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Abstract. For any ring R let A(R ) denote the multiplicative group of power series

of the form 1 + axt + ■ ■ ■ with coefficients in R. The Artin-Hasse exponential

mappings are homomorphisms Wpoo(k) ~* A( Wp>00(fc)), which satisfy certain addi-

tional properties. Somewhat reformulated, the Artin-Hasse exponentials turn out to

be special cases of a functorial ring homomorphism E: rVpoo( — ) —»

W „(W x{ — )), where Wp m is the functor of infinite-length Witt vectors associa-

ted to the prime/;. In this paper we present ramified versions of both Wp¡aa( — ) and

E, with Wpm( — ) replaced by a functor w£„( - ), which is essentially the functor of

ç-typical curves in a (twisted) Lubin-Tate formal group law over A, where A is a

discrete valuation ring that admits a Frobenius-like endomorphism o (we require

o(a) = aq mod m for all a e A, where m is the maximal idea of A). These

ramified-Witt-vector functors W*x( — ) do indeed have the property that, if A: —

A/xa is perfect, A is complete, and l/k is a finite extension of k, then W*K(J) is

the ring of integers of the unique unramified extension L/K covering l/k.

1. Introduction. For each ring R (commutative with unit element 1) let A(F) be

the abelian group of power series of the form 1 + rxt + r2t2 + • • • . Let Wpx(R)

be the ring of Witt vectors of infinite length associated to the prime p with

coefficients in R. Then the "classical" Artin-Hasse exponential mapping is a map

E: Wpx(k) -» A( Wpaa(k)) defined for all perfect fields k as follows (cf. e.g. [1] and

[13]). Let ®(y) be the power series

*oo= n (\-ynY(n)/n,
(/>,»)-j

where p(ri) is the Möbius function. Then <&(y) has its coefficients in Zp, cf. e.g. [13].

Because k is perfect every element of Wpao(k) can be written in the form

b = 2°1,t(c,)/>', with c, G k, and t: k -> Wpa0(k) the unique system of multiplica-

tive representatives. One now defines

E: Wp^(k) -* A( Wp¡x(k)),       F(b) = 5   *(t(c/)0''.
i-O

Now let W(-) be the ring functor of big Witt vectors. Then W(-) and A(-) are

isomorphic, the isomorphism being given by (ax, av .. :)H> n°l,(l - a¡t'), cf. [2].

Now there is a canonical quotient map W( — )-* Wpx( — ) and composing F with

A(-)=í W(-) and  W(-)-> Wpco( — ) we find an Artin-Hasse exponential F:
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1.1. Theorem.  There exists a unique functorial homomorphism of ring-valued

functors E: Wp^(-)^ Wp>ao(Wp¡ao(-)) such that for all n = 0, 1, 2, ...,  ww o E

= f",   where  f   is   the   Frobenius   endomorphism   of  W    ( —)  and  where  wpjt:

WPt<x(Wp<x( — )) —* Wpa0(~) is the ring homomorphism which assigns to the sequence

(bo, b„ . . . ) of Witt vectors the  Witt vector bg" + pbf""' + • • • +p"~lbp_i +

p'K

It should be noted that the classical definition of F given above works only for

perfect fields of characteristic/» > 0. In this form Theorem 1.1 is probably due to

Cartier, cf. [5].

Now let A be a complete discrete valuation ring with residue field of characteris-

tic p, such that there exist a power q of p and an automorphism a of K, the quotient

field of A, such that o(a) =aq mod m for all a G A, where m is the maximal ideal

of A. It is the purpose of the present paper to define ramified Witt vector functors

W£x( — ): MgA —> Alg^, where Alg^ is the category of A -algebras, and a ramified

Artin-Hasse exponential mapping E: Wf^ — )—* Wqx(Wqo0( — )).

There is such a ramified-Witt-vector functor Wqaa associated to every twisted

Lubin-Tate formal group law F(X, Y) over A. This last notion is defined as

follows. Let/(Ar) = X + a2X2 + ■ ■ ■ BK[[X]] and suppose that a¡ G A if q does

not divide /' and aqi - w " 'a(a,) G A for all i for a certain fixed uniformizing

element a. Then F(X, Y) = f~\f(X) + f(Y)) G A[[X, Y]], and the formal group

laws thus obtained are what we call twisted Lubin-Tate group laws. The Witt-vec-

tor functors W£x( — ) for varying F are isomorphic if the formal group laws are

strictly isomorphic. Now every twisted Lubin-Tate formal group law is strictly

isomorphic to one of the form GU(X, Y) = g~l(ga(X) + gu(Y)) with gu(X) = X

+ u~lX" + «"'«(w)"^«2 + u~ia(u)~xa2(u)~xXq> + ■ ■ • which permits us to

concentrate on the case F(X, Y) = Ga(X, Y) for some w. The formulas are more

pleasing in this case, especially because the only constants which then appear are

the o'(u), which is esthetically attractive, because u is an invariant of the strict

isomorphism class of F(X, Y).

The functors Wqx> and the functor morphisms F are Witt-vector-like and

Artin-Hasse-exponential-like in that

(i) W£X(B) = {(A0, A,, . . . )|A, G B) as a set-valued functor and the y4-algebra

structure can be defined via suitable Witt-like polynomials w£n(Z0, . . ., Zn); cf.

below for more details.

(ii) There exist a a-semilinear A -algebra homomorphism f (Frobenius) and a

o~ '-semilinear A -module homomorphism V (Verschiebung) with the expected

properties, e.g. fV = w where w is the uniformizing element of A associated to F,

and f(b) = b? mod o>Wfx(B).

(iii) If k, the residue field of A, is perfect and l/k is a finite field extension, then

W^x(l) = B, the ring of integers of the unique unramified extension L/K which

covers l/k.

(iv) The Artin-Hasse exponential E is characterized by w£n ° E = f" for all

n = 0, 1, 2, ... .

I hope that these constructions will also be useful in a class-field theory setting.
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Meanwhile they have been important in formal A -module theory. The results in

question have been announced in two notes, [9] and [10], and I now propose to

take half a page or so to try to explain these results to some extent.

Let F be a Z(;;)-algebra and let Cart^F) be the Cartier-Dieudonné ring. This is a

ring "generated" by two symbols f, V over Wpx(R) subject to "the relations

suggested by the notation used". For each formal group F(X, Y) over R let

Cp(F; R) be its Cart^F) module of /¿-typical curves. Finally let Wpao( — ) be the

formal completion of the functor Wpx( — ). Then one has

(a) the functor F\-+ Cp(F; R) is representable by Wpoo [3].

(b) The functor F\-^> Cp(F; R) is an equivalence of categories between the

category of formal groups over R and a certain (explicitly describable) subcategory

of Cart^F) modules [3].

(c) There exists a theory of "lifting" formal groups, in which the Artin-Hasse

exponential E: Wpoo( — ) ^> Wpx(Wpao( — )) plays an important rôle. These results

relate to the so-called "Tapis de Cartier" and relate to certain conjectures of

Grothendieck concerning crystalline cohomology ([4] and [5]).

Now let A be a complete discrete valuation ring with residue field k with q

elements (for simplicity and/or nontriviality of the theory). A formal A -module

over B G Alg^ is a formal group law F(X, Y) over B together with a ring

homomorphism pF: A —> EndB(F(X, Y)), such that pF(a)=aX mod(degree 2).

Then there exist complete analogues of (a), (b), (c) above for the category of formal

A -modules over B. Here the rôle of Cp(F; R) is taken over by the ç-typical curves

C(F;B), W ( — ) and W are replaced by ramified-Witt-vector functors

W*x( — ) and Wq<aB( — ) associated to an untwisted, i.e. a = id, Lubin-Tate formal

group law over A with associated uniformizing element m. Finally, the rôle of E in

(c) is taken over by the ramified Hasse-Witt exponential W¿x( — ) -»

W" (W (-)).

As we remarked in (i) above, it is perfectly possible to define and analyse

WqX( — ) by starting with the polynomials w£n(Z) and then proceeding along the

lines of Witt's original paper. And, in fact, in the untwisted case, where A; is a field

of ^-elements, this has been done, independently of this paper, and independently

of each other by E. Ditters [7], V. Drinfel'd [8], J. Casey (unpublished) and, very

possibly, several others. In this case the relevant polynomials are of course the

polynomials Xf + trXf' + ■ ■ ■ +-rr"-iX^_x + -nnX„.

Of course the twisted version is necessary if one wants to describe also all

ramified discrete valuation rings with not necessarily finite residue fields. A second

main reason for considering "twisted formal A -modules" is that there exist no

non trivial formal A -modules if the residue field of A is infinite.

Let me add that, in my opinion, the formal group law approach to (ramified)

Witt-vectors is technically and conceptually easier. Witness, e.g. the proof of

Theorem 6.6 and the ease with which one defines Artin-Hasse exponentials in this

setting (cf. §§6.1 and 6.5 below). Also this approach removes some of the

mystery and exclusive status of the particular Witt polynomials X$" +

pXf'1 + ■ • • +p"X„ (unramified case), Xf + irXf~' + • ■ ■ +irnX„ (untwisted

ramified case),
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Xf + a-l((S)Xf" + u"-'(U)o"-2(u)I2'""! + • • • +a"-1(<o) • • • a(u)uX„

(twisted ramified case). From the theoretical (if not the esthetic and/or computa-

tional) point of view all polynomials wqn(X0, . . . , Xn) = a~\a„Xjj" + an_xXf

+ ■ • • +aoXn) G A[X] are equally good, provided a0 = 1, a2, a3, . . .   is a se-

quence of elements of K such that a, — w_1a(a,_,) G A for all i = 1, 2, . . . (cf. in

this connection also [6]).

2. The functional-equation-integrality lemma.

2.1. The setting. Let A be a discrete valuation ring with maximal ideal m, residue

field k of characteristic/? > 0 and field of quotients K. Both characteristic zero and

characteristic p > 0 are allowed for K. We use v to denote the normalized

exponential valuation on K and u always denotes a uniformizing element, i.e.

v(u) = 1 and m = uA. We assume that there exist a power q of p and an

automorphism a of F such that

0(m) = m,        aa = aq mod m   for all a G A. (2.2)

The ring A does not need to be complete.

Further let B G Alg^, the category of A -algebras. We suppose that B is .4-torsion

free (i.e. that the natural map B -> B ®AK is injective) and we suppose that there

exists an endomorphism t: B ®aK^> B ®aK such that

r(A) = bq mod mF   for all A G B. (2.3)

Finally let f(X) be any power series over B ®AK of the form

f(X) = bxX + b2X2 + • • • ,       A,. G B, A, a unit of B, (2.4)

for which there exists a uniformizing element co G A such that

f(X)-w-'Tj(X")^B[[X]} (2.5)

where t„ means "apply t to the coefficients". In terms of the coefficients A, of f(X)

condition (2.5) means that

A, G F    if q does not divide i,

bqi - co" 't(A,) g F   for all i * 1,2,_ (2.6)

2.7. Functional equation lemma. Let A, B, a, t, K,p, q,f(X), a be as in 2.1

above such that (2.2.)-(2.6) hold. Then we have

(i) F(X, Y) = f~l(f(X) + f(Y)) has its coefficients in B and hence is a commuta-

tive one-dimensional formal group law over B. (Here f~l(X) is the " inverse function"

power series off(X); i.e.f~\f(X)) = X.)

(ii) If g(X) G B[[X]], g(0) = 0 and h(X) = f(g(X)) then we have h(X) -
u-lTth(X<) e B[[X]].

(iii) If h(X) G B ®AK[[X]\, A(0) = 0 and h(X) - u-lTmh(X") G B[[X]], then

f-\h(X)) EL B[[X]].

(iv) If a(X) G B[[X]], ß(X) G B ®AK[[X]], a(0) = ß(0) = 0 and r, m G N =

{1, 2, . . . }, then a(X) = ß(X) mod(w'F, degree m) <=» f(a(X)) =f(ß(X))

mod(co "B, degree m).
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Proof. This lemma is a quite special case of the functional equation lemmas of

[11, cf. §§2.2 and 10.2]. There are also infinite-dimensional versions. Here is a quick

proof. First notice that (2.6) implies (with induction) that

bj G ío~'B    if y is not divisible by qi+ '. (2.8)

We now first prove a more general form of (ii). Let g(Z) = g(Zx, . . . , Zm) G

B[[ZX, . . . , Zm]], g(0) = 0. Then by the hypotheses of 2.1 we have

g(Zx, ..., ZmY" = r,g(Z?, ..., Z*)«'~'" mod(co'F). (2.9)

Combining (2.8) and (2.9) and using (2.6) we see that mod(F[[X]]) we have

h(Z)=f(g(Z)) = I   A,g(Zy s f   A„s(Z)* s «"' f  t(/j)«(Z)*
1-1 y=l 7=1

= CO"1 f   T(A,.)T,g(Z*y = co-'t^t^Z')) = co-V,A(Z').
7-1

This proves (ii). To prove (i) we write F(X, Y) = FX(X, Y) + F2(X, Y) + ■ ■ ■ ,

where Fn(X, Y) is homogeneous of degree n. We now prove by induction that

F„(X, Y) G B[X, Y] for all n = 1, 2,_The induction starts because FX(X, Y)

= X + Y. Now assume that FX(X, Y), . . . , Fm(X, Y) G B[X, Y]. We know that

f(F(X, Y)) = bxFm+x(X, Y) + f(g(X, Y)) mod(degree m + 2), where g(X, Y) =

FX(X, Y) + • ■ ■ +Fm(X, Y). Hence, using the more general form of (ii) proved

just above, we find mod(B[[X, Y]], degree m + 2):

f(F(X, Y))=bxFm+x(X, Y)+f(g(X, Y))

= bxFm+x(X, Y) + co-'rjir^X", Y"))

= bxFm+x(X, Y) + co-'tJ(t,F(^, Y"))

= bxFm+x(X, Y) + CO" 1tJ{X") + ^-\J(Y")

= bxFm+x(X, Y) +f(X)+f(Y) = bxFm + x(X, Y)+f(F(X, Y))

where we have used the defining relation f(F(X, Y)) — f(X) + f(Y), which implies

rJ(TtF(X'1, Yq)) = tJ(X") + tJ(Y"), and where we have also used the fact that

F(X, Y) =g(X, Y) mod(degree m + \)^> F(X", Y") =g(X", Y«) mod(degree m

+ 2). It follows that bxFm+x(X, Y) = 0 mod(F[[A', Y]], degree m + 2) and hence

Fm+i(X, Y) G B[X, Y] because A, is a unit.

The proof of (iii) is completely analogous to the proof of (i).

The implication ==> of (iv) is easy to prove. If a(X) = ß(X) mod(corF, degree m)

and a(X) G B[[X]\ then a(X)q'J = ß(Xy>'J mod(cor+/F, degree m) which, combined

with (2.8), proves that f(a(X)) =f(ß(X)) mod(corF, degree m). To prove the in-

verse implication <= of (iv) we first do the special case

f(ß(X)) = 0 mod(corF, degree m) => ß(X) = 0 mod(corF, degree m).

Now ß(X) = 0 mod(degree 1), hence f(ß(X)) = bxß(X) + b2ß(X)2 + • • • = 0

mod(corF, degree m), implies ß(X) = 0 mod(corF, degree 2), if m > 2 (if m = 1

there is nothing to prove), because A, is a unit. Now assume with induction that
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ß(X) = 0 mod(corF, degree n) for some n < m. Then, because ß(X) =

0 mod(degree 1) we have ß(X)' = 0 mod(co"F, degree(« + / — 1)) and

hence bjß(Xy = 0 mod(corF, degree n + 1) if / > 2. Hence f(ß(X)) =

0 mod(corF, degree m) then gives bxß(X) = 0 mod(corF, degree n + 1), so that

ß(X) = 0 mod(corF, degree n + 1) because A, is a unit. This proves this special

case of (iv). Now let f(a(X)) =f(ß(X)) mod(corF, degree m). Write y(X) =

f(ß(X)) - f(a(X)) and 8(X) = /_,(y(A")). Then OX*) = 0 mod(oorF, degree m) by

the special case just proved, and ß(X) = f~\f(a(X)) + f(8(X))) = F(a(X), 8(X))

= a(X) mod(urB, degree m) because F(X, Y) has integral coefficients, F(X, 0) = 0

and because a(X) is integral. This concludes the proof of the Functional Equation

Lemma 2.7.

3. Twisted Lubin-Tate formal A -modules.

3.1. Construction and definition. Let A, K, k,p, m, a, q be as in 2.1 above. We

consider a power series f(X) = X + c2X2 + • • • G #/[[*]] such that there exists a

uniformizing element co G m such that

XX) - U-loJ{X<) G A[[X]]. (3.2)

There are many such power series. The simplest are obtained as follows. Choose a

uniformizing element co of A. Define

gu(X) = X + co"1*9 + co-yco)"1*92 + u-la(u)~la2(u)~lX^ + ■ ■ ■ .  (3.3)

Given such a power series f(X), part (i) of the Functional Equation Lemma says

that

f(x, y) = /-'(/(^)+/(r)) (3.4)

has its coefficients in A, and hence is a one-dimensional formal group law over A.

We shall call the formal group laws thus obtained twisted Lubin-Tate formal

A-modules over A. The twisted Lubin-Tate formal ,4-module is called q-typical if

the power series f(X) that it is obtained from is of the form

f(X) = X + axXq + a2X^ + ■ ■ ■ . (3.5)

From now on all twisted Lubin-Tate formal ^1-modules will be assumed to be

¿/-typical. This is hardly a restriction because of Lemma 3.6 below.

3.6. Lemma. Let f(X) = X + c2X2 + • ■ ■ eK[[X]] be such that (3.2) holds. Let

f(X) = 2r=o«/*,i "flft «o = 1. «, = V Then "i^) =/~l(/w)e ^H*]] s0 that
F(X, Y) and F(X, Y) are strictly isomorphic formal group laws over A.

Proof. It follows from the definition of f(X), that f(X) also satisfies (3.2). The

integrality of u(X) now follows from part (iii) of the Functional Equation Lemma.

3.7. Remarks. Let k, the residue field of K, be finite with q elements, and let

a = id. Then the twisted Lubin-Tate formal .4-modules over A as defined above

are precisely the Lubin-Tate formal group laws defined in [12], i.e. they are

precisely the formal A -modules of A -height 1. If A: is infinite there exist no

nontrivial formal ^-modules (cf. [11, Corollary 21.4.23]). This is a main reason for

also considering twisted Lubin-Tate formal group laws.
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3.8. Remark. Let/i*) G #:[[*]] be such that (3.2) holds for a certain uniformiz-

ing element co. Then co is uniquely determined by f(X), because a, — co-1a(a,-i) G

A =>co = a~lo(a¡_x) mod o¡2'A as v(a¡) = -/'. Using parts (ii) and (iii) of the

Functional Equation Lemma we see that co is in fact an invariant of the strict

isomorphism class of F(X, Y). Inversely, given co we can construct ga(X) as in (3.3)

and then g~'(/(*))= u(X) is integral so that F(X,Y) and GU(X, Y) =

8Ül(ga(X) + ga(Y)) are strictly isomorphic formal group laws. In case #k = q

and a = id, co is in fact an invariant of the isomorphism class of F(X, Y). For some

more results on isomorphisms and endomorphisms of twisted Lubin-Tate formal

^-modules cf. [11], especially §§8.3, 20.1, 21.8, 24.5.

4. Curves and (/-typical curves. Let F(X, Y) be a (/-typical twisted Lubin-Tate

formal /1-module obtained via (3.4) from a power series f(X) = X + axXq + a2X^

+ ■ ■ • .

4.1. Curves. Let Alg^ be the category of A -algebras. Let B G Alg^,. A curve in F

over B is simply a power series y(t) G B[[t]] such that y(0) = 0. Two curves can be

added by the formula yx(t) + f 72(0 = F(yx(t), y2(t)), giving us an abelian group

C(F; B). Further, if <J>: F, -h> B2 is in MgA, then y(t)h><¡>+y(t) ( = "apply cf> to the

coefficients") defines a homomorphism of abelian groups C(F; Bx) —> C(F; B2).

This defines an abelian-group-valued functor C(F; — ): MgA —* Ab. There is a

natural filtration on C(F; — ) defined by the filtration subgroups C(F; B) = {y(t)

G C(F; B)\y(t) = 0 mod(degree «)}. The groups C(F; B) are complete with re-

spect to the topology defined by the filtration C"(F; B), n = 1,2,....

The functor C(F; -) is representable by the /1-algebra A[S] = A[SX, S2, . . . ].

The isomorphism A\gA(A[S], B) -* C(F; B) is given by

i-\

i.e. by <f> r-> <btys(t), where ys(t) is the "universal curve"

ys(0= f, FS/ £ C(F; A[S]).
i—l

Here the superscript F means that we sum in the group C(F; B) just defined (to

avoid possible confusion with ordinary sums).

4.2. q-typification. Let ys(t) G C(F; A[S]) be the universal curve. Consider the

power series

A(/)=/(Ys(<))= I  *,.(S)/'.
i = i

Let t: K[S] -* K[S] be the ring endomorphism defined by r(a) = a(a) for a G K

and t(S¡) = S,9 for i = 1, 2, ... . Then the hypotheses of 2.1 are fulfilled and it

follows from part (ii) of the Functional Equation Lemma that A(r) — co-V^AÍr') G

^[5][[r]]. Now let h(t) = 2°loX,'(5)'9- Then> obviously, also h(t) - co-'t.aV) G

yl[5][[r]] and by part (iii) of the Functional Equation Lemma it follows that
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(s^H
is an element of /![5][[/]]. We now define a functorial group homomorphism eq:

C(F; -)-* C(F; -) by the formula

*ir(f) = (*v),(e,Ys(0) (4-4)

for y(/) G C(F; B), where <J> : >1[5] —» F is the unique .4-algebra homomorphism

such that (<f»r),ys(0 = y(t).

4.5. Lemma. Ler B be A-torsion free so that B —» B ®AK is injective. Then we have

for all y(t) G C(F; B),

/(y(0) - 2  A,/'W(e,Y(,)) = I   V' (4-6)
i=l 7=0

and eqC(F; B) = {y(t) G C(F; B)\f(y(t)) = ^1cJtqi for certain Cj G B ®AK).

Proof. Immediate from (4.3) and (4.4).

4.7. Lemma. eq is a functorial, idempotent, group endomorphism of C(F; — ).

Proof. eq is functorial by definition. The facts that eqeq = eq and that eq is a

group homomorphism are obvious from Lemma 4.5 in case B is A -torsion free.

Functoriality then implies that these properties hold for all A -algebras B.

4.8. The functor Cq(F; — ) of q-typical curves. We now define the abelian-group-

valued functor Cq(F; -)as

Cq(F; -) = eqC(F; -). (4.9)

For each n G N u {0} let C^n)(F; B) be the subgroup Cq(F; B) n Cq"(F; B).

These groups define a filtration on Cq(F; B), and Cq(F; B) is complete with respect

to the topology defined by this filtration.

The functor Cq(F; — ) is represen table by the A -algebra A [ T] = ^4[F0, F,, . . . ].

Indeed, writing/(*) = 2°o_0«,^'7, we have

f(yS(t))=ÁÍFsA= 2    f  ajSft"*
\i-i /        7=0    ,=1

and it follows that

7=0

From this one easily obtains that the functor Cq(F; — ) is representable by A[T].

The isomorphism AlgA(A[T], F)^* Cq(F; B) is given by

i-O

where yT(t) is the universal q-typical curve

Yr(') = I F T^' G Cq(F; A[T]). (4.10)
i-O
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4.11. Remarks. The explicit formulas of 4.8 above depend on the fact that F was

supposed to be ¿/-typical. In general slightly more complicated formulae hold. For

arbitrary formal groups c/-typification (i.e. eq) is not defined (unless q = p). But a

similar notion of ¿/-typification exists for formal A -modules of any height and any

dimension if #k = q.

5. The A -algebra structure on Cq(F; —), Frobenius and Verschiebung.

5.1. From now on we assume that/(X) = gu(X) = X + w~xXq + u'^o^y^^

+ • • • for a certain uniformizing element co. Otherwise we keep the notations and

assumptions of §4. Thus we now have a~l = coa(co) . . . a'_1(co), a0 = 1. This

restriction to "logarithms" f(X) of the form ga(X) is not very serious, because

every twisted Lubin-Tate formal A -module over A is strictly isomorphic to a

Ga(X, Y), (cf. Remark 3.8), and one can use the strict isomorphism g~\f(X)) to

transport all the extra structure on Cq(F; — ) which we shall define in this section.

The restriction f(X) = ga(X) does have the advantage of simplifying the defining

formulas (5.4), (5.5), (5.8), . . . somewhat, and it makes them look rather more

natural especially in view of the fact that co, the only "constant" which appears, is

an invariant of strict isomorphism classes of twisted Lubin-Tate formal A -modules

(cf. Remark 3.8 above).

In this section we shall define an A -algebra structure on the functor Cq(F; — )

and two endomorphisms fu and \q. These constructions all follow the same

pattern, the same pattern as was used to define and analyse eq in §4 above. First

one defines the desired operations for universal curves like y-A[t) which are defined

over rings like A[T], which, and this is the crucial point, admit an endomorphism

t: K[T] -> K[T], viz. r(a) = a(a), t(T¡) = 7/, which extends a and which is such

that t(x) = xq mod wA[T\. In such a setting the Functional Equation Lemma

assures us that our constructions do not take us out of C(F; — ) or Cq(F; —).

Second, the definitions are extended via representability and functoriality, and

thirdly, one derives a characterization which holds over A -torsion free rings, and

using this, one proves the various desired properties like associativity of products,

a-semilinearity of fu, etc.

5.2. Constructions. Let yT(t) be the universal ¿/-typical curve (4.10). We write

f(yT(0) = I x,(T)t< (5.3)
i-O

Let/iJQ = ga(X) = Sr-oû-A"7', i-e. a, = co-'o-(co)-1 . . . a'-'i«)-1 and let a <E A.

We define

(«jWO = /"'i 2  o¡(a)Xi(T)tq^, (5.4)

W) =/"'( 5 »'(«)*i+,(VJ. (5.5)

The Functional Equation Lemma now assures us that (5.4) and (5.5) define

elements of C(F; A[T]), which then are in Cq(F; A[T]) by Lemma 4.5. To illustrate
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this we check the hypotheses necessary to apply (iii) of 2.7 in the case of fu. Let r:

F[F]-»F[F] be as in 5.1 above. Then by part (ii) of the Functional Equation

Lemma we know that

x0 G A[T],        xi+x - co-'t(x,.) = c, &A[T].

It follows by induction that

x,. Gco-'U[F] (5.6)

and we also know that

v(a,rl) = t)(coo-(co) . . . a'-'(co)) = i (5.7)

where v is the normalized exponential valuation on K. We thus have a°(co)x, = cox,

G/l[F]and

a'(co)x,+ , - U-1t(oí-\w)x¡)= a'(co)c, + a'(w)w-V(x,.) - »'lr(*'-•(«)*,)

«<»<(«)«, E À[T].

Hence part (iii) of the Functional Equation Lemma says that f^y^r) G

C(F;A[T]).

To define the multiplication on Cq(F; — ) we need two independent universal

¿/-typical curves. Let yT(t) = 2íF,í"?<, 8f(t) = S'fy*' G Cq(F; A[T; f]). We define

yr(0 . 6>(t) = /"'( J  a- V,^j (5-8)

where f(yT(t)) = Yxitq', f(8f(t)) = S.y,!"7'. To prove that (5.8) defines something

integral we proceed as usual. We have x0,y0 G A[T; T], xi + x - u~\(x¡) = c, G

A[T; f],yi+x - co-'t^,) = df G A[T; f], where t: F[F; F]->F[F; F] is defined

by r(a) = <r(a) for a G F, and t(7;.) = I?, r(f;.) = T?, i = 0, 1, 2,_Then

«Wo = Wo G /1[F; F] and

«<+V*,+i^+i - «~ 'T(«r V<)
- coa(a,.)"'(c, + co-1t(x,))(¿7,. + a»~V(>()) - co-1^/-1)^*,)^,)

= «ofa-*)«^ + o-^rHcvTU) + ¿7,t(x,.)) G A [F; F]

by (5.6) and (5.7).

5.9. Definition. Let y(r), 8(t) be two ¿/-typical curves in F over B G Alg^,. Let <f>:

v4[F] —> F be the unique A -algebra homomorphism such that <í>*y7-(í) = y(/)> and

let \p: A[T; F]-> F be the unique ,4-algebra homomorphism such that ^„y^O =

Y(0. "/'♦MO = 5(0- Let a G A. We define

{•}jffM = *♦({ a}fYr(0), (5-10)

W')"^')), (5.11)

y(0 * 0(0 = ^(yr(/) * M'))- (5.12)

5.13. Characterizations. Let F be an /1-torsion free ,4-algebra; i.e. B —* B ®AK is

injective, then the definitions (5.10)—(5.12) are characterized by the implications
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/(y(0) = 2   xitq'^f({a)Fy(t)) = f   »'<«)*,/< (5-14)
i = 0 i-O

OO OO

/(y(0) = 2   V«W(fwY(0) = 2   «'(«)*,-1'''> (5.15)
i = 0 i-O

/(y(0)= 2 v*> /(S(0)= 2 *'«'*=>
i-O /-0

oo

/(y(i)*o(0)= 2   «rV,'?'. (5.16)
1 = 0

This follows immediately from (5.4), (5.5) (5.8) compared with (5.10)—(5.12),

because <£>„ and \p¡ are defined by applying <b and i// to coefficients, and because

y(r) r-»/(y(/)) is injective, if F is A -torsion free.

5.17. Theorem. FAe operators {a} F defined by (5.10) define a functorial A-module

structure on Cq(F; —). The multiplication * defined by (5.12) then makes Cq(F; —)

an A-algebra-valued functor, with as unit element the q-typical curve y0(t) = t. The

operator ia is a o-semilinear A-algebra homomorphism, i.e. fu is a unit and multiplica-

tion-preserving group endomorphism such that fa{a}F = {a(a)}Fiu.

Proof. In case F is .4-torsion free the various identities in Cq(F; B) like

({a}Fy(t)) * 8(t) = {a}F(y(t) * 8(t)), y(t) * (8(t) +F e(t)) = (y(/) * 8(t))

+ F (y(0 * £(0)> • • • are obvious from the characterizations (5.14)—(5.16). The

theorem then follows by functoriality.

5.18. Verschiebung. We now define the Verschiebung operator \q on Cq(F; -)

by the formula V?y(r) = y(tq). (It is obvious from Lemma 4.5 that this takes

¿/-typical curves into ¿/-typical curves.) In terms of the logarithm f(X) one has for

curves y(/) over A -torsion free A -algebras B,

/(y(0) = 2 V?W(V(0) = 2 V'+'- (5.19)
i=0 i-O

5.20. Theorem. For q-typical curves y(t) in F over an A-algebra B,

ftóv,y(0 = HFy(t), (5.21)

f„Y(0 = Y(0*9 mod{u)^„(F; B). (5.22)

Proof. (5.21) is immediate from (5.14), (5.15) and (5.19) in the case of ,4-torsion

free F and then follows in general by functoriality. The proof of (5.22) is a bit

longer. It suffices to prove (5.22) for curves y(?) G Cq(F; ^4[F]). In fact it suffices

to prove (5.22) for y(t) = yT(t), the universal curve of (4.10). Let

HO - C1/ 2 *,'*')>     y i = *M - °»~l.«*~ V. (5-23)

where the x¡, i = 0, 1,2, ..., are determined by f(y(t)) = '2xitq'. It then follows

from (5.14)-(5.16) that indeed ftty(/) - y(t)*q = {u}F8(t), provided that we can

show that 8(t) is integral, i.e. that 8(t) G Cq(F; A[T]). To see this it suffices to show
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that_y0 G A[T] andyi+x — co_1t(j>,) G ^4[F] because of part (iii) of the Functional

Equation Lemma. Let c, = xi+x — u>~1t(x¡) G A[T]. Then

y0 = xx- o°(o>ylxq = c0 + co-V(x0) - co-'xq« EA[T]

because t(x0) = x¡¡ mod uA[T]. Further from x, + , = c, + co_1t(x,) we find

a~+\xi+x = coa(co) . . . a'(co)c,- + a(co) . . . o-'(co)t(x,) = co' + 1c7,. + r{<Çlx¡)

for a certain d¡ G A[T], and hence

a-+qxxq+x = r(arqxq) + co'+2e,. (5.24)

for a certain e¡ G A[T]. It follows that

yi+] - o}-lr(y,) = xi+2 - a'+1(co)"'c7,.+ ,a,.-9,x,.«+, - o>~xt(xí+x)

-r-co-V(a'(co)~'a,.arV)

= c, + 1 - oi+i(œ)-\ai+xar+W+x - »-VfoMflf V))

= c,+ 1 - oi+1(o>)-lai+x(a-qxx?+x - r(arqx?)) G A[T]

because aj+x = co_1a(¿(,) and because of (5.24). (Recall that v(ai+x) = -i — 1 by

(5.7).) This concludes the proof of Theorem 5.20.

6. Ramified Witt vectors and ramified Artin-Hasse exponentials. We keep the

assumptions and notations of §5.

6.1. A preliminary Artin-Hasse exponential. Let B be an A -algebra which is

A -torsion free and which admits an endomorphism t: F ®A K -» B ®A K which

restricts to a on A®AK=K<zB®AK and which is such that t(A) = bq

mod coF. We define a map AB: B —» Cq(F; B) as follows.

^) = r||^v/j. (6.2)

This is well defined by part (iii) of the Functional Equation Lemma. A quick check

by means of (5.14)—(5.16) shows that AB is a homomorphism of A -algebras such

that, moreover,

As«r = fBoAi (6.3)

(because o'(u)aj+x = a¡), and that AB is functorial in the sense that if (B', t') is a

second such ,4-algebra with endomorphism t' of B' ®AK and <f>: B —► B' is an

A -algebra homomorphism such that t'<j> = <>t, then Cq(F; <|>) ° Afi = AB< ° <j>.

6.4. Remark. Using (B, t) instead of (/I, a) we can view F^, Y) as a twisted

Lubin-Tate formal F-module over B, if we are willing to extend the definition a bit,

because, of course, B need not be a discrete valuation ring, nor is B ®A K

necessarily the quotient field of B. In fact B need not even be an integral domain.

If we view F(X, Y) in this way then AB: B -» Cq(F; B) is just the F-algebra

structure map of Cq(F; B).

6.5. Now let B be any A -algebra. Then Cq(F; B) is an A -algebra which admits an

endomorphism t, viz. t = fu, which, as tx =x9 mod co by (5.22), satisfies the

hypotheses of 6.1 above (because fu is a-semilinear). It is also immediate from
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(5.10) and (5.4), cf. also (5.14), that Cq(F; B) is always ^-torsion free. Substituting

Cq(F; B) for B in 6.1 we therefore find ^4-algebra homomorphisms EB: Cq(F; B) -»

Cq(F; Cq(F; B)) which are functorial in B because iu is functorial, and because of

the functoriality property of the AB mentioned in 6.1 above. This functorial

A -algebra homomorphism is in fact the ramified Artin-Hasse exponential we are

seeking and, as is shown by the next theorem, Cq(F; B) is the desired ramified-

Witt-vector functor.

6.6. Theorem. Let A be complete with perfect residue field k. Let B be the ring of

integers in a finite unramified extension L of K. Let I be the residue field of B.

Consider the composed map

pB:B*Xcq(F;B)^Cq(F;l).

Then pB is an isomorphism of A-algebras. Moreover if t: B —> B is the unique

extension of o: A —> A such that t(A) = bq mod B, then fapB = pBr, i.e. r and fu

correspond under pB.

Proof. Let A G F. Consider AB(urb). Then from (6.2) we see that

f(AB(urb)) = arrr(ur)Tr(b)tq' mod(coF, degree qr+i).

By part (iv) of the Functional Equation Lemma 2.7 it follows that

As(co7>) =yrTr(b)tq'mod(uB, degree qr+i)

whereyr = arrr(œr) is a unit of B. It follows that p.B maps the filtration subgroups

corß of B into the filtration subgroups C^r\F; I) and that the induced maps

/^co'F/co'+1f4c<'>(F; /)/C<r+1)(F; /)^/

are given by x r->yrxq' for x G /. (Here l->u>rB/ur+iB is induced by corA h» A with

A the image of A in / under the canonical projection B —» /, and

C9(r)(F; /)/C;+1(F; 1)^1 is induced by C<r)(F; I)-*I, y(t)h*(coefficient of t"' in

y(r)).) Because / is perfect and yr ^= 0, it follows that the induced maps pZB are all

isomorphisms. Hence pB is an isomorphism because B and Cq(F; I) are both

complete in their filtration topologies. The map pB is an A -algebra homomorphism

because AB is an A -algebra homomorphism and Cq(F; — ) is an A -algebra-valued

functor. Finally the last statement of Theorem 6.6 follows because both t and

pB xiupB extend a and t(A) = bq = pB liupB(b) mod coF.

6.7. FAe maps sqn and wqn. The last thing to do is to reformulate the definitions

of Cq(F; B) and EB in such a way that they more closely resemble the correspond-

ing objects in the unramified case, i.e. in the case of the ordinary Witt vectors. This

is easily done, essentially because Cq(F; — ) is representable.

Indeed, let, as a set-valued functor, Wqx: A\gA —» Set be defined by

<M(F) = {(A0,A„A2,...)|A,. GF},

<J</>)(A0, A„ • . . ) = (<i>(A0), <f>(A,), . . • ). (6.8)
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We now identify the set-valued functors Wqx( — ) and Cq(F; -) by the functorial

isomorphism

efl(A0,A„...)= 2FA,K (6.9)
i-O

and define Wqoo( — ) as an A -algebra-valued functor by transporting the A -algebra

structure on Cq(F; B) via eB for all F G AlgB. We use f and V to denote the

endomorphisms of Wqa0( — ) obtained by transporting fw and \q via eB. Then one

has immediately that

V(A0, A„ . . . ) = (0, A0, A„ . . . ) (6.10)

and in fact

f(A0, A„ . . . ) = (A0, A"„ . . . ) ^ A,. = bf mod coF. (6.11)

(We have not proved the analog of this for fu; this is not difficult to do by using

part (iv) of the Functional Equation Lemma and the additivity of fu.)

Next   we   discuss   the   analog   of   the   Witt   polynomials   Xp"   + pXp"

+ ■ ■ ■ +p"X„.We define for the universal curve y^t) G Cq(F; A[T]),

V.(Yr(0) = ^"'(coefficient of /'" inf(yT(t))) (6.12)

and, as usual, this is extended functorially for arbitrary curves y(i) over arbitrary

A -algebras by

sq,„y(') = 4>(sq,n(yT(t))) (6.13)

where </>: A[T] —> B is the unique A -algebra homomorphism such that ^y^r) =

y(r). If B is A -torsion free one has, of course, the result that sqny(t) = a'1

(coefficient of /*" in/(y(r)))- Using this one checks that

v(y(0 +f ô(0) = ̂ ,„(y(0) + v(«(0),

v(y(0 * 5(0) = v(y(0)v(S(0).
V({«)fY(0) = o"(a)sq¡n(y(t)),

V<f-Y(0) = ^,n+i(Y(0),

V(\Y(0) = o^^K^Mt))    if n > 1,

*,,o(\Y(0) = 0,

sqn(t) = 1    for all n. (6.14)

Now suppose that we are in the situation of 6.1 above. Then, by the definition of

AB, we have

*,„(M6)) = r"(b). (6.15)

Now define wqn(B): Wqx(B) —* B by wqn = s ° eB. It is not difficult to calculate

wqn. Indeed

/(Yr(0) = Á 2 ' tA =22  a,Ty*J = 2 ( 2  erf.)*'
\i-0 /        7 = 0   i-O r = 0\i-0 /
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and it follows that iv^,  is  the functorial map  WFX(B)^>B defined by the

polynomials

w^(Z0,...,Zn) = a-1(2o«,Z„*:,)

= Zf + aH-\a)Zf"X + an-l(u)a"-2(u)Zq"'2 + ■ ■ ■

+ a"-1(u)- ■ ■ o(co)coZ„. (6.16)

6.17. Theorem. Let (A, a) be a pair consisting of a discrete valuation ring A of

residue characteristic p > 0 and a Frobenius-like automorphism a: F—» K such that

(2.2) holds for some power q of p. Let co be any uniformizing element of A, and let

wqn(Z), n = 0, 1, . . ., be the polynomials defined by (6.16). Then there exists a

unique A-algebra-valued functor Wqoo: MgA —> Alg^, such that

(i) as a set-valued functor Wqoa(B) = {(A0, A,, b2, . . . )|A, G F} and

KooiWo, A„ . . . ) = (<i>(A0), <i»(A,), . . '. )for all <b: B ̂  B' in MgA,
(ii) rAe polynomials wqn(Z) induce functorial a''-semilinear A-algebra homomor-

phisms wFx: WFX(B) -+ B, (A0, A„ . . . ) t-> wFn(b0, ..., b„).

Moreover, the functor Wqoo( — ) has a a~x-semilinear A-module functor endomor-

phism V and a functorial a-semilinear A-algebra endomorphism f which satisfy and

are characterized by

(iii) wqFn o V = o"-\»)wFn_x ifn = 1, 2, . . . ; wF0 o \ = 0,

(iv)wF„ °f=wFn+x.

These endomorphisms f and V have (among others) the properties

(v) fV = co,

(vi) fA = bq mod UWFx(B)for all b G WqFx(B), B G MgA,

(vii) V(b(fc)) = (Vb)c/or all b, c G Wf^B), B G AlgA.

Further there exists a unique functorial A-algebra homomorphism

e-Koo(-)^ KUKooi-))

which satisfies and is characterized by

(viii) wqFno£ = V for all n = 0, 1, 2, ... . (Here wF„: WFx(WFt0a(B)) ^

Wqx(B) is short for wFnwF (B), i.e. it is the map which assigns to a sequence

(b0,' b„ . . . ) of elements of WFX(B) the element wFn(b0, b„ . . . ) G WqFx(B).) The

functor homomorphism E further satisfies

(ix) WFx(wqFn) o E = f",where WFx(wqFn): WqFx(WqF„(B)) ^ WFX(B) assigns to

a sequence (b0, b,, . . . ) of elements of Wqx(B) the sequence (wFn(b0), wFn(bx), . . .)

e KM-
Finally if A is complete with perfect residue field k and l/k is a finite separable

extension, then Wqoo(l) is the ring of integers B of the unique unramified extension

L/K covering the residue field extension l/k and under this A-algebra isomorphism f

corresponds to the unique extension of a to t: B —> B which satisfies r(b) = bq

mod coF. In particular Wqaa(k) :ü A with f corresponding to a.

Proof. Existence of WFX(-), V, f, F such that (i), (ii), (iii), (iv), (viii) hold

follows from the constructions above. Uniqueness follows because (i), (ii), (iii), (iv),
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(viii) determine the A -algebra structure on /?Nu{0), V, f, F uniquely for yi-torsion

free A -algebras F, and then these structure elements are uniquely determined by

(i)-(iv), (viii) for all A -algebras, by the functoriality requirement (because for every

A -algebra F there exists an ,4-torsion free A -algebra B' together with a surjective

A -algebra homomorphism B' —* B). Of the remaining identities some have already

been proved in the Cq(F; -)-setting ((v) and (vi)). They can all be proved by

checking that they give the right answers whenever composed with the wqn. This

proves that they hold over A -torsion free algebras F, and then they hold in general

by functoriality. So to prove (vii) we calculate

<0(V(b(fc))) = 0,

wF„(\(b(tc))) = o"-\œ)wFn_x(b(fc)) = o"-\U)wqFn_x(b)wFn_x(fc)

= a—(co)w^_,(b)<„(c)

and, on the other hand,

><o((Vb)c) = <0(Vb)H^(c) = 0,    wF0(c) = 0,

H£((Vb)c) = wFn(\b)wFn(c) = a"~ '(«)<„_, (b)wFn(c).

This proves (vii). To prove (ix) we proceed similarly.

WF   o wF (WF ) o E = wF » wF   ° F = wF  »f"= wF       = wF   o f

(Here the first equality follows from the functoriality of the morphisms wqm which

says that for all cf>: B' -» F G Alg^ we have wFm ° Wqa}(§) = <j> ° wqm; now sub-

stitute wqn for t>.)

6.18. Remark. Vf = fV does not, of course, hold in general (also not in the case

of the usual Witt vectors). It is, however, true in Wqx(B) if coF = 0, as easily

follows from (6.11), which implies that f(A0, A„ . . . ) = (A<?, bxq, . . . ) if coF = 0.
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