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LINEAR OPERATORS ON Lp FOR 0 <p < 1

BY

N. J. KALTON1

Abstract. If 0 < p < 1 we classify completely the linear operators T: Lp->X

where A- is a /»-convex symmetric quasi-Banach function space. We also show that

if T: Lp -> L0 is a nonzero linear operator, then for/» < q < 2 there is a subspace Z

of Z^,, isomorphic to Lq, such that the restriction of T to Z is an isomorphism. On

the other hand, we show that if p < q < oo, the Lorentz space L(/>, ^) is a quotient

of Lp which contains no copy of lp.

1. Introduction. The aim of this paper is to study and classify operators on the

spaces Lp(0, 1) for 0 <p < 1 into other spaces of measurable functions. The

underlying theme is the idea that operators on Lp cannot be "small" when p < 1.

Historically the first result of this type was obtained by Day [4] in 1940 who

showed that there is no nonzero operator of finite rank on Lp. Later, completing a

partial result of Williamson [34], Pallaschke [26] and Turpin [31] showed that there

is no compact endomorphism T: Lp -^ Lp other than zero. Recently the author [10]

has shown that there is no nonzero compact operator on Lp with any range space.

In fact, if T is a nonzero operator T: L^^* X (where X is any topological vector

space) there is a subspace H of Lp isomorphic to l2 such that T\H is an

isomorphism.

It is quite possible that this last result can be improved quite substantially. To be

precise we may ask the question for 0 < p < 1 :

Question. Suppose T: Lp —> X is a nonzero operator and p < q < 2. Does there

exist a subspace Y of Lp such that Y = Lq and T\ Y is an isomorphism?

We do not know the answer to this or the weaker question with lq replacing Lq.

However in [11] we showed that if T: Lp —» Lp is nonzero we can even obtain such

a subspace Y = Lp. Of course, in general there is no hope of a result of this

strength; consider the inclusion map Lp -* L0 (that this does not preserve a copy of

Lp is well known; it can be deduced easily from Example 9.9 below since

Lp C L(p, q) C L0 for/? < q < oo).

Our main result (Theorem 7.2) here will provide an affirmative answer to the

question when X = L0. Of course this also implies an affirmative answer for any

space of functions densely embedded in L0, or more generally any space X such
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320 N. J. KALTON

that the space of linear operators £(X, L0) separates the points of X. Unfor-

tunately, there are spaces X which are not too artificial such that £(X, L0) = {0};

an example was constructed by Christensen and Herer [2], but we also observe in

§10 that Lp(T)/Hp (0 <p < 1) is an example where T is the unit circle and Hp is

the usual Hardy space.

Our other result related to the question above is a negative one. We show that a

quotient of Lp need not contain lp (0 <p < 1). We remark that a result of Turpin

[32, p. 94] together with one of the author [15] shows that / must be finitely

represented in any quotient of Lp. Indeed in [13] we defined a/»-Banach space X to

be/»-trivial if £{Lp, X) = {0} and showed that this is an appropriate generalization

of the Radon-Nikodym property. If X is not /»-trivial, the lp is finitely represented

in X. The example in question here is the Lorentz space L(p, q) where/) < q < oo.

Our main theorem is made possible by two other results. The first is Nikisin's

theorem [21] that every linear operator T e t(Lp, L0) may be factored Lp -*

L(p, oo) -* Lq where the second operator is a multiplication operator [here

L(p, oo) is the weak space Lp], The second is Theorem 6.1 that if p < 1, L(p, oo) is

/»-convex. We give in Theorem 6.4 a complete characterization of operators T:

Lp —* L[p, oo] where 0 < p < 1. Such an operator is of the form

oo

Tf(t) =  S   an{t)f{ont),
n = \

where an: (0, 1) -» R and an: (0, 1) -» (0, 1) are Borel maps and if

ax(B)=  f   m{(\an\> x) n a-lB)
n=i

for B a Borel set then

ax(B) < Cxpm(B),       fie®,

for some constant C. Conversely, any such {an}, {an} defines an operator T:

Lp —> L(p, oo). This result is analogous to the result for endomorphisms of Lp given

in [111

We also initiate in §§8 and 9 a general study of/»-Banach function spaces where

0 <p < I. There are certain differences from the theory of Banach function

spaces, which give this study a distinctive flavour. One example is the fact noted

above that if p < 1, L(p, oo) is /»-convex; thus there are symmetric /»-Banach

function spaces which are strictly larger than Lp, while if p = 1, L, is the largest

symmetric Banach function space and L(l, oo) is not locally convex. Lotz [18] and

the author [14] have' shown that if /, and L, embed in a Banach lattice with

order-continuous norm then they embed as a sublattiçe. Here we give in §8 similar

but slightly weaker results for lp or Lp embedding in a /»-Banach function space.

The difficulty, as will be seen from the proofs, lies in the fact that we may not

suppose a/»-Banach function space densely embedded in Lp.

In §9 we study symmetric/»-Banach function spaces (0 <p < 1) and introduce

the class of totally symmetric /»-Banach function spaces. Totally symmetric spaces

lie between Lp and L(p, oo) and hence have no analogues for/» = 1. We classify
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completely operators from Lp into symmetric /»-Banach function spaces. We show

in particular that if X is a separable, o-complete symmetric /»-Banach function

space, then X is isomorphic to a quotient of Lp if and only if X is totally symmetric.

We note at this point that the study of /»-Banach lattices where 0 < p < 1 is

complicated by the fact that we cannot essentially reduce them to the study of

function spaces; such a technique is available for Banach lattices (e.g., as in [14]).

The possibility of such a reduction for /»-Banach lattices with order-continuous

quasinorm is closely related to Maharam's problem on the existence of a control

measure for an order-continuous submeasure (cf. [2]).

We conclude with a note on the organization of the paper. §2 is purely to

introduce notation. In §3, we give a treatment of Nikisin's theorem which is not

essentially original. However we believe it may be useful to give a self-contained

treatment. We also prove it in much stronger form than is required (the notion of

type is not needed in this paper). §§4 and 5 develop some routine techniques. In §6

we prove our main representation theorem for operators from Lp into L(p; oo), and

this leads in §7 to our main result on operators from Lp into L0. In §8 we study

embeddings of lp and Lp in /»-Banach function spaces. In §9 we study symmetric

/»-Banach function spaces and operators as Lp. Finally, in §10 we give some results

on translation-invariant operators on function spaces on compact groups and an

example of a quotient of Lp which admits no nonzero operators into a /»-Banach

lattice with order-continuous quasinorm.

Our approach is not always economical. Results on L(p, oo) in §6 are special

cases of results on symmetric spaces in §9 (Theorem 6.1 is a special case of

Theorem 9.4; Corollary 6.5 is a special case of Theorem 9.6). However we felt there

was an advantage in developing the theory for the main results rapidly before

moving to a more general theory.

2. Prerequisites. A quasinorm on a real vector space I is a map x -» ||x||

(X -+ R) such that

||x|| >0   if x =£0, (2.0.1)

\\tx\\ = \t\ |x|,       x&X,t£R, (2.0.2)

||x + v||<A:(||x|| + ||v||),       x,yE.X, (2.0.3)

where & is a constant independent of x and v. The best such constant k is called

the modulus of concavity of the quasinorm. If k ■» 1, then the quasinorm is called a

norm.

The sets {x: \\x\\ < e} for e > 0 form a base of neighborhoods for a Hausdorff

vector topology on X. This topology is (locally) /»-convex where 0 < /» < 1 if for

some constant A and any x,, . . . , xn El X,

\\xx + ■ ■ ■ +xn\\ < A{\\Xl\f +■■■ +\\x£)i/p. (2.0.4)

In this case we may endow X with an equivalent quasinorm,

11*11* = infí( 2 IKlfl  ':*, + ••• +JS. - x), (2.0.5)
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and then

||*|| > IMP >a-1\\x\\,     xGX,

and y • ||* isp-subadditive, i.e.

SNP'j     • (2-0.6)

A theorem of Aoki and Rolewicz [28, p. 57] asserts that every quasinormed space

is /»-convex for some p > 0. A complete quasinormed space is called a quasi-

Banach space, and if it is equipped with a /»-subadditive quasinorm it is called a

p-Banach space. If X and Y are quasi-Banach spaces then the space fc(X, Y) of

(bounded) linear operators T: X -> Y is also a quasi-Banach space under the

quasinorm

||r|| = sup(||7x||:||x||< 1).

Suppose X is a vector lattice; then || ■ || is a lattice quasinorm on X if whenever

1*1 < \y\> 11*11 < l|v||. A complete quasinormed lattice is called a quasi-Banach

lattice. If A" is a /»-convex quasi-Banach lattice, then, as in Equation (2.0.5), X may

be requasinormed with a/»-subadditive lattice quasinorm; with such a quasinorm it

is termed a/»-Banach lattice.

Now let AT be a compact metric space, and let iß = % (AT) be the a-algebra of

Borel subsets on K. Suppose A is a probability measure on K (i.e. a positive Borel

measure of total mass one), with no atoms. Then L0(K) = L0(K, %, A) denotes the

space of all Borel measurable real functions on K, where functions equal A-almost

everywhere are identified. This is an F-space (complete metric linear space) under

the topology of convergence in measure. Then a quasi-Banach function space X on

A" is a subspace of L0(K) containing the simple functions such that if g G X,

f G L0 and |/| < |g| (X-a.e.) then / G X, and equipped with a complete lattice

quasinorm so that the inclusion map X <^> L0 is continuous. As usual if the

associated quasinorm is/»-subadditive then X is a /»-Banach function space.

A quasi-Banach lattice X is a-complete if whenever {xn} is a bounded increasing

sequence of positive elements of X then {xn} has a supremum in X. If X is a

a-complete quasi-Banach function space then it may be requasinormed to have the

Fatou property

llsup xj=sup||xn|| (2.0.7)
"     n " n

for every such sequence; note that in this case sup„ xn in X must coincide with the

usual pointwise supremum in L0. We shall always assume the Fatou property is

satisfied as in quasi-Banach function space.

Throughout this paper, K will denote an arbitrary, but fixed, compact metric

space and we may suppress mention of the underlying probability measure space

(Ä", $, A). Some examples of quasi-Banach function spaces on K are given by: (1)

the spaces Lp(0 <p < oo) of functions/ such that

\\f\\p= [fK\At)f dxo)}1" < «>,
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(2) the weak Lp -spaces L(p, oo), 0 </» < oo of functions/such that

I/U,,«-    sup    x(X(\f\ > x))l/p < oo, (2.0.8)
0<;c<oo

and (3) the Lorentz spaces L(p, q), 0 </» < oo, 0 < q < oo of functions/such that

Mm = { f J0' '«''"'/W ^}1/? < oo, (2.0.9)

where/* is the decreasing rearrangement of |/| on (0, 1), i.e.

/•(/)=    inf        sup   |/(*)|
*(£)-'   sSK-E

(see Hunt [8], Saghar [29]).

Note that

= [i*/'i*(0*]-- r f/" dr{t)"
Jo

= ?  [°° F(x)9/Px<-1 dx,

where F(x) = X(|/| > x) is the distribution of / (strictly, of course 1 — F is the

distribution of/as a random variable). Hence

IIÜU, = {q f°° F{xy»x«-X dx^'\ (2.0.10)

A quasi-Banach function space is called symmetric if it is quasinormed such that

11/11 = Hi? 11 whenever/ and g have the same distribution. Note that each of the

above examples is symmetric.

If B c K is a Borel set, then \B denotes the indicator function of B and PB, the

natural projection of L0 onto L0(B),

PM = As),       s G B,

= 0,       i?5,

The space "Dlt/Ä") is the space of signed Borel measures, so that ¡x(K) = C(Ä")*. If

¡i G 91t(Ä"), then |ju.| is its total variation and if 0 </» < 1, | fi\p is its/»-variation

(cf. [11]). Then || HI = \p\(K) and || p\\p = (| p\,{K)y"; if ||/i||, < oo then /i is

purely atomic.

3. Nikisin's theorem. In this section we give a self-contained treatment of

Nikisin's theorem on the factorization of operators into L0. In fact, Nikisin [21]

proves a rather more general result for superlinear operators, but we shall specialize

to the case which concerns us. We note that an earlier version of Nikisin's theorem

is given in [19] and [20].

Suppose X is a quasi-Banach space. Then we say X is type p for 0 < /» < 2, if for

some constant C and every x,, . . . , xn G X,

fQilSrl(t)xi(dt<C±p,f,
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where r,, . . . , rn are the Rademacher functions on (0, 1), rn(t) = sgn(sin 2"-!rt). If X

is /»-convex then it is also of type/» (0 <p < 1).

Theorem 3.1. Suppose X is a quasi-Banach space of type p (0 </» < 2) and that

T: X -» L0(K) is a linear operator. Then given e > 0 there exists E G <3à w///j

X(F) > 1 - e and such that PET G £(*, L(/j, oo)) where

PJ(t) = /('),       t G F,

= 0,        í G F.

Proof. First we observe that since T is continuous, for every e > 0 there exists

R(e) < oo such that if \\x\\ < 1,

A(|7x|>/?(e)) <e. (3.1.1)

We now establish:

Given any e > 0 and x{, . . . , xn E X there exists

E = F(x,, . . . , x„) G <$ such that X(F) > I - e and (3.1.2)

(¿ir*,wij1/2<^(e)(¿n*,ii
l/p

(5 G F),

where

To prove (3.1.2) let us assume e > 0 and that x,, . . . , x„ G X. Define fi c [0, 1]

to be the set of / such that

2 ',(')*,i=i
. /i6cy/^v    p,>(—)   (2 NI) i/p

Then m(B) < e/16. However if

then by (3.1.1) the set of s E K such that

|2^07*A*)|>^(*)(2l|*,|f)

/j»

i/p

has measure at most e/16.

Now let Q c K X [0, 1] be the set of (s, f) such that

|2 moTxM] <i^(e)(2|Kf),/'.

Then (X X m)(ß) > 1 - e/8. Now, by Fubini's theorem, if for s G K,

Qs = {t: (s, t) E Q)    and   F = is: m(Qs) > ^ },

then X(F) > 1 - e.



LINEAR OPERATORS ON Lp 325

Suppose sEE. Then

m(t: |2 rl.(0r*/W|<|(2[^W|2)'/2) <|

by the Paley-Zygmund inequality [9, p. 24], but m(Qs) > 7/8. Hence (3.1.2)

follows.

To complete the proof of the theorem we shall suppose that whenever E G %

and X(F) > 1 - e, then there exists x G X with ||x|| < 1 and \\PETx\\px > A. We

shall deduce a contradiction and this will show that for some F, IIF^ry^^ < A,

and prove the theorem.

For each F G <$, let T[F] be the set of pairs (x, £) such that x G X, ||x|| < 1,

1 < £ < oo andX(F n (|7x| > AC)) > £-p. Let

aE = inf(£: there exists x with (x, £) G T[ F]),

= oo    if T[F] = 0.

By hypothesis, aE < oo if X(F) > 1 — e. Note that a£ > aF whenever F c F.

Let F0 = K and choose {F„: n = 1, 2, . . . }, (x„: « = 1, 2, ... } and {£„:

n = 1, 2, . . . } by induction as follows. Suppose En_i is given. If T[Fn_,] = 0, let

x„ = 0, £„ = oo and F„ = F„_,. Otherwise choose (x„, £„) G r[F„_,] with |„ <

2ap    and let

i,-4-in(|M<4).
This completes the induction. Now note that X(F„) < X(F„_,) — £„"'', n =

1,2,..., and hence 2 £„"'' < 1. In particular, £„ —» oo and hence a£ foo. Let

00

ex = n £„•
n=i

Then a£ > a£ for all n and hence aE = oo. We deduce X(EX) < 1 — e and so

for some N, X(EN) < 1 - e.

If i G K\EN, then there exists 1 < n < N such that i G En_t\E„ so that

irl\Tx„(s)\>A. Hence

(j^C2!^)!2)

1/2

However there is a set F G $ with X(F) > 1 - e, by (3.1.2) such that

(N \l/2 /    AT \l//>

2   C2^*»!2]       < A{ 2   Cj       < A,        sEF.

Thus F and K\EN are disjoint but X(F) + X(K^EN) > 1. This contradiction

establishes the theorem.

Corollary 3.2. Under the assumptions of Theorem 3.1, there exists <p E L0 with

<p > 0 a.e. such that M^T G £(A", L(/», oo)) w/iere MJ = <p •/,/ G L0.

Proof. For each « G N pick F„ G *■©  with X(F^) > 1 — \/n and such that

PET G £(X, L(/», oo)) with \\PET\\ = & say. Let F„ = F„\(F, u • • • u£„.,)
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and define

<p(s)=2-»ß-1,       sEF„.

Then MVPFT G Z(X, L{p, oo)) and \\M^PFT\\ < 2~n. Hence

M^ = 2 MVPFT G £(*, L(/», oo)).

4. Local convergence of operators on Lp (0 </» < 1). Suppose X is a/»-Banach

space. We define on t(Lp, X) a vector topology which we call the topology of local

convergence as follows: a base of neighborhoods of 0 consists of sets of the form

S(e) = {T: BB E <S,X(ß) > 1 - e, ||FFB|| < e},

for e > 0. These sets form a base for a metrizable vector topology on t(Lp, X)

weaker than the usual quasinorm topology.

Proposition 4.1. The topology of local convergence is stronger than the topology of

pointwise convergence on bounded sets. The unit ball of £(F_, X) is complete for local

convergence.

Proof. Suppose Tn ->Q in local convergence with \\Tn\\ < M < oo and/ G Lp.

There exists a sequence e„ -» 0 and Bn G ® with X(5n) > 1 - e„ such that || TnPBJ\

< e„. Hence

II TJ[\ < (<||/ir +1| Tn\\"\\f - PbAP)1/P - 0   as « -^ oo,

since

f       [/(/)prfX(0^0,    asX(Ä--JB„)<en^0.

The second half of the proposition is an immediate consequence of the first. If

HFJI < 1 and Tn is a Cauchy sequence for local convergence then Tn converges

pointwise to a limit T and it is easy to see that Tn —» T in local convergence.

Proposition 4.2. For each T G Z(Lp, X) there is an essentially unique Borel

function t H» tj(î; T) (t E K) such that

\\TPB\\= ess sup t)(/; T)
teB

whenever B G 65 aw/ X(5) > 0.

Thus F„ —» F /« /oca/ convergence if and only if i)(t; T — Tn) —» 0 /« X-measure.

Remark. We shall call the function t/( •, T) the /oca/ quasinorm of F.

Proof. For each n E N, let F(n,y) (1 < / < 2") be a partitioning of K into 2"

disjoint Borel sets of measure 2_", such that

E{n,j) = E(n + 1, 2/ - 1) u E(n + 1, 2/),      1 < / < 2", n - 1, 2,...,

and such that the algebra generated by the sets {E(n,j), 1 < / < 2", n = 1, 2, ... }

is X-dense in 65.

For each n E N, define <p„ a simple Borel function on K by

<p„(i) = 2"||Fl£(„>/.)f,       /GF(«,/).
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Let Sj, denote the (finite) algebra generated by (E(n,j): 1 < j < 2"). Then

Sdw.lS.XO = 2"(||Fi£(n+1,2>_1)f +flriJS((,+wf)
> <*>„(/),       ( G F(«J).

Hence <p„ is an Sj, -submartingale and of course 0 < <p„ < || T\\p. Thus <p„ converges

X-almost everywhere and in L'-norm to a limit <p. We define

r,(t; T) = <p{t)l/p,       t G A".

If fi G 65 and X(B) > 0, then

||77»B||- supíliricH/MC)1^: C c B,X(C) >0).

If C c 5 and X(C) > 0, then for e > 0 there exists n E N and E G % such that

X(FAC) < e. Then

||Flcf < || 7fe+1| Fl£f

< || T\\"e+ f <pn(t)dX(t)
JE

|| Ffe + f <p(t) dX(t)<

(since <p„ is a submartingale),

< 21| Ffe + f <p(t)dX(t)

Thus,

< 2||Ffe + X(C)ess sup <p(t).
teB

\TPB\\ < ess sup tj(í; T).
teB

Conversely suppose, X(C) > 0 and ■»/(/; T) > a, t E C. For e > 0, choose n G N

and £ e fB as before. Thus for some m > n,

[ <PmdX> a"X(C) - e,
Jc

and so

f <pm ¿X > «'X(C)-e(l+1| rf).
J E

Let F,, . . ., E¡ be the atoms of <5m contained in E.

¡Tief < || TlEjjf+1| T l^cf       (l</<0

< ||FFa||'X(F, n C) +|jf\(VC)-

Thus,

/ <pmdX< \\TPB\\PX(E n C) +||7lpX(F\C)•> E

<\\TPB\fX(C) + e\\J]\p.
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Hence

\\TPB\\"X(C) > apX(C) - e(l + 2\\T\\").

As e > 0 is arbitrary, HFF^H > a, and this implies

||FFfi|| > ess sup r\(t; T).
t£B

Essential uniqueness of tj is obvious and the final part follows easily from the

definition of local convergence.

The next result is a technical lemma whose usefulness will emerge later.

Lemma 4.3. Suppose i is a subset of Z(Lp, X) which is closed in Z(Lp, X) in its

usual topology. Suppose á has the properties:

(4.3.1) IfTEiandBE^b then TPB G Í.

(4.3.2) IfTE t(Lp, X) and for every e > 0 there exists B G 65 with X(B) > 1 -

e and TPB G í then we have T G í.

Then 5 is closed under local convergence.

Proof. Suppose Tn G 5 and F„ -> T locally. Then by Egoroff's theorem, for any

e > 0 there exists B G 65 with X(B) > 1 - e and

ess sup t)(/; T — Tn) -» 0
teB

i.e.,

\\(T- Tn)PB\\^0.

Hence by (4.3.1), TPB E í and so by (4.3.2), F G í.

Proposition 4.4. Suppose X is a a-complete p-Banach lattice with the Fatou

property, ||sup„ x„|| = supn||x„||, whenever xn is a bounded increasing sequence of

positive elements (e.g. a a-complete p-Banach function space, see §2). Then Z(Lp, X)

is a p-Banach lattice, and if T E t(Lp, X) then || |F| || = ||F|| and r/(i; |F|) =

t)(t; T) a.e.

Proof. Clearly Z^L^, X) is an ordered /»-Banach space. To show that it is a

lattice, consider the sets E(n,j) defined in 4.1. We define

2™-"

\T\XE(nJ)=   SUp      2    \T\Eim,2»-j-k+l)\>
m>n    £=1

where the supremum is taken in the a-complete lattice X. The sequence on the

right-hand side is increasing and bounded and we have

I7!1*«./) If ■ sup
2"

2 \ti,Eim^-'j-k+X)]
k = l

<\\TfX(E{nJ)).

It is easy to see that |F| may be extended to a positive linear operator in Z(Lp, X)

and that || |F| || = ||F||. Clearly, \T\ > ± T and is the least operator with this

property. Thus, Z(Lp, X) is a/»-Banach lattice.
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If B E 65 then clearly \T\PB > ± TPB so that \T\PB > \TPB\ and IFIF^ >

| TPKXB ¡.Conversely, |FFS| + IFF^I > ± F so that

\TPB\ + \TPK,B\>\T\PB +\T\PKXB.

Hence, |F|FB = \TPB\ and so || |F| PB\\ = ||FFB||. From this it follows that

V(t; |F|) = ij(/; F)a.e.

5. Dominated operators. Let X be a quasi-Banach function space and let F:

X —> L0 be a linear operator. We shall say that F is dominated if there is a positive

linear operator P: X —> L0 such that F/ > | F/| a.e.,/ G X.

Denote by ^\L(K) the space of regular Borel measures on K.

Theorem 5.1. Suppose X is a separable quasi-Banach function space. Then if

T G Z(X, LQ), T is dominated if and only if there is a weak*-Borel map 11-» vt

(A"H>91t(A:)) such that

(5.1.1) //B E 65 andX(B) = 0 then \v,\(B) = Oa.e.

(5.1.2) /// G X, then fis \v,\-integrable a.e.

(5.1.3) Tf(t) = fKf(s)dp,(s) a.e.

Proof. First observe that if (5.1.1), (5.1.2) and (5.1.3) hold then (observing that

t -* |p,| is weak*-Borel, see [11]),

Pf(t) = ( f(s) d\vt\(s)
J K

defines a positive linear operator from X into L0. In fact, (5.1.2) shows that F

defines a linear map. To show continuity suppose/, G X and \\f„\\ < 2~"; then

g = E|/n| G X and Pfn -» 0 a.e. by applying the Dominated Convergence Theorem.

Conversely let us suppose T is dominated. As in [11, Theorem 3.1], we need only

consider the case when K is totally disconnected. Suppose 2 is the countable

algebra of clopen subsets of K. By modifying each on a set of measure zero we may

suppose A h> Fl^r) (A G 2), A -h> P\A(t) (A G 2) additive for all t E K and that

|T\A(t)\ < P\A(t), A G 2, / G K. Extend by linearity to/ G 5(2), the linear space

of all simple continuous functions on K. Then

17/(01 < |^/(0| < 11/llooJ*!*('),       / G S(2).

Hence there exist measures ?,, /*, G |u(A?) such that Tf(t) = \Kf dvt, f G 5(2),

W) = Lr/¿ft,/ S 5(2), and fo| < M, and || /x,|| = Pl*(/).
For each / G 5(2), the maps n->// aV(, < h> / / a^t, are Borel and hence as 5(2)

is dense in C(K), the maps t h» j»,, /1—*- /ur are weak*-Borel. Note that (5.1.1) and

(5.1.2) must hold.

Now suppose / G X and / > 0. Then there is a sequence fn G 5(2) such that

0 < /„t/a.e. Since X is separable, it follows that/, —►/in X (cf. [5]). By passing to

a subsequence we may therefore suppose Tfn^> Tf a.e. Now Pfn<Pf a.e. for all n

and hence by the Monotone Convergence Theorem, / is ^-integrable for a.e. t.

Hence /is \v, ¡-integrable a.e. and so by the Dominated Convergence Theorem,
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Tf(t) = lim   Tf„(t)   a.e.
n—>oo

= lim    { /_ dv.    a.e.
n—»oo   ./

= j /a"»-,   a.e.

The theorem now follows by linearity.

We shall call the map t\-+ v, of 5.1 the kernel of T. Note that it is essentially

unique.

Corollary 5.2. If T is dominated there exists an operator \T\ = sup(+ F, -T) in

Z(X, Lq) and\T\ has kernel, t-»\vt\.

Remark. Since £(L,, F,) is a lattice (Chacon-Krengel [1]), every T G Z(LX, L,)

is dominated, and the same is true for Z(Lp, Lp) (0 < /» < 1) [11]. That Z(LX, L0) is

not a lattice and hence that there exist nondominated operators F: L, -» L0 is due

to Pry ce [27] (Pryce only observes that £(/,, L0) is not a lattice, but the same

argument holds for L,). See also Nikisin [22].

We shall say that the kernel tt-*vti& atomic if v, E ^\La(K) a.e. where ^La(K) is

the space of purely atomic measures (of the form 2 a„8(t„) where 2|aJ < oo).

Hence if 1i-> vt is atomic it may be redefined in a Borel set of measure zero so that

vt E <31ta(A") everywhere.

The following theorem is (essentially) proved in Theorem 3.2 of [11].

Theorem 5.3. If t\-+ v, is an atomic kernel then there are Borel maps an: K-* R,

a„: K -h> K (n = 1, 2, . . . ) so that

h(')|>k+,(')|,       " = 1,2,.... (5.3.1)
»»(')* «„(')>       m^nEH. (5.3.2)

", - 2   an(t)8(ant),       t G K. (5.3.3)
n = l

Definitions. A dominated operator F will be called elementary if its kernel

/ H» v, is atomic and the support of v, is (almost everywhere) at most one point;

thus F is of the form

Tf(t) = a(t)f(at).

T is locally elementary if there exist Borel sets (Bn: n G N) which are disjoint and

satisfy X(U Bn) = 1 and such that TPB is elementary for each n.

T is of finite type if / h» p, is atomic and the support of r, is almost everywhere

finite.

Remark. F is of finite type if and only if F is the restriction of an endomorphism

of Lq (Kwapien [17], see also [11]).

Theorem 5.4. If T is a dominated operator of finite type and e > 0 then there exists

A G 65 with X(A) > 1 — e and such that PA T is locally elementary.
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Proof. Let v, = 2"_! an(t)8(ont) as in Theorem 5.3. Then there exists a closed

set A with X(A) > 1 - e such that for some N, a„(t) = 0 if t G A and n > N and

o„ . . . , aN are continuous on A. Now each t E K has a neighborhood F, such that

the sets A n o~l(Vt) (1 < j < A7) are pairwise disjoint and by a compactness

argument we may cover K with finitely many disjoint Borel sets fi„ . . . , Bm so that

the sets A n a,_1(^,) (1 < ' < N) are pairwise disjoint for each/. Then PATPB is

elementary.

Now for jit G 91t (A~) and x > 0 define

a*(m) = 2 {«(<): H{')>*)•

Lemma 5.5. If fr+ vt is an atomic kernel then t h* Ax(v,) is weak*-Borel.

Proof. Write v, = 2"_, an(i)5(a„i). Then

A>,) =     2      8(ant)
K(')l>*

is easily seen to be weak*-Borel.

For x > 0 define

«,(5) = f A>,)(2?) O-X(i).
•'a:

Then for each x > 0, ax is a positive (possibly infinite) measure, satisfying

X(B) = 0 =» ax(B) = 0. It follows that ax has a (possibly infinite) Radon-Nikodym

derivative. For each rational x let w(-, x) be a Borel derivative of ax. Since ax > Oy

if x < v, we may suppose w(t, x) > w(t, y), t E K, x > y. Now define for any

(/, x) G K X [0, oo),

w(t, x) = sup w(t, y).
y>x

(5.5.1) w is monotone-decreasing and lower-semicontinuous in x for each fixed

/ G K.

(5.5.2) w(t, x) is a derivative of ax for each x > 0.

(5.5.3) w is Borel on AT X [0, oo).

(5.5.1) is clear. To prove (5.5.2) suppose v„ G Q and y„ix. Then a,, (F'yfa^.ß) for

each B E 65 and the Monotone Convergence Theorem gives the result. For (5.5.3),

observe

M>(r, x) = sup wit,-[ — »ixl ),
m       \ m I

where [x] is the largest integer < x, and the functions

(t,x)^w[t, - — [~mx]J

are clearly Borel.

By an application of Fubini's theorem it can be seen that up to sets of product

measure zero, the function w satisfying (5.5.2) and (5.5.3) is unique.
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Definition. The function w is called the distribution of the operator T (or kernel

t h+ »,).

6. Operators from Lp into L(p, oo) and L0 where 0 </» < 1. The space L(l, oo) is

not locally convex, although Cwikel and Saghar [3] show that its dual is nontrivial.

For/» < 1, Saghar [29] and Hunt [8] show that L(p, q) is r-convex whenever r </>

and r < q; in particular, L(p, oo) is r-convex for any r </». The next result

improves this; we note here that an inequality equivalent to Theorem 6.1 has been

obtained by Pisier and Zinn (unpublished).

Theorem 6.1. If 0 </» < 1, L(p, oo) is p-convex.

Proof. Let Mp = 2l/pp(\ - /»)"'. We shall show that if/,, ...,/„ G L(p, oo),

wfl + ... +u<Mp(\\fl\\p + --- +\\fxy/p.
Let A =/, + •• • +/„ and let «* be its decreasing rearrangement. For 0 < t < 1

let A = A(r) = (\h\ > «*(/)). Then X(A) > t. For 1 < k < n, let

T     i, \\W

*    2  ll/>lf + ---+ll//'
Choose Borel sets Ek, I < k < n, W. K such that X(Ek) = rk and \fk(t)\ > fk(rk),

t G Ek. Let F = F, u • • • U E„; then X(F) < (1/2)t.

Now,

h*(r) <  inf |A(/)| <     inf    \h(t)\

< iT^FT Í     l*OI rfX0 < 7 í     lA(')| ̂(0
X(^\F)^\£' TJK\E

2   "     r      ..,,.     2
<-2   f     [fk(t)\dx(t)<^ f UAH*-1/'¿x

-  2'  iw^-dr^iiHr)
and the result follows.

Now it is possible to requasinorm L(p, oo) if 0 </» < 1 as a/»-Banach function

space, as in §2.

Corollary 6.2. Z(Lp, L(p, oo)) and Z(Lp, L0) are lattices.

Proof. By Proposition 4.4 and Corollary 3.2.

It follows that every F G Z(Lp, L0) is dominated. We now show that the kernel

is atomic.

Theorem 6.3. Suppose T G Z(Lp, L0); then if p <r < 1 the kernel v, of Tsatisfies

\\v,\\r < oo a.e. In particular, vt is atomic.

Equivalent ly there exist Borel maps an: K —>R,o„: K -» K such that

oo

Tf(t) =  2   "n(t)f(ant)   a.e.J G Lp,



LINEAR OPERATORS ON Lp 333

and

00

2 \an(t)\r < °°    ae-
n«l

whenever /»</•< 1.

Proof. By Corollary 3.2 it suffices to prove the same result for F G

Z(Lp, L(p, oo)). As before, we may assume K totally disconnected. Let &n = {Ank:

1 < k < /(«)} be a partitioning of A into l(n) nonempty clopen sets of diameter at

most «_1 and suppose &n+1 refines <£n for n > 1. Pick rk E Ank for each

1 < k < /(«). Let T\Ank = bk, 1 < k < /(n), where each Z>¿ is Borel. We may

further assume that

t*-   2   ¿r1

everywhere. For j G A", define

*; = 2 6*"W8(t;).
ä=i

If/» < r < 1, |ki; = 2f2,|¿¿(*)|' = c„(s), say. Then |¿>;|r G L(pr~\ oo) and

Ktr-... <..i^.i sjivr Cr»J

by Theorem 6.1. However,

il i**t lu-.oo=ii^ii;,oo <ii7]|rx(^r"1-

Hence,

IKIU-.oo < Mpr-i\\T\\r.

Now 0 < c„ < cn+1 everywhere and hence, as L(pr~\ oo) is a-complete, c = sup c„

G L(pr~\ oo) and ||c|| -ij00 < M -i||F||r. In particular, sup„||»'i"||r < oo a.e. and

so almost everywhere the sequence {v"\ n E N} is bounded. Since Fis dominated,

it has a kernel v, and clearly v,(Ank) = limm_>00 v,m(Ank) a.e., for each k, n. Hence

v¡" -» vt weak* almost everywhere. In particular,

lli»,IL < lim inf \\t>,m\\, < °°    a.e.
11     "r m—>oo   "       "r

The result now follows from Theorem 5.1.

Example. Suppose (£,: 0 < t < 1) is a symmetric/»-stable process in L0(K), i.e. if

0 < i, < t2 < • • • < t„ < 1 then £, — £, (2 < / < n) are mutually independent

and

g(e-r(í;-í,))=exp(_|/_í|   |T|/>)_

Then, Tf = ¡ f dé,, defines an embedding of Lp into L0. The preceding theorem

guarantees that the sample paths |,(í) (0 < í < 1) almost everywhere are jump

functions with countably many jumps an(s) such that 2|a„(s)|r < oo for any r > p.

Theorem  6.3   does  not  give  necessary  and  sufficient   conditions   for   F G

Z(Lp, L(p, oo)). We now proceed to this problem.
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Theorem 6.4. In order that the weak*-Borel map t\-^> vtbe the kernel of a linear

operator T G Z(Lp, L(p, oo)) // is necessary and sufficient that for some C,

xax(B)1/p < CX(B)l/p,        F G 65. (6.4.1)

Then,

\\T\\<MpC. (6.4.2)

Remark. Of course,

«ÁB) = f Ax(>,)[2>] dX(t),      fiel

Proof. First suppose T G Z(Lp, L(p, oo)). Then its kernel v, is atomic. Suppose

as in Theorem 5.3, vt = 2~_, an(t)8(ant). Then |F| has kernel \v,\ =

2?_,k(/)|S(o„0 and || |F| || < M,||r||. Let

VÏ =  2 \ak{t)\8(akt).
k-l

Then ju/1 is the kernel of a positive linear operator 5„ G Z(Lp, L(p, oo)) of finite

type. Pick An with X(An) > 1 — \/n so that PA S„ is locally elementary. Suppose

PA SnPB is elementary for 1 < j < oo where U7 Bj = A".

Suppose F* c Bj for some 7; let F^ 5„1B = h. Then

PA.S„lB =    2    <V  W'W  U
/c — 1

and as the sets yl„ n o¿- '(5) are mutually disjoint,

M|*| > *) =  2   M0*"'5 n A„ n (|a,| > x)). (6.4.3)
k-l

Hence

*' S   X{ak->B nAnn (\ak\ > x)) < MP\\T\\PX(B).
k-l

Letting n —» 00 we have

*' f   X(a,-'fi n (K| > *)) < M/ll FfX(5),
k-l

i.e.,

x(ax(B))'/p <Mp\\T\\X(B)V».

For the converse, define p?, An as before. We show that the formally defined

operator PAS„ E Z(Lp, L(p, 00)) and HJ^SJ < CMp. This follows easily from

(6.4.3) and the fact that L(p, 00) is/»-convex. Then PA S J] Pf îor f > 0 and F is a

positive operator with \\P\\ < CMp. P has kernel \v,\ and it then follows that v, is

the kernel of an operator F with \T\ = P. Hence, ||F|| < CMp.
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Corollary 6.5. In order that vt be the kernel of some T E Z(Lp, L(p, oo)) it is

necessary and sufficient that

ess sup W-°°(t) = C < oo, (6.5.1)
t<EK

where

Wp'co(t) =    sup    xw(t, x)l/p, (6.5.2)

0<x<oo

where w is the distribution of vt. Then

\\T\\<CMp.

Proof. If ax(B) < Cpx~pX(B), F G 65, then w(t, x) < C"x~p, X-a.e. for each

x > 0. By Fubini's theorem, for X-a.e. t, xpw(t, x) < Cp, x-a.e., but as w is

monotone in x this means xpw(t, x) < Cp. Hence Wp'x(t) < C, X-a.e.

The converse is easy.

Corollary 6.6. Suppose Tn G Z(Lp, L(p, oo)) have distributions wn and

f*r°(')=     sup     xwn(t,x)l/p.
0<jc<oo

Then if Wp'°°(t) —* 0 in X-measure, F„ —» 0 in the topology of local convergence.

Proof. If B E 65, then TnPB has distribution

Wnj>0> *) = wÂt> *)>        ' G B>

= 0,       t G B,

and hence,

HF^H^esssup »?■"(/).
¡SB

The result now follows from Egoroffs theorem.

7. Operators from Lp into L0; the main result.

Proposition 7.1. Suppose 0 </» < 1 and p < q < r < 2. Suppose T G

£(F , F(/», oo)) w nonzero and has distribution w satisfying

\im xw(t, x)l/p = lim  xw(t, x)l/p = 0,       X-a.e. (7.1.1)
x->0 jc^oo

F/ie« //ie/-e « a strongly embedded subspace V of Lq such that V at Lr and T\ V is an

isomorphism.

[ V is strongly embedded in Lq if the Lq- and L0-topologies agree on V.]

Proof. Consider the following property of operators T G Z(Lp, L(p, oo)).

(7.1.2) There exists c > 0 and F G 65 with X(B) > 0 such that whenever C E 65

with C C B andX(C) > 0 then there is a strongly embedded subspace V[C] of Lq(C)

such that Vc ̂  Lr and \\Tf\\,.„ > 41/11,»/ 6 K[C].
Let 5 be the subset of Z(Lp, L(p, oo)) of all F for which (7.1.2) fails to hold. í is

certainly closed and satisfies the condition of Lemma 4.3. Hence Í is closed also

for local convergence.
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Suppose i contains an elementary operator 5 =£ 0, say 5/(í) = a(t)f(at). Then

there is a subset A of K with X(A) > 0 such that 0 < £ < |a(/)| < 2e, t E A, and

then the measure n(B) = X(a~lB n A), B E 65, is X-continuous, with X-derivative

<p say. Choose F G 65 with X(F) > 0 so that 0 < 8 < <p(/) < 25, t E E.

Now let A be the standard embedding of Lr into Lq by using an /--stable process

(cf. [16] and the Example after 6.3; also cf. [8] for an order-preserving embedding).

Observe that A embeds Lr strongly into Lq and that for some constant y depending

only on/», \\Af\\Pt00 = y\\Af\\p,f E Lr. Suppose C E 65, C c F and X(C) > 0. Let

0C: C-» K be any Borel map such that X(0¿\B)) = X(C)X(B), B E 65. Define

/?c:L0(A)^L0(A-)by

Rcf = f(0c<),     t e c,

= 0,     tec.
Let V = V[C] = RcA(Lr). Then V[C] is isomorphic to Lr and strongly em-

bedded in Lq(C). If/ G K[C], ||/||,>00 = Yll/H,. For x > 0,/ G K[C],

X(|5/l>x) >X(yi n(|/°a|>X£-'))

= /i(|/>X£-,)>ÔX(|/>X£-').

Hence,

xX(\Sf\ > x)x/p > x8l/pX(\f\ > XE-X)i,p

Hence,

\\Sf\\p^>^/p\\f\\p,x = ye8^p\\f\\p.

This shows (7.1.2) does hold with c = yeôl/p and B = E. We conclude 5 = 0.

Now suppose F G i has kernel p„ where v, = 2^_, an(0o(o",,0 as in Theorem

5.3, and the distribution w of F satisfies (7.1.1).

If T =£ 0 then 5 ^ 0 where 5 has kernel ax(t)8(axt); of course 5 G

Z(Lp,L(p, oo))and|5| < |F|.

For n E N, let 65 „ = {F„,, . . . , Bnl(n)) be a partition of K into /(«) disjoint

Borel sets of diameter at most n~l. Assume 65„+1 refines 65„. Let C„, = axxBni

and

Tn = 2  ^c„„77V

Then T„ G í. F„ has kernel p," where ^"(F) = vt(B n Fn,), f G C„,. For fixed t, if

||< - a.COfiO.OH =|"(" - ax(t)8(axt)\(K)

= \v, - a](t)8(ait)\(BnAn))

and so

lim sup |K - 0,(1)8(0,1)1] < I"' - a,(0S(<J,i)|lim sup BnJ(n)
«-♦CO
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Thus, for x > 0,

äx(v?-ax(t)8(oxt))^0

and àix(v" - ax(t)8(axt)) is monotone decreasing.

For x > 0, let

ax»(B) = [ A>," - al(t)8(alt))(B) dX(t).
J K

Since

Ax(v," - a,(0S(a,/)) < A>,),

we may apply the Dominated Convergence Theorem to deduce a"(F)|0 for

F G 65.

Now let wn be the distribution of F„ — 5. We can assume wn monotone

decreasing and since fB wn(t, x) dX(t) = a"(B), B G 65, we have wn(t, x)|0 a.e.

(t, x) G K X [0, oo) (apply Fubini's theorem). Hence, for X-a.e. /, wn(t, x)J,0, 0 < x

< oo. Now fix / and let

wn(t,x) = lim sup wn(t, y).
y-*x

Then

wn(t, x) < wJt, -xj,       0<x<oo,

and so

wn(t, x)|0

and each wn is upper-semicontinuous. Hence so is xwn(t, x)l/p. By Dini's theorem,

xwn(t, x)i/Pi<Q

uniformly on compact subsets of (0, oo). By (7.1.1), we can conclude convergence is

uniform on (0, oo), i.e. Wp''°(t) —> 0, X-a.e. Hence F„ -> 5 in local convergence and

so 5 G $. This contradiction proves the proposition.

Theorem 7.2. Suppose 0 </» < 1 and T G Z(Lp, L0) with T ¥= 0. Then if p <r

< 2, there is a subspace V of Lp isomorphic to Lr and such that T is an isomorphism

on V.

Proof. We may suppose r < 1. By Nikisin's theorem there is a subset F of A"

such that 5 = PBT =£ 0, 5 G Z(Lp, L(p, oo)) and 5 G £(L,, L(r, oo)). Now

choose p < qx < q2 < r.

Let w be the distribution of 5. Then

sup    xpw(t, x) < C,    a.e.,
0<jc<oo

and

sup    xrw(t, x) < C2    a.e.
0<jc<oo



338 N. J. KALTON

Hence if q = qx or q2,

x"w(t, x) < min(C1Jc«~p, C2x9_r)

< Cxx"-p,       0 < x < 1,

< C2xq-r,        1 < x < oo.

Hence,

xqw(t, x) < max(C„ C2),       0 < x < oo,

and

lim   xw(t, x)x/q = lim  xw(t, x)1/<7 = 0.
JC-»00 X-»00

Thus 5 G Z(Lq,L(q, oo)).

By Proposition 7.1, there is a strongly embedded subspace V oî Lq isomorphic to

Lr such that F maps V isomorphically from L into L(qx, oo). Since V c FÍ2,

F(F) c L(q2, oo). The F(<72, oo)-topology on T(V) is stronger than the L(qx, oo)-

topology, but the Lq- and L9-topologies agree on V. Hence the L(qx, oo)- and

L(q2, oo)-topologies and all intermediate L^-topologies agree on T( V), i.e., T( V) is

strongly embedded in L(qx, oo). Hence T maps V isomorphically into L0 (of course

the Lq- and L^-topologies agree on V).

8. Embedding lp and Lp in /»-Banach function spaces. Let X be a /»-Banach

function space. Then we can apply Nikisin's theorem (Corollary 3.2) to deduce that

there is a function <p G L0, with <p > 0 such that M^X) c F(/>, oo). It follows that

we can, without loss of generality, suppose that every /»-Banach function space

considered is contained in L(p, oo) and \\f\\x > \\f\\poa, f E X [simply replace X

by M¿X)\.

Theorem 8.1. Suppose X is a p-Banach function space satisfying:

(8.1.1)  There exists c > 0 and r > 0 such that whenever /,,...,/, G A' and

l/l A \fj\ = 0, i ¥<j, then

IIA+--- +/n||>c(2||/í)1A

Then if X contains a subspace isomorphic to lp, there is a sequence of positive elements

with disjoint support equivalent to the usual basis of L.

Remark. Equivalently lp embeds in A' as a sublattice.

Proof. Suppose (8.1.1) holds and that y is a subspace of X isomorphic to lp. We

consider two possibilities: (a) Y fails to be strongly embedded in X, and (b) Y is

strongly embedded in X.

(a) In this case Y contains a sequence gn -» 0 in L0 but such that \\g„\\ > e > 0

and {gn} is equivalent to the usual basis of lp. Here {gn} can be obtained as a

block basis of the original basis of Y, by a standard gliding hump argument.

Observe that (8.1.1) implies that whenever 0 < /„f/ a.e. in X then ||/ — /„|| -» 0.

Hence if/ > 0 and/ G X and An G 65 with X(A„) ->0 then ||/- 1^|| -► 0.

Now choose an increasing sequence of integers {m(n)}, a decreasing sequence

{£„}, and a sequence An E 65 such that
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X(An) < £„,       n = 1, 2, ..., (8.1.2)

|W*> J < «».       8-1,2,..., (8.1.3)
0<2£„ + 1<£„,       «=1,2,..., (8.1.4)

ifX(^)<2£„+1,||gm(n)-l/4||<£n,       «-1,2,.... (8.1.5)

Pick £, = 1. Now suppose e„ . . . , £„, Ax, . . . , An_x, m(\),. . . , m(n — 1) have

been chosen where « > 1.

Let h = ~Z 2~"\gn\; h E X and h > 0. Now by Egoroff's theorem, since g„ -» 0 in

measure, there exists m(n) > m(n — 1) and An G 65 with X(^4„) < £„ and

|gm(*)| •*-,<„ ̂„IHf'«-
Then

Now choose e„+1 so that £n+1 > 0 and (8.1.4) and (8.1.5) hold. This completes

the induction.

Let B„ = A\ U k>„ Ak and/, = gm(n) ■ 1 v Then

\\gm(n)L - fnf <\\gm(ny \K.j+\\gmW- iUt>^ir < 2°£

since X(\Jk>„ Ak) < 2en + x. Hence,

||&«,,)-/J-0
and so, passing to a subsequence, we may assume {/,} equivalent to the usual

/p-basis.

(b) We shall show that condition (b) leads to a contradiction. Let {/„} be

equivalent to the usual lp-basis in Y and hence also in L(p, oo). Let V = {/,:

« G N} and suppose

A/ = sup||/„||^
n

and

||*i + • ' • +Ä.IU. > a«'7"

whenever gx, ■ ■ ■ , g„ are distinct elements of V, where a > 0.

Let m be chosen so that u > 1 and

„,/,-, , *'*>+'*,
a(l-/»)

and let

a = _2-(2//>)-2

(u-1)

For each A:, let Ak be the set of integers 0„* such that 9X < 92 < • • ■  and

2-V/pf*(2-et) > 2'2/pa.

We  claim   |^| < oo   and   \Ak\ < Mr23r/pa-1C-r.   Indeed,   suppose  0f < 02*

< ■ ■■ <9^E Ak; then

/* = Yi + • • • + ym
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where the y,'s have disjoint support and

Hy-II       > 2~3/pa.

Hence,

WfkWx >cm^r2-ypa

and so

m < Mr23r/pa-ic-r.

Now we may pass to a subsequence of fk (also called fk) such that \Ak\ = L is

constant and for some / < L, Of = 9¡, i < /, k = 1, 2, . . . ,   and 9,k+i > 9,k, i > I,

k — 1, 2, ... . Hence if p > 9,, p belongs to at most one set Ak. Now suppose

n > 2"', and let

«„=/.+ ••• +/„•

For some t = rn, 0 < t < 1,

Tl/phZ(T)>^ani/p.

Let A = (|AJ > h*(r)) and choose F„ . . . , F„ G 65 so that X(F,) = t/2/j (1 <

i < n) and |/(/)| >f*(r/2n), t E E¡, 1 < i < n. Let F = F, u • • • UF„ so that

X(F) < <r/2andA(/l) > t.

^a«'/' <t'/"«*(t)

< Í77TTT /       lA«(')l dX^   <as in Theorem 6.1)
A(A^L.) Ja\e

<2t./,-.¿    f        \fk(t)\dX(t)
k=l   JK\Ek

1

r/2/1

<2t'/--'¿    f'    £(x)ox
k=l   JT/2n

< 2t'/"-> s {ruT/2"^(*) ¿*+r00 han1/' dx
k=l  yJr/2n JuT/2n

«      ~,M2#J + Z   u'/^-i i-,*=i «'/"-*    1-F

fe^i^-u»
fc-1        V*«' 4

Hence,

4 » k±x$Aèr
Pick p„ to be an integer such that 2"p- < t/2« < 21_p\ Then t1/' < 22/p~p"/pnl/p

and so

¿a«1/jD < 22/"-p"/"(M - I)«1/'-1 2  /?(2_p").
4 A-l
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Hence,

an < 2-ft/' 2  fk(2~Pn)-
k = \

Now pn > log2(2«/r) > log2(2«) > #,. Hence p„ belongs to at most one set Ak.

Thus, 2-i>"/'2£=1/*(2-'>") < (n - l)a2-2/" + M. Thus, a < 2"2/pa(l - \/n)

+ M/n for all n > 2*'. This leads to a contradiction, and the theorem is proved.

We now turn to the problem of embedding Lp in X. We first prove some

preparatory lemmas; these will also be useful in the next section.

Lemma 8.2. Suppose X is a p-Banach function space where 0 </» < 1. Then:

(i) Any T E Z(Lp, X) has an atomic kernel.

(ii) If 5, T G Z(Lp, X) have kernels v, and pt respectively, then the kernel of

S \J T is vt\J ¡i, almost everywhere.

Proof, (i) Since X c L(p, oo), this follows from Theorem 6.3.

(ii) This follows from Corollary 5.2 since 5 V T = (l/2)(5 + F + |5 - T\). Of

course, |5 - F| in Z(Lp, L0) is identical with |5 - F| in Z(Lp, X).

Lemma 8.3. Suppose X is a p-Banach function space with 0 </» < 1. Suppose

Tn, T E Z(Lp, X) and 0 < Tn < Fn+1 < T for n > 1. Suppose T has kernel /i, and

Tn has kernel ¡x". Then if ¡i" —> ¡it weak* a.e., r¡(t; T) = lim„_,00 t\(t; Tn) a.e.

Proof. Clearly rj(t; Tn) is monotone increasing almost everywhere. If X(B) > 0

and £ > 0, T)(t; Tn) + e < r¡(t; T), t G B, n E N then, ||F„FB|| + e < ||FFB||, n E

N.

Select Bx c B with X(BX) > 0 such that

II^JI^IIff.ii-^eJmf,)1/'.

Then since ju," < ju,"+l < jn, we have || ¡i" - n,\\ -»0 a.e. and hence Tn\B(t)-*

T\B (t), a.e. Now by the Fatou property of the quasinorm, there exists n so that

|| TH\B\ >(|| FFB|| -e)X(Bx)l/p

and hence

\\TnPB\\>\\TPB\\- e.

This contradiction proves the result.

Lemma 8.4. Suppose T G Z(Lp, L0). Then there is a sequence of operators (5„, n G

N) such that

|5,.|A|5,.| = 0,       i+j. (8.4.1)

5( + • • •  + S„is locally elementary for each n. (8.4.2)

If   v"    is    the   kernel   of   Sn    and   ju,,    is   the   kernel   of   T,

then 2~=1 v," = v, weak* a.e., and 2^_1|f,'1| = H weak* a.e.
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Proof. Let

", =  2   an(t)8(ant)
»-i

where as in Theorem 5.3, each an: K —» R is Borel and each an : K —» K is Borel, and

a¡(t) =£ Oj(t) whenever /' **/. Now let

ft" =  2   ak(t)8(akt).
k-l

Then n," is the kernel of an operator T„ G Z(Lp, L0) with |F„| < |F|. Further, T„ is

of finite type. By Theorem 5.4 we may select An G 65 with X(A„) > 1 - 2"("+1)

such that PAJn is locally elementary. Let B„ = (~) (Ak: k > n); then X(Bn) > 1 -

2"" and PBTn is locally elementary. Finally, let 5, = FB|F, and 5„ = FB>Fn -

PB    Tn_x(n > 2). Then 5„ has kernel p," given by

v," = 0,      ig F„,

-ft",    'eí,\í,-i.

- ft" - a""1,      Í6B,.,.

Clearly, k"| A k1"! - ° a.e., w ^ «, and (8.4.1), (8.4.2), and (8.4.3) follow easily.

Lemma 8.5. Suppose X is a p-Banach function space satisfying (8.1.1) and that

Tx,...,TnE Z(Lp, X) satisfy \Tt\/\\ Tj\ = 0, i ¥*j. Then,

■n(t; Tx + ■ ■ ■ + F„) > cí ¿  i,(/; F,)'}        a.e. (8.5.1)

Proof. Suppose first 5 = Fj + • • • + F„ is elementary. Then by considering

kernels we see that if | T,\ A I Tj\ = 0 (i 9*7) then for any/ G L,,

|F/]A|7^1 = 0.

Hence, for any Borel set B,

\\siB\\> 0(^1^14^

and (8.5.1) follows from the construction of the local quasinorm tj as in Proposition

4.2.

It now quickly follows that (8.5.1) holds for locally elementary 5. For general 5,

let (5„) be chosen as in Lemma 8.4. Then if

K.-|S,|+- •• +|5m|,

then

Vm= Vmf\\Tx\+--- +VmA\Tn\,

and since Vm is locally elementary,

v(t;Vm)>cíí,init;VmA\Tl\Y)j      a.e.
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Now by Lemma 8.3,

lim   v(t; VJ = rj(/; |5|)   a.e.
m—»oo

and a similar argument shows

Jim   r,(t; Vm /\\Tt\) = v(t; |F,|)    a.e.

The lemma now follows.

Lemma 8.6. Suppose X is a /»-Banach function space (0 </» < 1) satisfying (8.1.1).

Then the locally elementary operators are dense in Z(Lp, X) in the topology of local

convergence.

Proof. Suppose 5 G Z(Lp, X). We appeal to Lemma 8.4 to define (5„) satisfy-

ing (8.4.1), (8.4.2), and (8.4.3). Suppose m(n) is an increasing sequence of integers

with m(0) = 0; then let

"■(")

r„ -    2     s».
m(n-l)+l

By Lemma 8.5,

Hence,

and hence,

r,(t; Tx + ■ ■ ■ +Tn)>cíÍt  t,(<; tA        a.e.

c(2^;7,,)r)1A<^;|5|)   a.e.,

V(f, FJ^O   a.e.

Thus 2"_! 5, is a Cauchy sequence in the topology of local convergence, and as

|2"_, 5,| < |F| by Proposition 4.1, 2°lj 5, converges in this topology. Clearly,

2°11 5, = 5. To see this observe that given £ > 0 there exists Bk E 65 with

X(B) > 1 - \/k and ||(2r=. 5, - 2?=1 5,)FBJ| ̂ 0 as n -> oo. Thus,

2 st - 2 s<
i-l

■ o.

Hence, if ju, is the kernel of 2°°=i 5,., | jLt, - 2"», v't\(Bk) ->0 as n ^ oo, i.e.,

I Mr - vÁ(Bk) = ° a-e- Thus. Im, - »"/KUr., 5fc) = 0 a.e. As X(A"\ U Bk) = 0,
|ju, - v,\(K\ U kBk) = 0 a.e. Hence ¡i, = v, a.e., and 5 = 2°1, 5,. The lemma

follows since 5, + • • • + 5„ is locally elementary for each «.

Theorem 8.7. Suppose Lp is a p-Banach function space (0 </» < 1) satisfying

(8.1.1). Suppose Lp embeds in X. Then there is an embedding 5: Lp —» X which is a

lattice isomorphism, i.e., S(f A g) = 5/A Sg, f, g E Lp (i.e., Lp embeds as a

sublattice).

Proof. Suppose Lp does not embed as a sublattice. Let 5 be the set of all

operators F such that whenever F G 65 and X(B) > 0 then T\Lp(B) fails to be an

isomorphism. An application of Proposition 4.2 shows that á is closed under local
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convergence. We prove the theorem by contradiction by showing i = Z(Lp, X);

by Lemma 8.6 we need only show every locally elementary operator is in í. Clearly

to do this it suffices to show each elementary operator belongs to 5. Suppose 5 is

elementary and for some B, X(B) > 0, SPB is an embedding. Then |5FB| is a lattice

isomorphism and an embedding. This contradicts our hypothesis and so Í =

Z(Lp, X) and the theorem follows.

9. Symmetric function spaces. Let us denote by g the set of all functions F:

[0, oo ) -» [0, 1] which are monotone decreasing right-continuous and such that

lim^^, F(x) = 0. Let Ap (0 </» < oo) denote the class of maps &: § -»[0, oo]

such that:

(9.0.1) If F, G G g and F < G then $(F) < $(G).

(9.0.2) If F„,FE§ and F„(x)|F(x), 0 < x < oo then lim,,^ <&(F„) = $(F).

(9.0.3) If F, G E g and F(0) + G(0) < 1, $(F + G) < $(F) + $((7).

(9.0.4) If 9 > 0 and F G g then *(F9) = 0 -*$(F) where F#(x) = F(0x), x > 0.

(9.0.5) For some F G S, 0 < $(F) < oo.

Note that by (9.0.4), <i>(0) = 0.

Then we define the space L[p; 4>] to be the space of all / G LQ such that

11/11 = $(F)l/p < oo where F(x) = X(|/| > x).

Theorem 9.1. If <ï> G A^, L[p; 4>] is a a-complete quasi-Banach function space

having the Fatou property (2.0.7) and such that if fx,f2 E L[p; <I>] have disjoint

supports

11/. +/2Í <||/.|f+||/2|f- (9.1.1)

Proof. First we observe that (9.0.3), (9.0.4), and (9.0.5) together imply 0 < $(F)

< oo for every simple function F. Hence L[p; $] includes all simple functions.

Next observe that (9.1.1) holds by applying (9.0.3). We use this to show that || • ||

is a quasinorm. For suppose/, g, h E L[p; $] and h = f + g. Choose A E 65 with

X(^) = 1/2. Then h\A = f\A + g\A and

*(l^l >\x)< X(l/l<l > \x) + *(l*l«l > \*\
so that

iiÄi,ir<2"(iL/i,ir+iigi,in.
Similarly,

Wk-a\( <2»{\\f\K_A\( +\\g\K_X).

Hence,

Hf <2' + W+l|s|f),
so that

l*l<**(|/t+WI).
Next we show the inclusion L[p; <I>] -> L0 is continuous. Indeed if ||/„|| -► 0 then

if £ > 0 and 8„ = X(|/J > e), then if we denote F„(x) = A(|/J > x), F„ > ônl[0ii),
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and hence, í>(5„l[0e))->0. If lim sup ô„ > 8 > 0, we obtain $(ol[0£)) = 0, con-

tradicting our initial remarks. Hence fn —» 0 in measure.

Now || • || is clearly a symmetric lattice quasinorm with the Fatou property and

L[p; $] is a a-complete lattice. To show L[p; $] is complete it suffices to show that

if/, > 0 and ||/„|| < 2'" then 2/, converges. Clearly 2/„ converges in L0 to g say.

If Gn is the distribution of 2"_i/ and G the distribution of g then Gn(x)1G(x) for

0 < x < oo and sup í»(Gn) < oo. Hence ®(G) < oo and g G L[p; 4>]. A similar

argument shows that

i=i
< lim sup 2/, 2/,/=i

• 0   and   n —» oo.

Theorem 9.2. Suppose X is a p-convex symmetric a-complete quasi-Banach

function space. Then X = L[p; <I>]/or some 4> G A^,.

Proof. We may suppose the lattice quasinorm on X is symmetric, has the Fatou

property and satisfies (9.1.1). Then define

*(*")= ll/|f.    f^x>
= oo,       / f X,

where F G g and/ G L0 is such that X(|/| > x) = F(x), x > 0.

We do not know whether every L[p; <I>] is /»-convex. However we obtain a

positive result with one further hypothesis.

Definition. $EAf is totally symmetric if

<S>(tF) = t<t>(F),       F G g, 0 < t < 1. (9.2.1)

A a-complete quasi-Banach function space X is totally symmetric of order p if

X = L[p; $] for some totally symmetric $eAf.

In terms of the quasinorm on L[p; 4>], total symmetry implies that if F G 65 and

a: B -» K is any Borel map such that X(o~~lA) = X(A)X(B), r G 65, then the map

RB: L[p; $] -» L[p; $] given by

RJ(t) = f(at),        t E B,

= 0,       t G B,

satisfies WRJW = X(F)'/"||/||,/ G L[p; *].

Of course the spaces L[p; oo] and Lp are totally symmetric of order/»; so are the

intermediate Lorentz space L(p; q), where/» < q < oo.

Lemma 9.3. Suppose 4> G Ap is totally symmetric and 0 </» < 1; then there is a

countable collection 911 (<I>) of continuous increasing functions M: [0, oo) —» [0, oo)

such that:

M(0) = 0.

M(x + v) < M(x) + M(y),        x, y > 0.

(1 - /»)$(F) <      sup       f°° F(x) o-M(x) < $(F),
Ai e 9H(4>)   A)

/

(9.3.1)

(9.3.2)

S.     (9.3.3)

Remark. /¿° F(x) ¿A^x) = /^ M(|/(/)|) o-X(i) if/has distribution F.
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Proof. It clearly suffices to produce 9H(4») so that (9.3.3) holds for simple F. Let

S be the linear span of the simple functions in g. For F G S we define

it(F) = inf(/4>(G): F < tG, 0 < / < oo, G G S).

Then w is a sublinear functional on S ; indeed it is easy to see that m is positively

homogeneous. Further, if F, G S (/' = 1, 2) and £ > 0, there exist G, G g (/' = 1, 2)

and /, > 0 (í = 1, 2) such that f,4>(G,) < w(F,) + e/2 (i = 1, 2) and F, < t,G,

(i = 1, 2). Suppose (without loss of generality) that tx > t2 so that t2 = stx with

0 < j < 1. Then

F, + ^^/.(Ig.+^G,)

and

■n(Fx + F2) < 2tx^Gx) + $(|*G2)) < W(F.) + -n(F2) + e.

Since £ > 0 is arbitrary, it is sublinear. If F < 0, ir(F) = 0. If F G g and F < /G

with G G g and /> 1 then F~'F < G and hence $(/"'F) < <Ï>(G). Hence u-(F) =

$(F) for F G g.

Now for each F G S with rational values and discontinuities, choose linear p:

o ^ R such that p(G) < ir(G) (G G o) and p(F) = tt(F), by the Hahn-Banach

Theorem. The collection A of all such p is countable. If p G A, then p(F) > 0

whenever F > 0, since -n(F) = 0 for F < 0, and 0(F) = suppeA p(F), F G g

(since there is a sequence F„ G § with rational values and discontinuities such that

F„(x)tF(x) for all x).

The function 9 \-> p(F9) is decreasing if F G g and

(1 - /») f1 p(F9) d9 < (1 - /») f ' 9 -p®(F) d9 < $(F), (9.3.4)
^o -'o

(1 - P)fl p(Fe) d9>(\- p)p(F),       F G g n S. (9.3.5)

For fixed p, let

and

N(x) = p(l[(U))

A»
M(x) = (l-/»)xf    ^-du,       x>0.

We let 9lt(<ï>) be the set of such functions M. First observe that M(0) = 0 and that

M is continuous.

Now,

(1 -P)[l p(\lo,xe-<))d9 = (\ -p)fl N(x9~l)d9= M(x)

upon substituting u = x9~\ Since p is a positive linear functional, M is an

increasing function. Further, if F G § n g, (1 - /»)/¿ p(Fe) d9 = /£> F(x) dM(x)

(since A/ is continuous). Now (9.3.4) and (9.3.5) imply (9.3.3). To conclude, we

show (9.3.2) holds. Indeed,
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* Jx U

is monotone decreasing and this implies (9.3.2).

Theorem 9.4. IfO<p < 1 and 4> G Ap is totally symmetric, L[p; $] isp-convex.

Proof. Suppose /,,...,/„ G L[p; <£] and h = fx + ■ • ■ +/„. For £ > 0 select

M G 9H(4>) so that

£ m(|a(<)imm<) >-<*■-*)[i*r-■•]■

Then (1 - /»)[||A||* - e] < 2?,, /* M(\f(t)\) dX(t) by (9.3.2) and hence,

(l-p)[mp-e]< ¿||/f,
i = i

for £ > 0 is arbitrary,

\\h\\p<(i~p)-liu\\p-
1 = 1

Now let g^, be the set of all monotone decreasing right-continuous functions F:

[0, oo) —* [0, oo] such that lim^^ F(x) = 0. If $ G A^, we define its symmetric

extension St': g^ -> [0, oo] by

Sf'(F) = sup(/$(G): G G g, t > 0, tG < F).

Then Sk satisfies the following conditions:

(9.4.1) If F, G G gM, and F < G, then *(F) < *(G).

(9.4.2) If F„, F G g«, and F„(x)fF(x), 0 < x < oo, then lim,,^ *(F„) = *(F).
(9.4.3) If F, G G gM, *(F + G) < *(F) + *(G).

(9.4.4) If 0 > 0 and F G §„, *(F9) = » -p*(F).

(9.4.5) If F G g^, and t > 0, St'(íF) = iSf'(F).

Thus, provided there exists F G g with St'(F) < oo, then S^|g G A^, and is totally

symmetric.

Lemma 9.5. For F E g,

(9.5.1) *(F) > $(F),
(9.5.2) \?(F) < lim sup,^0 <-'4>(/F),

(9.5.3) // $ is totally symmetric, <Ï>(F) = ^(F).

Proof. Only (9.5.2) requires proof. If £ > 0, G G g and / > 0 such that tG < F

and /4>(G) > Si'(F) - e/2. For t = m/n E Q, so that r < t, t$(G) > Sf'(F) - e.
Thus for any N,

Ml) - «
and hence,
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However,

G F

Nn      Nm

and hence,

The result now follows.

Theorem 9.6. Suppose X is a symmetric a-complete p-Banach function space,

where 0 </» < 1, jo that X = L[p; 4>] for some $£Af Let S^ ¿»e the symmetric

extension o/O. Suppose T E Z(Lp, L0) has distribution w(t, x). Then a necessary and

sufficient condition that T E Z(Lp, X) is that

ess sup *(w(t, ■)) = C < oo (9.6.1)
t£K

and then \\T\\ < Cx/p(\ - p)~,/p.

Proof. Let v, be the kernel of F and ax(B) = fK Ax(v,)[B] dX(t), B E 65, x > 0,

so that ax(B) = fB w(t, x) dX(t). Consider the condition

*[ax(B)] < C*X(B),       F G 65. (9.6.2)

If St'(F) = oo, unless F = 0, (9.6.1) and (9.6.2) are trivially equivalent.

Otherwise, we observe that if (9.6.2) holds, then for M G cD\i(^),

f°°   f w(t, x) dX(t) dM(x) < C*X(B),       B G 65,
■A)       J B

and so by Fubini's theorem,

f    w(t, x) dM(x) < C*    a.e.
■'o

Since 91L(S^) is countable, we obtain

¥(>(/, •)) <C*(1 -/»)"'    a.e.

Thus (9.6.2) implies (9.6.1) with C = C*(l -/»)"'. Reversing the reasoning (9.6.1)

implies (9.6.2) with C* = C(\ -/»)"'.

Now suppose (9.6.2) holds. Then if T is elementary, (9.6.2) implies that T G

Z(Lp, X) and ||F|| < (C*)l/p, since ax(B) is the distribution of T\B. Hence this

statement also holds for locally elementary T. To obtain the result for general T,

we appeal to Lemma 8.4. It is sufficient to show |F| G &(Lp, X), and Lemma 8.4

allows us to define an increasing sequence Vn of positive locally elementary

operators such that VJ\ Tf a.e. for / > 0. Clearly the preceding argument shows

IKII <(C*)1/"andso||F|| < (C*)x'p.

Conversely, suppose F G t(Lp, X). Without loss of generality we may suppose

T > 0. Suppose first F is elementary and of the form Tf(t) = a(t)f(at) where a > 0

is a simple Borel function and a: K ^> K is Borel. Let bx, . . ., b, be the nonzero

values of a and let B¡, = {t: a(t) = /»,}. Since T is continuous into L0, the measures

y¡(E) = X(a"'£ n B¡), E G 65, are absolutely continuous, and hence we may

write y,(C) = /c /i,(i) a"X(/), F G 65, where hx, . . . , h, are positive Borel functions.
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Next decompose K into Borel sets Ax, A2, . . . such that c,-, < h¡(t) < 2cip t G Ap

i = 1, 2, . . ., /. Suppose F c Aj (some j) and F e E are both Borel sets of

positive measure. Then the distributions of T\F and T\E are x h> ax(F) and

x h-» ax(F) and these must satisfy

1   X(F)

2   X(E)
ax(E) < ax(F),        x > 0,

and hence,

*({ $9;^) <m'nn, Fee.

Allowing F to vary we obtain

H«X(E)) < 2|| FfX(F),        F c ¿,. (9.6.3)

Since Sf' is subadditive, (9.6.3) holds for all F G 65 .

For general positive elementary operators we simply approximate by an increas-

ing sequence of "simple" elementary operators as above to obtain (9.6.3). This

gives (9.6.3) also for locally elementary operators and hence by Lemma 8.4 for all

F G t(Lp, X).

Corollary 9.7. t(Lp, X) ¥= {0} // and only if Lp c X.

Proof. t(Lp, X) ^ {0} if and only if *(F) < oo for some F ^ 0. If * is totally

symmetric and Sk(l[0tl)) = 1, then it is easy to see S^(F) < /£" F(x) d(xp). Hence

Sf'(F) < oo for some F ^ 0 if and only if ^(F) < cJq F(x)xp~l dx for some c and

this is if and only if 4>(F) < c/¿° F(x)xp~l dx, i.e., L[p; 4>] d Lp.

Theorem 9.8. Let X be a separable symmetric a-complete p-convex function space.

Then X is isomorphic to a quotient of lp if and only if X = L[p; í>] for a totally

symmetric O.

Proof. Suppose X = L[p; 4>] where 4> is totally symmetric. Since X is separable

the simple functions are dense in X. Suppose/ is simple; then/ may be "split" so

that

/ = /,"+ K + ■■ ■ +fr

where /¿+J, + fif1 = /*+' 0 < * < 2"), then/; (1 < k < 2") have disjoint sup-

port and identical distributions Fn. If F is the distribution of F, F„ = 2~"F.

Now let E(n;j) be the partitioning of A described in Proposition 4.2. We define

T: Lp^ L[p; *] such that T\E(n^=ff. Then, ||F1£(^|| < 2-">||/|| and hence

II ̂ 11 < cll/ll> where c is a constant such that

li/i +••• +/J < cp(\\fxf + • • • +11//)
forg„ . . .,g„ G L[/»; $].

Let {An} be a sequence of simple functions dense in the unit ball of L[p; i>]. For

each n, select as above F G t(Lp, L[p, $]) so that || T\\ < c and Fl^ = hn. Define

S:lp(Lp)-+L[p;<î>],        S(fn) = 2 TJ„.
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Then ||5|| < c2 and is almost open. Hence 5 is a surjection; since lp(Lp) at Lp, the

theorem is proved.

Conversely if X is a quotient of Lp, the pair (Lp, X) is transitive (cf. [12]) i.e.

given/ G X there exists F G t(Lp,X) such that T\K = f. However, Theorem 9.6

shows that if X = L[p; $] then each F G t(Lp, X) maps into L[p, V] where * is

the symmetric extension of $. Hence, L[p, ty] = L[/», i>] = Z.

Remark. If we remove the condition of a-completeness we must allow the

possibility that X is the closure of the simple functions in some L[p; $] for totally

symmetric 4>.

Example 9.9. If p < q < oo, L[p, q] is a quotient of Lp which contains no copy

of/,.

Proof. It is only necessary to show lp does not embed in L[p; q]. If F„ . . . , F„

G g

(/o"(2 **»•**•- äxf > c(2 (/; fx^'x^ **p),/r.

where r = 2 if q < 2p and r = 9//» if 9 > 2/», and c is some constant (see [25]).

Hence if/,, . . . ,/, G L[/», #] have disjoint supports,

ii/, + ---+/x>c(2ii/irr
so L(p, q) satisfies (8.1.1). Hence if lp embeds in L[p, q] there is a sequence/, with

disjoint supports so that ||/|| < 1, but for all n and all /, < l2 < ■ ■ ■ < /„,

II//.+ --- +fd>c"l/P

where c > 0. Suppose Fx, . . . , Fn are the distributions of these functions. Since

X(supp/,)-»0, F„(x)-»0 uniformly on [0, 00). By passing to a subsequence we

may suppose Fn basic in Lq/p((0, 00), xq~l dx) and equivalent to a basic sequence

with disjoint supports. Thus,

Í /•*>/  " \q/p \p/9
J       2   ^(*)       xq~x dx\       <Mn"/q.

Thus cni/p < Mnl/q for all n. This contradiction shows that lp does not embed in

L[p, q).

We conclude §9 by giving a partial result on the classification of operators on

L(p, 00) for 0 </» < 1.

Theorem 9.10. Suppose T: L(p, 00) ^> L(p, 00) is positive. Then T E t(Lp) and

\\n,< II^IUoo-

Proof. We shall suppose || T\\p¡a0 < 1. Consider the restriction T: Lp -^ L(p, 00).

We suppose first that F is elementary and (as in Theorem 9.6) Tf(t) = a(t)f(at),

where a: A"—> R is simple and positive. Suppose bx > b2 > • • • > b¡ > 0 are the

positive values assumed by a and let B- = {/: a(t) = b-}. Let hx, . . . , h, be positive

Borel functions so that X(a~lE n F,) = /£ Ä,(r) </X(/), F G 65, fory =1,2,...,/.

Suppose d > 1 is arbitrary. Then we can decompose A" into Borel sets {A¡:

i = 1, 2, . . . } such that c^ < A,(f) < dcu, t E A¡, j = 1, 2, . . ., /. Fix / and let
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0 < £ < X(A¡) be such that

£ < min(of\ of1, ... , b,~\ bx, b2, . . . , b¡).

Let/ G Lp(A¡) be a function whose distribution satisfies

F(x) = £,        0 < x < £,

= e1+px~p,        £ < x <e~\

= 0, X>£_1.

Then ||/||,>a8 - suPo<x<00 xF{xf" = el + i'p.

Now || Tf\\PtCO < ei + ]/p, but Tf has distribution G satisfying

/
G(x) > 2  F(xbj~l)cij'       0 <x < oo,

7=1

and hence

G(l) >  2   Hbi% = 2   e1+"o/c,.
y=l j-\

Thus

2 el+"bfCif < el+",
7 = 1

i.e.,

2 ¿/^ < i-
7=1

Now if F c A¡ is Borel then

\\T\Ef = 2 bfX{o-xE n f,) =2 */[ VO^MO
7=1 7=1 •'«

/

< d 2   ¿/^(F) < i/X(F).
7=1

Hence || TPA.\\p < a,,//'. As this is true for all i,

\\T\\p <dWp

and as d > 1 is arbitrary,

imiP<i. (9.10.1)
Now it follows that (9.10.1) holds for elementary F by approximation of a(t).

Then (9.10.1) also holds for locally elementary F.

Now we apply Lemma 8.4 to introduce the sequence S„. Then for each n

0 < 5, + • • • +Sn < F and hence ||5, + • • • + S„\\p < 1. From this it follows

easily that HFH, < 1.

10. Miscellaneous results. Suppose G is a compact metrizable group and X is

Haar measure on G. Then the translation invariant operators T: Lp —> Lp (0 < p <

1) and F: Lp —» L(p, oo) have been classified by Sawyer [30] (for the circle group)

and Oberlin [23], [24] for general locally compact groups.
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Suppose $ is a totally symmetric function in Ap. Then /(/»; <ï>) denotes the

sequence space of all (£„) such that $(F) < oo where F(x) is the number of n such

that |£„| > x, and we also denote by <E> the symmetric extension of 4>. For simplicity

we shall suppose G abelian in the next two theorems.

Theorem 10.1. Suppose T: Lp(G)^>L[p, $](G) (0 </? < 1) is translation in-

variant. Then

F/=ju*/,        fELp, (10.1.1)

where ¡j. = 2^L, è„8(gn), with (gn: n E N) a sequence of points in G and (£„) G

/(/»; $). Conversely, */(£„) E /(/»; <ï>), (10.1.1) defines a translation-invariant operator

T E t(Lp, L[p; $]).

Proof. Suppose F has kernel g\-^> vg. Then for a dense sequence {/,} c C(G),

we have, for fixed g E G

Tfn(gh) = ( fn(t) dvgh    a.e., A G G,
JG

= ífn{gt)dvh   a.e., A G G.
•'G

In particular \\vg\\ is a translation-invariant function in LX(G); hence ||j> || is

constant almost everywhere and so F G £(L,). Thus (see [33]), 7/ = ju, */,/ G Lx,

where /x G 91t(A"). By the uniqueness of the kernel, Tf = ¡x * f, f E Lp, and

M = 2"=1 èn8(g„) where g„ E G are distinct, and 2|£J < oo. Now j-A =

2„°_, |no(/!"'gn) a.e. and hence Ax(vh) = Ax(ju) a.e. Thus F has distribution w

where

w(t, x) = Ax(ju)    a.e., 0 < x < oo,

= F(x),

where F(x) is the number of n such that |£J > *• Then F G £(£,, L[/»; $])

provided $(F) < oo. The converse is easy.

Examples. (1) F G t(Lp, L[p, oo]) if and only if £„ G /(/», oo), i.e., sup„ nx/pg

< oo, where (£*) is the decreasing rearrangment of (£„) (see Oberlin [24]).

(2) T Et(Lp; L[p; q)) (/» < q < oo) if and only if £„ G /(/»; q), i.e.

^/F 2 (C)?f   i«/'-Idr<oo,
n = l "/n-l

oo

2 (cr["?/' - (» - O*7'] < oo
n=l

which is equivalent to

2 (OV""' < oo-
n=l

(3) If r 6 £(/,,, L0) is translation invariant, the same proof combined with

Nikisin's theorem shows that sup„ nl,pi* < oo, i.e. F G £(Lp, L(p; oo)).
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Theorem 10.2. Suppose /x G 911(G) and for each f G L[p; oo], w */ is well

defined, i.e. for almost every g G G,

/V(g/0MHC0 < ^. (10.2.1)
JG

Then

M - 2 i,S(g„) (10.2.2)

where (gn) is a sequence of disjoint points in G and

2 \Q" < oo- (10.2.3)

Conversely, if (10.2.2) a«¿/ (10.2.3) hold then ¡i * f is defined for all f E L(p, oo).

Proof. If ii * /is defined for each/ G L(/», oo), we define

7/ = M*/>       /GL[/»;oo].

It is easy to see (by considering/ G L, first) that Tf G F0. Also if ||/„|| < 2"", then

2|/„| converges in L(p; oo). Hence | ii|*2|/J is well defined and so | ii|*|/„| -> 0 a.e.

Then | ii|*/„ -» 0 a.e. Thus F: L[/»; oo] -» L0 is a linear operator.

Now by Nikisin's theorem there is a positive function <p E L0 such that M^T E

£(L(/»; oo)) where

MJ(i) = <p(/)/(i).

Now A/^F > 0 and hence by Theorem 9.10, M^T G £(/},). Now this implies that

<P(0ll Mllp < °° f°r almost every t; thus (10.2.2) and (10.2.3) follow.
The converse follows easily from the/»-convexity of L[p; oo].

To conclude, we observe that our main theorem 7.2 implies a similar result for an

F-space X in place of L0 provided there are enough linear operators T G £-(X, L0)

to separate points. It is easy enough to produce spaces X which fail this property

and for which t(X, L0) = {0}. An example is the space Lp/Hp considered in [10]

(for the same reasons as in the proof of £(Lp/Hp, Lp) = {0} given in that paper).

We now prove a related result concerning this space. For convenience we convert it

to a real space, by the process of taking real and imaginary parts.

Let A" = T, u T2 where T, and T2 denote two disjoint copies of the unit circle

T = (z: |z| = 1). Let X = 1/2(X, + X2) where X, and X2 denote Haar measure on T,

and T2 respectively. Let Hp be the closed subspace of Lp(K) generated by the

function (where 0 < n < oo)

en(z) = Re z",       z G T„

= Imz",       z G r2,

e*(z) = -Imz",       z ETX,

= Re z",       z G r2.

Let/ G Hp if and only if/,(z) + if2(z) E Hp where

/,(z) = f(z),       z E r„

f2(z) = f(z),     z e r2.

Thus Hp is a proper closed subspace of Lp.
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Theorem 10.3. Let X be a a-complete p-Banach lattice with order-continuous

quasinorm (i.e. such that for any monotone decreasing sequence x„ with inf x„ = 0

then inf||x„|| = 0). Then £(Lp/Hp, X) = {0}.

Proof. Suppose F G t(Lp/Hp,X), and let Q: Lp^>Lp/Hp be the quotient

map. Let 5 = \TQ\ E £(Lp, X), and let 51* = u G X. Let Y c X be the linear

span of [— u, u] with [—«,«] as its unit ball; then Y is a Banach lattice which is an

AM-space [35, p. 22]. Hence Y is isometrically isomorphic to a space C(ß) where ß

is a compact Hausdorff space; since Y is order-complete, ß is Stonian (see [35, pp.

59 and 92]). We shall identify Y and C(ß).

Now T(C(K)) c C(ß) and F: C(A") -» C(ß) is a linear map of norm one at

most. Hence

Tf(o>) = f fdv„,       / G C(A-),
•'a:

where -„ G /x(^) and ||-J| < 1.

For any u E ß,

f <?„ oV = f e* aV   = 0,       n = 0, 1, 2,_

Let ti, and /^ be the measures induced on T by vJ\Tx and pjr2. Then

f Re z" rfii, + f Im z" a"u2 = 0,

- Í Irnz" a/x, + T Re z" a"^ = 0,

so that

[ z"d(tit -//t2) = 0.

Now by the F. and M. Riesz Theorem [6, p. 41], ti, — /'ii2 is absolutely continu-

ous with respect to Haar measure on the circle. Thus va is X-continuous for every

w G ß.

Let U = {/ G Lp(K): ||/||œ < 1}. We shall show T(U) is relatively compact.

Suppose not; then we may find a sequence of continuous functions/, such that

\\Tfn- Tfm\\>e>0,        m^n,

and H/Jloo < 1. By passing to a subsequence we may suppose (/„) converges in

a(Lx, Lx) and hence that if g„ = /„ -/„+„ g„^0, o(LB) Lx), \\Tg„\\ > e, n =

1,2,-Now Fg„(w) -» 0, w G ß. Let

A« = sup(|Fgn|, |Fgn+,|,...)

in X. Then hn < u and /i„ G y. Hence

A„(w) = sup | Tgn(u)|

except on a set of first category in co. Thus hn(u) —> 0 except on a set of first

category. It follows that inf hn = 0 and so inf„ ||AJ| = 0. However, \\hn\\ >

supllFgJI >e.
It follows that T(U) is compact and hence T(U) = 0 (see [10]).
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