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AN APPLICATION OF HOMOLOGICAL ALGEBRA
TO THE HOMOTOPY CLASSIFICATION
OF TWO DIMENSIONAL CW-COMPLEXES
BY
MICHEAL N. DYER

ABSTRACT. Let 7 be Z,, X Z,. In this paper the homotopy types of finite connected
two dimensional CW-complexes with fundamental group « are shown to depend
only on the Euler characteristic. The basic method is to study the structure of the
group Extb_(I72, Z) as a principal End(/7?)-module.

1. In this paper & will denote the noncyclic group Z,, X Z,, which is the product
of two finite cyclic groups Z, and Z,. Thus the gcd(m, n) = 1. For convenience,
we will always assume that m divides n. This is no restriction.

Let X5 denote the two dimensional CW-complex modeled on the presentation
P = {x,y: x™, y" [x,y]} of 7 and let m, = m,Xg. Xg is called the standard model
and 7, the standard module. The study of this 7-module 7, forms the basis of this
paper.

For any § € Aut 7 and any w-module M, the module ,M has action given by
g+*m=0(g)m for any m € M, g € =. Two modules M, N are said to be
0-isomorphic iff there is an isomorphism a: M —,N. The module , splits as a short
exact sequence Z >> m, —> (In)? where Z is the trivial #7-module and Ix is the
augmentation ideal in Zz. By studying the group Ext(I7?, Z) we prove the
following crucial theorem.

THEOREM A. For any m-module M such that M @ Zm =7, ® Zm, we have
M = 7, for some 0 € Aut 7.

Hence, M is stably isomorphic to w, iff M is #-isomorphic to =, for some
0 € Aut 7.

The group H3(w; my) is isomorphic to the cyclic group Z,_, [D,, §2]; to each
integer g prime to mn, there is a projective ideal (¢, N) C Zw generated by ¢ and
N=_Cr, xi)(Z;_, »%). The function 3: Z* — K,Zw given by d(q + (mn)) =
{(g, N)} € KyZn is a homomorphism. A f#-isomorphism a: 7, —,m7, has degree
k € Z*,iff (*)"'a,(1) = k in the diagram:

. o
H3(m; my) 3 H(m; gmy) — H(m; my).

THEOREM B. For any k € ker dC Z2, there is a 8 € Aut 7 and a 0-isomorphism
a: my —,m, of degree k.
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We prove Theorem A in §4 and Theorem B in §5.

The following Corollaries 1 and 2 follow from A and B just as in [D,, Theorem
5.5].

DEFINITION. A (G, 2)-complex is a finite, connected, 2-dimensional CW-complex
having fundamental group isomorphic to G.

COROLLARY 1. Any two (Z,, X Z,, 2)-complexes have the same homotopy type iff
they have the same Euler characteristic.

In the language of [D,], the homotopy trees HT(Z, X Z,, 2) have essential
height zero.

COROLLARY 2. Let X be a CW-complex with fundamental group isomorphic to
Z, X Z, and suppose that X is dominated by a (G, 2)-complex. Then X has the
homotopy type of a (Z,, X Z,, 2)-complex iff the Wall obstruction vanishes.

In the homotopy classification of G-complexes for G finite abelian, these results
fill in a gap that existed between G cyclic [D,] and G having more than two torsion
coefficients [SD]. A technique similar to this may be decisive in determining the
isomorphism and #-isomorphism classes of the minimal (G, 2)-modules detected in
[SD], for G finite abelian.

2. A study of Ext((I7)%, Z). By looking at the cellular chain complex of the
universal cover X of the standard model X4, we may identify =, as the kernel of
the following exact sequence:

N, 1-y 0
~ 0 x-1w, x-Ly-1) . (2.1)
Cy(Xy) i1y >— (Zn)? (Zm)? ! Zn—» 7.
9, 9,
For an integer r>0 and zE€m, let {z,r)=1+z+ - -+ +z"~\. Then N,={x, m)

and N,=(y, n). The map ¢: Zr—Z is the augmentation homomorphism. It is easy
to see that 7, has generators the columns of the matrix

x—1 y-—1 0 0
0 N, —~N, 0
0 0 x—1 y—-1

Label the columns g,, g,, g3, and g, respectively.
Let 7,5 (Z7)® — (Z7)? denote the projection on the first and third coordinates.
7 = N3], has image I7* and kernel 7] = {a E my|ga = a forallg E 7} = Z =
Zn(0, N, 0), where N = (x, m»>{y, n). Thus the extension class [&] of the exten-
sion
6:Z>>m, S5 In?
is a member of E = Ext}, (I7% Z). Sometimes, we will denote the class of the

extension ¥: Z>> M —> I7* by [F,,). Using the fact that Exty (7, Z) =
H¥(m; Z) = Exty(w, Z) = n, we see that Ext(I72, Z) = #*. We will think of E as
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2 X 2 matrices

E= Zn Zn
- Zm Zm '

E may be considered as a right module over the ring End(J7)? as follows: to each
a € End(I7)* and each extension class [F] € E we associate the extension class
[Fa] which is the pull-back of M by a. Thus

Fa: Z>> Ma —>> (In)’
I { la
F: Zw—> M > (In)

In fact, with this action, E becomes a principal End(I7)*>-module with generator
[&]. To see this, we use the long exact sequence for Ext,, associated with & [HS,
p. 139]:

Hom(I7%, m,) — End(Ir)> > Ext(In%, Z) — Ext(Iz%, m) — . . . .
The boundary operator 9 is described by d(a) = [6a). Sometimes, when the basic
extension is clear, d(a) will be denoted by [a]. But, by using the exact sequence 2.1,
Ext, ((In)?, my) = Ext% (Z? m,) = [H*(7; 7)) =0 [D,, Lemma 6.7). Thus we
have proved the following lemma.

2.2 LeMMA. Ext((I7)%, Z) is a principal End(I7)*-module with generator [6]. [

DEerFINITION. Let §(E) = {[#] € |[F] is a generator of E as an End(I7)>-
module}.

2.3 LEMMA. Suppose that M is stably isomorphic to the standard module m,; i.e.,
M® Zr =m,® Zn. Then, if M, = M/M", the extension %,,;: Z = M">>
M —> M, = I7? generates E as an End((I7)%)-module.

PrOOF. If we can show that M is an extension of Z = M” by Ir? then
[%)] € G(E) follows using the argument above (with the exact sequence %)
together with the fact that

H¥n, M) =H*7; M ® Zn) = H(7; 7, ® Zn) = H*(m; m,) =0

since H?(m; Zx) = 0 for any finite group [CE, p. 233]. To prove the first statement,
observe that

MO®Zrn=m,®Zn=>M, ® Zn/(N) = (m,), ® Zz/ (N).

A careful, but elementary argument shows then that M, @ Ir = (m,), © Ir. Be-
cause I7 (and hence (I7)?) satisfies the Eichler condition [SE, p. 176] and I is a
direct summand of (7,), = (I7)? we have, using Jacobinski’s cancellation theorem
[SE, Theorem 19.8], that M, = Iz>. []

Note. For any (7, 2)-complex Y, and any isomorphism a: 7 — m,Y it follows
that ,7,(Y) ® Z7 = =, ® Zx. These modules are therefore of topological interest.
We will show in Theorem 4.2 that the converse is also true; that is,

[¥] € §(E) implies that M is stably isomorphic to ,.
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We identify the ring of endomorphisms of # (= End =) as a subset of E.
NortATION. For each integer a, let @, be the residue class of @ (mod k).
Let

a_ll b—’l Z’l n L]
End7 ={a= "|€eE= n divides bm }.
¢, 4, Z, Z,

Multiplication of two elements in E (as 2 X 2-matrices) is well defined iff they are
in End 7. Autw C §(E) is the subset of End # C E consisting of invertible
elements. Note that a(x’y‘) = x9*% Y*¥ can be computed from

c dJ\i g+ di
(observe that we have interchanged x and y).
In general §(E) is bigger than Aut «, as § (E) contains the image of GL(2, Z) in

E. For example,
( 11 )] _(1 1
2 1 2, 1

is always in §(E), but never in Aut 7.

2.4 LEMMA. The boundary operator 3: End(I)? — E is described by carrying each
[an oy

a=_°‘2| azz] (a,.jEZ'rr)

to

[ e(all)n e(0‘12)n

| e(ay), &laxn),

PrOOF. We are thinking of E as End(I7)?/B, where

_amy?
B = | @ € End(Im)* | a coextends to m,: '0," ’ a

ny - (Um)?

B is always a right ideal, but it is not a left ideal unless m = n. The identification of
E with #? is accomplished as follows: Identify each element a with a 2 X 2 matrix

o= [ ay  ap ]
Q1 Qp
where each o;; € Z7. This can be done because End In = Zx/(N) for any finite
group 7. By direct computation one may show that any map B = (8;;) coextends,
provided each B;; € Ir. One simply shows directly that, if EY (i,j = 1, 2) denotes
the elementary 2 X 2 matrix with a one in the ijth slot and zeros elsewhere, then

(x — 1)E¥ and (y — 1)EY coextend. The B given above is a linear combination of
(x — 1)EY and (y — 1)EY (because each 8; = B;j(x — 1) + B;(y — 1)), and hence
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coextends. For example, 8 = (,°, J) coextends by the map B: (I7)* - =, given by
defining B(x — 1, 0) = (x — 1)0, — Ny,x -1, B(y - 1,0 =
(y —1)0,0,x — 1), and B0,y — 1) =0= B(0, x — 1). Then n o 8 = B and we
are done provided B is well defined. Using 2.1, we identify Hom,,(I7, M) with {a:
(Zm)* > M: alim 3, = 0}. It is easy to check that the map a: (Z7)? — m, which
sends (1, 0) > (0, —(x — N, (x — 1)® and (0, 1) > (0, 0, (y — 1)(x — 1)) is zero
when restricted to im d,. Then 8 = (a, 0): (I7)? > ,.

Thus each a = (o)) in End(I7)* is equivalent mod B to the map (e(a;)) with
integer entries. One may further show that the matrices nEY and mE?¥ coextend
(J = 1, 2). For example, {y, n)E'" coextends via a map (Im)> - =, defined by
carrying (x — 1, 0) > ((x — 1){y, n)»,0,0)and (y — 1,0), (0, x — 1), (0, y — 1) all
to zero. Thus we see that the map 9: End(J7)> —> Ext((I7)? Z) can be described

by
a a e(a e(a
[a” alz}H (ay1), (a12), . O
n e(ay),, elay),
We will isolate several subsets of § (E), which we then proceed to study. Let
SG(E)={[%4] € EIM ® Zx =7, ® Zn},
glso = {[F),] € E|M =,m, for some § € Aut 7}, and
Iso = {[Fy] € E|M =m,}.

Clearly, by 2.3, any module M stably isomorphic to , is already an extension of
Z by In>.

The following inclusions hold:

S8(E) D SG(E) D ,lso > Iso.
The first inclusion follows from Lemma 2.3. The last inclusion is clear; the second
follows as any module M which is #-isomorphic to 7, may be embedded in the
sequence: 0 > M —,C, »,C, »4Z7 — Z; thus M is stably isomorphic to 7, by
Schanuel’s lemma.

One can show that §(E) = {[F),] € E|M has the same genus as =,}. However,
it is not true that any module M of the same genus as 7, is an extension of Z by
Ir?.

For future reference, we record the following easily proved characterization of
Iso.

2.5 PROPOSITION. Let [F,,] € §(E). Then M ==, iff [F] = [6a] € E for some
a € GL(2, Zn/(N)) c End(I7)%. [

3. Comparison of ,7, and 7,0. In this section we compare the pullback 7,8 and
the module 47, for any § € Aut 7. We continue the assumption that m|n.

Let y& denote the extension Z>—,m, —> ,In* ~ In%, with the isomorphism given
by [%57' ;9-1] Recall that any 6 € Aut7 can be written as a product § =
E\E, ... E,D where each E; = [3§] or [, }] (a, b, € Z and n divides ma, i =
l,..., k) is an elementary automorphism and D = [} 2] (p, g € Z) is a diagonal
automorphism, provided p is prime to n and q is prime to m [S, Proposition 6].
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DEFINITION. If 8 = [ 7] (respectively, [, 9], [§ ]) is a member of Aut 7 (i.e., mr
is divisible by n) then let

o[ 1 0 . 1 sn/m] (p O
6 _{rm/n 1] (respectlvely[0 4 ],[0 |

Then, for any # € Aut 7, #° is the element of Aut« defined by writing 8 =
E, ...E][§ 2], where E,, . . ., E, are elementary automorphisms, and setting 0° =
8? - - - 625 °). Notice that (§°)° = 6.

3.1 THEOREM. For any 8 € Aut 7, [,6] = [60°] and [60] = [4& ].

PROOF. Let § € Aut 7 be written as a product of a diagonal automorphism
D=} 2] and a product E, . . . E, of elementary automorphisms. The theorem will
follow from the fact that [&(aB)] = [(ba)B] and (47, = g(,7,) provided we can
show that the theorem is true for D and E,. We will give only the proof for
0 =", 9 (e 8(x) = x, (y) = x~'p), as the others are similar.

32 LEMMA. Let 7 = Z, X Z,, with m|n, and § =[_ 9], 8° =[}™|™]. Then
[,&]=[68°] in Ext(I7?, Z).

PROOF. Let B = 37_,y'"Xx, rid, k= rn/m, and § = § ~' = [! {]. Straightfor-
ward calculation using 2.1 shows that the matrix

1 0 «k

0 x" B
0O 0 1
defines a map from C, = Zwe, ® Zwe, ® Zwe, — 4C, = 5Zme, ® ;Zme, ® zZme,
(e, e, > (1,0,0), e, > (0, x", 0), e; —> (k, B, 1) and extend linearly) which sends m,

(C G, into 4m, (C 4C,). This same matrix defines a map from ,C, — ,(;C) = C,
and hence a map 6,: ,m, — 7,. On the generators for ,m,, 8, looks like

B(x — 1)+ ge; = (x — 1)e,
B 0(x = De, 8(y — 1) + gy + B(N,) g, = (¥ = 1, N,, 0)
> 0(y — 1)e, + x0(N, e, 67(—Ny) x g6, +0(x — 1) % yey
= (0, —N,,x — 1)
> kf(x — 1)e, + (—x’0_(Ny) +0(x — l)ﬁ)e2 +0(x — 1)e,
and finally,
0(y — 1) ge5 = (y = Des > kB(y — Dey + BI(y = Dey + 8(y — Des.
Inspection shows that 6, induces a map 8;: ,(I7)*> — (I)* with matrix [} ¥]. Here, 1:

oIm — Ir is the map induced by Z0: ,Zm — Zn. Let Z§ denote the isomorphism
It — 417 induced from Z8: Zw — 4Zn. The composition

(T 2) e
(I7) -  o(Im) - (Ir)

yields a map with matrix [} ¥]. O
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4. Characterizing § (E). We will now characterize the set §(E) of generators of
E = Ext(I7* Z). For each a = (o)) € End(I7)? (a;; € Z), let e(a) denote the
integer matrix with entries &(a;;) (i,j = 1, 2).

4.1 PROPOSITION. Let a = (a;;) € End(I7)? (o i € Zm). The following are equiva-
lent:

(a) [a] € S(E).

(b) 3o’ € End(J7)? such that aa’ — 1 € B.

(c) The determinant of e(a) is prime to m and there are integers s, t such that
e(a;)s + e(a )t = 1 (mod n).

(d) There is an integer matrix y = [2 5] such that

o _| @ b
Yn =

n n

EGL(2, 2)

and [a] = [y] € E.

ProoOF. (a)= (b). If [6a) € §(E), then [&] itself must be a pullback of Z
>>m,a —> In? by some «’: In* — In* Thus [&] = [6aa’] implies aa’ — 1 € B.

(b) = (c). It is easy to see that the correspondence [a] € E+> dete(a) € Z is
well defined modulo m. aa’ — 1 € B implies det e(a) - det e(a’) = 1 (mod m).
Thus det e(a) is prime to m. Furthermore, e(a,))e(a},) + e(a)e(as) — 1=0
(mod n) follows by looking at the 11-coordinate of d(aa’ — 1).

(c) = (d). Because m divides n, the natural map a, > a, (a € Z) induces a
surjection Z} — Z*. Let d = det &(a). d is prime to m, so there is an integer / such
that d + Im is prime to n. se(a,,) + te(a;;) = 1 + kn then yields d + I(1 + kn)m is
prime to n. Now consider the integer matrix

e(ayy) e(ayp)

e(ay) — Itm  e(ay,) + Ism |

We claim that y represents an element of GL(2, Z,); i.e., that det v is prime to n.

Consider
dety = d + Im(e(a;) s + e(ay,) - t) =d + Im(1 + kn),
which is prime to n. Clearly [y] = [a], by Lemma 2.4.

(d) = (a). Choose an integer matrix y so that [y] = [a] in F and ¥, € GL(2, Z,).
Let v’ be an integer matrix which represents the inverse (7,)~'. Then (yy’ — 1), =
0 implies that d(yy’ — 1) = 0. We claim that ay’ — 1 € B. Choose b € B so that
a=y+ b Thenay —1=(y + b)Yy —1=+vyy — 1+ by’. But B is a right ideal,
soby € B.Henceay — 1=yy — 1 =0(mod B)and « € §(E). [

4.2 THEOREM. §(E) = ,lso.

ProOF. By Proposition 4.1, given any [a] € §(E) there is a 2 X 2 integer matrix
A = [2 5] whose determinant is prime to n, and such that [4] = [a] € E. Consider
A_,, as the matrix mod n, that is to say, 4 represents an element of GL(2, Z,) =
Auy(Z, X Z,). By Proposition 6 of [S], A =E\E, ... E,D (mod n) where D =
14 2] is a diagonal automorphism (p, g are prime to n) and each E; is an elementary
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matrix of the form [§ }] or [}, ], with p, g, v, € Z. Let M = E\E, ... . E, D be the
integer matrix which is the product of E, E,, ..., E,and D. Then

[ba] =[64] =[6M] (because a =4 =M mod B)
=[( .- ((BE)Ey) - - - Ek)D]
(because pullbacks commute with composition).
But, by Proposition 2.5
am,=mE =mEE =.--=mE - E
because each E; € Aut(I7)%. D is a member of Aut 7 implies that
my,=mE, - - - E = pmM = pma

by invoking Theorem 3.1. [J

We have seen in §2 that the map 0 = 8|GL(2 Zz/(N)): GL2, Zr/(N)—>$ (E )
is onto the subset.Iso. We would like to determme irh 3. As above, each' elementary
automorphlsm a = [0 1] or [ 9 ylelds T = T, The diagonal automorphlsms
,B ] (p,q € z ) of 7 wh1ch are clearly in im 3 have p,,,, §,,, € ker{d: Z%, >
KOZw}, for, choosing units mod N u, v € Zw/ M)+ such that e(¥) = p, e(v) = ¢
[4, 2.1], we have a = [% %] € GL(2, Zn/(N)) and da = B. We make the following
convenient hypothesis [SD, §4].

REDUCTION HYPOTHESIS. The natural projection Z?¥, — Z* remains surjective
when restricted to ker 9.

The reduction hypothesis is satisfied whenever n = m = p, an odd prime [U].
Whenever the reduction hypothesis is satisfied, the above argument implies that F)
is surjective.

4.3 COROLLARY. If the reduction hypothesis is true, then each [a) € S(E) has
ma = m,y; i.e., §(E) =Iso. O

5. Shuffling k-invariants. Recall that # = Z,, X Z,, with m|n and generators x, y
of order m and n, respectively. For each 7-module M, H*(w; M) is isomorphic to
Hom,, (7, M)/%, where B = { B: m,—> M| B extends to a map B: C,—> M}.
For each a € Hom,,(7,, M), let {a} = a + B be the class of a in H*(7; M).If
is a member of Aut, then §*: H*(w; m,) > H*(w; 47,) may be computed by
choosing a chain map from @*(/\7 #) —>,@,(1\7 ) covering the identity.

C2
I

m - (Zr)) > Zn* > Zm > Z

l6, W l 28 I
3 82 2 aI
oM — o(Zm)y o  gZm* > Zm > Z

It follows that for any a € End m,, 0*{a} = {6,a} € H3(w; 4m)).
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If 6 = [} J], where p is prime to m (i.e., 0(x) = x?, 8(y) = y), then
{x, py 0 0
0 (x,p)> 0 |: (Zn)* > «(Z7)® induces 8,: 7, — 47,
0 0 1
The following lemma will prove yseful.

\P=

5.1 LEMMA. Let v € Zm be a unit (mod N) having augmentation e(v) = p. Then
there is a unit (mod N) u € Zn having e(u) = p and such that u = {x,p> +
(y — Da, for some a € Zx.

Proor. For each v € Z7, let v, € Z(Z,(x)) denote the image of v under the
map ¢,: Zw — Z(Z,,) obtained by setting y = 1. v is a unit mod N implies v, is a
unit mod N,, which in turn implies that v, = w{x, p), where w is a unit in Z(Z,,).
w is also a unit in Z7 so u = w™'v has u, =<{x,p). Hence u — (x, p) is in the
kernel of the map ¢, It is easy to see that u — (x,p)> = (y — 1)a for some
a€EZr. O

Recall the homomorphism 9: Z%, (= units in H*(7; m,) - I?on given by
(P, = {(p, N)} € IEOZ'rr. It is known that p,, € ker 0 iff there is a v € Znw
which is a unit mod N whose augmentation &(v) = p, [D,, 2.1]. A -homomorphism
a: m, —ym, has degree k € H(w; m,) iff k{8,} = {a). For each k € ker 9, we will
construct a B-isomorphism w, —,m, of degree k. This will prove Theorem B. We
commence the proof.

Given k,,, € ker 9C Z?,. Choose u € Zr such that e(u) = k and u is a unit
mod N. k is prime to mn implies that k is prime to m%:. Choose an integer p such
that pk + sm’n = 1. Let § be the automorphism which carries x — x?, yoy.
Pwn = ko' in Z2%, implies j,,, € ker 3. Thus there is a v € Zr such that e(v) = p, v
isaunitmod N, and v = {x, p> + (¥ — 1)a for some a € Z7.

Let ¢; (i = 1, 2, 3) denote the natural basis for (Z7)>. Define homomorphisms
Pij (Z7)® —>4(Z7)® sending ¢, > g (g is a generator of m,, hence, of ,m,, see §2)
and ¢ -0 (k#i) (i=1,23; j=1,23,4). Note that p, = p, |w, defines a
degree 0 map from 7, —,7,.

Consider the map M = { + ap,,: (Z7)’ —,(Z7)>. M has matrix

v={,p)+(y - Da 0 0
aN, {x,p) O
0 0 1
M = M|, : m,—,m, carries g, = (x” — 1)(v, 0, 0), g, (o(y — 1), aN,(y— 1) +
PN,, 0), g3+ (0, =N, (x,p), x* — 1), and g, (0,0, y — 1). The map M: (Ir)?
—¢(I7)* induced by M then has matrix [§ 9] and is an isomorphism because v is a
unit (mod N).
We will now alter M to give an isomorphism 7, —¢m, of degree k. Look at
Q = uM + sNp,,: (Zn)’ - ,(Z7)’. Q then has matrix
uv 0 0
auN, ulx,p) + smN 0]|.
0 0 0
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This clearly restricts to a map Q: 7, —,7, having degree £,,, because {Q} = {uf,
+ uapy, + sNpp} = {ub,} = {e(u)8,} = k{8,}). Clearly Q induces the same map
as uM on Ir* —,In* (sNp,, restricted to (Ir)? is zero) and is an isomorphism. We
need only show that Q|,. is the identity: Q(0, N, 0) = (u{x, p) + smN)(©, N, 0)
= (kp + sm™n)(0, N, 0) = (0, N, 0). [J
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