AN APPLICATION OF HOMOLOGICAL ALGEBRA TO THE HOMOTOPY CLASSIFICATION OF TWO DIMENSIONAL CW-COMPLEXES

RY

MICHEAL N. DYER

ABSTRACT. Let π be $Z_m \times Z_n$. In this paper the homotopy types of finite connected two dimensional CW-complexes with fundamental group π are shown to depend only on the Euler characteristic. The basic method is to study the structure of the group $\operatorname{Ext}^1_{Z\pi}(I\pi^2, Z)$ as a principal $\operatorname{End}(I\pi^2)$ -module.

1. In this paper π will denote the noncyclic group $Z_m \times Z_n$, which is the product of two finite cyclic groups Z_m and Z_n . Thus the $gcd(m, n) \neq 1$. For convenience, we will always assume that m divides n. This is no restriction.

Let $X_{\mathcal{G}}$ denote the two dimensional CW-complex modeled on the presentation $\mathcal{G} = \{x, y: x^m, y^n, [x, y]\}$ of π and let $\pi_2 = \pi_2 X_{\mathcal{G}}$. $X_{\mathcal{G}}$ is called the standard model and π_2 the standard module. The study of this π -module π_2 forms the basis of this paper.

For any $\theta \in \operatorname{Aut} \pi$ and any π -module M, the module θM has action given by $g * m = \theta(g)m$ for any $m \in M$, $g \in \pi$. Two modules M, N are said to be θ -isomorphic iff there is an isomorphism $\alpha \colon M \to_{\theta} N$. The module π_2 splits as a short exact sequence $Z \rightarrowtail \pi_2 \to (I\pi)^2$ where Z is the trivial π -module and $I\pi$ is the augmentation ideal in $Z\pi$. By studying the group $\operatorname{Ext}(I\pi^2, Z)$ we prove the following crucial theorem.

THEOREM A. For any π -module M such that $M \oplus Z\pi \cong \pi_2 \oplus Z\pi$, we have $M \cong_{\theta} \pi_2$ for some $\theta \in \text{Aut } \pi$.

Hence, M is stably isomorphic to π_2 iff M is θ -isomorphic to π_2 for some $\theta \in \operatorname{Aut} \pi$.

The group $H^3(\pi; \pi_2)$ is isomorphic to the cyclic group Z_{mn} [\mathbf{D}_1 , §2]; to each integer q prime to mn, there is a projective ideal $(q, N) \subset Z\pi$ generated by q and $N = (\sum_{i=1}^m x^i)(\sum_{j=1}^n y^j)$. The function $\partial \colon Z_{mn}^* \to \tilde{K}_0 Z\pi$ given by $\partial (q + (mn)) = \{(q, N)\} \in \tilde{K}_0 Z\pi$ is a homomorphism. A θ -isomorphism $\alpha \colon \pi_2 \to_{\theta} \pi_2$ has degree $k \in Z_{mn}^*$ iff $(\theta^*)^{-1}\alpha_*(1) = k$ in the diagram:

$$H^3(\pi; \pi_2) \stackrel{\alpha_*}{\rightarrow} H^3(\pi; {}_{\theta}\pi_2) \stackrel{\theta^*}{\leftarrow} H^3(\pi; \pi_2).$$

THEOREM B. For any $k \in \ker \partial \subset Z_{mn}^*$ there is a $\theta \in \operatorname{Aut} \pi$ and a θ -isomorphism $\alpha \colon \pi_2 \to_{\theta} \pi_2$ of degree k.

Received by the editors April 17, 1979.

1980 Mathematics Subject Classification. Primary 57M20, 55U99.

We prove Theorem A in §4 and Theorem B in §5.

The following Corollaries 1 and 2 follow from A and B just as in $[D_2$, Theorem 5.5].

DEFINITION. A (G, 2)-complex is a finite, connected, 2-dimensional CW-complex having fundamental group isomorphic to G.

COROLLARY 1. Any two $(Z_m \times Z_n, 2)$ -complexes have the same homotopy type iff they have the same Euler characteristic.

In the language of $[D_2]$, the homotopy trees $HT(Z_m \times Z_n, 2)$ have essential height zero.

COROLLARY 2. Let X be a CW-complex with fundamental group isomorphic to $Z_m \times Z_n$ and suppose that X is dominated by a (G, 2)-complex. Then X has the homotopy type of a $(Z_m \times Z_n, 2)$ -complex iff the Wall obstruction vanishes.

In the homotopy classification of G-complexes for G finite abelian, these results fill in a gap that existed between G cyclic $[D_1]$ and G having more than two torsion coefficients [SD]. A technique similar to this may be decisive in determining the isomorphism and θ -isomorphism classes of the minimal (G, 2)-modules detected in [SD], for G finite abelian.

2. A study of $\operatorname{Ext}((I\pi)^2, Z)$. By looking at the cellular chain complex of the universal cover $\tilde{X}_{\mathfrak{P}}$ of the standard model $X_{\mathfrak{P}}$, we may identify π_2 as the kernel of the following exact sequence:

$$\mathcal{C}_{*}(\widetilde{X}_{\varphi}): \pi_{2} \longrightarrow (Z\pi)^{3} \xrightarrow{\begin{bmatrix} N_{x} & 1-y & 0\\ 0 & x-1 & N_{y} \end{bmatrix}} (Z\pi)^{2} \xrightarrow{\parallel} (Z\pi)^{2} \xrightarrow{\parallel} Z\pi \xrightarrow{\epsilon} Z. \tag{2.1}$$

For an integer r > 0 and $z \in \pi$, let $\langle z, r \rangle = 1 + z + \cdots + z^{r-1}$. Then $N_x = \langle x, m \rangle$ and $N_y = \langle y, n \rangle$. The map ε : $Z\pi \to Z$ is the augmentation homomorphism. It is easy to see that π_2 has generators the columns of the matrix

$$\begin{bmatrix} x-1 & y-1 & 0 & 0 \\ 0 & N_x & -N_y & 0 \\ 0 & 0 & x-1 & y-1 \end{bmatrix}.$$

Label the columns g_1 , g_2 , g_3 , and g_4 respectively.

Let η_{13} : $(Z\pi)^3 \to (Z\pi)^2$ denote the projection on the first and third coordinates. $\eta = \eta_{13}|\pi_2$ has image $I\pi^2$ and kernel $\pi_2^{\pi} = \{\alpha \in \pi_2 | g\alpha = \alpha \text{ for all } g \in \pi\} = Z = Z\pi(0, N, 0)$, where $N = \langle x, m \rangle \langle y, n \rangle$. Thus the extension class [&] of the extension

$$\mathcal{E}: Z \rightarrowtail \pi_2 \xrightarrow{\eta} I\pi^2$$

is a member of $E = \operatorname{Ext}^1_{Z\pi}(I\pi^2, Z)$. Sometimes, we will denote the class of the extension $\mathfrak{F}\colon Z \rightarrowtail M \longrightarrow I\pi^2$ by $[\mathfrak{F}_M]$. Using the fact that $\operatorname{Ext}^1_{Z\pi}(I\pi, Z) \cong H^2(\pi; Z) \cong \operatorname{Ext}_Z(\pi, Z) \cong \pi$, we see that $\operatorname{Ext}(I\pi^2, Z) \cong \pi^2$. We will think of E as

 2×2 matrices

$$E = \begin{bmatrix} Z_n & Z_n \\ Z_m & Z_m \end{bmatrix}.$$

E may be considered as a right module over the ring $\operatorname{End}(I\pi)^2$ as follows: to each $\alpha \in \operatorname{End}(I\pi)^2$ and each extension class $[\mathcal{F}] \in E$ we associate the extension class $[\mathcal{F}\alpha]$ which is the pull-back of M by α . Thus

In fact, with this action, E becomes a *principal* $\operatorname{End}(I\pi)^2$ -module with generator $[\mathcal{E}]$. To see this, we use the long exact sequence for $\operatorname{Ext}^i_{Z\pi}$ associated with \mathcal{E} [HS, p. 139]:

$$\operatorname{Hom}(I\pi^2, \pi_2) \to \operatorname{End}(I\pi)^2 \xrightarrow{\partial} \operatorname{Ext}(I\pi^2, Z) \to \operatorname{Ext}(I\pi^2, \pi_2) \to \dots$$

The boundary operator ∂ is described by $\partial(\alpha) = [\mathcal{E}\alpha]$. Sometimes, when the basic extension is clear, $\partial(\alpha)$ will be denoted by $[\alpha]$. But, by using the exact sequence 2.1, $\operatorname{Ext}^1_{Z_{\pi}}((I_{\pi})^2, \pi_2) \cong \operatorname{Ext}^2_{Z_{\pi}}(Z^2, \pi_2) \cong [H^2(\pi; \pi_2)]^2 = 0$ [D₁, Lemma 6.7]. Thus we have proved the following lemma.

2.2 LEMMA. Ext($(I\pi)^2$, Z) is a principal End($I\pi$)²-module with generator [\mathcal{E}]. \square

DEFINITION. Let $\mathcal{G}(E) = \{ [\mathfrak{F}] \in | [\mathfrak{F}] \text{ is a generator of } E \text{ as an } \operatorname{End}(I\pi)^2 - \operatorname{module} \}.$

2.3 Lemma. Suppose that M is stably isomorphic to the standard module π_2 ; i.e., $M \oplus Z\pi \cong \pi_2 \oplus Z\pi$. Then, if $M_{\pi} = M/M^{\pi}$, the extension \mathfrak{F}_M : $Z = M^{\pi} \longrightarrow M \longrightarrow M_{\pi} \cong I\pi^2$ generates E as an $\operatorname{End}((I\pi)^2)$ -module.

PROOF. If we can show that M is an extension of $Z = M^{\pi}$ by $I\pi^2$, then $[\mathcal{F}_M] \in \mathcal{G}(E)$ follows using the argument above (with the exact sequence \mathcal{F}_M) together with the fact that

$$H^2(\pi, M) \simeq H^2(\pi; M \oplus Z\pi) \simeq H^2(\pi; \pi_2 \oplus Z\pi) \simeq H^2(\pi; \pi_2) = 0$$

since $H^2(\pi; Z\pi) = 0$ for any finite group [CE, p. 233]. To prove the first statement, observe that

$$M \oplus Z\pi \cong \pi_2 \oplus Z\pi \Rightarrow M_\pi \oplus Z\pi/\left(N\right) \cong \left(\pi_2\right)_\pi \oplus Z\pi/\left(N\right).$$

A careful, but elementary argument shows then that $M_{\pi} \oplus I\pi \cong (\pi_2)_{\pi} \oplus I\pi$. Because $I\pi$ (and hence $(I\pi)^2$) satisfies the Eichler condition [SE, p. 176] and $I\pi$ is a direct summand of $(\pi_2)_{\pi} \cong (I\pi)^2$, we have, using Jacobinski's cancellation theorem [SE, Theorem 19.8], that $M_{\pi} \cong I\pi^2$. \square

NOTE. For any $(\pi, 2)$ -complex Y, and any isomorphism $\alpha: \pi \to \pi_1 Y$ it follows that $_{\alpha}\pi_2(Y) \oplus Z\pi \cong \pi_2 \oplus Z\pi$. These modules are therefore of topological interest. We will show in Theorem 4.2 that the *converse* is also true; that is,

 $[\mathcal{F}] \in \mathcal{G}(E)$ implies that M is stably isomorphic to π_2 .

We identify the ring of endomorphisms of π (= End π) as a subset of E. NOTATION. For each integer a, let \bar{a}_k be the residue class of $a \pmod{k}$. Let

End
$$\pi = \left\{ \alpha = \begin{bmatrix} \bar{a}_n & \bar{b}_n \\ \bar{c}_m & \bar{d}_m \end{bmatrix} \in E = \begin{bmatrix} Z_n & Z_n \\ Z_m & Z_m \end{bmatrix} \middle| n \text{ divides } bm \right\}.$$

Multiplication of two elements in E (as 2×2 -matrices) is well defined iff they are in End π . Aut $\pi \subset \mathcal{G}(E)$ is the subset of End $\pi \subset E$ consisting of invertible elements. Note that $\alpha(x^iy^i) = x^{cj+di}y^{aj+bi}$ can be computed from

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} j \\ i \end{pmatrix} = \begin{pmatrix} aj + bi \\ cj + di \end{pmatrix}$$

(observe that we have interchanged x and y).

In general $\mathcal{G}(E)$ is bigger than Aut π , as $\mathcal{G}(E)$ contains the image of GL(2, \mathbb{Z}) in E. For example,

$$\left[\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \right] = \begin{pmatrix} 1 & 1 \\ \overline{2}_{m} & 1 \end{pmatrix}$$

is always in $\mathcal{G}(E)$, but never in Aut π .

2.4 Lemma. The boundary operator ∂ : End $(I\pi)^2 \to E$ is described by carrying each

$$\alpha = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \qquad (\alpha_{ij} \in Z\pi)$$

to

$$\left[\begin{array}{cc} \overline{\varepsilon(\alpha_{11})_n} & \overline{\varepsilon(\alpha_{12})_n} \\ \overline{\varepsilon(\alpha_{21})_m} & \overline{\varepsilon(\alpha_{22})_m} \end{array}\right].$$

PROOF. We are thinking of E as $\text{End}(I\pi)^2/B$, where

$$B = \left\{ \alpha \in \operatorname{End}(I\pi)^2 \mid \alpha \text{ coextends to } \pi_2 \colon \begin{array}{c} \overline{\alpha} & (I\pi)^2 \\ \alpha & \alpha \end{array} \right\}.$$

$$\pi_2^{\kappa} \xrightarrow{\eta} (I\pi)^2 \left\{ \overline{\alpha} \right\}.$$

B is always a right ideal, but it is not a left ideal unless m = n. The identification of E with π^2 is accomplished as follows: Identify each element α with a 2 × 2 matrix

$$\alpha = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix}$$

where each $\alpha_{ij} \in Z\pi$. This can be done because End $I\pi \simeq Z\pi/(N)$ for any finite group π . By direct computation one may show that any map $\beta = (\beta_{ij})$ coextends, provided each $\beta_{ij} \in I\pi$. One simply shows directly that, if E^{ij} (i, j = 1, 2) denotes the elementary 2×2 matrix with a one in the *ij*th slot and zeros elsewhere, then $(x-1)E^{ij}$ and $(y-1)E^{ij}$ coextend. The β given above is a linear combination of $(x-1)E^{ij}$ and $(y-1)E^{ij}$ (because each $\beta_{ij} = \beta'_{ij}(x-1) + \beta''_{ij}(y-1)$), and hence

coextends. For example, $\beta=\begin{pmatrix} 0\\ x-1 \end{pmatrix}$ coextends by the map $\bar{\beta}$: $(I\pi)^2\to\pi_2$ given by defining $\bar{\beta}(x-1,0)=(x-1)(0,-N_y,x-1)$, $\beta(y-1,0)=(y-1)(0,0,x-1)$, and $\bar{\beta}(0,y-1)=0=\bar{\beta}(0,x-1)$. Then $\eta\circ\bar{\beta}=\beta$ and we are done provided $\bar{\beta}$ is well defined. Using 2.1, we identify $\mathrm{Hom}_{Z\pi}(I\pi,M)$ with $\{\alpha:(Z\pi)^2\to M:\alpha|\mathrm{im}\ \partial_2=0\}$. It is easy to check that the map $\bar{\alpha}:(Z\pi)^2\to\pi_2$ which sends $(1,0)\to(0,-(x-1)N_y,(x-1)^2)$ and $(0,1)\to(0,0,(y-1)(x-1))$ is zero when restricted to im ∂_2 . Then $\bar{\beta}=(\bar{\alpha},0)$: $(I\pi)^2\to\pi_2$.

Thus each $\alpha = (\alpha_{ij})$ in $\operatorname{End}(I\pi)^2$ is equivalent mod B to the map $(\varepsilon(\alpha_{ij}))$ with integer entries. One may further show that the matrices nE^{1j} and mE^{2j} coextend (j=1,2). For example, $\langle y,n\rangle E^{11}$ coextends via a map $(I\pi)^2 \to \pi_2$ defined by carrying $(x-1,0)\mapsto ((x-1)\langle y,n\rangle,0,0)$ and (y-1,0),(0,x-1),(0,y-1) all to zero. Thus we see that the map $\partial\colon\operatorname{End}(I\pi)^2\to\operatorname{Ext}((I\pi)^2,Z)$ can be described by

$$\begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \mapsto \begin{bmatrix} \overline{\varepsilon(\alpha_{11})_n} & \overline{\varepsilon(\alpha_{12})_n} \\ \overline{\varepsilon(\alpha_{21})_m} & \overline{\varepsilon(\alpha_{22})_m} \end{bmatrix}. \quad \Box$$

We will isolate several subsets of $\mathcal{G}(E)$, which we then proceed to study. Let

$$S\mathfrak{G}(E) = \{ [\mathfrak{T}_M] \in E | M \oplus Z\pi \cong \pi_2 \oplus Z\pi \},$$

$${}_{\theta} \text{Iso} = \{ [\mathfrak{T}_M] \in E | M \cong_{\theta} \pi_2 \text{ for some } \theta \in \text{Aut } \pi \}, \text{ and}$$

$$\text{Iso} = \{ [\mathfrak{T}_M] \in E | M \cong \pi_2 \}.$$

Clearly, by 2.3, any module M stably isomorphic to π_2 is already an extension of Z by $I\pi^2$.

The following inclusions hold:

$$\mathcal{G}(E) \supset S\mathcal{G}(E) \supset {}_{\alpha} \text{Iso} \supset \text{Iso}.$$

The first inclusion follows from Lemma 2.3. The last inclusion is clear; the second follows as any module M which is θ -isomorphic to π_2 may be embedded in the sequence: $0 \to M \to_{\theta} C_2 \to_{\theta} C_1 \to_{\theta} Z\pi \to Z$; thus M is stably isomorphic to π_2 by Schanuel's lemma.

One can show that $\mathcal{G}(E) = \{ [\mathcal{F}_M] \in E | M \text{ has the same genus as } \pi_2 \}$. However, it is not true that any module M of the same genus as π_2 is an extension of Z by $I\pi^2$.

For future reference, we record the following easily proved characterization of Iso.

- 2.5 PROPOSITION. Let $[\mathfrak{F}_M] \in \mathfrak{G}(E)$. Then $M \cong \pi_2$ iff $[\mathfrak{F}] = [\mathfrak{S}\alpha] \in E$ for some $\alpha \in \mathrm{GL}(2, \mathbb{Z}\pi/(N)) \subset \mathrm{End}(I\pi)^2$. \square
- 3. Comparison of $_{\theta}\pi_{2}$ and $\pi_{2}\theta$. In this section we compare the pullback $\pi_{2}\theta$ and the module $_{\theta}\pi_{2}$ for any $\theta \in \operatorname{Aut} \pi$. We continue the assumption that m|n.

DEFINITION. If $\theta = \begin{bmatrix} 1 & -r \\ 0 & 1 \end{bmatrix}$ (respectively, $\begin{bmatrix} 1 & 0 \\ -s & 1 \end{bmatrix}$, $\begin{bmatrix} p & 0 \\ 0 & q \end{bmatrix}$) is a member of Aut π (i.e., mr is divisible by n) then let

$$\theta^{0} = \begin{bmatrix} 1 & 0 \\ rm/n & 1 \end{bmatrix} \quad \left(\text{respectively } \begin{bmatrix} 1 & sn/m \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} p & 0 \\ 0 & q \end{bmatrix}\right).$$

Then, for any $\theta \in \text{Aut } \pi$, θ^0 is the element of Aut π defined by writing $\theta = E_1 \dots E_k \begin{bmatrix} p & 0 \\ q \end{bmatrix}$, where E_1, \dots, E_k are elementary automorphisms, and setting $\theta^0 = \theta_1^0 \cdots \theta_k^0 \begin{bmatrix} p & 0 \\ 0 & q \end{bmatrix}$. Notice that $(\theta^0)^0 = \theta$.

3.1 THEOREM. For any $\theta \in \text{Aut } \pi$, $[{}_{\theta}\mathcal{E}] = [\mathcal{E}\theta^0]$ and $[\mathcal{E}\theta] = [{}_{\theta^0}\mathcal{E}]$.

PROOF. Let $\theta \in \text{Aut } \pi$ be written as a product of a diagonal automorphism $D = \begin{bmatrix} p & 0 \\ 0 & q \end{bmatrix}$ and a product $E_1 \dots E_k$ of elementary automorphisms. The theorem will follow from the fact that $[\mathcal{E}(\alpha\beta)] = [(\mathcal{E}\alpha)\beta]$ and $_{(\alpha\beta)}\pi_2 = _{\beta}(_{\alpha}\pi_2)$ provided we can show that the theorem is true for D and E_i . We will give only the proof for $\theta = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (i.e. $\theta(x) = x$, $\theta(y) = x^{-r}y$), as the others are similar.

3.2 Lemma. Let $\pi = Z_m \times Z_n$, with m|n, and $\theta = \begin{bmatrix} 1 & 0 \\ -r & 1 \end{bmatrix}$, $\theta^0 = \begin{bmatrix} 1 & m/m \\ 0 & 1 \end{bmatrix}$. Then $\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \delta & 0 \\ 0 & 1 \end{bmatrix}$ in $\operatorname{Ext}(I\pi^2, Z)$.

PROOF. Let $\beta = \sum_{i=1}^{n} y^{i-1} \langle x, ri \rangle$, k = rn/m, and $\bar{\theta} = \theta^{-1} = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix}$. Straightforward calculation using 2.1 shows that the matrix

$$\begin{bmatrix} 1 & 0 & k \\ 0 & x' & \beta \\ 0 & 0 & 1 \end{bmatrix}$$

defines a map from $C_2 = Z\pi e_1 \oplus Z\pi e_2 \oplus Z\pi e_2 \to_{\bar{\theta}} C_2 = {}_{\bar{\theta}} Z\pi e_1 \oplus_{\bar{\theta}} Z\pi e_2 \oplus_{\bar{\theta}} Z\pi e_3$ (i.e., $e_1 \to (1, 0, 0)$, $e_2 \to (0, x', 0)$, $e_3 \to (k, \beta, 1)$ and extend linearly) which sends π_2 ($\subset C_2$) into ${}_{\bar{\theta}}\pi_2$ ($\subset {}_{\bar{\theta}}C_2$). This same matrix defines a map from ${}_{\bar{\theta}}C_2 \to_{\bar{\theta}}({}_{\bar{\theta}}C_2) = C_2$ and hence a map θ_2 : ${}_{\bar{\theta}}\pi_2 \to \pi_2$. On the generators for ${}_{\bar{\theta}}\pi_2$, θ_2 looks like

$$\begin{split} \bar{\theta}(x-1) *_{\theta}e_{1} &= (x-1)e_{1} \\ &\mapsto \bar{\theta}(x-1)e_{1}, \bar{\theta}(y-1) *_{\theta}e_{1} + \bar{\theta}(N_{x}) *_{\theta}e_{2} = (y-1, N_{x}, 0) \\ &\mapsto \bar{\theta}(y-1)e_{1} + x'\bar{\theta}(N_{x})e_{2}, \bar{\theta}(-N_{y}) *_{\theta}e_{2} + \bar{\theta}(x-1) *_{\theta}e_{3} \\ &= (0, -N_{y}, x-1) \\ &\mapsto k\bar{\theta}(x-1)e_{1} + \left(-x'\bar{\theta}(N_{y}) + \bar{\theta}(x-1)\beta\right)e_{2} + \bar{\theta}(x-1)e_{3} \end{split}$$

and finally,

$$\bar{\theta}(y-1) *_{\theta} e_3 = (y-1)e_3 \mapsto k\bar{\theta}(y-1)e_1 + \beta\bar{\theta}(y-1)e_2 + \bar{\theta}(y-1)e_3.$$

Inspection shows that θ_2 induces a map θ_2' : $\theta(I\pi)^2 \to (I\pi)^2$ with matrix $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$. Here, 1: $\theta I\pi \to I\pi$ is the map induced by $Z\bar{\theta}$: $\theta Z\pi \to Z\pi$. Let $Z\theta$ denote the isomorphism $I\pi \to \theta I\pi$ induced from $Z\theta$: $Z\pi \to \theta Z\pi$. The composition

$$(I\pi)^{2} \xrightarrow[\theta]{} (I\pi)^{2} \xrightarrow[\theta]{} (I\pi)^{2} \xrightarrow[\theta]{} (I\pi)^{2}$$

yields a map with matrix $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$. \square

- **4. Characterizing** $\mathcal{G}(E)$. We will now characterize the set $\mathcal{G}(E)$ of generators of $E = \operatorname{Ext}(I\pi^2, Z)$. For each $\alpha = (\alpha_{ij}) \in \operatorname{End}(I\pi)^2$ $(\alpha_{ij} \in Z\pi)$, let $\varepsilon(\alpha)$ denote the integer matrix with entries $\varepsilon(\alpha_{ij})$ (i, j = 1, 2).
- 4.1 Proposition. Let $\alpha = (\alpha_{ij}) \in \operatorname{End}(I\pi)^2$ $(\alpha_{ij} \in Z\pi)$. The following are equivalent:
 - (a) $[\alpha] \in \mathcal{G}(E)$.
 - (b) $\exists \alpha' \in \text{End}(I\pi)^2$ such that $\alpha \alpha' 1 \in B$.
- (c) The determinant of $\varepsilon(\alpha)$ is prime to m and there are integers s, t such that $\varepsilon(\alpha_{11})s + \varepsilon(\alpha_{12})t \equiv 1 \pmod{n}$.
 - (d) There is an integer matrix $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that

$$\bar{\gamma}_n = \begin{bmatrix} \bar{a}_n & \bar{b}_n \\ \bar{c}_n & \bar{d}_n \end{bmatrix} \in GL(2, Z_n)$$

and $[\alpha] = [\gamma] \in E$.

PROOF. (a) \Rightarrow (b). If $[\mathcal{E}\alpha] \in \mathcal{G}(E)$, then $[\mathcal{E}]$ itself must be a pullback of $Z \rightarrow \pi_2 \alpha \rightarrow I\pi^2$ by some $\alpha' \colon I\pi^2 \rightarrow I\pi^2$. Thus $[\mathcal{E}] = [\mathcal{E}\alpha\alpha']$ implies $\alpha\alpha' - 1 \in B$.

- (b) \Rightarrow (c). It is easy to see that the correspondence $[\alpha] \in E \mapsto \det \varepsilon(\alpha) \in Z$ is well defined modulo m. $\alpha \alpha' 1 \in B$ implies $\det \varepsilon(\alpha) \cdot \det \varepsilon(\alpha') \equiv 1 \pmod{m}$. Thus $\det \varepsilon(\alpha)$ is prime to m. Furthermore, $\varepsilon(\alpha_{11})\varepsilon(\alpha'_{11}) + \varepsilon(\alpha_{12})\varepsilon(\alpha'_{21}) 1 \equiv 0 \pmod{n}$ follows by looking at the 11-coordinate of $\partial(\alpha \alpha' 1)$.
- (c) \Rightarrow (d). Because m divides n, the natural map $\bar{a}_n \mapsto \bar{a}_m$ ($a \in Z$) induces a surjection $Z_n^* \to Z_m^*$. Let $d = \det \varepsilon(\alpha)$. d is prime to m, so there is an integer l such that d + lm is prime to n. $s\varepsilon(\alpha_{11}) + t\varepsilon(\alpha_{12}) = 1 + kn$ then yields d + l(1 + kn)m is prime to n. Now consider the integer matrix

$$\gamma = \begin{bmatrix} \varepsilon(\alpha_{11}) & \varepsilon(\alpha_{12}) \\ \varepsilon(\alpha_{21}) - ltm & \varepsilon(\alpha_{22}) + lsm \end{bmatrix}.$$

We claim that γ represents an element of $GL(2, \mathbb{Z}_n)$; i.e., that det γ is prime to n. Consider

$$\det \gamma = d + lm(\varepsilon(\alpha_{11}) \cdot s + \varepsilon(\alpha_{12}) \cdot t) = d + lm(1 + kn),$$

which is prime to n. Clearly $[\gamma] = [\alpha]$, by Lemma 2.4.

(d) \Rightarrow (a). Choose an integer matrix γ so that $[\gamma] = [\alpha]$ in E and $\overline{\gamma}_n \in GL(2, \mathbb{Z}_n)$. Let γ' be an integer matrix which represents the inverse $(\overline{\gamma}_n)^{-1}$. Then $(\gamma\gamma'-1)_n = 0$ implies that $\partial(\gamma\gamma'-1) = 0$. We claim that $\partial(\gamma\gamma'-1) = 0$. Choose $\partial(\gamma) = 0$ so that $\partial(\gamma) = 0$ and $\partial(\gamma) = 0$ is a right ideal, so $\partial(\gamma) = 0$ is a right ideal, so $\partial(\gamma) = 0$ in the condition of $\partial(\gamma) = 0$ in the condition in the condition is an integer matrix $\partial(\gamma) = 0$ in the condition in the condit

4.2 THEOREM.
$$\mathcal{G}(E) = {}_{\theta}$$
Iso.

PROOF. By Proposition 4.1, given any $[\alpha] \in \mathcal{G}(E)$ there is a 2×2 integer matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ whose determinant is prime to n, and such that $[A] = [\alpha] \in E$. Consider \overline{A}_n as the matrix mod n, that is to say, A represents an element of $GL(2, Z_n) = Aut(Z_n \times Z_n)$. By Proposition 6 of [S], $A \equiv E_1 E_2 \dots E_k D$ (mod n) where $D = \begin{bmatrix} 0 & 0 \\ 0 & d \end{bmatrix}$ is a diagonal automorphism (p, q) are prime to n) and each E_i is an elementary

matrix of the form $\begin{bmatrix} 1 & \gamma_1 \\ 0 & 1 \end{bmatrix}$ or $\begin{bmatrix} 1 & 0 \\ \gamma_1 & 1 \end{bmatrix}$, with $p, q, \gamma_i \in Z$. Let $M = E_1 E_2 \dots E_k D$ be the integer matrix which is the product of E_1, E_2, \dots, E_k , and D. Then

$$\begin{bmatrix} \mathcal{E}\alpha \end{bmatrix} = \begin{bmatrix} \mathcal{E}A \end{bmatrix} = \begin{bmatrix} \mathcal{E}M \end{bmatrix} \text{ (because } \alpha \equiv A \equiv M \text{ mod } B)$$
$$= \begin{bmatrix} (\dots ((\mathcal{E}E_1)E_2) \dots E_k)D \end{bmatrix}$$

(because pullbacks commute with composition).

But, by Proposition 2.5

$$\pi_2 \cong \pi_2 E_1 \cong \pi_2 E_1 E_2 \cong \cdots \cong \pi_2 E_1 \cdots E_k$$

because each $E_i \in \operatorname{Aut}(I\pi)^2$. D is a member of Aut π implies that

$$\pi_2 \cong \pi_2 E_1 \cdot \cdot \cdot E_k \cong {}_D \pi_2 M \cong {}_D \pi_2 \alpha$$

by invoking Theorem 3.1.

We have seen in §2 that the map $\bar{\partial} = \partial | GL(2, Z\pi/(N))$: $GL(2, Z\pi/(N)) \to \mathcal{G}(E)$ is onto the subset Iso. We would like to determine im $\bar{\partial}$. As above, each elementary automorphism $\alpha = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ or $\begin{bmatrix} 1 & 0 \\ \gamma & 1 \end{bmatrix}$ yields $\pi_2 \alpha \cong \pi_2$. The diagonal automorphisms $\beta = \begin{bmatrix} p & 0 \\ 0 & q \end{bmatrix} (p, q \in Z)$ of π which are clearly in im $\bar{\partial}$ have \bar{p}_{mn} , $\bar{q}_{mn} \in \ker\{\bar{\partial}: Z_{mn}^* \to \bar{K}_0 Z\pi\}$; for, choosing units mod Nu, $v \in Z\pi/(N)^*$ such that $\varepsilon(u) = p$, $\varepsilon(v) = q$ [4, 2.1], we have $\alpha = \begin{bmatrix} u & 0 \\ 0 & v \end{bmatrix} \in GL(2, Z\pi/(N))$ and $\bar{\partial}\alpha = \beta$. We make the following convenient hypothesis [SD, §4].

REDUCTION HYPOTHESIS. The natural projection $Z_{mn}^* \to Z_n^*$ remains surjective when restricted to ker ∂ .

The reduction hypothesis is satisfied whenever n = m = p, an odd prime [U]. Whenever the reduction hypothesis is satisfied, the above argument implies that $\bar{\theta}$ is surjective.

- 4.3 COROLLARY. If the reduction hypothesis is true, then each $[\alpha] \in \mathcal{G}(E)$ has $\pi_2 \alpha \cong \pi_2$; i.e., $\mathcal{G}(E) = \text{Iso.}$
- 5. Shuffling k-invariants. Recall that $\pi = Z_m \times Z_n$, with m|n and generators x, y of order m and n, respectively. For each π -module M, $H^3(\pi; M)$ is isomorphic to $\operatorname{Hom}_{Z\pi}(\pi_2, M)/\mathfrak{B}$, where $\mathfrak{B} = \{\beta \colon \pi_2 \to M | \beta \text{ extends to a map } \overline{\beta} \colon C_2 \to M \}$. For each $\alpha \in \operatorname{Hom}_{Z\pi}(\pi_2, M)$, let $\{\alpha\} = \alpha + \mathfrak{B}$ be the class of α in $H^3(\pi; M)$. If θ is a member of Aut π , then $\theta^* \colon H^*(\pi; \pi_2) \to H^*(\pi; \theta^*\pi_2)$ may be computed by choosing a chain map from $\mathcal{C}_*(\tilde{X}_{\mathfrak{P}}) \to_{\theta} \mathcal{C}_*(\tilde{X}_{\mathfrak{P}})$ covering the identity.

It follows that for any $\alpha \in \text{End } \pi_2$, $\theta^*\{\alpha\} = \{\theta_2\alpha\} \in H^3(\pi; {}_{\theta}\pi_2)$.

If $\theta = \begin{bmatrix} 1 & 0 \\ 0 & p \end{bmatrix}$, where p is prime to m (i.e., $\theta(x) = x^p$, $\theta(y) = y$), then

$$\psi = \begin{bmatrix} \langle x, p \rangle & 0 & 0 \\ 0 & \langle x, p \rangle & 0 \\ 0 & 0 & 1 \end{bmatrix} : (Z\pi)^3 \to_{\theta} (Z\pi)^3 \text{ induces } \theta_2 : \pi_2 \to_{\theta} \pi_2.$$

The following lemma will prove useful.

5.1 LEMMA. Let $v \in Z\pi$ be a unit (mod N) having augmentation $\varepsilon(v) = p$. Then there is a unit (mod N) $u \in Z\pi$ having $\varepsilon(u) = p$ and such that $u = \langle x, p \rangle + (y-1)\alpha$, for some $\alpha \in Z\pi$.

PROOF. For each $v \in Z\pi$, let $v_y \in Z(Z_m(x))$ denote the image of v under the map $\varepsilon_y \colon Z\pi \to Z(Z_m)$ obtained by setting y = 1. v is a unit mod N implies v_y is a unit mod N_x , which in turn implies that $v_y = w\langle x, p \rangle$, where w is a unit in $Z(Z_m)$. w is also a unit in $Z\pi$ so $u = w^{-1}v$ has $u_y = \langle x, p \rangle$. Hence $u - \langle x, p \rangle$ is in the kernel of the map ε_y . It is easy to see that $u - \langle x, p \rangle = (y - 1)\alpha$ for some $\alpha \in Z\pi$. \square

Recall the homomorphism $\partial\colon Z_{mn}^*$ (= units in $H^3(\pi;\pi_2)$) $\to \tilde{K}_0Z\pi$ given by $\partial(\bar{p}_{mn})=\{(p,N)\}\in \tilde{K}_0Z\pi$. It is known that $\bar{p}_{mn}\in\ker\partial$ iff there is a $v\in Z\pi$ which is a unit mod N whose augmentation $\varepsilon(v)=p$, $[\mathbf{D}_2,2.1]$. A θ -homomorphism $\alpha\colon\pi_2\to_\theta\pi_2$ has degree $k\in H^3(\pi;\pi_2)$ iff $k\{\theta_2\}=\{\alpha\}$. For each $k\in\ker\partial$, we will construct a θ -isomorphism $\pi_2\to_\theta\pi_2$ of degree k. This will prove Theorem B. We commence the proof.

Given $\bar{k}_{mn} \in \ker \partial \subset Z_{mn}^*$. Choose $u \in Z\pi$ such that $\varepsilon(u) = k$ and u is a unit mod N. k is prime to mn implies that k is prime to m^2n . Choose an integer p such that $pk + sm^2n = 1$. Let θ be the automorphism which carries $x \to x^p$, $y \to y$. $\bar{p}_{mn} = \bar{k}_{mn}^{-1}$ in Z_{mn}^* implies $\bar{p}_{mn} \in \ker \partial$. Thus there is a $v \in Z\pi$ such that $\varepsilon(v) = p$, v is a unit mod N, and $v = \langle x, p \rangle + (y - 1)\alpha$ for some $\alpha \in Z\pi$.

Let e_i (i = 1, 2, 3) denote the natural basis for $(Z\pi)^3$. Define homomorphisms p_{ij} : $(Z\pi)^3 \to_{\theta} (Z\pi)^3$ sending $e_i \to g_j$ $(g_j$ is a generator of π_2 , hence, of $_{\theta}\pi_2$, see §2) and $e_k \to 0$ $(k \neq i)$ (i = 1, 2, 3; j = 1, 2, 3, 4). Note that $\bar{p}_{ij} = p_{ij}|\pi_2$ defines a degree 0 map from $\pi_2 \to_{\theta} \pi_2$.

Consider the map $M = \psi + \alpha p_{12}$: $(Z\pi)^3 \rightarrow_{\theta} (Z\pi)^3$. M has matrix

$$\begin{bmatrix} v = \langle x, p \rangle + (y - 1)\alpha & 0 & 0 \\ \alpha N_x & \langle x, p \rangle & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\overline{M} = M|_{\pi_2}$: $\pi_2 \to_{\theta} \pi_2$ carries $g_1 \mapsto (x^p - 1)(v, 0, 0)$, $g_2 \mapsto (v(y - 1), \alpha N_x(y - 1) + pN_x, 0)$, $g_3 \mapsto (0, -N_y \langle x, p \rangle, x^p - 1)$, and $g_4 \mapsto (0, 0, y - 1)$. The map \overline{M} : $(I\pi)^2 \to_{\theta} (I\pi)^2$ induced by \overline{M} then has matrix $\begin{bmatrix} v & 0 \\ 0 & 1 \end{bmatrix}$ and is an isomorphism because v is a unit (mod N).

We will now alter \overline{M} to give an isomorphism $\pi_2 \to_{\theta} \pi_2$ of degree \overline{k}_{mn} . Look at $Q = uM + sNp_{22}$: $(Z\pi)^3 \to_{\theta} (Z\pi)^3$. Q then has matrix

$$\begin{bmatrix} uv & 0 & 0 \\ \alpha uN_x & u\langle x, p \rangle + smN & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

This clearly restricts to a map \overline{Q} : $\pi_2 \to_{\theta} \pi_2$ having degree \overline{k}_{mn} because $\{\overline{Q}\} = \{u\theta_2 + u\alpha\overline{p}_{12} + sN\overline{p}_{22}\} = \{u\theta_2\} = \{\varepsilon(u)\theta_2\} = k\{\theta_2\}$. Clearly \overline{Q} induces the same map as $u\overline{M}$ on $I\pi^2 \to_{\theta} I\pi^2$ ($sN\overline{p}_{22}$ restricted to $(I\pi)^2$ is zero) and is an isomorphism. We need only show that $Q|_{\pi_2^*}$ is the identity: $Q(0, N, 0) = (u\langle x, p \rangle + smN)(0, N, 0) = (kp + sm^2n)(0, N, 0) = (0, N, 0)$. \square

REFERENCES

- [CE] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. [D₁] M. Dyer, Homotopy classification of (π, m) -complexes, J. Pure Appl. Algebra 7 (1976), 429-482.
- [D₂] _____, On the essential height of homotopy trees with finite fundamental group, Compositio Math. 36 (1978), 209-224.
- [HS] P. Hilton and U. Stammbach, A course in homological algebra, Springer-Verlag, New York, 1970. [S] A. Sieradski, Combinatorial isomorphisms and combinatorial homotopy equivalences, J. Pure Appl. Algebra 7 (1976), 59-95.
- [SD] A. Sieradski and M. Dyer, Distinguishing arithmetic for certain stably isomorphic modules, J. Pure Appl. Algebra 15 (1979), 199-217.
- [SE] R. G. Swan and E. G. Evans, K-theory of finite groups and orders, Lecture Notes in Math., vol. 149, Springer-Verag, Berlin and New York, 1970.
- [U] S. Ullom, Non-trivial lower bounds for class groups of integral group rings, Illinois J. Math. 20 (1976), 314-329.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403