Í,'(L/) for i = 1,2 and L3 is the language of the pair [21g, 21J

then [2l„ 212] = [2t'„ 2t2](L*). We say that WFV/L*, L*) holds whenever

FVp{L*, L1) holds for L, = L¿ = L and 2Í, = %2{lf) (F stands for Fefer-

man, V for Vaught and W for Weak).

Remember that the pair [2l„ 2t2] is the structure with the universes from 2t,

and from 2I2 and relations acting on the appropriate universes. It is, loosely

speaking, the disjoint union of the structures 3tx and 2t2 with variables ranging

over the universes of 21, and variables ranging over the universes of 2I2.

Note that if L** < L* and L++ > Ü, then X{L*, L*) implies X{L**, LP)

where X is one of the properties above.

Theorem 3.1. Assume L* is a logic which satisfies WBETH(L*, L*) and

WFVp{L*, L*) and LS(X) for some X < lu¡ck. Then <w,< > is not characteriz-

able by a single sentence.

Proof. We give a proof for the case that X < 2a, the general case being

essentially the same but more complicated. Assume for contradiction that

<p G L* does characterize <w,< >. By assumption and 1.6 there are at most

22 -many theories over countable types. Consider the structure 21 =

{V, u, P"{u), e> where V = U*S4)P*(w), n G w, such that 2** < a„, and

P"(w) is the nth iteration of the power set operation. Now consider the

structure [21, 2Í] and let i¡/ be the formula which says "« is standard" using <p:

"F is a partial map from V of the first sort (i.e., Vx) to V of the second sort

(i.e., VF;
"F and F~x preserve e";

"F is hereditary, i.e. if F is defined on x and v G x, it is defined on v";

"The domain of F is maximal".

Clearly ^ defines F implicitly and ^ is in L*. Since there are at most

22 -many theories we may find two structures 2Íj = < Vx, u, P„ e> and 2I2 =

< V2, a, P2, e) such that 2t, = 2I2(L*) and P, ^ P2 but Pl,P2 c P"(w).

So by WFV^ÍL*, L*) we have [2I1; 2ÍJ = [21,, 2l,](L*). But assuming that
9{x, y) defines F expücitíy in L* we get that 9{x, y) defines a map with

domain P, on [21,, 21,], but not on [21,, 2I2], a contradiction. So <<o,< > is not

characterizable in L. In fact with more coding it suffices to assume that

X < 2„lCk.   D
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Corollary 3.2. The following properties characterize L^:

(i) LSf», WFV,(L„„, IJ and WBETHÍL^, L„J.
(ii) The Karp-property, WFV^L^, LJ) and WBETHÍL^, L„J.

Compare 3.2 also with 4.2.

The following is an abstract version of a result of Malitz [Ml] cf. also [GH].

Theorem 3.3. Let L* be a set for all languages L and assume that

Lp c L+ c L* are three logics such that WBETH(LD, L+) and

WFV^L*, L*). Then the class of well-orderings is not EC{L°).

Proof. Let a < ß be two infinite ordinals such that <a, e> = < /?, e>(L*).

They exist for L* is a set. Now look at two-sorted structures of the form

[21, 93] where 2t and 93 are well-orderings and let F be a binary function

symbol with domain 21 and range 93. Assume for contradiction that the class

of well-orderings is EC(L°).Let 6 be a sentence expressing that:

(i) 21 and 93 are well-orderings,

(ii) F is an order-preserving map which is one-to-one,

(iii) either F is an embedding of 21 into 93 or of 93 into 21.

Now 6 satisfies the hypothesis of WBETH(LD, V). Therefore there is

<p{x, v) in L+, L the language of [21, 93] without F, defining F. Now put

2Í = <a, e>, 93 = < ß, e>. By WFV^L*, L*) we have [21, 93] = [93, 2IKL1). Put

<p, to express that <p{x, y) is an embedding of 21 into 93 and <p2 that <p{x, y) is

an embedding of 93 into 21.

So we have [21, 93] N <p, A -i <P2 aXL<^ [®> 21] ̂  <p2 A ~i <Pi» a contradiction.

Theorem 3.1 can be easily generalized to:

Theorem 3.4. Let L* c Lf c LD be three logics, such that

WBETH(L*, Lf) and WFVP{L*, L°) and L satisfies LS(X) for some X < 2a¡.

Then <w, < ) is not characterizable by a single sentence of L*.

In many cases, where FVP does not hold, it may still hold for specially

chosen structures. How this is used is shown in [MS2], [MS3].

4. Uniform reduction. In Feferman [Fe2] and Makowsky [Ma2] a property

of logics is studied which has two advantages: It comes nearer to the original

Feferman-Vaught theorem and it is directly related to Craig's theorem.

Let 2Í, be an L,-structure (/' = 1,2) and let L3 be a language for [2Í„ 2ÍJ =

P(21„ Sy. For a logic L* we say that UR^,(L*) holds if for every sentence <p

of L* there exists a pair of sequences of formulae ^J, . . ., ^J of Lf and

tf/f,. . ., 4¿ of L* and a Boolean function B G 2"1"'"'2 such that

[*„ 2l2] K «p iff B(a\, ..., <, a\,..., <£) = 1
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where

fo if «,*-.>;,

°J      [l    if %t¥$.

Theorem 4.1. Assume URP(L*) holds for a logic L*. Then ¥WP{L*, L*)

holds.

The proof is left to the reader. We now want to generalize URP (uniform

reduction) to a more general class of operations. Let L, (/' = 1,..., n G u>) be

languages, 21, be L,-structures and R an n-ary relation on structures such that

the ith argument is an L,-structure. Let L0 be the language for a structure

[21,,. . ., 2ÍJ. R is said to beprojective in the logic L* if there is a PC-class K

for L* such that Ä(2t„ . . ., 2l„) iff [2Í„ . . ., 2ÍJ G #. A sentence <p G L* is

said to be invariant on the range of R if for all 21,,. . . , 2In_„ 2I„, Wm with

Ä(8,,, 2I„_ „ 2IJ and *(2i„ . . ., 2l„_ „ 8Q we have 2i„ V <p ifÎ 21; N m.
An n-tuple of sequences of formulas 4>u • • • » 4k*i with «P* = ^*> • • - > tó

and t/i* in L^ together with a Boolean function B G2m,m = 'EkZ.]/nk is called

a« associate pair for <p on the domain of R if for all 21,, ..., 2i„_„ 2I„ we have

that Ä(2t„ ... , 2l„) implies 2I„ N m iff ¿(a,1,. .., a^, a\,.. ., a^\) = 1

where

10    otherwise.

A logic L* is said to satisfy UR„(L*) {uniform reduction for n-ary relations) if

for every /i-ary relation R which is projective in L* and for every <p in L*

which is invariant on the range of R there is an associate pair for <p on the

domain of R.

Theorem 4.2. (i) UR,(L*) iff CRAIG(L*, L*).
(ii) UR2(L*) í^fíej URP{L*).

(iii) UR2(L*) »rp/ier UR„(L*).

The proofs of (i)-(iii) may be found in [Fe2] and [Mai].

Corollary 4.3. If L* is a logic with UR2(L*) and the Karp-property and L*

is a set, then L* — L^.

Proof. Use Theorems 4.2 and 2.14.   □

5. Constructing implicit definitions. In this section we study a construction

which enables us to obtain implicit definitions. The construction originates in

the ideas of Friedman [Fr] and Gregory [Gr]. Shelah realized that the

construction can be formulated in an abstract setting.

Let L = LoU{P}bea language with a distinguished predicate symbol P
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(unary for simplicity). Let M = L \j {f, C) where / is a unary function

symbol and C a constant, both not in L. Let 2Í, 93 be L-structures.

We define now $¿(21, 93) (/" = 0,1).

(i) 5¿(2Í, 93) is an M-structure with universe N of cardinality card(2í) +

card(93) + N0.

(ii)/is a function on N such that

(a)/(x) = x iff C = x,

(b) for all a G N there is /i G to with f"{a) = C,

(c) / is onto.

Denote/_1(a) — {a} by Na (see Figure 1).

Figure 1

(iii) There is a bijection ia: ß ^ Na (i = 0,1) where S is either 21 or 93.

ia makes Na naturally into an L0 u {P}-structure which we shall denote

also by Na.

(iv) for each relation symbol R G L (or function symbol) put Ra to be its

interpretation on Na and put RN = UaeNRa its interpretation on N.

(v) PN is defined by a G PN => Na s 2t, a G PN =*■ Na = 93.

(vi) C G PN if i = 1, C G F* if i = 0.

S^(2I, 93) and S¿(21, 93) differ only with respect to Wc. SP{% 93) is a tree

with root C and nodes Na. At the node Na it splits |JVj-many times. Each

branch has length w. Na ss 2t iff fia) G P and Na s 93 iff /(a) G P (see

Figure 2).

Now we put r>(21, 93) := 5/(21, 93)\L0 u {/, c}. We say that

WFVT(L*, L*) holds if 21 = 93(L+) implies that T^(2I, 93) s 7^(21, 33)(L*).

Proposition 5.1. // <«,< > is PC(L*). Then UR2(L*) implies

WFVT(L*, L*).
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c$P

since b € P

Figure 2

Proof. Sp{%, 93) is a projective operation via the characterization of

<w, < >, if we replace it by a ternary operation SP{W, 21, 93) restricted to the

cases 21' — 21 or 2T = 93, so that the first argument describes Nc and the

second argument describes Na for a G P, the third Na for a & P.   □

Lemma 5.2. Let L* be a logic, L a language and P¡ {i = 0, \,2) be unary predicate

symbols not in L.

Let qp, (/ = 1,2) be sentences having a model but {<p„ <p2} has no model. Then

there is a sentence \p G (L (J {/, c, P0})* (/, c not in L) such that:

(i) Every L u {/, c}-structure 21 has at most one expansion 21* N \p.

(ii) S}> (21, 93) N ̂  provided 211= <p, and 93 Ë <p2 where P, and P2, respectively,

are substituted for P0.

Proof, (i) Let <// be ^, A ^2 wim

*,:/(«) = c A /(*) = at «* x = C A "/is onto";

*2: a<EP0^Na = </"'(«) - {a}, ¿ U {/, c, P0}> 1= f>„

a(£P0^Na = (f-\a) - {a}, L u {/, c, P0}> N <p2.

Note that ^, G L^ and ip2 G L*. Now let 2Í be an L u {/, c}-structure and

<21, P,> N 1// (/ = 1,2) (ignoring substitutions of P, for P0 in «//). We have to

show that P, = P2. If a G P, then JVa N <p„ if a G P2 then Na N <p2 so

</-'(a) - {a}, L u {/, c, P„ P2}> 1= ç,, A <P2,

a contradiction,

(ii) is obvious by the construction of S¿(21, 93).   □

Theorem 5.3. Let L* < Lf be logics <p, (i = 1,2) as in Lemma 5.2 and

assume that there are 21, t= «p,. .sucA that S£(2l(„ 21,) = S'p(2í0, 2I,)(Lt). 77«?«

BETH(L*, Ü) fails.
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Proof. By Lemma 5.2, ^ defines P implicitly. So assume for contradiction

there is 9 in Lf, an L u {/, e}-formula, such that, for all L u {/, c}-

structures 2t, 211= 9{a) iff there is an expansion 21* ¥ \¡/ A P{d).

Then we have S£(2t0, 21,) ¥ -i 0{c) and £¿(21,» 21,) ¥ 9{c) which contradicts

S°{%, 21,) = SX%o, 21,)(Lt).   G
The abstract version of 5.3 is the following:

Theorem 5.4. Assume L° < L* < Lf are logics such that

(i) BETH(L°, L*),

(ii) WFVT(L*, L*).
77ien WROB(L°, L1) holds.

Proof. Assume WROB(L°, L*) does not hold then we have <p, (i = 0,1) as

in Lemma 5.2 (if the P, are not unary we have the obvious modification of the

definition of S£(2I, 93)). Also there are 21, ¥ <p¡ such that 2i0 s W^L*) and

5j?(2I0, 93,) = 5^(2t0, 93,)(L*), so we can apply Theorem 5.3 and

BETH(L°, L*) faüs.   D

Note that we have BETH(L„iM, Lw J and WFVTÍL^, Lxa) but not

ROB(L    , LMJ (by 2.15), so the theorem cannot be improved (cf. §8).

6. Compactness and definability. The aim of this section is to find sufficient

conditions for a logic to be compact, more precisely to study definability

criteria which imply compactness. It was Lindström who observed that:

Theorem 6.1. If L* = Lua[Q']i<n<u is finitely generated and

WBETH(L*, L*) holds, then (u,< > is not characterizable by a single

sentence.

This implies that L* is recursively compact, i.e. if 2 is a recursive set of

sentences, such that every finite subset of 2 has a model, then 2 has a model.

Proof of 6.1. Assume for contradiction that ij/GL* characterizes <«,

< , R) with L = {< , Rx,. . ., R„,} including enough number theory. Let

L, = L u (c) and {ifjn € w} a recursive enumeration of L, where c is a

constant-symbol. (Here we use the fact that L* is finitely generated.)

Consider the set of formulas of L* (Z^ = L, u {P}): 2 = {P{n) «=> \¡/n A c

= «|« 6 «} where P is an unary predicate symbol not in Lv 2 is recursive;

therefore it is replaceable by some formula $(P, n) using a trick due to

Kleene which has been generalized by Lindström for finitely generated logics

([Kl], [MSS]). Now $> A ^ defines P implicitly, since the only model of 2 is

<<o, < , R > and we have enough number theory.

By assumption there is 9{c') G Lf such that for every L2-structure 21 we

have 21 ¥ P{c) <=> 9{cr). But -i 9{c') is $m for some m G u>. So we have

211= P{m) iff 211= 9{m) iff 211= -, 4>m{m) iff 21 ¥ -, P{m), a contradiction.   Q
Väänänen has observed that this can be generalized to an extended version



230 J. A. MAKOWSKY and s. shelah

of  BETH(L*, L*)  where  sentences  are  replaced  by  countable  sets  of

sentences in the hypotheses only. The conclusion of 6.1 then changes to L* is

(<o, w)-compact.

The main result of this section is:

Theorem 6.2. Assume L* = Lau[Q']ieo and 2"° < 2"- for some n G w. If L*

satisfies ROB(L*, L*) and FVP{L*, L*) then L* is {k, u)-compact for every k.

Theorem 6.2 is due to Shelah and we shall see in Theorem 6.8 and

following that the precise set-theoretic conditions. Here the hypothesis that

L* is countably generated is for simplicity only. The proof of 6.2 involves two

aspects: a set-theoretic one and a model-theoretic one. Instead of proving

compactness we study a related notion.

Definition. L* is p-rc {^-relatively compact) if for any two sets of

sentences 2,2, G L* with |2| = p and |2,| arbitrary, if for every 20 c 2 with

|20| < p, 20 u 2, has a model then 2 u 2, has a model.

The following collects some simple facts about p-rc logics.

Lemma 6.3. (i) If n is regular, L* is p-rc and T¡ {i < p) an increasing family

of theories of L* such that each T¡ has a model then U i<ti T¡ = T has a model.

(ii) If L* is (cf p)-rc then L* is p-rc.

(iii) If L* is p-rc then L* is {p, p)-compact.

(iv) L* is (X, p)-compact iff for all k with X > k > p L* is {k, K)-compact.

(v) If L* is k-re for all k X > k > p then L* is (X, pycompact.

Proof, (i) Let P¡ (/' < p) be unary predicates not in T and ip¡ be 3xP¡{x).

Put 2, = {i//, -» <p\i < p and <p G 7^} and 2 = {\¡>¡\i < p). Since L* is ju-rc we

verify that 2 and 2, satisfy the hypothesis of u-rc. |2| = p by definition of 2.

Now let 20 c 2|20| < p. W.l.o.g. 2 is well-ordered of order type p and 20 is

an initial segment say 20 = 2 [x. We have to show that 20 u 2, has a model.

Let M be a model of Tx and expand to M' such that P¡M =£ 0 for i < X.

Obviously AT t= 20 u 2,. Using p-rc we conclude that 2, u 2 has a model,

hence T has a model.

(ii) Let 2,2, satisfy the hypothesis required for p-rc and L* be cf p-rc.

There is 2; a < u such that U a<ctl^'a = 2 and |2;| < u. Now put 20 = 2;

U 2,. Each 2a (a < p) has a model, so, by (i), U a<ai^a ^as a model.

(iii) is obvious, taking 2, = 0.

(iv) easy.

(v) Use (iii) and (iv).   □

Definition. A cardinal k is weakly characterizable in a logic L* if there is a

language LK containing {E} and a theory TK in L* such that:

(i) there is an expansion 21, of <k, E} satisfying TK.

Let a¡ be the name of / G k;
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(ii) whenever 93 1= TK u {a,Fa,: i <j < k) then {a¡: i < k} is unbounded in

K.

We say that such a TK weakly characterizes k.

Lemma 6.4. (i) If p is regular then L* is p-rc iff < p, < > is not weakly

characterizable in L*.

(ii) If L* is p-rc but not X-rc, X regular and X < p then there is a uniform

ultrafilter D over p which is X-descendingly complete.

Proof, (i) Assume L* is p-rc, ii-regular and let 21 = < p, <,...) be any

expansion of </x,< >. Put 2, to be any subset of the L*-diagram of 21 and

2 = {!>a|aGu} where £ is a new constant symbol. Clearly 2 has cardinal-

ity p and satisfies the hypothesis of p-rc. So 2, u 2 has a model which is not

/¿-like.
Now assume L* is not ju-rc and let 2 „2 be a counterexample, 2 = {<pa:

a G p), 2^ = {<pa: a < /?}. Put U to be a new unary predicate and E a

binary relation, say

(a) "E is a linear order on U"; now let R be another new binary relation,

say

{b)"R{x,y)-*U{x)".

Denote by <pÄ(i,j:) the relativisation of <p to the set R{£, x), where £ acts as a

parameter. Say

(c)y •>*«■*> -» <?/<"'*>" for each ß < a < p and <pa, <pß G 2y.

The set 2y defined by (a), (b), (c)y has the same cardinality as y. Put

2; = {,,«**>: «p G 2„ a G ii}.

Claim. 2', u 2^ weakly characterizes u.

First we construct a model. Let 93y be a model of 2, u 2y, which exists by

assumption. Put B = p u U y^By where the unions are disjoint. Now put

93 = <5, U, E, R, . .. > where t/B = p, E is the membership of p and

R < U xy</iÄy such that ä(y, b) iff è G 5y. The other relations are naturally

taken from the 93y. Now let 9? 1= 2' u 2¡, u {^Ea/. i <j < p}. Then {a¡:

i < k) is unbounded in i/K, for 2, u 2 has no model.

(ii) Let 3K be a rich and sufficiently large structure such that H{p+) is

contained in 2T£. Let 2, be a subset of the L*-diagram of 271 weakly

characterizing (XM,< > and put 2 = {a<|<jn|aGu} where | is a new

constant symbol. Again 2 and 2, satisfy the hypothesis of ju-rc. So there is a

model 91 such that Wfl < ^(L^) and 3? = 2, u 2. Furthermore we can

assume that XM is cofinal in X^, using_(i). Now define D on p by A G D iff

A G M {A is a set of M), A Q p, A = p and N ¥ £ G AN. Now assume

(Af)lmx is a descending sequence of sets of D, A0 = p and H „^x-^, £ £ (i.e.,

w.Lo.g. D i<x-<4, = 0). Let / be a function in 2JÎ from u into X defined by

/(a) = i iff a G A¡ — Ai+V

Now we have 2Î t= Va G p (a < 9=>/(|) > a) since 91 ¥ £ G D v4,-, hence
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we have 9Î t= 3xVa G p (a < d=*f{x) > a) and since 2R < 9Î 2JÎ N 3xVa G u

(a < d=>f{x) > a). But since XM is cofinal in X*, we conclude that (~M, =/=

0, a contradiction.   □

Proposition 6.5 [KP], [CC]. Let p be regular and D be a uniform ultrafilter

on p + . Then

(i) D is p-descendingly incomplete,

(ii) if X < p, X regular and D is X+-descendingly incomplete, then D is

X-descendingly incomplete.

(iii) [JK] Assume V = L {or -,0* or -, LM). Le/ k èe regular and D be a

uniform ultrafilter on k. Then D is X-descendingly incomplete for all infinite X.

Now we can characterize p-rc.

Theorem 6.6. (i) L* is {k, p)-compact for all k and given p iff L* is K-rc for

all k > p.

(ii) If L* is p + -rc and p is regular, then L* is p-rc.

(iii) IfHais regular, n G w, and L* is &a+n-rc, so L* is {Ha, tta)-compact.

(iv) {V = L or -,0* or -,L"). If L* is p-rc then, for all X < cf(ii), L* is

X-rc.

Proof, (i) One direction is trivial. Now assume L* is K-rc for all k > p. We

show for each X > p that L* is (X, jii)-compact. X = p follows from 6.3 (iii),

X > p from 6.3(iv).

(ii) Assume not, then by 6.4(ii), there is a uniform ultrafilter D on p+ which

is /n-descendingly complete, but this contradicts 6.5(i).

(iii) Again, assume not; so, by 6.3(iii), L* is not Ka-rc, so, by 6.6(h), L* is

not Jt .  -re for each ä€«.

(iv) is proved with 6.5(iii) and 6.4(ii).   □

After this set-theoretic digression we go back to model theory. We shall

need an old result of Rabin.

Proposition 6.7 [Ra]. Let Pq be the first measurable cardinal. For every

k < Pq there is a structure 2tK = (A, < > and a language L* such that
(i)P G L«,<PS<a-> -<«,<>,   '

(Ü) whenever 93 > 2IK(L^,) then <PS,<®> is nonstandard.

Now we are in a position to prove:

Theorem 6.8. Let L* be a logic such that \L*\ < p^for each L with \L\ < pç

and such that ROB(L*, L*) and FVP{L*, L*) hold. Then L* is («, u>)-compact.

Proof. Let Bv B2 be two infinite sets of different cardinality, /ß„ ß2,

respectively, such that, for L = { = }, <£,> ■ <52>(L*).

Since \L*\ < p^ we may assume that ßx,ß2 < Pq using a Hanf-type argu-

ment. Now we fix k > max{ ß, ß2), k < iiq. Put 2Ç = <2tK, P, Q, a>a6H
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where 2tK is from 6.7, P,Q are unary and \P\ = ßx, \Q\ = ß2. Now assume for

contradiction L* is not (w, «)-compact. Then WK can be expanded to 3t^ such

that Th£.(2í^) is categorical (using 6.7 and 1.3). Now by FVP{L*, L*) we

have [2i;, 5,] m [2i;, B2]{L*). We put now T = ThL.[H'¿, Bx\ Let <p denote

the sentence which says that "F, is a bijection from PH« into B (the universe

of the second sort)".

Let xp say "F2 is a bijection from Q%- into B". Obviously T u {<p},

T u {>/'} have models [21?, 5,], [21;, 5J, respectively, but T u {<p, «/<} has

none since /?, ^ ß2 and ThL.(2I/') is categorical.   □

The same proof works under the following hypothesis (cf. 2.15):

Corollary 6.9. // L* is a Karp-logic and ROBÍL^, L*) hold then L* is

{o>, u)-compact hence L* = L^ {by 1.2).

Proof. [2i;, 5,] s P [21;', B2] since <£,> sP <£2> and since L* is a Karp-

logic we have [21^, Bx] = [21;, J52](L*). Obviously tpx,q>2 are in L^.

Theorem 6.10. Let L* be a logic such that 2I¿*' < 2"*** whenever L is finite

{for some fixed regular Na an¿ L* satisfies ROB(L*, L*) and FVP{L*, L*)).

Then L* is K-rc for each k > Ha with cí(k) > Ha.

Proof. Assume first k is regular and for contradiction L* is not K-rc. So by

6.6(ii) L* is not ic+-rc. For any S Q {ß\ß G k+ and cf(j3) = k} = CK put

SBls = <k+, e, sy. Assume k > Xa+n. For Ka < k < t*a+n we argue with

6.6(ii) iteratedly. Since 2|A*1 < 2*«+" there are stationary sets SX,S2 G CK with

(S, - Sj) u (52 - 5,) = S3 stationary and WlSi = TtSz{L*). Put now 21 =

<k+, E, 5,, 52, S3, cf> with cf(a) = cf(ot). Since L* is neither K-rc nor K+-rc

we can expand 21 to a structure 930 and find a theory T in the expanded

language M such that

(i)930i=r,
(ii) T weakly characterizes k+,

(iii) T weakly characterizes k,

(iv) for every a G k+ with cf(a) = k T weakly characterizes a.

Put 93¿ = <930, b G By. By FV,, [93¿, 2RSi] = [93¿, 2ftsJ(M*) where A/0 is

the appropriate language. Now put F to be the M*-theory of [93^, 3fts ] and

let <p,- (/ = 1,2) be the sentence which says "F, is an isomorphism between

<(k+)9°, E*0, S/0») and 2^" where F1¥-F2 both not in M0. Obviously

T u {<p,} is satisfiable in [% 2RS].

Claim 1. T u {<p,, <p2} has no model. Assume, for contradiction, T u

{<Pi> ^2} Qas a model [93, 2JÎ]. Now

<(k+), E, S, > mr, Tt «,, <(k+), F, S2 >,

put / = F, » F2. Without loss of generality / is a monotone map /: (k+) ->

(k+), for any such isomorphism g is piecewise monotone and a monotone
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map can be constructed from g. Now put

¿0={«G(K+f:aGK+}    and   An+X= f{An).

A = U n<uA„.

Claim 2. A is/-closed, {A, F> is a K+-like ordering and A0 is cofinal in A.

Call X C A c.u.b. if A' n A0 is c.u.b. in A0 and A" < ,4 stationary if X

meets every c.u.b. set in A.

Claim 3. S¿ n A {i = 1,2,3) are stationary in .4. Now we distinguish 2

cases:

Case 1. There is a c.u.b set C Q A on which / is the identity. Then

Sx n A = S2 n A but v40 is c.u.b in A, hence ^40 n S3 ¥= 0, a contradiction.

Case 2. There is a stationary set S Q A such that /: S —* A is regressive

(otherwise take/-1). We shall prove an analogue of Fodor's theorem.

Claim 4. There is £ G A with /"'(£) stationary in A. Assume there is no

such £. Then for each £ G A there is a c.u.b C( Q A such that, for all

ieC{n 5,/(ij) + I Let

Z)={7,G^:VeFT,(7,GC{)}.

Then D n 5 = 0, so we shall obtain a contradiction if we show that D is

c.u.b in A. D is clearly closed (i.e., D n A0 is closed in ^40). Now fix y G ^40.

Let "Yo — y an<i Ya+ e ^o oe some element of A0 such that yaEya* and

ya+ G fi {C£: IFy,,} (which is c.u.b in A). For limits similarly, if cf(a) < k.

So we obtain a sequence {ya+: a G k} < A0, which has a supremum 8 in A0.

By property (iv) of T 8 is also a supremum in A. So we conclude that {£/).

This proves Claim 4 and shows that/is not injective, which ends the proof

of Claim 1.

If k is singular and cî(k) > Ha, L* is cf(K)-rc and by Lemma 6.4(ii) L* is

K-rc.   □

Piecing this together we now prove Theorem 6.2: The set-theoretic condi-

tions fit into the framework of 6.8 and 6.10. So L* is w-rc and since we can

take a = 0 in 6.10 L* is K-rc for each k > w. With 6.6(i) we get the

conclusion.    □

Using 1.6 the condition on the size of L* can be replaced by a suitable

Löwenheim-Skolem property. Also Theorems 6.8 and 6.10 can be rephrased

with several logics; e.g.:

Theorem 6.10' (GCH). Assume IP c L* are two logics s.t.

(i) L* satisfies LS(Nn) for some n G w,

(ii) FV^L0, L*) holds, and

(iii) ROB{Laa, IP) holds.

Then IP is (k, u)-compact for all k > to.
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Theorem 6.10". {V = L or -,0s). Assume LP c L* are two logics s.t. (ii)

and (iii) from 6.10' hold, then LP is (k, w)-compact for all k > u>.

Proof. Use 6.6(iv).   □

Corollary 6.11. Assume L* = Lao[Q']iea and 2"° < 2K- /or some /i G w.

FÄen if ROB(L*, L*) aW FV,,(L*, L*) hold then also CRAIG(L*, L*) holds.

Using the following theorem of Lindström [Li3] we get another character-

ization of L^.

Theorem 6.12 (Lindström). Assume L* is (k, u)-compact for each k and

T{L) {the union of any L-elementary chain is an L*-elementary extension of

each member of the chain) holds then L* = L^.

Corollary 6.13. L^, is characterized by

(i) T{L),

(ii) ROB(L, L),

(iii) VP{L, L),
(iv) L* = LUtt[ô1],e„ provided 2*° < 2"- for some n G o>.

One might ask whether there are proper extensions of L^ satisfying ROB

and FVp. Under the hypothesis of 6.10 such a logic is fully compact and

hence satisfies Craig's theorem. In fact we conjecture

Conjecture 6.14. Let L* = ¿„„(ßO/e« De a l°Sic which satisfies ROB and

FV,. Then L* = L^.

If the Q ' are all monadic quantifiers, i.e. quantifiers of the form

ß'*i.*«i(<Pi(*iX V2O2). • • •, fy (*„>))

then we have:

Theorem 6.15. Let L* = ¿„„(ßÖ/e«. be a logic with ROB, FV^,, each Q*

monadic and Ha strong limit. Then L* = L^.

Proof. By 6.9 and 6.7 L* is (k, w)-compact for each k > w. Now let K be a

class of monadic structures, i.e. 21 G K is of the form

% = (Ax,...,An;Px.PKy

where A¡ are universes and Pj are unary predicates. Using FV^ we can restrict

ourselves to one sorted structures. W.l.o.g. K is a class of cardinals. It suffices

to show that K G EC(L*) implies K G EQL^). Now assume there are

infinite cardinals K,p with k G K, p G K and K G EC(L*). Put F =

Th¿.([K, /*])> 71! = Thr.«K» and T2 = ThA.«/t». By compactness F, and F2

have arbitrary large models. Let <p,(/) say that "/ is an injection of the first

into the second sort" and <p2(g) say that "g is an injection of the second into

the first sort". Clearly Tu {<p,} (i = 1,2) has a model. For let k' be such that



236 J. A. MAKOWSKY AND S. SHELAH

<k'> ¥ F, and k' > p, so [k', /t] can be expanded to satisfy <p, and, by FV^,,

[k', p] ¥ T and similarily for <p2. But then by ROB F u {<p„ <p2) nas a model

[k", p") so by the Cantor-Bernstein Theorem k" = /t". But by FV^,, k" G AT,

p" G A" a contradiction. So w.l.o.g. AT contains only finite cardinals, hence, by

compactness, the cardinals in K are bounded by some natural number n G «

and A" G EQL^).   Q

The argument above can still be extended (cf. [Ma5]). Let K be a class of

structures 21 of the form (A, E, Px, . .., P„> where A is the universe, F is an

equivalence relation and P, are monadic predicates. If A" is closed under

isomorphism and K G EC(L*) for L* = LM£Q%<m, the Q' arbitrary

quantifiers, L* satisfies ROB and WP and Hu strong limit, then K G

EQL^). Here we use that two equivalence relations with k equivalence

classes, each of cardinarlity k, are isomorphic.

This proves Conjecture 6.14 for some special classes of quantifiers. The

problem remains of how to extend the above proof to arbitrary quantifiers.

Note that Caicedo [Ca] got a weak version of 6.15 without set-theoretic

assumptions and FV^, but using (w, w)-compactness (cf. [Ma5]).

7. The definability of the syntax-structure. In this section we present without

proofs two abstract theorems due to Burgess and Paulos on the weak

Beth-property. We follow [Fe2] for terminology.

Theorem 7.1 (Burgess). Let L* be an absolute, normal logic, L* Q H{ux)

such that WBETH(L*, L*) holds. Then the class of countable well-orderings is

not PC(L*).

Theorem 7.2 (Paulos). Let LP c LP be two logics such that L* is adequate

to truth for LP and WBETHiL1*, LP) holds, then no syntax-structure of LP is

Lû-definable.

Theorem 7.1 is a slight generalization of Paulos' theorem [Pa]. The main

reason we quote these theorems here is that combining the methods of proofs

together with 6.1 Gostanian and Hrbacek [GH] produced uniformly rather

tricky counterexamples to WBETH(L*, LP) for

L   = Luw, L   = L^çq,

L   ~ La<a, L   = Lo00O,

L* = LK*a, IP = Lj^ for all regular X which are LK+U accessible.

8. Some direct applications. In this section we present some applications of

the abstract theory. Less direct applications may be found in [MS2], [MS3].

The table below shows how much can be drawn from the abstract approach.

Most of the notation of the table is self-evident. Ljf is the logic obtained

from Lu u adding the game quantifier. LH is the logic obtained from L,^

adding the Henkin quantifier. In fact any nonlinear partially ordered quanti-

fier will lead to the same situation (cf. [Wa]).
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CRAIG ROB BETH WBETH WFV„

yes [Ke2] yes [Ke2]

A countable

yes [Ke2]

[LEI
no 2.14
(but yes for
countable T)

no 3.2

no [GH] no 2.14
yes for

countable T

no [GH] no [GH]

no 2.12 no 2.14
or 6

no 2.12 no 3.4
[GH) cf(>0 > u

no 3.4

£(£,) k>w, no [Fe]

(compactness)

no 5.4
and [Wo]

yes [Wo]

Z(2„)   « = 01 no 3.2
2.3

no 2.15 no 3.2
2.3

no 3.2 yes [Wo]

no 6.1
2.3

no 1.5
2.14

or 6.1

no 6.1
2.3

no 6.1 no 8.1

Le, L(aa) no [MS2] no (comp) no [MS2] yesi*
no L{aa)

UQ<") no [Bd] no (comp) no 5.4 yes [Bd]

no 5.4 no 6.2 no 5.4 yes [MS2]

no 7.2 no 6.2 no 7.2 no 7.2 no 8.1

Finally Lp is positive logic and L{aa) stationary logic (cf. [BKM], [Ma4]

and [MS2]). L{Q<n) is the Magidor-Malitz logic from [MM], L" is negative

logic (cf. [BKM], [MS2]) and Ln is second order logic.

To make the table below more complete let us finish with a last observa-

tion.

Let Exy{<t>{x), ip{y)) be a binary quantifier binding two formulas and

expressing that <b and 4> define sets of the same cardinality.

Proposition 8.1. Let L* be a logic which is a set for each L and which

extends L^E). Then WFV^L^F), L*) fails.

Examples for such L are LH or L11 (cf. [KL]).

Proof. Let A,B be two sets of different cardinality such that A = B{L*).

Such sets exist by a Hanf type argument. But [A, B] ^ [A, ;4](L*) using the

quantifier E.   □

Added in proof (June 25, 1979). If we redefine ROB by allowing arbitrary

theories F,, F2 over arbitrary sets of predicates P instead of <p{P), ¡KP), the

results of this section can be improved.

Theorem. Under the same set-theoretic hypothesis as in 6.10 if L* satisfies

ROB, then L* is K-rc for each k > Na.

In the forthcoming paper by the same authors the amalgamation property

of logics will be studied. We shall show that under much weaker assumptions

than in 6.10 the amalgamation property implies full compactness. This will
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give us also some answers to Problem 2 in the introduction to this paper. The

above version of ROB was suggested to us by a preprint of D. Mundici.
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