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AN APPLICATION OF HOMOLOGICAL ALGEBRA

TO THE HOMOTOPY CLASSIFICATION

OF TWO DIMENSIONAL CW-COMPLEXES

BY

MICHEAL N. DYER

Abstract. Let irbe Zm x Z„. In this paper the homotopy types of finite connected

two dimensional CW-complexes with fundamental group it are shown to depend

only on the Euler characteristic. The basic method is to study the structure of the

group Ext¿„(/ir2, Z) as a principal End(/w2)-module.

1. In this paper it will denote the noncyclic group Zm X Z„, which is the product

of two finite cyclic groups Zm and Z„. Thus the gcd(w, n) ¥= 1. For convenience,

we will always assume that m divides n. This is no restriction.

Let X9 denote the two dimensional CW-complex modeled on the presentation

'S = [x,y: xm,y", [x,y]} of it and let ir2 = ir2X9. X9 is called the standard model

and ir2 the standard module. The study of this 7r-module ir2 forms the basis of this

paper.

For any 0 G Aut it and any w-module M, the module 9M has action given by

g * m = 9(g)m for any m G M, g G ir. Two modules M, N are said to be

9-isomorphic iff there is an isomorphism a: M -*eN. The module ir2 splits as a short

exact sequence Z >^>ir2 —►* (Iir)2 where Z is the trivial w-module and Iir is the

augmentation ideal in Zir. By studying the group Ext(T7r2, Z) we prove the

following crucial theorem.

Theorem A. For any it- module M such that M © Zir =sir2® Zir, we have

M = gir2 for some 9 G Aut it.

Hence, M is stably isomorphic to tt2 iff M is 0-isomorphic to ir2 for some

0 G Aut it.

The group H3(ir; ir2) is isomorphic to the cyclic group Zmn [D„ §2]; to each

integer q prime to mn, there is a projective ideal (q, N) c Zir generated by q and

N = (27L, x'JÇZ,^ ,/). The function 3: Z^, -» K0Zir given by d(q + (mn)) =

{(q, N)} G K0Zir is a homomorphism. A 0-isomorphism a: ir2^>9ir2 has degree

k G Z*„ iff (0*)_1a,(l) = k in the diagram:

H\it; TT2)a-lH\iT; 9ir2)tH\ir; ir2).

Theorem B. For any k e ker 3 c Z^, there is a 0 G Aut it and a 9-isomorphism

a: tt2 -^gir2 of degree k.
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We prove Theorem A in §4 and Theorem B in §5.

The following Corollaries 1 and 2 follow from A and B just as in [D2, Theorem

5.5].

Definition. A (G, 2)-complex is a finite, connected, 2-dimensional CW-complex

having fundamental group isomorphic to G.

Corollary 1. Any two (Zm X Zn, 2)-complexes have the same homotopy type iff

they have the same Euler characteristic.

In the language of [D2], the homotopy trees HT(Zm X Z„, 2) have essential

height zero.

Corollary 2. Let X be a CW-complex with fundamental group isomorphic to

Zm X Zn and suppose that X is dominated by a (G, 2)-complex. Then X has the

homotopy type of a (Zm X Zn, 2)-complex iff the Wall obstruction vanishes.

In the homotopy classification of G-complexes for G finite abelian, these results

fill in a gap that existed between G cyclic [DJ and G having more than two torsion

coefficients [SD]. A technique similar to this may be decisive in determining the

isomorphism and 0-isomorphism classes of the minimal (G, 2)-modules detected in

[SD], for G finite abelian.

2. A study of Ext((Tw)2, Z). By looking at the cellular chain complex of the

universal cover X9 of the standard model X9, we may identify ir2 as the kernel of

the following exact sequence:

\NX     \-y  0l

[0      x-lNy\ (x-l,y-l) (2.1)

¿*(X,f) : n2 >— (Zn)3 - -^ (Ztt)2-^-► Zn -^> Z.
a2 dx

For an integer r>0 and zGw, let <z, /•> = 1 +z+ ■ • • +zr~x. Then Nx = (x, m)

and Ny = (y, n}. The map e: Zir^Z is the augmentation homomorphism. It is easy

to see that tt2 has generators the columns of the matrix

' x - 1    y - 1 0 0

0 Nx        -Ny 0

0 0        x - 1    y - 1

Label the columns g,, g2, g3, and g4 respectively.

Let Tj13: (Zir)3 —> (Zir)2 denote the projection on the first and third coordinates.

tj = rtX3\ir2 has image Iir2 and kernel ir2 = [a G ir2\ga = a for all g G it} = Z =

Ztt(0, N, 0), where N = <x, m)^, a). Thus the extension class [S] of the exten-

sion

ê> : Z >^> ir2 —*+ Iir2

is a member of Ti = Ext-^Tn-2, Z). Sometimes, we will denote the class of the

extension S: Z >-> M -h> Ttt2 by [<SU]. Using the fact that ExtlZv(Iir, Z) a

TT2(tt; Z) a Extz(w, Z) » it, we see that Ext(T?72, Z) s it2. We will think of Ti as



classification of two dimensional CW-COMPLEXES 507

2X2 matrices

Z.     Z„
E =

Z„     Z„

Ts may be considered as a right module over the ring End(T7r)2 as follows: to each

a e End(Tw)2 and each extension class [S] e E we associate the extension class

[Sa] which is the pull-back of AT by a. Thus

Sa:     Z>->     Ma      ->->      (Iir)2

II 4 4«
S:      Z^      M      -w      (Iir)2

In fact, with this action, Ts becomes a principal End(Tfl-)2-module with generator

[&]. To see this, we use the long exact sequence for Ext^. associated with S [HS,

p. 139]:

Hom(T7T2, ir2) -» End(Tw)2-^Ext(Ti7-2, Z) -» Exl(lir2, it2) ->_

The boundary operator 3 is described by 3(a) = [Sa]. Sometimes, when the basic

extension is clear, 3(a) will be denoted by [a]. But, by using the exact sequence 2.1,

Extxz„((Iir)2, ir2) = Ext2z„(Z2, ir2) = [TT2(7r; ir2)]2 = 0 [D,, Lemma 6.7]. Thus we

have proved the following lemma.

2.2 Lemma. Ext((Tn-)2, Z) is a principal End(Iir)2-module with generator [& ].   □

Definition. Let §(E) = {[S] e \[S] is a generator of Ti as an End(Tff)2-

module}.

2.3 Lemma. Suppose that M is stably isomorphic to the standard module ir2; i.e.,

M © Zir £572e Zir. Then, if M„ = M/M", the extension SM: Z = AT^>

M —»-» Mv = Iir2 generates E as an End((Iir)2)-module.

Proof. If we can show that M is an extension of Z = M™ by Iir2, then

[SM] e §(E) follows using the argument above (with the exact sequence SM)

together with the fact that

TT2(7T, M) = H2(ir; M © Zir) = H2(ir; ir2 © Zir) = H2(ir; ir2) = 0

since H2(ir; Zir) = 0 for any finite group [CE, p. 233]. To prove the first statement,

observe that

M © Zir s tt2 © Zir => M„ © Zir/ (N) s („-^ © Zir/ (N).

A careful, but elementary argument shows then that Mv © Iir = (ir^)^ © Iir. Be-

cause Tff (and hence (Ttt)2) satisfies the Eichler condition [SE, p. 176] and Iir is a

direct summand of (ir2)w = (Iir)2, we have, using Jacobinski's cancellation theorem

[SE, Theorem 19.8], that Mv = Iir2.    □

Note. For any (it, 2)-complex Y, and any isomorphism a: ir ^nrxY it follows

that air2(Y) © Zir = ir2® Zir. These modules are therefore of topological interest.

We will show in Theorem 4.2 that the converse is also true; that is,

[S] e § (E) implies that M is stably isomorphic to ir2.
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We identify the ring of endomorphisms of it ( = End it) as a subset of Ti.

Notation. For each integer a, let äk be the residue class of a (mod k).

Let

End it = i a =
K
d„

G Ti
Z„ z„

n divides bm

Multiplication of two elements in Ti (as 2 X 2-matrices) is well defined iff they are

in End it. Aut ir G S(E) is the subset of End it G E consisting of invertible

elements. Note that a(x'y') = xcJ+diyaJ+bl can De computed from

a    A]'A = (aj + bi\

c   d\\i)     \cj + di)

(observe that we have interchanged x and y).

In general §(E) is bigger than Aut it, as S(Ts) contains the image of GL(2, Z) in

Ti. For example,

'(i !)] "

is always in §(E), but never in Aut it.

2.4 Lemma. LAe boundary operator 3: End(Tw)2 Ts is described by carrying each

K G Zir)

to

e(aii)n       e(ax2)n

e(«2i)„       e(«22)m

Proof. We are thinking of E as End(T7r)2/P, where

B a G End(/7r)2

(In)2

a coextends to 7r,

(In)

B is always a right ideal, but it is not a left ideal unless m = n. The identification of

Ts with ir2 is accomplished as follows: Identify each element a with a 2 X 2 matrix

«22

where each aij G Zir. This can be done because End Iir = Zir/(N) for any finite

group it. By direct computation one may show that any map ß = ( &.) coextends,

provided each ßtj G Iir. One simply shows directly that, if Eij (i,j = 1, 2) denotes

the elementary 2x2 matrix with a one in the i/'th slot and zeros elsewhere, then

(x — l)E'J and (y — l)E'J coextend. The ß given above is a linear combination of

(x - l)Eij and (y - l)EiJ (because each ß0 = ß^(x - 1) + ßtJ(y - 1)), and hence
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coextends. For example, ß = (x°_, £) coextends by the map ß: (Iir)2 -» ir2 given by

defining ß(x - 1, 0)_= (x - 1)(0, - Ny, x - 1), ß(y_- I, 0) =

(y - 1)(0, 0, x - I), and ß(0,y - 1) = 0 = ß(0, x - 1). Then tj ° ß = ß and we

are done provided ß is well defined. Using 2.1, we identify HomZ7r(Iir, M) with [a:

(Zir)2 -» M: a\im 32 = 0}. It is easy to check that the map a: (Zir)2 —> ir2 which

sends (1, 0) -» (0, -(x - l)Ny,(x - I)2) and (0, 1) -» (0, 0, (y - l)(x - 1)) is zero

when restricted to im 32. Then ß = (ä, 0): (Iir)2 —» ir2.

Thus each a = (a¡j) in End(T7r)2 is equivalent mod B to the map (e(a¡j)) with

integer entries. One may further show that the matrices nEXJ and mE2J coextend

(j = 1, 2). For example, <_y, rt>Ts" coextends via a map (Tw)2 —> ir2 defined by

carrying (x - 1, 0) h> ((* - l)<.y, n>, 0, 0) and (.y - 1, 0), (0, x - 1), (0,y - 1) all

to zero. Thus we see that the map 3: End(T7r)2 —«■ Ext((Iir)2, Z) can be described

by

"22
H»

e(«n)„       E(an)n
a

£(«2l)m e(«22)„

We will isolate several subsets of § (E), which we then proceed to study. Let

S§(E) - {[®M] e E\M © Zir =ir2® Zir),

sIso = {[^a/] G £|A/ ^Äff2 f°r some 0 G Aut w},    and

Iso- {[^M] G£|M^W2}.

Clearly, by 2.3, any module M stably isomorphic to ir2 is already an extension of

Z by Iir2.

The following inclusions hold:

@(E) D S§(E) D „Iso D Iso.

The first inclusion follows from Lemma 2.3. The last inclusion is clear; the second

follows as any module M which is 0-isomorphic to ir2 may be embedded in the

sequence: 0-» M—>eC2 -+eCx -*BZir —> Z; thus M is stably isomorphic to ir2 by

Schanuel's lemma.

One can show that §(E) = {["5^] G Ts|AT has the same genus as ir2}. However,

it is not true that any module M of the same genus as n2 is an extension of Z by

Iir2.

For future reference, we record the following easily proved characterization of

Iso.

2.5 Proposition. Let [SM] G §(E). Then M =ir2 iff [S] = [Sa] G E for some

a G GL(2, Zir/(N)) G End(Iir)2.    □

3. Comparison of gir2 and ir29. In this section we compare the pullback ir29 and

the module 9ir2 for any 0 G Aut it. We continue the assumption that m\n.

Let 9& denote the extension Z>->9ir2 —>-» 9Iir2 as Tw2, with the isomorphism given

by [Zo z«-']- Recall that any 0 G Aut it can be written as a product 0 =

EXE2 . . . EkD where each Ts; = [¿ ?] or [{, °] (a,, A, G Z and « divides wa„ /' =

1, . . . , A:) is an elementary automorphism and D = [g £] (/», ^ G Z) is a diagonal

automorphism, provided p is prime to « and q is prime to m [S, Proposition 6].
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0° =
1

rm/n

Definition. If 0 = [¿ ,r] (respectively, [ls % [g °]) is a member of Aut ir (i.e., mr

is divisible by n) then let

(respectively [ J    m[m\]^    °

Then, for any 0 G Aut it, 9° is the element of Aut it defined by writing 9 =

Ts, . . . Tsjg °], where Ex, . . ., Ek are elementary automorphisms, and setting 0° =

0,° • • • 0*°[o "]• Notice that (0°)° = 0.

3.1 Theorem. Tor any 0 G Aut 77, [9S] = [S0°] and [S0] = [9oS].

Proof. Let 0 G Aut it be written as a product of a diagonal automorphism

D = [g °] and a product Ts, . . . Ts^ of elementary automorphisms. The theorem will

follow from the fact that [S(ajS)] = [(Sa)/?] and (aß)ir2 = ß(a^2) provided we can

show that the theorem is true for D and Ts,. We will give only the proof for

0 = [!_r ?] (i.e. 9(x) = x, 9(y) = x~ry), as the others are similar.

3.2 Lemma. Let it = Zm X Z„, with m\n, and 9 = [_?, % 0° = [¿ m{m]. Then

[9&] = [S0°]m Ext(Tir2, Z).

Proof. Let j3 = 27„i/"'<*, n>, fc = rn/m, and 0 = 0 "' = [\ % Straightfor-

ward calculation using 2.1 shows that the matrix

1 0 Â:
0 xr ß

0     0      1 _

defines a map from C2 = Zirex © Zire2 © Zire2 -* „C2 = 9Zirex © 9Zire2 © gZire3

(i.e., e, —> (1, 0, 0), e2 -» (0, Jtr, 0), e3 —» (/c, /3, 1) and extend linearly) which sends ir2

(c C2) into 9ir2 (c #C2). This same matrix defines a map from 9C2^> 9(gCi) = C2

and hence a map 02: 97r2 —» w2. On the generators for 9ir2, 02 looks like

9(x — 1) * ¿e, = (jc — l)e,

h^ 0"(x - l)e„ 9(y - 1) * 9ex + 0(tfx) * ,e2 = (y

h+ 9(y - l)e, + xr9(Nx)e2, 9(-Ny) * 9e2 + 9(x -

= (0, -Ny,x- 1)

1-* A:0(x - l)e, + (-xr9(Ny) + 9(x - l)ß)e2 + 9(x - l)e3

and finally,

Hy - O * te3 = (y- l)e3 ^ k9(y - l)ex + ß9(y - l)e2 + 9(y - l)e3.

Inspection shows that 02 induces a map 02: 9(Iir)2 -» (Iir)2 with matrix [¿ *]. Here, 1 :

9Iir —> Iir is the map induced by Z0: 9Zir —» Zir. Let Z0 denote the isomorphism

In induced from Z0: Zir —> gZir. The composition

■ 1, Nx, 0)

1) * 9e3

Iir

(Iir)2

yields a map with matrix [¿ *].    □

v 0    zb) ,
■ (Iir)2



classification of two dimensional cw-complexes 511

4. Characterizing 3(E). We will now characterize the set 3(E) of generators of

Ts = Ext(Tw2, Z). For each a = (a¡f) G End(Tw)2 (aiJ G Zir), let e(a) denote the

integer matrix with entries e(aiJ) (i,j = 1, 2).

4.1 Proposition. Let a = (a,7) G End(Tw)2 (a,. G Zir). The following are equiva-

lent:

(a)[a]e3(E).

(b) 3a' G End(Tw)2 swcA that aa' - 1 G B.

(c) The determinant of e(a) is prime to m and there are integers s, t such that

e(axx)s + e(ax2)t = 1 (mod «).

(d) TTiere is an integer matrix y = [ac hd] such that

yn

K
d.

GL(2, Z„)

and [a] = [y] G E.

Proof. (a)=>(b). If [Sa] G 3(E), then [S] itself must be a pullback of Z

>-*ir2a -»-» Iir2 by some a': Iir2 —» T772. Thus [S ] = [Saa'] imphes aa' — 1 G Ti.

(b) => (c). It is easy to see that the correspondence [a] G Ts (-> det e(a) G Z is

well defined modulo m. aa' — 1 G B imphes det e(a) ■ det e(a') s 1 (mod m).

Thus det e(a) is prime to m. Furthermore, e(axx)e(a'xx) + e(aX2)e(a'2x) — I = 0

(mod n) follows by looking at the 11-coordinate of 3(aa' - 1).

(c) => (d). Because m divides n, the natural map 5n r-* âm (a G Z) induces a

surjection Z* -» Z*. Let a* = det e(a). a" is prime to m, so there is an integer / such

that d + Im is prime to n. se(axx) + te(aX2) = 1 + kn then yields d + 1(1 + kn)m is

prime to n. Now consider the integer matrix

e(axx) e(aX2)

e(a2x) — Itm     e(a22) + Ism
y =

We claim that y represents an element of GL(2, Z„); i.e., that det y is prime to n.

Consider

det y = d + lm(e(axx) ■ s + e(aX2) ■ t) = d + lm(l + kn),

which is prime to n. Clearly [y] = [a], by Lemma 2.4.

(d) => (a). Choose an integer matrix y so that [y] = [a] in Ts and y„ G GL(2, Z„).

Let y' be an integer matrix which represents the inverse (y„)~'. Then (yy' — 1)„ =

0 implies that 3(yy' - 1) = 0. We claim that ay' - 1 G B. Choose A G Ti so that

a = y + b. Then ay' - 1 = (y + A)y' - 1 = yy' — 1 + Ay'. But Ti is a right ideal,

so Ay' G Ti. Hence ay' - 1 = yy' - 1 = 0 (mod B) and a G S (Ti).    D

4.2 Theorem. 3(E) = 9Iso.

Proof. By Proposition 4.1, given any [a] G 3 (E) there is a 2 X 2 integer matrix

A = [" bd] whose determinant is prime to n, and such that [A] = [a] G Ts. Consider

An as the matrix mod n, that is to say, A represents an element of GL(2, Z„) =

Aut(Z„ X Z„). By Proposition 6 of [S], A = EXE2 . . . EkD (mod n) where D =

[g °] is a diagonal automorphism (p, q are prime to n) and each Ts, is an elementary
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matrix of the form [¿ }'] or [xy¡ °], with p, q, y, G Z. Let M = EXE2 .-. . EkD be the

integer matrix which is the product of Ex, E2, . . ., Ek, and D. Then

[ëa] =[&A] = [SAT]    (because a =A = AT mod B)

= [(... ((&Ex)E2)--.Ek)D]

(because pullbacks commute with composition).

But, by Proposition 2.5

ir2 = ir2Ex = ir2ExE2 s • • •  s t^Ts, • ■ ■ Ek

because each Ts, G Aut(Tw)2. D is a member of Aut it implies that

ir2 = ir2Ex ■ ■ • Ek s Dir2M = Dir2a

by invoking Theorem 3.1.    □

We have seen in §2 that the map 3 = 3|GL(2, Z<n/(N)): GL(2, Zir/(H)) ---3(E)

is onto the subset Iso. We.wxnild like to determine im 3. As above, each elementary

automorphism a = [¿ \] or [^ °] yields ir2a » ir2. The diagonal automorphisms

ß_ = [o °] O» q eZ) of it which are clearly in im 3 havep^, q„„ G ker{3: Z^, ->

K0Zir}; for, choosing units mod N u, v G Zir/(N)* such that e(w) = p, e(v) = q

[4, 2.1], we have a = ß °] G GL(2, Zir/(N)) and 3a = ß. We make the following

convenient hypothesis [SD, §4].

Reduction hypothesis. The natural projection Z*„ —> Z* remains surjective

when restricted to ker 3.

The reduction hypothesis is satisfied whenever n = m = p, an odd prime [U].

Whenever the reduction hypothesis is satisfied, the above argument implies that 3

is surjective.

4.3 Corollary. If the reduction hypothesis is true, then each [a] G 3(E) has

TT2a s tt2; i.e., 3(E) = Iso.    □

5. Shuffling A-invariants. Recall that ir — Zm X Zn, with m\n and generators x,y

of order m and n, respectively. For each w-module M, H3(ir; M) is isomorphic to

HomZlT(ir2, M)/%, where % = [ß: ir2-*M\ß extends to a map ß: C2-» M}.

For each a G Homz„(ir2, AT), let {a} = a + Í& be the class of a in H3(ir; AT). If 0

is a member of Aut it, then 0*: H*(ir; ir2)^> H*(ir; ^^ may be computed by

choosing a chain map from Qm(X9) -^9G^(X9) covering the identity.

Zu-2      -+      Ztt     ->     Z

4 4z9 II

2 3|gZir       —>      ßZir     —>     Z

It follows that for any a G End ir2, 9*{a} = {92a} G H3(ir; gir^.

C2

II

ir2      —»      (Zir)

e'!T2     -*     9(z'n')
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*- : (Zir)3 —» 9(Zir)3 induces 02: ir2 —* eir2

If9 = [¿ »J, where p is prime to m (i.e., 9(x) = xp, 9(y) = y), then

\x,p)        0        0-

0 <x,p>     0

_    0 0 1.

The following lemma will prove useful.

5.1 Lemma. Let v G Zir be a unit (mod N) having augmentation e(v) = p. Then

there is a unit (mod N) u G Zir having e(u) =p and such that u = <x,p) +

(y — l)a, for some a G Zir.

Proof. For each v G Zir, let vy G Z(Zm(x)) denote the image of v under the

map Fy: Zir -+ Z(Zm) obtained by setting y = 1. v is a unit mod N implies vy is a

unit mod Nx, which in turn implies that v = w(x,p}, where w is a unit in Z(Zm).

w is also a unit in Zir so u — w~lv has uy = <je,p>. Hence u — <*,/>> is in the

kernel of the map ey. It is easy to see that u — (,x,p} = (y — l)a for some

a e Zir.    □

Recall the homomorphism 3: Z*„ (= units in H3(ir; ir^) -> K0Zir given by

3(/Jm„) = {(p, N)} e K0Zir. It is known that pmn G ker 3 iff there is a u 6 Zir

which is a unit mod N whose augmentation e(t>) = p, [D2, 2.1]. A 0-homomorphism

a: ir2 -^9ir2 has degree k G H3(ir; ir^j iff &{02} = {a}. For each k G ker 3, we will

construct a 9-isomorphism ir2 -^9ir2 of degree k. This will prove Theorem B. We

commence the proof.

Given k^ G ker 3 c Z*„. Choose u e Zir such that e(u) = k and « is a unit

mod N. k is prime to mn implies that k is prime to m2n. Choose an integer/? such

that pk + sm2n = 1. Let 0 be the automorphism which carries x -» xp, y-*y.

pmn «■ k~x in Z*„ impliesp^, G ker 3. Thus there is a t> G Zir such that e(t>) = p, v

is a unit mod N, and t> = <x, p> + (_y — l)a for some a G Zir.

Let e, (/' = 1, 2, 3) denote the natural basis for (Zir)3. Define homomorphisms

Pij-. (Zir)3 -+9(Zmf sending e, -» gy (gy is a generator of ir2, hence, of 9ir2, see §2)

and ek -> 0 (A: ̂  /') (i* = 1, 2, 3; y' = 1, 2, 3, 4). Note that pu = />i7|w2 defines a

degree 0 map from ir2 -^9ir2.

Consider the map AT = xp + apx2: (Zir)3 -^>9(Zir)3. M has matrix

v = (x,p) + (y - l)a 0 0

aNx (x,p)     0

0 0 1

AT = AT|„2: ir2->9ir2 carries gx r^(x" - l)(v, 0, 0), g2^(v(y - 1), aNx(y_^ 1) +

PNX, 0), g3(^(0, -N¿x,p\ x" - I), and g4^(0, 0,^ - 1). The map AT: (Iir)2

—>9(Iir)2 induced by AT then has matrix [¡j ?] and is an isomorphism because v is a

unit (mod N).

We will now alter AT to give an isomorphism ir2 -*9ir2 of degree kmn. Look at

Q = uM + sNp22: (Zir)3 -^9(Zir)3. Q then has matrix

uv 0 0

auNx     u(x,p} + smN    0

0 0 0
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This clearly restricts to a map Q: ir2 -+9ir2 having degree fc^, because {Q} = {u92

+ uapX2 + sNp22} = {u92} = {e(u)92} = k{92}. Clearly Q induces the same map

as «AT on Iir2 -^9Iir2 (sNp22 restricted to (Iir)2 is zero) and is an isomorphism. We

need only show that Q\„, is the identity: g(0, N, 0) = («<x,p> + smN)(0, N, 0)

= (kp + sm2n)(0, N, 0) = (0, N, 0).    Q
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