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A RELATION BETWEEN THE COEFFICIENTS

IN THE RECURRENCE FORMULA

AND THE SPECTRAL FUNCTION

FOR ORTHOGONAL POLYNOMIALS

BY

JEFFREY S. GERÓNIMO

Abstract. A relation is found between the rate of convergence of the coefficients

in the recurrence formula for polynomials orthogonal on a segment of the real line

and certain properties of the spectral function. The techniques of Banach algebras

and scattering theory are used. The close connection between polynomials orthogo-

nal on the unit circle and polynomials orthogonal on the real line is exploited.

1. Introduction. Suppose that one is given a nondecreasing spectral function p(A)

with infinitely many points of increase on a segment [a, b] of the real line such that

s„=f\ndp(\)

exist for all n. It is well known that one can construct a set of polynomials [9]

{p(\, ri)}, orthonormal with respect to dp(X) on the interval [a, b] and that these

polynomials satisfy the following three-term recurrence formula,

a(n + l)p(\, n + 1) + b(n)p(\, n) + a(n)p{\, n - 1) = \/>(A, «),

n = 1,2,3,....    (1.1)

Here

a(n) = f" V(A, n)p{\, n - 1) dp(X),       «=1,2,..., (1.2)
J a

and

b(n) = ¡b V(A, n)2 dp(X),       n = 0, 1, 2, . . . . (1.3)
•*a

A question that comes to mind is, given the coefficients in the three-term

recurrence formula, can one find a spectral function. This problem is an old one

and it is a famous result of J. Favard's [2], [3] that if p(X, - 1) = 0, p(\, 0) = K(0)

> 0, a(n) > 0, n > 0, and b(n), n > 0, is real, then the polynomials {p(X, ri)}

constructed from (1.2) are orthogonal with respect to some spectral function p(A)

which may not be unique. In this paper the same problem is considered except that

stronger conditions are imposed on the coefficients in the recurrence formula.

More precisely, let

v(n) > 1 (1.4)
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66 J. S. GERÓNIMO

be an even function of n with the following properties:

v{n) < v(n +1),       n > 0,

v(n) < v(m)v(n — ni),       n, m > 0, (1.5)

and

lim sup(u(«))      =1,       n —> oo.

The following theorem is the main result of the paper.

Theorem 1. Let p(X) be a bounded nondecreasing, absolutely continuous function on

the real interval [a, b] with

dp(X) «s a(9) d\j    where X is related to 9 in (1.10). (1.6)

Furthermore let a(0)/sin 9 = o(-9)/sm(—9) and ln(a(0)/sin 9) have an abso-

lutely convergent Fourier series, then

2   nv(2n)
n=0

l   <»?
a(oo)

if and only if

Here

+ \B(n- 1)|     < co (1.7)

n|o(«)|flf(n)-i(ii + 2)|<oo. (1.8)

\-    f     q{m)eime, (1.9)

and

sinö     „=-oo

X = (^)cos 0 + (±±±),       0<9<v, (1.10)

lim  a{n) = a(oo) > 0, lim  b(n) = ¿(oo),       b(n) real,       (1.11)

Ä(n) = (¿>(/j) - 6(oo))/a(oo). (1.12)

The paper proceeds as follows; in §11 the theory of orthogonal polynomials is

briefly reviewed to develop the equations needed in the proof. In particular, a new

set of two-two term recurrence formulas satisfied by polynomials orthogonal on the

real line is exhibited. Next (in §111) a close connection is established between the

solution of one of the above recurrence formulas and polynomials orthogonal on

the unit circle. §IV contains the proof of Theorem 1. The proof of sufficiency is

done in two ways. One way uses the close connection between polynomials

orthogonal on the unit circle and those orthogonal on the real line. The other way

(exhibited in Appendix A) uses the techniques of inverse scattering theory, in

particular, the discrete analog of the Marchenko equation.

2. Preliminaries. If (1.11) holds then the polynomials satisfying (1.1) also satisfy

the following set of recurrence formulas.

P{X' n) = ^) [(Z " B{n " 1))P{K n ~ 1} + ^Z' n ~ 1)/Z]'

n = 1, 2, ...,     (2.1)
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and

HZ, n) =
fl(oo)

a(n)
*(Z, n - 1)/Z +       1

a(oo)2
Z- B(n- \)\p(X, n - 1)

n = 1, 2, . .

(2.2)

B(n) is given in (1.12) and X = a(oo)(Z + 1/Z) + b(oo). For initial conditions one

takes

p(X, 0) = 4>(Z, 0) = K(0) > 0. (2.3)

Consideringp(X, n) and \p(Z, n) as two components of a function $ defined by

4>(Z

Equations (2.1) and (2.3) can be condensed to

4>(Z, n) = C(n)<i>(Z, n - 1),

where

C(n) =
a(oo)

«(")

Z - fi(« - 1),

fl(co)

Two other useful solutions [4] of (2.5) are

1/Z

tZ-B{n-\)\,     1/Z

(2.4)

(2.5)

(2.6)

and

//>_(Z,n)\

$-(z-) = l,_(z,M))

(2.7)

(2.8)

satisfying the following boundary conditions:

lim \pAZ, n) - Z±n\= 0,    IZlfl,

lim |^ + (Z, «)| = 0,    |Z|< 1, (2.9)

and

lim U_(Z,«) - (1 - Z2)Z-"1=0,        |Z|<1.
n—>oo ' ill

It can be shown [4] that 3>+(Z, n) and 3>_(Z, «) are linearly independent for

Z = e*, Z^ ±1 and that

*(z> ") -   í   vf,/7J/-(z)^(z. «) - /+(Z)^-(Z, «)],
a(ooj(Z — l/Z)

|Z|=1,Z^±1,      (2.10)
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where

/♦(Z)-|^7 ¿^ Z"^> «)> (2.11)

and

/_(Z) = /+(Z) = /+(1/Z),        |Z| = 1. (2.12)

Note from (2.5) and (2.9),

p + (Z,n)=P + (\/Z,n)=p_(Z,n),        |Z|=1. (2.12a)

One can include polynomials of the second kind in this scheme by defining

••<*">-($.".))•   '>'• (213>

satisfying (2.5) with boundary conditions

Q(X, 1) = *a(Z, 1) = („(1))"'*((». (2.14)

Now it is possible to write [4]

P + (Z, n) - K(0)[f+a(Z)p(X, n) - f+{Z)Q{X, «)],       « > 1,       (2.15)

where

Equation (2.15) can be extended to n = 0 by defining Q(X, 0) = 0.

To proceed further it is convenient at this point to introduce the techniques of

Banach algebras. Let Av denote the class of functions integrable on — II < 9 < II

such that if g is an element of Av then

g(0)=     2    g(K)eiKe, (2.17)
*:=-oo

with

11*11.-     2    v(K)\g(K)\ < oo, (2.18)
Ä" = — 00

where the properties of v(n) are listed in (1.4) and (1.5). Let A* and A~ denote

those functions in Av of the form

*(*) = i *(*y™ (2.19)
A--0

and

h(9)=    2     *(*)«"", (2.20)
tf=-oo

respectively.

Let II *L De tne norm of /lc, A* and /!„", then /4U, A+ and /40~ are Banach

algebras. A will denote the Banach algebra where v(n) = 1 for all n. It is obvious

that

AVCA. (2.21)
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Returning now to (2.5) the following holds.

Lemma 2.1. Given the initial condition (2.3) and the coefficients a(n) and B(n) in

(2.5), i/(1.7) and (1.11) are satisfied then

4^^(Zn)-Z/+(Z)|   =0 (2.22)
AW lie

and

p + (Z,n)GA+. (2.23)

Here

r(Z, n) = Z^(z, n). (2.24)

The proof follows from a minor modification of a similar proof given in

Appendix B of [4].

The consequences of (1.7) for the spectral function p(X) are as follows:

Theorem 2.1. Given (2.3) and a(n) and B(n) in (2.5), if (1.7) and (1.11) are

satisfied and

Z/+(Z)^0   for\Z\< 1, (2.25)

then

dp(X) a* a(9) dX,       b(oo) - 2a(oo) < X < ¿>(oo) + 2a(oo),

(0 < 9 < 77-)   (2.26)

with

a(9) =     a{cC} Sm °        X = a(oo)(e* + e'») + b(oo),       Z = e»,      (2.27)

^(0)2|/+(Z)|2

and [b(co) - 2a(oo), b(oo) + 2a(oo)] is the interval of orthogonality. Furthermore

o(9) = -a(-9), and

a(9)

sin 9 Av. (2.28)

Proof. The proof of (2.26) and (2.27) are given in §3 of [4]. Equation (2.28) is a

consequence of Lemma 2.1 (2.25), (2.27) and the Wiener-Levy theorem.

Equation (1.7) also has the following important consequence for the Fourier

coefficients of the derivative of/+(z).

Theorem 2.2. Given (2.3) (f (1.7) and (1.11) a«? satisfied then

(1 - Z -2)(Z/+(Z))' &AV,       Z = e«. (2.29)

Here the differentiation is with respect to Z.

Proof. Let us begin by noting that from the recurrence formulas and (2.5),

\p*(Z, n) andp(X, n) can be written as

In

**(Z, «) - 2  *(2», <)Z' (2.30)
Í-0
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and

2„

p(X, n) = 2  K{2n, i)Z¡-". (2.31)
í-0

From the recurrence formulas,

K(2n, 0) = K(0) II  a(oo)/a(i) ^ 0. (2.31a)
/-i

Therefore these equations can be written as

2

^-^ -1+2  A(2«, «)Z
(2.32)

and

p(X, n)   = ^  ^ .)z,_„ (2J3)
*(2n, 0)     ;f0

where

A(2n, i) = K(2n, i)/K(2n, 0) (2.34)

and

h(2n, i) = ¿(2«, i)/K(2n, 0). (2.35)

Letting « -» oo in (2.32), it follows from Lemma 2.1, (2.31a) and (2.2) (after

multiplying by Z"/K(2n, 0) and iterating downward) that

K(0)Zf+(Zy »
—-:-:-r =  1  +    >.     h(m)Z
fl(oo)tf(oo, 0) ~,    l   '

(2.36)

where

A(w) = A(oo, m). (2.37)

Substituting (2.33) into (2.36) gives

jr(Q)z/+(z)
a(oo)AT(oo, 0)

= 1 +  .
Y=o , = [(Y+i)/2] [\ a(coY   ) J

(2.38)

2 2        \il-^7^-)z^-B(i)Z^}h(2i,y),
Y=o , = [(Y+i)/2] [\ a(oo)     / )

where [b] means the largest integer less than or equal to b.

Multiplying (2.36) by Z(l — Z~2) and equating coefficients gives

It is without loss of generality that Zf+(Z) is set equal to its Fourier series.
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[(m + l)/2]-l

v(m)\h(m)-h(m + 2)\<v(m)        2
, = [(m-l)/2]

[(m + 2)/2]-l

+ v(m)        2        |£(i)A(2i,ifi- 1)|
, = [m/2]

a(co)

+ v(m)        2
, = [(m + l)/2]

1 " *(f,*l)2 l<
a(oo)

+ "(«)       2       |*(0(*(2i, m - 1) - h(2i, m + 1))|,       m > 1.    (2.39)
<-I(m+r>/2]

Letting Z —» 1/Z in (2.7), then subtracting it from the original equation yields

(1 - Z2)l/Zp(X, n - 1) = 1/ZiKZ n - 1) - Z^(l/Z, n - 1).     (2.40)
Multiplying by Z"/K(2n, 0) one finds from Lemma 2.1 that

(1 _ Z2)Z-, /»(X.n-1)
<

r(z, «) + z2n+V(i/z, «)

/<:(2n - 2, 0)tf(2/i - 2, 0) ||     || tf(2« - 2, 0)

< M < oo    for all n, Z = e*.   (2.41)

Therefore, from (2.33),
2< + 2

2  \h\2i,j - 2) - h(2i,j)\ < M < oo    for all », (2.42)

where

ä(2/,7) = 0   for./ < 0 and./ > 2/. (2.43)

Equations (2.42) and (2.43) imply that the Fourier coefficients are uniformly

bounded for all n. To see this, note that from (2.42),
2Í + 2

\h(2i, K) - h\2i, K + 2)\<   2  \h\2i,j - 2) - h{2i,j)\ < M
7-0

for all«, -2 <K <2i.      (2.44)
The above equation and (2.43) imply

|A(2/, Ä")| < 2Af   for all », 0 < K < 2i. (2.45)

Multiplying (2.39) by m, summing and using the properties of v(m) one finds, using

the above results,

2   mv(m)\h(m) - h(m + 2)|
m = 2

oo      [(m+l)/2]-l

< M 2 2        (2» + 2)o(2» + 2)
m = 2    <-[(m-l)/2]

,    g0 +1)2
a(oo)

oo      [(m + 2)/2]-l

+ M 2 2        (2i + 2)©(2» + 2)|2*(»)|
m "2        i — [m/2]

+ M2  2iv(2i)
«07

a(*o)2
+ |5(/-1)|    <co. (2.46)
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3. The properties of \p(Z, n) and p+(Z, ri) and /+a(Z). In this section the

properties of \p(Z, n) are investigated. In particular, it will be shown that under

certain circumstances {^(Z, «)} are closely related to polynomials orthogonal on

the unit circle.

Theorem 3.1. Given (2.3), (1.7), (1.11) and (2.25) then Vwa(oo) Z"W/Z, n) is a

polynomial on the unit circle orthonormal with respect to the weight a(9)/sin 9.

Proof. From Theorem 2.1, a(0)/sin 9 can be constructed from (2.27). Now it is

shown that

2tr

and

l- C Z-mZ"xp(l/Z, n)4^¡ d9 = 0,       0 < m < 2n, Z = e»,      (3.1)
\m./__ sin 9

2irJh
7ra(oo)yp(Z, «Ml/Z n)^\ d9 = 1,       Z = e*. (3.2)

b-v sin 0

This result is most easily proved by letting Z -» 1/Z in (2.10) then substituting the

lower component and (2.27) into the above equations. For example, (3.1) becomes

Z-»Y+(1/Z, n) ja1    /•*•

= 2tJ_,

1    r' Z"-"¥_(l/Z, n)

(i/z - z)f+(z)-m"
Z = ew. (3.3)

a(oo)

Now letting 9 -» - 0 in the first integral and noting from the recurrence formulas

that

Zf+(Z) = a(oo) 5   ^ + 0(Z),
/-i    a(i)

^+(z,«)= n ^fiwz"+i + o(zn        (3.4)
,-n + l     a(')

and

^_(i/z,«)=   fi    ^(i-i/z2)z"+o(z-')
,=«+1   tf(')

gives the desired result. Equation (3.2) is proved in a similar fashion. Since the

leading coefficient of y-na(oo)  Z"\j/(l/Z, n) is positive the above results imply

that Vwa(oo)  Z"i|/(1/Z, n) is a polynomial orthonormal on the unit circle.

Define

Mz,.) - v^L /-i4±|i(wv(i/». ») - z-vd/z. »»iffi *,
Z7T ./„    (g      —   Z) sin t/

|Z| <1, w - e», (3.6)
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and

a(n, 9)
=     2     q(n,m)Zm,       Z = e'*.      (3.7)

sintf        ira(co)   |,/,*(Z, n)|2     m--«

Lemma 3.1. Given (2.3), (1.7), (1.11), and (2.25), fAe/i

q(n,m) = q(m),        \m\ < 2n + 3. (3.8)

#(«, w) is defined in (3.7) and q(m) in (1.9).

Proof. It follows from Theorems 3.1 and 2.1 that \/tra(co) Z^l/Z, n) is a

polynomial on the unit circle orthogonal with respect to a positive weight

o(9)/sin 9 and F(Z) is analytic inside the unit circle and continuous on it.

Therefore, from the theory of orthogonal polynomials on the unit circle [7], [9],

ZV(l/Z,n)^0,       |Z|>1, (3.9)

and (3.7) is well defined. From (3.5) and (3.6),

F(Z)\/a(oo)7T .//»(Z, n) - ¿*(Z, ")

f(l+2 2   Z*ht — 'L,«)^
•/-n\ K-l I su

¿0,
2ir J-Á *-_i / sinö

w = e«, |Z| < 1,

where

r(Z, n) = Z2" *(Z, «) ,        |Z| = 1. (3.10)

Substituting (2.10) and (2.27) then using (3.4) yields

F(Z)Va(oo)w 4,*(Z, n) - ,¿>(Z, #i) = 0(Z2n+3),        |Z| < 1.       (3.11)

Since ^*(Z, n)¥=0,\Z\ < 1 (see (2.24) and (3.9)) the above equation implies F(Z)

has the same Fourier coefficients in {Z'}2P + 2 as >¿*(Z, n)/\/a(cc)ir ip*(Z, n).

Now [7], [9],

Vira(oo) [#Z, «)^*(Z, n) + Zty(l/Z, »)<<>(Z, «)] = 2Z2",        \Z\ = 1,

(3.12)

therefore

r(Z,n)
Re

[ V™(oo) ^*(Z, «)
— ,       |Z|=1.        (3.13)

7ra(oo)|^*(Z,n)|

Equations (3.11), (3.13) and the reality of o(#)/sin 9 give the result.

Now let us investigate the properties of p + (Z, n) and/+a(Z). Note that if (1.7),

(1.11) and (2.3) are satisfied then a lemma similar to Lemma 2.1 holds [4] for

y¡>a(Z, n) and/+a(Z). If (2.25) is also satisfied then the following is true.

Lemma 3.2. Given (2.5) and (2.3), //( 1.7), (I.II) and (2.25) are satisfied then

f+a(Z) = fAZ)f f^7 dX',       \Z\ < 1, (3.14)
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and

P + (Z, n) = K(0)f+(Z)fab P(X'X y 2 rfX',        |Z| < 1. (3.15)

Proof. Solving for ^(Z, n — 1)/Z in (2.1) then substituting the result into (2.4)

yields

*(Z, n) = /»(A, «) = 44 Zp(X, n-l). (3.16)
a(oo)

Since Oa(Z, n) satisfies (2.5) one can also write

*„(Z, ») = ß(\, ») - 44 ZQ(X, n-l),       n>\. (3.17)
a(oo)

Since Q(X, n) is a polynomial of the second kind,

Q(X,n)=Jay^nlzf'n))o(9')dK       n > 1. (3.18)

Therefore

■ ,~   >      ,/^    x f* o(9')dX'

- f W")-^(")/;WM^-i))ff(r)fl,
•'a A — A

The integral

where the property a(9) = -o{-9) has been used. Here

X' = 2a(oo)cos 0' + 6(oo) (3.21)

and

X = a(oo)(Z + 1/Z) + b(oo). (3.22)

Therefore it follows from Theorem 2.1 and (2.41) that the above integral is

bounded for |Z| < 1 (X > 1). Multiplying through by Z" then letting n -> oo using

Lemma 2.1 and (2.16) yields

-*   a(9')

Since

f+a(Z)=f+(Z)fa   ^Z^dX',       \Z\<\. (3.23)

and from Theorem 2.1, o(9) is an element of A, (3.23) is true for |Z| = 1.

Substituting (3.23) into (2.15) gives

P + (Z, n) = K(0)f+(Z)f P{X'¿ y > dB',       \Z\ < 1, n > 1.     (3.25)
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In all of the previous theorems and lemmas it has been assumed that (1.7) held.

Now we begin with assumptions on the weight.

Theorem 3.2. Assume p(X) is a bounded nondecreasing function on the real interval

[a, b] with an infinite number of points of increase. Furthermore

p(X) « o(9) dX,       X = ^-^cos 9 + ^-^-,     0 < 9 < w.       (3.26)

with

and

a(9) m  q(-fl)
sin 9     sin(-0)'

(3.27)

\xv^\&A. (3.28)
sin 9

Then a(oo) exists and is positive, b(oo) exists, and f+(Z) can be uniquely constructed

such that

oW      -«(oo)- z=e¡r
sme    tta:(o)2|z/+(z)|2

Z/+(Z)^0,       |Z|<1, (3.30)

Zf+(Z)GA+,       Z=em, (3.31)

and

Z/+(Z)|z_0>0. (3.32)

Furthermore (3.1), (3.2), and (3.8) hold and

p + (Z,n)&A+. (3.33)

In (3.29),

K(0)2 = ( f " a(9 ) dx\ ~' > 0. (3.34)

Proof. a(0)/sin 9 can be thought of as a weight function defined on the unit

circle and one can uniquely construct a set of polynomials {<¡>(Z, n)} defined on the

unit circle orthonormal with respect to a(0)/sin 9. Baxter [1] has shown that (3.28)

implies that

<f>*(Z, n) G A +    for all n (3.35)

and {<f>*(z, «)} is a Cauchy sequence in ^4 +. Here

<t>*(Z, n) = Z>(l/Z, n),       Z = e*. (3.36)

The polynomials {p(X, n)} orthonormal with respect to a(X) can [9] be written as

(Z - Z-x)p(X, n) = c(n)[Z-"-x^Z, 2n + 2) = Zn+1<f>(l/Z, In + 2)],

Z - e">,

,.     /2\'/2/]      9(0,2n + 2) ~l/2(    2    \'/2

C(n) = l^j     I1-*(2* + 2)      U^J    ' (3'37)
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where X is written as in (3.27) and k(2n + 2) is the leading coefficient of <i>(z, 2/i +

2). Since |<K0, 2« + 2)/k(2n + 2)\ < 1, and <K0, 2w + 2) -> 0 uniformly as /j -» oo,

equation (3.37) implies

(Z - Z~l)p(X, n)<=A,       Z = e*. (3.38)

Therefore, since In <x(0)/sin 9 El A implies 0(0)/sin 9 G A,

fb
a(oo) =  Um  a(n) = Um V(A> n)p(K n — \)a(9) dX

n—»oo n—»oo   y

b — a\ rw(( b — a\       „ .  / b + a-Ämnm~»+m)
-/>(0, b)/>(0, « - 1)^| sin2 0 ¿0. (3.39)

sin »

The existence of ¿>(oo) follows from (1.3) and an argument similar to the one given

above. Equations (3.29)-(3.32) are consequences of the Wiener-Levy theorem [1],

[4] and/+(Z) may be explicitly constructed from a(0)/sin 9 using a modification

of the Poisson-Integral formula [4].

One now constructs

p + (Z,n) G A+,       n > 1,

from (3.25). It is easy to see that/»+(Z, n) satisfies the recurrence formulas and it

can be shown [5] using (3.37) that the appropriate boundary condition (2.9) is also

satisfied. p_(Z, ri) is formed using (2.12a). One can now derive (3.4) from the

recurrence formulas and (3.1), (3.2) and (3.8) follow.

4. Proof of Theorem 1. The following will now be proved.

Theorem 1. Let p(X) be a bounded nondecreasing, absolutely continuous function on

the real interval [a, b] with

dp(X) « a(9) dX,   X = (-^y^)cos 9 + -^A       0 < 9 < ir.       (1.6)

Furthermore, let o(0)/sin 9 = a(-0)/sin(-0) and ln(a(9)/sin 9) G A, then

+ \B(n- 1)| ) <oo (1.7)2 nv(2n)
n-l «(oo)2

if and only if

Here

2    \n\v(n)\q(n) - q(n + 2)\< oo. (1.8)

^=2     «("V"* (1.9)Mil u m = - oo

(It is without loss of generality that a(0)/sin 9 is set equal to its Fourier series and

v(n) is defined in (1.4) and (1.5).)

Proof. Note that the hypotheses imply a(n) > 0 for all n and we take

K(0) = If a(9) dX\   ' 2 > 0.
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The above assumptions allow us to call upon Theorem 3.2, giving

°{0)
sin 9

=     2      q{m)eim9 =
a(oo)

m = — oo «K(0)2\Zf+(Z)f

— „*Z= e

with

Z/+(Z)^0,        |Z|<1    and   e^f^e*) G A+.

If (1.7) holds then Lemma 2.1 implies

Zf+(Z) G Ac+,       Z = e«,

and from (4.1) and the Wiener-Levy theorem,

a(9)

sin 9
G A.

(4.1)

(4.2)

(4.3)

(4.4)

Differentiating2 both sides of (4.1) with respect to 9, then multiplying by,

(1 - e"2'*) yields

2      m(q(m) - q(m + 2))eimB = 2e~2ie    2      ¡q(m)eim9
m** — oo m= — oo

+
a(oo)

ttK(0)2

(1 - e-2»)(e%(e»))'   [  (1 - e^^Ue-«))'

\ewf+(e«)\e%(e»)        \e%(e»)\Xe-»f+(e-»))

(4.5)

Equations (4.1)-(4.4), the Wiener-Levy theorem and Theorem 2.2 show that the

right hand side of (4.5) is an element of Av thus giving (1.8).

To prove sufficiency note that ln(o(0)/sin 9) G A and (1.8) imply ln(a(0)/sin 9)

G Av. Calling upon Theorem 3.2 we see that Zn\p(l/Z, n) is a polynomial on the

unit circle orthogonal with respect to a(9)/sin 9 and Baxter [1] has shown that

ln(a(0)/sin 9) G Av implies

K(0)
V(Z, n)

a(oo)

Since \^*(Z, n) ¥= 0 for |Z| < 1 we define

^"^=     2     q(n,m)Z"=^-

Zf+(Z)    inAv.

1

sin 9

(4.6)

A„,       Z = e">.   (4.7)
tra(oo)   \tb*(Z, n)\2

Differentiating the above equation with respect to 9 and multiplying by (1

Z-2) yields

1

ira(oo)

(1 - Z-2)r(Z,n)'  |  (1 - Z'2)r{\/Z,n)'

\t*(Z, «)|V(Z n)       \r(Z, »)|V(1/Z, n)
00

=     2    im(q(n, m) - q(n, m + 2))Zm
m —00

2    2    iq(n, m + 2)Zm,       Z = e*.

m» — oo

m = — oo
(4.8)

2This was suggested to me by Professor P. G. Nevai.
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Multiplying by C\p*(Z, n)2 where

C = ira(oo),

and setting

yields

An

**(Z, n)2 = 2   C(n, i)Z\
x=0

(4.9)

(4.10)

n _ z-2. **(z, h)7^(2/i, o) 2 ^(i/z,/i)^*(z,ii)

1 VO/Z, »i)/tf(2«, 0)     V '        **(1/Z,ii)

= Ci    2    Zm 2 C(n, i)(m - i)(q(n, m - i) - q(n, m- i + 2))
m=-cc ,«o

oo 4«

-2Ci    2    Zm 2 q{n, m - i + 2)C(n, i),       Z=e">, (4.11)
m=-oo , = o

where K(2n, 0) is defined in (2.30). Since x¡s*(Z, n) ¥= 0 for |Z| < 1,

with

K(2n,0)    _  £ i

r(l/Z,") AT-o

2 |y(». *■)!<«,

and from (2.32),

-K«, o) = i.
Equating coefficients of Z2" using (2.32) gives

2nv(2n)\h(2n, 2n)|

(4.12)

(4.13)

(4.14)

= C»(2n)
4/i

2 C(«, »)((2n - i)(q(n, 2/1 - i) - q(n, 2n - i + 2))
i = 0

-2q(n,2n - i + 2)) (4.15)

From Theorem 3.2,

Therefore,

2iw(2/i)|A(2»,2n)|

An

q(n, m) = q(m),        \m\ < 2n + 2.

= Cv(2n) 2 C(n, i)((2n - i)(q(2n - i) - q(2n - i + 2))
i = 0

■2q(n,2n - i + 2)) (4.16)
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Summing on n and using the properties of v(n) ((1.4) and (1.5)) gives

00

2 2 nv(2n)\h(2n, 2n)\
n = 2

< C 2 |2« - i\v(2n - i)\q(2n - i) - q(2n - / + 2)| 2 v(i)\C(n, i)\
n=2 i=0

+ 2C 2 u(2« - i)\q(2n - i + 2)\ 2 v(i)\C(n, i)\. (4.17)
n=2 1=0

Since a(0)/sin 9 e. Av and (a(oo)/AT(0))^*(Z, n) -» Zf+(Z) in Av the right-hand

side of (4.17) is bounded. Multiplying (2.2) by Z", substituting in (2.32) and (2.33)

then equating coefficients of Zm yields

h(2n + 2,m) = h(2n, m) +    1 - -^-   h(2n, m - 2)
{        a(oo)   J

+ B(m - l)h(2n, m - 1). (4.18)

Note  that  h(2n, 2ri) = h(2n, 0) = 1   and  h(2n, m) = h(2n, m) = 0  for m > 2n.

Thus setting m = 2n + 2 in (4.18) yields

A(2« + 2,2n + 2)=    1 --^-   . (4.19)
I        «(oo)2 J

Substituting the above equation into (4.17) and using the monotonicity property of

v(n) gives

-.2

2 nv(2n)
n=l

a(nY

a(oo)2
< oo. (4.20)

To show that the B(n)'s converge at a similar rate return to (4.11) and equate

coefficients of Z2""1, thus

v(2n)(2n - l)\h(2n, 2n - 1)| < 2nv(2n)\h(2n, 2n){h(2n, 1) + y(n, 1)}|

An

+ Cv(2n) 2 \C(n, i)\(2n - 1 - i)
i=i

■\q(n, 2n — i — \) — q(n, 2n — i + 1)|

An

+ 2Cv(2n) 2 \q{n, 2n - i + 1)| \C(n, i)\. (4.21)
i = 0

Setting m = 2n + 1 in (4.18), then substituting the result into (4.21), summing on n

and using the fact that h(n, 1), h(n, 1) and y(n, 1) are bounded for all n yields the

desired result.

An alternative proof of sufficiency using the discrete analog of the Marchenko

equation is given in Appendix A.

5. Conclusions. In this paper the coefficients in the recurrence relation have been

assumed to converge at a particular rate. Consequences for the spectral function, of

the above assumptions, have been found that are necessary and sufficient.
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One of the assumptions of Theorem 1 is that the spectral function be of the form

dp(X) = a(9) dX with ln(a(0)/sin 9) G A. This assumption is unnecessary and will

be removed at a later time [6].

6. Acknowledgement. I would like to thank Professor P. G. Nevai for many useful

discussions.

Appendix A. In this appendix an alternative proof of the sufficiency part of

Theorem 1.1 is given. It uses the discrete analog of the Marchenko equation and

exhibits the close connection between the moment problem and discrete inverse

scattering theory.

We begin again by noting that ln(a(0)/sin 9) G A and (1.8) imply via the

Wiener-Levy theorem that ln(a(0)/sin 9) G Av. Baxter [1] has shown that

ln(<r(0)/sin 9) G Av implies that one can have a sequence of polynomials

{<Í>(Z, n)} on the unit circle orthonormal with respect to a(0)/sin 9 such that

<t>(Z,n)EA+. (A.1)

One can now follow the arguments leading to (3.38) to show

(Z- l/Z)p(X,n) G.A (A.2)

where X is given in (3.27) and p(X, n) is orthonormal with respect to o(X). Equation

(A.2) and ln(a(0)/sin 9) G A imply that a(oo) and ¿>(oo) exist. Thus one can

construct f+(Z) such that

Zf+(Z) G A*,       Zf+(Z) + 0   for \Z\ < 1, Z/+(Z)|Z_0 > 0,

and

a(9) _    a(oo) 1

«n*      ^(0)2|Z/+(Z)|2'
(A.3)

Differentiating the above equation with respect to 9, multiplying by

(1 - Z2)|Z/+(Z)|2, applying E+ the operator that projects Av onto A*, then

multiplying by Zf+(z) gives

(1 - Z2)(Zf+(Z))' = -Zf+(Z)E+[(\ - Z2)0
1/Z/+(1/Z)

ttK(0)2

a(ao)
Z/+(Z)£+{|Z/+(Z)|2(1-Z2)(^)'},       Z = e».    (A.4)

Since 1/Z/+(1/Z) is an element of A~ the first term on the right-hand side has

only two terms and is clearly an element A*'. Equation (1.8) and the properties of

Zf+(Z) imply that the second term on the right-hand side belongs to A*.

Therefore

(1 - Z2)(Zf+(Z))' G A?,       Z = e". (A.5)

Defining

5(Z)=/+(1/Z)//+(Z),        |Z|=1, (A.6)
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it is clear that

(1 -Z-2)S'(Z)G^,       Z = e">, (A.7)

where the differentiation is with respect to 9.

It is a consequence of (3.25), (A.2) and the boundary conditions that

p + (Z, n) = Z"A(n, n)l\+ 2 «(«, 0Z'J G A+, (A.8)

and it is known that the Fourier coefficients of p+(Z, n) satisfy the discrete analog

of the Marchenko equation [4], [8]:

OO

u(2n + m) + a(n, m) + 2 «(". 0«(' + 2n + m) = 0,       m > n > 0,    (A.9)

where

"(«) «¿ $<1 - S(Z))Z" 4p,        |Z| = 1. (A.10)

Therefore,

oo

2 nv(2n + 2)\a(n, m) - a(n + 1, OT)|
n=l

00

<  2 «o(2« + 2)|w(2« + m + 2) - w(2« + m)|
«=i

00 00

+ 2 nv(2n + 2)|«(2/i + / + m + 2) - u(l + 2n + m)\ 2 |«(« + 1, 0|
/r=l /=1

OO 00

+ 2 ™(2n + 2)\a(n + 1,1)- a(n, l)\ 2 |w(/ + 2/j + w)|. (A.ll)
n=l /=1

Since w(rt) is summable there exists w,(«), £>(/i) and N such that

w,(n) = w(/i) - û(n), û(n), w,(/i) ^=0,       n < N, (A.12)

Wl(n) = u(n),        n>N, (A.13)

and

2h(«)|<i- (A. 14)

Substituting these equations into (A.ll) gives for the third term on the R.H.S. of

(A. 11),

00

< C 2 nv(2n + 2)
n=l

X{|w(2« + 3) -a(2n + l)\+\u(2n + 4) - u(2n +2)|}/|l - 2 K(0|)

CSy.,Sj;.,|¿>(/ +2n + m)\IlNn.lnv(2n + 2)\a(n +1,1)- a(n, l)\

i - 2r-,i«,(/)i

(A.15)
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From the recurrence formulas one finds

a(n, 1) - a(n - 1, 1) = B(n) (A.16)

and

a(n, 2) - a(n - 1, 2) = 11 - q(" + ^   ) + B(n)a(n, n + 1).      (A.17)

Equations (A.ll), (A.15)-(A.17), the monotonicity of v(n) and the fact that the

Fourier coefficients p + (Z, n) are bounded and summable for all n give the desired

result.
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