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Abstract. Guillemin proved that the generalized Radon transform R and its dual

R' are Fourier integral operators and that R'R is an elliptic pseudodifferential

operator. In this paper we investigate the dependence of the Radon transform on

the defining measures. In the general case we calculate the symbol of R'R as a

pseudodifferential operator in terms of the measures and give a necessary condition

on the defining measures for R'R to be invertible by a differential operator. Then

we examine the Radon transform on points and hyperplanes in R" with general

measures and we calculate the symbol of R'R in terms of the defining measures.

Finally, if R'R is a translation invariant operator on R" then we prove that R'R is

invertible and that our condition is equivalent to (R'R)~X being a differential

operator.

Introduction. In the first part of this century Radon [18] created the classical

Radon transform on points and lines in R2. From this start others invented new

Radon transforms of a similar nature. Helgason has studied many Radon trans-

forms (e.g. [12]; [10] summarizes his early work) and has provided a framework in

which to define Radon transforms on homogeneous spaces and more generally.

Gelfand [3] first defined the topological concept of double fibration that yields

Radon transforms quite generally. Given manifolds X and Y related by a double

fibration, a class of submanifolds of X indexed by elements of Y, {Hy\y e Y), is

defined. The Radon transform R: C¿°(X)^> C¿°(Y) takes / e C£°(X) to the

integrals of / over the Hy with respect to measures derived from given measures on

X, Y, and Z. A dual transform R': C°°(y)-> C'iX) is also defined. In special

cases R'R has been shown to be invertible, often by a differential operator.

Invertible Radon transforms have nice applications (e.g. [2], [13], [16]) and if

(R'R)~ ' is a differential operator, less information is needed to invert R than if it is

not. In the general case of Gelfand's under an added hypothesis, the Bolker

assumption, Guillemin [7], [8] has shown that R and R' are Fourier integral

operators and that R'R is an elliptic pseudodifferential operator. Therefore R'R is

locally invertible.

§ 1 of this article lays the groundwork for the later parts. We explain the double

fibration and define the generalized Radon transform and its dual. Finally we show

how the classical Radon transform on points and hyperplanes in R" fits into this

framework.
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The role that the defining measures play in the general Radon transform has

never been studied; one goal of this paper is to better understand this role. In §2

we calculate, under the Bolker assumption (9), the symbol of R'R as a, pseudodif-

ferential operator and show its dependence on the defining measures (Theorem

2.1). This gives a necessary condition on the defining measures for R'R to be

invertible by a differential operator (Theorem 2.2). If R'R is invertible by a

differential operator and if / G C™(X), one only needs to know integrals of /over

submanifolds Hy that are "infinitesimally close" to x to recover the value of f(x)

from the values of Rf. So if (R'R)~l is a differential operator, "less information" is

needed to invert the Radon transform than if it is not.

Another goal of this paper is to understand the general results of Theorems 2.1

and 2.2 for the Radon transform on points and hyperplanes in R" with general

measures. In §3 we calculate the symbol of R'R explicitly in terms of the defining

measures, illustrating the necessary condition of Theorem 2.2 for this case (Theo-

rem 3.1). Finally in §4 we study the class of translation invariant Radon transforms

on R". These transforms are natural generalizations of the classical Radon trans-

form on R" which is both translation and rotation invariant. We show that they are

invertible and for such a transform (R'R)'1 is a differential operator if and only if

the condition of Theorem 2.2 is satisfied (Theorem 4.2).

The author would like to thank his thesis advisor, Victor Guillemin, for his

inspiration and guidance as well as his astute insights on the Radon transform. The

author also thanks Richard Melrose and the reviewer for their many helpful

suggestions about the article.

1. Double fibrations. We first define the notion of double fibration due to

Gelfand [3] and from this define R and R'. Then we examine the classical Radon

transform on points and hyperplanes in R" and show how it fits into this

framework.

Let X and Y be connected paracompact C °° manifolds, each of dimension n. Let

Z be a closed submanifold of J X F of codimension k, k > 0. Call tt and p the

projections to X and Y, respectively. We assume that both m and p are fiber

mappings with connected fibers, and that 77 is proper.

For each y G Y, the set Hy = irp~x{y) = {x G X\(x,y) G Z) is a closed

codimension k submanifold of X diffeomorphic to the fiber p~l{y}. Similarly, for

each x G X, Gx = p7r-1{jc} = {y G y|(x,^) G Z} is a closed codimension k

submanifold of Y diffeomorphic to tt~1{x).

Throughout the article we assume

(i)        Gx  = Gx     if and only if xx = x2,

(ii)        Hy=Hy2   if and only if yx = y2. (1)

This assures that each point x G X corresponds to a unique manifold Gx and each

y G Y corresponds to a unique Hy.

To summarize, we have:

Definition 1.1. Let X and Y be C°° manifolds each of dimension n, and let Z be

a closed codimension k submanifold of A" X Y (k > 0).
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Assume

Z
t S \p (2)

X Y

is a pair of fiberings with connected fibers. If m is proper and (1) is satisfied, then

(2) is called a double fibration.

This idea was first developed by Gelfand [3] with no restrictions on dim X and

dim y.

A double fibration will define two integral transforms. Before defining them we

will discuss measures. Let 77: Í/—» V be a fibering of manifolds and let ju, be a

smooth measure (i.e., smooth with respect to Lebesgue measure on each coordinate

patch) of compact support on U. The push forward of ju., ir^p., is defined to be the

unique measure on V satisfying

/ /77,/X = / (7r*/>Jy J,j

for all/ G C0°°(K). The smooth measure on V, ir^p, is the result of integrating p.

along the fibers of £/—» V. If 77 is proper, 77+ju, can be defined for any C°° measure

fi.
Our next definition is due to Guillemin [7].

Definition 1.2. Let (2) be a double fibration with smooth, positive nowhere zero

measures ¡i, m, and n given on Z, X, and Y, respectively. The Radon transform R:

C^(X) -> C0°°( Y) is defined by the relation

Rfn - p,(t7*/m)    for each/ G C0°°(* ). (3)

The dual transform R': C^iY)^ CM(X) is defined by

R'gm = 7T>*g/i)    for g G CX(Y). (4)

As 77 is proper, (tr*f)p is a smooth measure of compact support on Z and so

Rf G C0°°(y) is well defined by (3). Similar reasoning shows R' is also well defined.

Throughout this article R will denote a Radon transform in the sense of

Definition 1.2; R' will be its dual. The measures p., m, and n will often be called

defining measures.

We now describe the Radon transform more concretely. The defining measures

determine a measure on Hy ; for each y G Y one can identify the fiber of Z above

y, p~x{y}, with Hy and so the measure p. on Z can be written as a product of the

measure n on Y and a measure py on Hy. Iff G C000(Ar), then tr*fn = f(x)pyn and

Rf(y) - f /(*) <M*). (5)

Similarly, each Gx acquires a measure ju,x, and, for g G C °°( y),

*'*(*)= f sOOrfftcCv). (6)
JGX
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This shows that R and R' are integrations over the submanifolds Hy and Gx that

come from the double fibration; the measures py and ju^ are defined by pushing ¡x

forward to Y and X, respectively.

Our first proposition will be useful for calculating the symbol of R'R.

Proposition 1.1. Viewed as distributions on X X Y with measure mn, the

Schwartz kernels of R and R ' are both equal to the functional taking h G Ccf(X X

Y) to fzh(x,y)dn.

Proof. Let/ G C¿°(X) and g G C¿°(Y). If K is the Schwartz kernel of R,

K(tr*fp*g) - f Rf(y)g(y) dn(y) = f tt*fp*g dp.
JY JZ

by the definition of R. As sums of products 77*/p*g are dense in C0co(Ar x Y),

K = fz • dp. The proof for R ' is similar.

A variation on this proof shows that R' is formally dual to R with measures m

on X and n on Y.

We now look at a classical example and show how it fits into this framework.

Example 1 is the best known Radon transform and was first studied by Radon [18]

and John [15] in the early part of this century.

Example 1. The classical Radon transform on points and hyperplanes in R".

Let X be R" and let • be the standard inner product on R". Let Y be the space of

(n — l)-dimensional hyperplanes in R". If <o G S"-1 and p G R, then the hyper-

plane H(ù),p) = {x Œ R"\x • co = p} has normal vector <o and directed distance p

from the origin in R". Because H{w,p) = H(-u, -p), Y can be identified with

(S"_1 X R)/^; let [to,/?] denote the projection of (<o,/>) G S"_1 X R. Define

(x, [u>, p]) to be in Z if and only if x G H(u, p); then

Z = {(x, [<o, x ■ io])|jc G R", w G S""1}

and we can identify Z with R" X RP"~ '. With these choices for X, Y, and Z, (2) is

a double fibration. The submanifold Gx = p77_1{x} is {[<o, x- <o]|to G S"-1} and

represents the set of hyperplanes that pass through x. We identify Gx with RP"_1.

Let dx and dp be Lebesgue measures on R" and R, respectively, and let du be the

measure on RP"_1 induced from its standard Riemarmian metric. Let dœ dp be the

measure on Y induced from the standard Riemarmian metric on S"-1 X R; locally

this is the product of du and dp defined above. Finally we choose the measure

dx ¿won Z=R"X RP"-1. These measures define a Radon transform and its

dual. This is essentially the classical Radon transform on R".

For [to, p] G y the resulting measure p\UJ)^ on the hyperplane H(œ, p) is Lebesgue

measure and, for/ G C™(Rn), Rf[iú,p] is the integral of/over H(u>,p) with respect

to this measure. The measure /i,,. on Gx ss RP"-1 is du> and R' integrates with

respect to this measure over Gx.

The following theorem is a consequence of Theorem 4.2 and has been proven in

different forms by Radon [18], John [15], Gelfand [4], Helgason [11], Ludwig [16]

and Semyanistyi [20].



generalized radon transforms 335

Theorem 1.2. For the classical Radon transform on R", R'R is an elliptic

pseudodifferential operator and is invertible by an operator L. If n is odd,

L = (277/),-"(A)("-,)/2

where A is the Laplacian on R". For even n, L is not a differential operator.

2. The symbol of R 'R in the general case. Under a nondegeneracy condition (the

Bolker assumption (9)), the symbol of R'R is calculated in terms of the defining

measures using the calculus of Fourier integral operators (Theorem 2.1). From this

a necessary condition for R 'R to be invertible by a differential operator is obtained

in terms of the defining measures (Theorem 2.2).

We now discuss the Bolker assumption. Let

Z
* S \> p (7)

X Y

be a double fibration and let T denote N*Z — 0, the conormal bundle of Z with its

0 section removed. Then T is a closed, conic, Lagrangian submanifold of T*(X X

Y) — 0. Consider the projections

r
«■ ¡S \ p (8)

T*X T*Y

We assume

p: T —» T* Y is an injective immersion. (9)

This is called the Bolker assumption because Ethan Bolker stated a similar

assumption for finite Radon transforms [7]. Since T is Lagrangian, 77 must also be a

local diffeomorphism linear in the fibers of T -+ Z and so T c (T*X - 0) X (T* Y

— 0). Because 77: Z -> X is proper, one can show that it: T -* T*X — Ois either a

2-to-l cover or a diffeomorphism if dim X > 2 (finite-to-one if dim X — 2) [17].

This requirement places severe restrictions on the topology of Gx and the codimen-

sion k of Z in X X Y(k= 1, 2, 4, or 8) [17].

Remark. In [7] Guillemin proves that R'R is an elliptic pseudodifferential

operator under the assumption that dim X < dim Y. Throughout this article we

assume that dim X = dim Y; this makes the computation of the symbol of R 'R

easier.

The goal of our present discussion is to calculate the symbol of R'R as a

pseudodifferential operator. We will need to sketch a proof of Guillemin's result

([7], [8]) that R 'R is an elliptic pseudodifferential operator of order k — dim X

(k = codim Z in X x Y) but will only detail the parts relevant to calculating the

symbol of R'R.

First we present some preliminaries on Lagrangian distributions and Fourier

integral operators as in [8] or [14]. Let 5 be a manifold; let lAI^S be the space of

smooth half densities on S, and let |A|¿/2S be those of compact support. Give these

spaces the usual topologies [14]. Let (lAI1/^)' be the dual space of lAI'^S and let

(|A|o/2S)' be the dual space of |A|0/2S. Let T c T*S - 0 be a closed, conic,
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Lagrangian submanifold and let Ir(T) c (\A\¡/2S)' be the set of Lagrangian distrib-

utions of order r and type 1, 0 associated to T ([14, Definition 3.2.2]). If X and Y

are manifolds of dimension n, let C be a local canonical graph in (T*X — 0) x

(T* Y -0) and define

C   = {(x,&jr,qj€ 7** X T*Y\(x, &y, -V) G C }.

An operator V: |A|0/2A" -> |A|1/2y is in FT(C) if the Schwartz kernel, v, of Fis in

Ir(C). We will follow the conventions in [14] for defining o(v) and o(V), the

principal symbols of v and V, respectively.

First a distribution related to the Radon transform is investigated. Let X, Y and

Z be manifolds that define a double fibration satisfying (9) and let n = dim X and

k = codim Z in X X Y. Specify defining measures ¡i, m, and « on Z, A", and

y, respectively. These measures define a Radon transform R and its dual R'. Let T

denote N*Z — 0, the conormal bundle of Z in Z X Y with its zero section

removed.

Let Iz G (|A|0/2A- X Y)' be defined by

7Z(/VW) =/*/<*> (10)
Jz

for / G C00O(A' X y). Here Vmñ is the half density on X X Y defined from the

product measure mn.

We now calculate the symbol of Iz G /(*~")/2(r). Because T is the conormal

bundle of a closed submanifold we can choose phase functions linear in the phase

variables ("linear phase functions") to define Iz locally; then using these phase

functions a(Iz) is invariantly defined as a half density on T modulo lower order

half densities [14, Theorem 2.4.2] and the Maslov bundle of T is trivialized

canonically [14, Theorem 3.3.4].

Let S be an open set inX X Y that intersects Z on which local coordinates

(zx,...,z2n_k,wx,...,wk)ÇER2n (11)

are given such that Zn5 is the slice w, = 0 = • • • = wk. Let s G S then

s = (z, w) where z = (zx, . . . , z2n_k), w = (w„ . . . , wk). Let ß = dz,, i =

1, . . . , 2« — k, and let tj, = dw.,/ = 1, . . . , k, then (z, w, f, 17) defines coordinates

on T*S such that

rn r*s= ÎLo, ¿ 0,t,,LG R* - 0, z G R2/i-fc

Let Víftj be the half density on the fiber of T n T*S satisfying

Vdi) (3/9t},, . . . , 3/9î}fc) = 1. Define Vdz and Vdw similarly and then dz is a

measure on Z and rfz rfw is Lebesgue measure on S. Finally define the functions

H(z) and m(z, w) by requiring fi = /i(z) i/z and the product measure mn =

m(z, w) dz dw.

It is a straightforward exercise to show for/ G O^XS1) that

/z(/\Ä) = (277r<"+*>/2

X f ¿r'w<>(2;;)("-fe)/2fi(Z^/(Z' w)V/n(z' w))dwd9 dz      (12)

•V"-*xä" Vm(z, 0)
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and so Iz is a Lagrangian distribution with linear phase function

<p(s,9) = w-9 (13)

and amplitude (2tr)in~k)/2p(z)/y/m(z, 0)   locally. One can now see that Iz G
j(k-")/2(Y)m

Let dq>s (resp., d<pe) be the differential of <p with respect to the s variables (resp.,

the 9 variables) and let

Cv = {(z, w, ») € R2""* X R* X Rk\9 ¥* 0, dtpe{z, w,9) = 0)

= {(z, 0, 9 )\z G R2""*, ÍGR'- 0}.

Then, above S, T is defined by the map

$: C„ -* T*S,        $(z, 0, 0 ) = (z, 0, tkp,(z, 0, 0 )).

Let dv be the pullback of the Dirac measure at 0 G Rk under the map Cv -» R*,

(z, 0, 9) -» iÄptf(z, 0, 0), then in ([14, p. 118]) the symbol a(Iz) for Iz is locally

*.((2*yn-k)/2p(z)fá /VrnTz^Q)).

It is a standard exercise ([14, p. 118]) to show that this pushforward is

(2trfn-k)/2[i(z)Vdz' Vdq
°Vz) =

Vw(z, 0)

(2g)(,,"*)/2ftV^ V^
(14)

mn

Because each phase function (13) that locally defines Iz is linear and the local

expressions (14) are all homogeneous, they fit together exactly to a half density on

r.
We can now calculate the symbol of R'R. Let C = T' and let C'beC with the

T*X and T* Y coordinates reversed. By the Bolker assumption (9), C is a local

canonical graph and so the distribution Iz is the Schwartz kernel of an operator

R G Wc~n)/2(C) as well as R' G Wk-n)/2(C). The symbol a(R) for R is the

function a(Iz)/iT*\ax\"/2 pulled back to C; 77 is the projection from T to T*X — 0,

ax is the canonical symplectic form on T*X, and lo-^l"/2 is the half density

\<Jx/n\\1/2 ([14, p. 169]; because a(Iz) can be defined invariantly without the

Maslov bundle, so can o(R )). The symbol o(R ') is defined in a similar manner.

Let A^ (resp., Ay) be the diagonal in (T*X - 0)2 (resp., (T^y-0)2). To

compute a symbol for R'R multiply o(R) and o(R') together on

A = (C X C) n (T*X X Ay x 7-*^)

and project to (T*X)2 [8, Proposition 6.2, p. 359]. By (9) the projection of A is Ax

and A can be identifed with T; we identify A^ with T*X — 0. Using the local

expression (14) gives a symbol for R'R on an open subset V of 7*X — 0.

(277)"- Vdwdn     <v-i{xA)) (15)

mn 7t*\ax\n/2p*\aY\n/2
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Here 77 is the projection from r to T*X — 0 and the densities aw and dx\ are those

of (11). If 77: T -> T*X - 0 is 2-to-l then (15) is the sum of a(R) ® a(R') at the

two pre-images.

Using Proposition 1.1 and the definition (10) of 7Z one can see that R'Rf =

R'R(fVm )/Vm for / G C™(X) and so the classical symbol of R'R on V is a.

factor of exp(77/'a/4) times (15) ([14, Theorem 3.2.1]) where a ([14, (3.2.10)]) is an

integer related to any linear phase function for pseudodifferential operators on V2

as well as the "product" phase function that defines (15) from (12), (13) and (14)

([14, p. 176ff]). One can calculate from ([14, (3.2.10)]) that o is zero for these phase

functions and so (15) is exactly the classical symbol of R'R.

We have proven:

Theorem 2.1. Assume the double fibration (7) satisfies the Bolker assumption (9).

Then the symbol of R'R as a pseudodifferential operator is given by (15) where the

densities dw and di\ are defined below (11).

We now see one reason to know whether R'R is invertible by a differential

operator. Let/ G C^^X). Recall from (5) that Rfiy) integrates/over the manifold

7/y. The set Gx is precisely the set of y such that 77^ passes through x. From the

integral (6) we see that R 'Rfix) is a weighted average of the integrals of / over all

77^ that pass through x. If R'R is invertible by a differential operator-a local

operator-then one only needs to know the integrals of/over manifolds 77,, that are

"infinitesimally close" to x in order to recover fix) from values of Rf. This greatly

reduces the information needed to invert the Radon transform.

In general, an elliptic pseudodifferential operator A is locally invertible by a

pseudodifferential operator B with o(B) = l/a(A); so if B is a differential operator

l/o(A) must be a polynomial. This proves our next theorem.

Theorem 2.2. Assume the double fibration (7) satisfies the Bolker assumption. If

l/a(R'R) is not a polynomial on T*X then R'R is not invertible by a differential

operator.

Because (15) gives o(R'R) in terms of the defining measures, Theorem 2.2 gives a

necessary condition on the measures for R'R to be invertible by a differential

operator.

It is surprising to realize that in most cases-when \/a(R'R) is not a poly-

nomial-one needs to know integrals of / G C™(X) over 77,, that are far from

x G X to recover fix) from Rf.

3. The Radon transform on R" with arbitrary measures. We now apply the results

of the last section to the double fibration of Example 1. First we show that this

fibration satisfies the Bolker assumption and so R'R is an elliptic pseudodifferen-

tial operator. Then we calculate the symbol of R'R in terms of the defining

measures (Theorem 3.1).

Recall the notation of Example 1. Let X = R" and let Y be the set of hyper-

planes in R". If co G S"-1 andp G R, then the hyperplane 77(co,/>) = {x G Rn\x • to

= p) has normal vector co and directed distance p from the origin. Because
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H(œ,p) = 77(-to, -p), Y can be identified with (Srt_1 X R)/Z2. Then

Z = {(*, [co, x • u])\x G R", to G S"-1}

is diffeomorphic to R" X RP"_1.

Let du> dp and dx du> be the standard measures of Example 1 on y and Z,

respectively and let dx be Lebesgue measure on X. Choose positive smooth

measures

ju = /j,(x, [to, x ■ (¿]) dxdu    on Z

m = m(x) dx onX (16)

n = n([to,/>]) dudp on Y.

These measures define a Radon transform and its dual.

Let (x, £) G T*X — 0 where £ = |£|to • dx (|£| is the norm of £ in the standard

metric on T*X, cj = (ccx, . . . , u)n) G S"-1 and to • dx is defined to be 2)J_i to,-dx,- G

7JR"). The following theorem is a special case of Theorem 2.1.

Theorem 3.1. With measures given in (16) for the Radon transform on R", R'R is

an elliptic pseudodifferential operator of order 1 — n and, for (x, £) G 7^R" — 0,

£ = |«|« • dx,

(277)"_   ß2(x,  ¡Ci, X • toi)
o(R'R )(x, I) = -^—-—** v  ' I   '-if.

m(x)n([w,x-U])\è\"-1

As an illustration we calculate the symbol of R 'R when the classical measures of

Example 1 are used. In that example, p — dx t/to, m = dx and n = do> dp so

o(R'R)(x,0 = (27ry-x/\£\''-1.

In the general case, with measures given by (16), Theorems 2.2 and 3.1 conclude

that   R'R   is   not   invertible   by   a   differential   operator   if   m(x)n([co, x ■

ío])|£|"- l/n\x, [to, x • cj]) is not a polynomial in £ (£ = |£|to • dx).

Proof of Theorem 3.1. Let T = N*Z — 0. The proof consists of showing that

this fibration satisfies the Bolker assumption then choosing local coordinates and

using (15) to calculate a(R'R).

It will be convenient to identify 7]*^ with ^^(S"-1 X R) and Nfxioix.u])Z

with the appropriate subspace of TfXt0tX.o)(Rn x S"_1 X R). If x G R" we define

Jx = x — (x ■ <S)œ. This is the projection of jc to the hyperplane 77(to, 0) perpendic-

ular to œ. The hyperplane will be identified with 7£S"-1 and the element corre-

sponding to Jx will be denoted Jx • dto. With these identifications one can calculate

that

T = {(x, [to,/?]; a(Jx • dto + to • dx - dp))|(x, to,/>) G R" X S""1 X R,

x • u = p, aGR — 0}.

Using this expression for T, it is straightforward to show that p: T —> T* Y is a

1-to-l immersion. This is left as an exercise. Therefore the Bolker assumption holds

and we now apply Theorem 2.1 to calculate o(R'R).
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Let £ G 7JR"; by a rotation we can assume £ = aen • dx = adxn (a = |£|) in

which case the expression for T verifies that *n~l(x, £) = (x, [en, xn]; a(Jx • dto +

dx„ - dp)).

Let i = {to G Sn_1|tO/, > °} be an °Pen hemisphere of S"_1. Let Y = S X R

and Z = {(x, to, x • to)|x G R", u G S); then Z is diffeomorphic to R" X S and Z

inherits its "standard measure" from the standard measure on R" X S (i.e., the one

coming from the Riemarmian structure). The maps Y —> Y, (to, p) -h> [u, p] and

Z ^ Z, (x, u, x • u)^> (x, [u, x • to]), give coordinates on Y and Z such that the

measures du dp and dx da of (16) agree with the standard measures on the

coordinate neighborhoods. Define w(x, to,/?) = x ■ u — p; then Z is defined in

X X Y by the equation w = 0. Therefore, by (15),

j(R'R)(x Q     (2ff)"~y(*> !>>*•"]) dx2du2dwdg

m(x)n([u, x ■ u])       dx do> dp >tr*\ox\n/2p*\oY\n/2

where <h\ is the density on the fiber of f = N*Z — 0 dual to dw (see below (11)).

To finish the proof of the theorem we only need to apply the following lemma to

(17).

Lemma 3.2. At X = ir~1(x, £)>

_t¿x2 du>2 dw art)_      1 ,    .

dx du dp <n*\ox\n/2p*\oY\n/2      |£|"_1 '

Proof. It is straightforward to show that the measures dx da dp and dx du dw

agree on X x Y and so the left-hand side of (18) becomes

dx du ch)/TT*\ox\n/2p*\oY\n/2. Because £ = |£|e„ • dx, a basis B of TXT is easy to

calculate. By evaluating the densities dx du ch) and tt*\ax\n/2p*\aY\"/2 on B one

shows

\£\"~ldx dudt] = <tr*\ox\n/2p*\oY\n/2,

which proves the lemma and the theorem.

Similar calculations have been performed for the Radon transforms with arbi-

trary measures on points and complex hyperplanes on C and points and projective

hyperplanes on RP" and CP" [17]. Their symbols are quite similar to the result of

Theorem 3.1.

4. Translation invariant Radon transforms on R". In this section we investigate the

Radon transform on points and hyperplanes in R". We assume that R'R is a

translation invariant operator (i.e., a convolution operator). There are several

reasons to study these transforms; they are natural generalizations of the classical

Radon transform on R" which is both translation and rotation invariant. As we

shall see, these operators are invertible and have other nice properties.

We first give the restrictions that translation invariance puts on the defining

measures (Proposition 4.1). Then we quote a result about Fourier transforms and

use this to invert R'R and to prove the converse of Theorem 2.2; for these

transforms the inverse to R'R is a differential operator if and only if l/a(R'R) is a
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polynomial (Theorem 4.2). Because we know the symbol of R'R in terms of the

measures (Theorem 3.1), this is a necessary and sufficient condition on the defining

measures for R 'R to be invertible by a differential operator.

Let X, y, and Z be defined as in Example 1 and let

/x = 2¡i(x, [to, x • u]) dx du,

m = m(x) dx.

n = 2n([to,/j]) du dp, (19)

be positive C°° measures on Z, X and Y, respectively. The measures dx du and

du dp are the canonical measures on Z and Y from Example 1.

We now calculate the Radon transform R and its dual R' induced from the

measures (19). Let p(x, u, x • u) be the function p. in (19) considered as a function

on R" X S"-1 that is even in to. Let n(u,p) be the function n([u,p]) considered as

an even function on S"~ ' x R and let dxH be Lebesgue measure on the hyperplane

77(to, p). Because dxH du dp and dx du define the same measure on Z, the measure

on 77(to, p) coming from (19) is

n(x, u,p)*W>= ~M^pT dx»-

Therefore for/ G C^ÇR") we see from (5) that

M*,/,) =r    ^fy)^ (20)
JH(w,p)        n(u,p)

One can calculate the measure px on Gx in a similar manner. Let dus be the

standard measure onS""1; then it is straightforward to calculate the pullback of px

under the 2-to-l cover S"_1 —> Gx, u —» [to, x ■ to]. One concludes that, for g G

C°°(Y),

/x(x0, to, x0 • u)

m(x0)

The proof of our next proposition will help to invert R'R.

Proposition 4.1. With measures given in (19), R'R is translation invariant if and

only if

p.2(x, to, x • to) . x .
,  x   /-r = a{u) (22)

m(x)n(u, x • to)

is a function of u only, and

m(x) = m(0)e2zx   for some z G R". (23)

Proof. R 'R is calculated for general measures and evaluated on specific distribu-

tions from which the proposition is deduced. We first prove the necessity of (22)

and (23). Let K be SO(/j) and let L be the isotropy subgroup of e„. Let M be the

isotropy subgroup of ex and let dk, dl, and dm be the invariant measures on these

groups that give total measure one. Define üq to be the volume of Sq under its

standard metric.

ÄfeM-f     t([»JV«3)"^?T      *r (21)
Jsn-i    VL J/ mix,.)
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Let Sn~2 = {to G S""1^, = 0} be a great sphere of Sn_1. Because M fixes <?„

MS"-2 = S"'2 and if k G K and h G C°°(S"H),

h(kex) = Qn_2 f   h(kmen) dm (24)
JM

is the integral of h over the great sphere S"-1 n H(kex, 0) in its standard measure.

Because A -> A is the pullback to Sn_1 of a classical Radon transform on RP"_1,

this map is invertible for even functions h ([1], [9], [21]). For similar reasons if

q G C0°°(R") and x0 G H(ken,p),

f q(x) dxH = Qn_2 f °° r"'2 f q(x0 + rklex) dl dr (25)
JH(ken,p) JO JL

is the integral of q over H(ke„, p) expressed in spherical coordinates.

Let / G C^R") and let x0 G H(ken,p), then using (25) in (20) we can rewrite

Rfiken,p). Substituting ken for u and ün_xdk for dus in (21) and composing the

result with the new expression for Rfiken, p) we find that

R'Rf(x0) = Qn_xSln_2

p(x0 + rklex, u, x0 • u)
f  i   f{rn-2f(x0 + rklexy

n(u, x0 • u)

p(x0, to, x0 • to)

m(x0)

Let

dl dr dk.
u-ke„

p(x + y,u,x- u)n(x, to, x ■ to) .
a(x,y,u)-r- (¿o)

m(x)n(u, x • u)

for y • u = 0; we write the integral above using a' and then use Fubini's theorem

[19] to reverse integrations with respect to dl and dk. Finally using the right

invariance of dk, we substitute kl ~ ' for k and discover that

R'Rf(x0) = fi„_,n„_2 f' f r"-2/^,, + rkex)a\xQ, rkex, ken) dk dr.

Let dkM be the K invariant measure on K/ M satisfying

f g(k) dk= f        [ g(km) dm dkM   for g G C°°(K).
JK JK/M JM

Using this identity, we change the last expression. Recall that M is the isotropy

group of ex. Then

R'Rf(x0) - ß„_, i"'  f       r"-2/^«, + rkex)ün_2
J0      JK/M

X I   a'(x0, rkex, kmen) dm dkM dr.      (27)
J M
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The inner integral over M is just â'(x0, rkex, kex) (see (24)). By changing back to

rectangular coordinates (y = rkex) we see that

R'Rf(x0) = /   f(x0 + v)-——!-L- dy. (28)
^r" \y\

Assume R'R is translation invariant; we first prove (22). Let xue be an ap-

proximate identity about w 6 S""1 (that is x„,e e C^S""1) and lim,,^, xu,e = Su,

the Dirac delta function onS""1 at to). Let <pe be an approximate identity at 0 G R

such that %(r) is 0 in a neighborhood of (-oo, 0]. Finally let u0 G S"*1, x0 G R"

and define

,    x^iy/lyDveQyï)
*Wo(*o + y) =-rps-•

Using equation (27) we see that hme_„0 R <Ä»r'<l>0>e>Xo(xa) = ô'(-*o> 0, to0). By the

assumption that R 'R is translation invariant, this limit is equal to

lim R'R^efi(0) = â'(0,0,u0).
e—>0

For a fixed x the function a'(x, 0, u) is an even function of to. Because the

transform (24) is invertible on even functions of to ([9], [21]) and â'(x, 0, u) =

ô'(0, 0, u) we see that a'(x, 0, u) = a'(0, 0, u) is a function not dependent on x. Let

a(to) = a'(x, 0, to); then the expression (26) for a' proves (22).

Let 8  +ru be the Dirac delta function at x0 + ru G R", r ^ 0, to G S"-1, and let

«p*0+™(*o + y) - \y\8x0+rU(x0 + y).

By (28) and the translation invariance of R'R:

R'R<PXo+ru(xo) = â'(x0, ru, u) - R'R<pru(0)

= â'(0, ru, to).

Solving for ti in (22) shows that

p(x, u, x ■ u) = V a(u)m(x)n(u, x ■ to) . (29)

If we use (29) in (26) and take the transform (24), we find

m ï      * ,[m{x^ru)\'2
a (x0, ru, to) = a(to)^      ^      j     ,

â'(0,rto,to) = â(to)(^^),/2. (30)

Because â'(x0, ru, u) — â'(0, ru, u) is never zero, the right-hand sides of (30) can

be manipulated to show that the map x —» m(x)/m(0) is a continuous homomor-

phism from (R", +) to (R+, •) and so is of the form m(x)/m(0) = e2** for some

z G R". This proves (23).
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Assume (22) and (23) hold. Inserting the expression (29) into the definition (26)

of a', and using this in (28) shows that

JR- \y\

= e~xz( f(x + y)eHx+y)a(y/\y\) jy (31)

•'R" \y\

for / G C00O(R'1). This is a convolution operator and therefore is translation in-

variant. This finishes the proof of the proposition.

One fact about Fourier transforms is needed before R'R can be inverted. First

we define the Fourier transform F and its dual F'. If / G C^ÍR") we let

It is shown in [21] that

F

FfXî)' í   e-**f(x)dx,

F%x) = f   eix*f(0 dl

'(^nPJW = (»/MW'/W)-
The proof uses techniques in [5] and [6] to evaluate the Fourier transform of an

even homogeneous function on R". This implies that

Using (32) we can write R'R as a pseudodifferential operator. Let/ G C™ÇRn).

The second integral in (31) is a convolution, so taking Fourier transforms and then

inverse transforms of that integral proves

R'Rf(x) = ^1 f   g,x,2a(£/|£|)(277r-'
JK   '      (2t7)"V |i]— « V

where ez' (x) = ezx.

By the definition (22) of a, the symbol of R'R given in Theorem 3.1 for the

measures in (19) is

o(R'R )(x, £) = 2«(¿/l¿l)W~' _ V(*> u, x • «)i»-

«-f/lil|£|"-' m(x)n{u,x-u)\H\n-x

Define the pseudodifferential operator .4 as follows:

Af(x) = £?. f   e<**   I1!""'     F(e¡'m) di (33)AAX)      (277)"iR»e     2a(£/|£|)   (2.)"-    rft (33)

It is straightforward to check that A inverts R'R. The definition of A shows that A

is a differential operator if and only if \/a(R'R) is a polynomial in £. This proves

our final theorem.
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Theorem 4.2.  With measures given by (19) assume that R'R is a translation

invariant operator. Then for f G C0°°(R"),

(i)

R'Rf(x) = ^ f   e^V(x, «,*.«)(» F(ezf)(Z) di,

«-i/ifl(2t7)" -V m(x)n(u, x ■ to)|£r

(ii) R'R is invertible by A given in (33) and A is a differential operator if and only if

1 _    m(x)n(u, x- u)\£\"-1

a(R'R )(x, £) " 2M2(x, to, x • to)^)"-1 «-f/lil

is a polynomial in £.

For translation invariant transforms, this theorem shows explicitly how R'R

depends on the defining measures and how invertibility by a differential operator is

affected by the defining measures. These results are apparent benefits of expressing

R 'R as a pseudodifferential operator. Because the classical Radon transform on R"

(Example 1) is translation invariant, Theorem 4.2 also shows that it is invertible.
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