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AN ASYMPTOTIC THEORY FOR A CLASS

OF NONLINEAR ROBIN PROBLEMS. II

BY

F. A. HOWES1

Abstract. Various asymptotic phenomena exhibited by solutions of singularly

perturbed Robin boundary value problems are studied in the case when the

right-hand side grows faster than the square of the derivative.

1. Introduction. We consider here some extensions of our results on the nonlinear

Robin problem,

ey" =f(t,y,y'),      a<t<b,

Pty{a,e) - p2y'(a,e) = A,        qxy(b, e) + q2y'(b, e) = B, (91)

with f(t, y, y') = ± y'2 + h(t,y), published in [8]. Specifically we are interested in

the existence and the asymptotic behavior (as e —> 0+) of solutions of the problem

(91) whose right-hand side / satisfies f(t,y,y') = 0(|y'|") as \y'\ -* °° for zz > 2.

Such "superquadratic" problems have been considered by the author in [9] for

functions / of the form f(t,y,y') = h(t,y)g(t,y,y') where g(t,y, y') = 0(\y'\"),

n > 2 and g > v > 0 for all (/, y,y') of interest. However this positivity assumption

on g effectively eliminates the participation of nonsingular solutions of the reduced

equation f(t, y, y') = 0 in the asymptotic description of solutions of the problem

(91) for small values of e > 0. (A solution u = u(t) of f(t, u, u') = 0 in [a, b] is said

to be nonsingular if fy,(t, u(t), u'(t)) ^ 0 in [a, b]\ cf., for example, [10, Chapter 3].)

The results of [8] for the quadratic functions f(t,y,y') = ± y'2 + h(t,y) clearly

show that nonsingular solutions of / = 0 play an interesting and important role in

analyzing how solutions of (91) behave as e —» 0+. Thus it seems of interest to us to

examine similar questions in the case that f(t,y,y') = 0(|y'|") as \y'\~*°° f°r

n > 2 without the restriction that f(t, y, y') = h(t,y)g(t,y,y').

Such problems have not received much attention in the literature on singular

perturbations apparently due to the highly nonlinear dependence of / on y'. The

author's papers [8] and [9] contain the latest results on the problem (91) for the

functions / discussed above as well as references to the work of others. Since the

writing of [9], L. Perko [15] has examined turning point phenomena for problems

related to (91) using methods developed in his previous work [12], [14].
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2. A first-order problem. In order to discuss the problem (91) we will need some

results on stability theory which are most clearly illustrated by a class of first-order

problems. The theory discussed in this section is very straightforward and certainly

not new (cf. [17, Chapter 1] or [3, Chapter 4]); however, we have not seen it

expressed before in quite the exact form that we need for our purposes here.

Consider then the singularly perturbed initial value problem

ez' = f(z),        a <t <b,        z(a, e) = z0, ('S)

for finite values of a and b and for small values of e > 0. If the equation f(z) = 0

has a solution z = o and if o is stable in a sense to be made precise shortly then we

anticipate that the problem ('S) has a solution z = z(t, e) such that

lim   z(t, e) = a    for a < t < b. (2.1)
e—0 +

(Indeed, if/(z0) = 0 then z(t, e) =z0 is itself a solution.) In order that the limiting

relation (2.1) hold it is enough to require that either o = z0 or (if a ¥= z0)

(o - z0)f(X) > 0   for all X in (a, z0]. (2.2)

(Here and in what follows (o, z] = {x: a <x < z} ([a, z] = {x: o < x < z}) if

a < z and (a, z] = [z, a) ([o, z] = [z, a]) if a > z.) This follows immediately once

we make the change of variable t = (t — a)e~\ rewrite ez' = f(z) as dz/dr = f(z),

and note that condition (2.2) is just the condition for z = o to be an asymptotically

stable rest point of the t-equation (cf. [6, Chapter 3]).

Our result on ('S) is contained in the following lemma.

Lemma 2.1. Assume that the equation f(z) = 0 has a solution z = o and that the

function f is continuously differentiable in [o, z0]. Then for all values of z0 such that

z0 = a or (if z0 7^= o) (o — z0)f(X) > 0 for all X in (a, z0] the problem ('S) has a

solution z = z(t, e) for each sufficiently small e > 0. Moreover, for t in [a, b] we have

that z(t, e) = o + wL(t, e), where wL(a, e) = z0 — o and lim£_0+ wL(t, e) = 0 for

a < t < b.

A result analogous to Lemma 2.1 is valid if the problem ('S) is replaced by the

problem

ez'=/(z),        a<t<b,        z(b,e) = zx. (S)

This follows after replacing t by a + b - t in (§) and applying Lemma 2.1 to the

transformed problem. We leave its precise formulation to the reader, except to note

that the inequality corresponding to (2.2) becomes (o — zx)f(X) < 0 for all X in

(O, Z,](if Z,  T¿ff).

The results of this section have a direct connection with a special class of Robin

problems of the form (91) to which we now turn.

3. Some special problems. We begin our discussion of the problem (91) by first

considering a particularly simple problem, namely

ev" =/(/)>       a<t<b,

pxy(a,t) - p2y'(a,e) = A,        qxy(b, e) + q2y'(b, e) = B. (91,)
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Here the constants px, p2, qx and q2 are nonnegative with px + qx > 0 and

P2 + ?2 > 0, and f(z) = 0(|z|") as \z\ —»00 for n > 2. The results we obtain for

solutions of (91,) will turn out to be characteristic for most solutions of the general

problem (91).

Suppose first that/?, = 0 andp2 = 1. We consider then the prblem

ev "=/(/),       a<t<b,

- y'(a, e) = A,       qxy(b, t) + q2y'(b, e) = B. (%,)

After setting z = y' and disregarding (for the moment) the boundary condition at

t = b we see that the problem (91^) is precisely the initial value problem ('S) of the

previous section with z0 = —A. Now solutions of ('S) are described throughout

[a, b] by the stable zeros of the function / with the possible exception of a small

neighborhood of the point / = a (cf. Lemma 2.1). Returning to the problem (9I2)

we expect that if a stable solution u of f(u') = 0 also satisfies the right-hand

boundary condition, that is, if qxu(b) + q2u'(b) = B, then the solution of (91^) for

small e > 0 is represented throughout [a, b] by this function u. This leads us to

consider the so-called reduced problem

/(«') =0,        a < t < b,        qxu(b) + q2u'(b) = B, (<3lR)

and to seek solutions of (€lÄ) which are stable in the sense described in Lemma 2.1.

The solutions of f(u') = 0 are clearly straight lines of slope a where f(o) = 0 and

therefore the solution of (<3lÄ) is u = uR(t) = at + c where

c = q^[B - a(qxb + q2)].

(Note that qx > 0 by our above assumptions since/j, = 0.)

We can now state and prove an existence and estimation result for the problem

Theorem 3.1. Assume that the reduced problem ($lR) has a solution u = uR(t) =

aRt + c and that the function f is continuously differentiable in [oR, -A]. Assume also

that either oR = -A or (if aR ^ -A) (oR + A)f(X) > 0 for all X in (oR, -A]. Then

there exists an e0> 0 such that the problem (91^) has a unique solution y = y(t, e)

whenever 0 < e < e0. In addition, for t in [a, b] we have that

y(t, e) = uR(t) + e(wL(t, e))    and   y'(t, e) = oR + Q(w'L(t, e)),       (3.1)

where the function wL is a solution of ew'¿ = f(oR + w'L), a < t < b, w'L(a, e) =

-(oR + A), satisfying limt,_0+ wL(t, e) = 0 for a < t < b and limE_0+ w'L(t, e) = 0

for a < t < b.

Proof. The uniqueness of y follows immediately from the maximum principle

(cf. [16]). To prove the existence of a solution satisfying the limiting relations (3.1)

we assume without loss of generality that oR = 0 (and so uR(t) =c = qx1B). If

A = 0 theny(z, e) = 0 (and wL = 0). Thus suppose that A ¥= 0. The existence of a

function wL with the above properties follows from our stability assumption (cf. §2)

if e is sufficiently small, say 0 < e < e0. In addition, if — A < 0 then wL > 0 and if

- A > 0 then wL < 0.
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Define now for t in [a, b] and 0 < e < e0,

a(t, e) = c + wL(t, e)\
)    if — A > 0,

ß(t, e)=c j

and

a(t, e) = c

ß(t, e) = c + wL(t, e)

We consider just the case -A < 0 since the case — A > 0 is handled similarly. It

is clear that — a'(a, e) < A < — ß'(a, e), qxa(b, e) + q2a'(b, e) < B < qxß(b, e) +

q2ß'(b, e) and that ea" > f(a') and eß" < /( ß') for t in (a, b) and 0 < e < e0. If we

could conclude that the problem (91^) had a solution y = y(t, e) satisfying a(t, e)

< y(t, e) < ß(t, e) for t in [a, b] and 0 < e < e0 then the theorem would be proved.

However such a conclusion cannot be drawn immediately here since f(y') =

&(\y'\") as \y'\ —> oo for n > 2 (cf. [11]). What is required (cf. Heidel's theorem in

[7] or [9]) is an a priori bound on the derivative of any solution y of ey" = f(y'),

a < t < b, satisfying a(t, e) < y(t, e) < ß(t, e). It will turn out (not surprisingly)

that

- A < y'(t, e) < 0    for a < t < b, (3.2)

and therefore the conclusion of Theorem 3.1 follows from Heidel's theorem. To

verify (3.2) (and at the same time obtain a sharper estimate for y'(t, e)) note first

that y'(t, e) < 0 by the maximum principle (cf. [16] or [2, §2]). In calculating a

lower bound on y' we proceed indirectly by noting that for a < y < ß, y is a

solution of the following Dirichlet problem in (z,, t2) c (a, b).

ey "=/(/),      tx<t<t2,

y(tx, e) = c + T,(/„ e),       y(t2, e) = c + tj(/2, e), (%)

where the positive function tj is of order 0 (wL(t, e)) and r/(i,, e) > t/(/2» e). Fix t0 in

(a, b] and let z, = t0 — Ô, and t2 = t0 for a small positive constant 5,. Define now

for / in [/,, t2] and 0 < e < e0,

ax(t, e) = c + 7)(t2, e) - ju(z0 - t),        ßx(t, e) = c + r,(t2, e) + |Li(/0 - t),

where ju = ju(e) = 5,-,(r)(z0 - 5,, e) — tj(/0, e)) is positive and of order 6(w'L(t0, e)).

Clearly ax(tj, e) < y(t¡, e) < ßx(tj, e) for y = 1, 2 and we just have to show that

ea'{ > f(a'x) and eßx < f(ß'x), that is, f(a\) < 0 < /(/?,'). However these inequalities

follow directly from our stability assumption for/(aj) = /(/x) < 0 </( —ju.) = f(ß'x)

since /i > 0. Therefore the function y (which is a solution of the problem (%) with

/, = t0 — ó", and z2 = f0) satisfies ax < y < ßx, that is, \y(t, e) — c,| < p(t0 — t)

for t0 — Sx < t < tQ and c, = c + t/(<0, e). We conclude directly that \y'(t0~, e)\ <

/i,, so that in particular \y'(t0, e)\ < ju.. Thus for each t in (a, b], \y'(t, e)\ < ¡i(t, e)

where n(t, e) = C(\w'L(t, e)\). Finally we have thaty'(a, e) > — A since c < y(t, e)

< c + wL(t, e) in [a, ft]. This concludes the proof of Theorem 3.1.

The existence of the function wL = wL(t, e) appearing in the conclusion of

Theorem 3.1 is assured by our assumptions; however, we are more interested in its

asymptotic behavior as e —»0+. To this end we can often estimate wL quite closely

if -A <0.
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by replacing / with say a polynomial approximation and solving the resulting

problem in closed form. The most obvious example of this is the linear approxima-

tion (cf. Remark 3.2) but higher order comparison problems are usually required

owing to the nonlinear dependence of / on y'. For this reason we have presented

the error term in (3.1) in this general form.

We consider now the problem (91,) under the assumption that px > 0 and

p2 > 0. As with the problem (91^) we assume that the associated reduced problem

($lR) has a solution u = uR(t). If uR is stable in a sense analogous to that described

in Theorem 3.1 we expect that the problem (91,) has a solution y = y(t, e) which is

close to uR in [a, b]. The precise result is the next theorem.

Theorem 3.2. Assume that the reduced problem C&R) has a solution

" = "*(') = <V + c

and that the function f is continuously differentiable in [oR,p21(pxuR(a) — A)].

Assume also that either pxuR(a) — p2aR = A or (if pxuR(a) — p2oR ¥= A) (pxuR(a) —

p2oR — A)f(X) < 0 for all X in (oR,p21(pxuR(a) — A)]. Then the conclusion of

Theorem 3.1 is valid with the exception that the function wL satisfies w'L(a, e) =

P2~\P\Ur{¿) - P2°r - A) instead of w'L(a, e) = - (aR + A).

Proof. This theorem is proved in exactly the same manner as Theorem 3.1. After

normalizing so that aR = 0 simply define, for a < t < b and e > 0 sufficiently

small,

a(''e) -c If t  \ • A
nt        \ t        \   I       " P\uR(a)  < A,
ß(t, e) = c + wL(t, e) J

and

a(t, e) = c + wL(t, e)

ß(t,e)=c

and proceed as before.

The basic assumption in the two previous theorems was the existence of a stable

solution u of the reduced equation f(u') = 0 which satisfied the right-hand

boundary condition. We could just as well have assumed that u satisfied the

left-hand boundary condition and then proceeded to impose stability conditions on

it so that the result corresponding to Theorem 3.2 was valid. The appropriate

reduced problem is then

/(«') =0,        a < t < b,       pxu(a) - p2u'(a) = A, (61J

and the expected result follows by making the change of variable t —» a + b — t

and applying Theorem 3.2 to the transformed problem. (Note that we now require

qx > 0 and q2 > 0.) We leave its formulation to the reader.

Up to now we have considered how solutions of the problem (91,) can exhibit

nonuniform behavior at t = a or t = b (that is, boundary layer behavior). Suppose

though that the following situation presents itself. The reduced problems C5lL) and

eRR)  have  solutions  u = uL(t) = aLt + c  and  u = uR(t) = aRt + c'  (aL =f= oR)

if pxuR(a) > A,
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which intersect at a point t0 in (a, b), that is, uL(t0) = uR(t0) and u'L(t0) ¥= u'R(t0). If

these solutions are stable in the sense that/'(oy) > 0 and/'(aÄ) < 0 it is reasonable

to ask under what additional conditions there exists a solution y = y(t, e) of the

problem (91,) which converges to the "angular" path ux(t) defined by ux(t) = uL(t)

for a < t < t0 and ux(t) = uR(t) for t0 < t < b. Indeed, this question was answered

many years ago by Haber and Levinson [5] for the Dirichlet problem (91) (that is,

px = qx = 1 and p2 = q2 = 0). Their result for the simpler Dirichlet problem (91,)

is that if the corresponding reduced problems (^ftL) and (iflÄ) have such stable

intersecting solutions uL and uR then the problem (91,) has a solution y = y(t, e)

for each sufficiently small e > 0 such that lime^0+ y(t, e) = ux(t) for a < t < b and

i-        >it   \      Í aL    fora<z<i0,
hm  y (t, e) = {

E^o+ { aR    for t0<t < b,

provided (oR - oL)f(X) > 0 for all X in (oL, aR).

It is possible to state an analogous result for the Robin problem (91,) under the

additional assumption that px > 0 and qx > 0. This is the content of the next

theorem.

Theorem 3.3. Assume that the reduced problems C3iL) and C3lÄ) have solutions

u = uL(t) = oLt + c and u = uR(t) — aRt + c' (oL ¥^ oR) which intersect at a point

t0 in (a, b). Assume also that the function f is continuously differentiable in [aL, oR]

and that (oR — oL)f(X) > Ofor all X in (o~L, oR). Then there exists an e0 > 0 such that

the problem (91,) with px > 0 and qx > 0 has a unique solution y = y(t, e) whenever

0 < e < e0. In addition, we have that

y(t, e) = ux(t) + e(w(t,e)) for a < t < b,

y'(t, e) = oL + Q(w'(t, e)) for a < t < /0,

and

y'(t, e) = oR + 0(w'(f, e)) for t0 < t < b.

Here the continuous function w is a solution of

ew" = f(aL + w'),        a <t <t0,        vv'(i0", e) = \(oR - oL),

ew" = f(oR + w'),        t0<t <b,        vv'(z0+, e) = \(oL - oR),

satisfying lime_>0* w(t, e) = 0 for a < t < b and lime_0+ w'(t, e) = 0 for a < t < t0

and t0 < t < b.

Proof. This theorem is proved in essentially the same manner as Theorem 3.1.

The bounding functions a and ß are defined as follows,

(i) If aL < oR then a(t, e) = ux(t), a < t < b, and

a < t < f0,

t0 < t < b.
ß{t, e) =

"l(0 + w('> «) + P2P\ lw'(a> e)>

"ä(0 + w('.£) - i2<ii~iw'(b> «0>
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(ii) If aL > aR then

"l(') + w('> e) + P\P2Xw'(a> e)>        a < Z < t0,

uR(t) + w(t, e) - q2qx-lw'(b, e), t0 < t < b,

ß(t, e) = ux(t),        a < t < b.

In case (i), for example, eu'¿ = f(u'L), euR = f(u'R) in (a, b) and qxuL(b) + q2oL < 7?,

pxuR(a) - />2oÄ < /I, and consequently a(t, e) = «,(/) = max{uL(t), uR(t)} is a

lower solution (cf. [11]). Moreover, with w as before, ß'(t0~, e) = ß'(tQ+, e) =

^(oL + oR) and eß" < f(ß') for í in (a, t0) U (/0> ¿>)> mat is, ß is an upper solution.

Finally it is easy to see that y '(t, e) = oL + &(w'(t, e)) in [a, t0] andy'(z, e) = oR +

6(w'(t, e)) in [t0, b]. Thus the conclusion of the theorem follows from Heidel's

theorem [7]. Case (ii) is handled similarly.

Before discussing some examples we make several remarks.

Remark 3.1. If u = uR(t) is a solution of the reduced problem C3lÄ) then a

necessary condition that uR be stable in the sense described in Theorem 3.2 is that

/'(°r) < 0- Similarly a solution u = uL(t) of (ÍR^) can be stable only if f'(oL) > 0.

Remark 3.2. The boundary layer function wL is estimated very easily if there is a

positive constant k such that/'(aR) < - k < 0. It is not difficult to see that in the

case of Theorems 3.1 and 3.2 we can take wL(t, e) «¡ ekx~\aR + A)e^k,u~a)e and

wL(t, e) «¿ - tkx1p21(pxuR(a) - p2aR - A)e~k,('~a)e , respectively, for a positive

constant kx < k.

Similarly, in the case of Theorem 3.3, if there is a positive constant k such that

/'(^z.) > ^ > 0 and f'(oR) < — k < 0 then the interior layer function w is esti-

mated by

w(t, e) « uL(t) + ire/c.-'K - 0L)e*'<'-'o»*"

for t in [a, t0] and

w(t, e) « uR(t) +{ekx-\oR - oJe-*'('-'»>r'

for t in [/0, b].

Remark 3.3. Our basic assumption that f(y') = 0(|y'|") as \y'\ —» oo for n > 2

deserves a brief comment in view of the results of this section which imply that the

solutions of (91,) have uniformly bounded first derivatives. It is meant to em-

phasize two aspects of this problem and the more general one considered in the

following sections. First, for such right-hand sides / the Dirichlet problem is

essentially ill-posed (cf. [4], [17, Chapter II] and Example 3.1) and so the "correct"

boundary conditions are the ones under study here. Second, as the results of §2

show, the right-hand side must have sufficiently many zeros in order for the

asymptotic theory to be applicable. To fix the ideas of this paper it may be helpful

if the reader regards/(z, y, y') as a polynomial in y' of degree at least three.

Remark 3.4. The assumption regarding the positivity of px and qx is necessary for

the validity of Theorem 3.3 (cf. Example 3.3).

Remark 3.5. There is a connection between the nonoccurrence of boundary

layer behavior as described by Theorem 3.2 and the occurrence of interior layer

a(t, e) =
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behavior as described by Theorem 3.3. Suppose for simplicity that/;, = qx = p2 =

q2 = 1 in (91,) and suppose that the reduced problems (6l£) and (íítA) have stable

solutions u = uL(t) = oLt + c and u = uR(t) = oRt + c' with oL < aR. If uL(b) +

oy < B and uR(a) - aR < A but f(B - uL(b)) < 0 and f(uR(a) - A) < 0 then

Theorem 3.2 and its "reflected" version involving C3lL) are inapplicable because

the required inequalities are violated by such A and B. We claim that if \ul(t) —

ur(t)\ is not too large for t = a and r = b then in fact uL(a) > uR(a) and

uL(b) < uR(b), that is, uL and uR intersect at a point in (a, b). To see this, note first

that for w = uR(a) — uL(a), 0 > f(uR(a) - A) = f(aL + <o) and therefore the stabil-

ity of oL implies that w < 0 if |w| is not too large. Similarly, for v = uR(b) — uL(b),

0 > f(B — uL(b)) = f(oR + v), and so the stability of oR implies that v > 0 if \v\ is

not too large. Thus there is a chance that Theorem 3.3 will apply to the functions

uL and uR if f(X) > 0 for À in (aL, oR). This inequality is certainly satisfied if aL and

oR are adjacent stable zeros off.

On the other hand, if oL > aR, uL(b) + oL > B,f(B — uL(b)) > 0, uR(a) — aR >

A and f(uR(a) — A) > 0 then it follows as before that uL(a) < uR(a) and uL(b) >

uR(b). Consequently uL and uR intersect in (a, b) and we are led again to consider

the possibility of a crossing as described by Theorem 3.3.

We turn now to a discussion of several examples which illustrate the theory of

this section.

Example 3.1. Consider first the problem

ey" = -/ - v'3,       0 < t < 1,

py(0,e)-y'(0,e) = A,       y(l, e) = B, (El)

for p > 0. The reduced equation f(a) = — a — a3 = 0 has a = 0 as its only real

solution and since /'(0) = — 1 we make the corresponding reduced solution u

satisfy u(l) = B (cf. Remark 3.1), that is, we consider u = uR(t) = B. Suppose first

that p = 0. If A = 0 then y(t, e) = B is the solution of (El). However, if A =£ 0

then Af(X) = — AX(l + X2) > 0 for X in (0, —A]. Consequently we deduce from

Theorem 3.1 that for all A the problem (El) has a unique solution y = y(t, e) such

thaty(t,e) = B + 0(e|,4>-'£~') in [0, 1]. Finally if p > 0 then for A = pB,y(t,e)

= B is the solution of (El), while if A ¥=pB then

(PB - A)f(X) = -X(pB - A)(l + X2)< 0

for X in (0, pB — A]. Thus by Theorem 3.2 the problem (El) has a unique solution

y = y(t, e) for all A and B such thaty(t, e) = B + 6(e\pB - A\e~"~') in [0, 1].

We note that the Dirichlet problem (cf. [1], [4]) ey" = - y' - y'3, 0 < t < I,

y(0, e) = A, y( 1, e) = B, has no solution if A =£ B and e > 0 is sufficiently small.

Example 3.2. Consider next the problem

ey"   = y'   - y'\ 0  < t  <   1,

y(0,e)-y'(0,e) = A,       y(l, e) + y'(l, e) = B. (E2)

The reduced equation /(«') = u' — u'3 = 0 has now three solutions u\ = I, u'2 =

— 1 and «3 = 0 which are such that/'(± 1) = - 2 and/'(0) = 1. Thus we make ux

and  u2  satisfy  u(l) + t/'(l) = B  for j = 1, 2,   that  is,   ux(t) = t + B — 2  and
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u2(t) = — t + B + 2, and we make u3 satisfy u3(0) - u3(0) = A, that is, u3(t) =A.

Consider first ux. If A = B — 3 then ux(0) - u'x(0) = A and thereforey(t, e) = t +

B - 2 is the solution of (E2). However if A < B - 3 then (w,(0) - 1 - A)f(X) =

(B - 3 - A)X(l - A2) < 0 for X in (1, B - 2 - A] and so we apply Theorem 3.2

to deduce that the problem (E2) has a unique solution y = y(t, e) such that

y(t, e) = ux(t) + 0(56(7* - 3 - A)e-2,e~') in [0, 1]. Finally if A > B - 3 we have

that (B -3 - A)X(l - X2) < 0 for X in [B - 2 - A, 1) provided that B - 2 - A

> 0. Again from Theorem 3.2 we deduce the existence of a unique solution

y = y(t, e) of (E2) (with B-3<A<B-2) such that in [0, 1], y(t, e) = ux(t) +

6(kx~1e\B - 3 - A\e~k'"~') for a positive constant kx < 2.

The asymptotic behavior described by the function u2 is clearly a reflection of

that described by ux. Therefore if B + 3 < A problem (E2) has a unique solution

y = y(t, e) such that y(t, e) = u2(t) + 0(2e|fi + 3 - A\e~2,c~') in [0, 1]. While if

B + 2 < A < B + 3 the solution y(t, e) satisfies

y(t, e) = u2(t) + ©(/cf^Ä + 3 - A)e-k<"~')

in [0, 1] for a positive constant kx < 2.

Next consider the function u3 =A. If A = B theny(i, e) =A is the solution of

(E2), while if A < B, (A - B)f(X) = (A - B)X(l - X2) < 0 for X in (0, B - A] if

B - A < 1, and if A > B, (A - B)f(X) < 0 for X in [B - A, 0) if B - A > -1.

Thus for B — l<A<B+lwe deduce from the reflected version of Theorem 3.2

the existence of a unique solution y = y(t, e) of (E2) such that in [0, l],y(t, e) = A

+ ©(/c^'elTi - A\e~k,{1~')e~l) for a positive constant kx < 1.

Note that we have proved the existence of a solution of (E2) for all boundary

values A and B except those satisfying the inequalities B — 2 < A < B — 1 and

B+l<,A<B + 2. These are precisely the boundary values for which the

boundary layer behavior described by Theorem 3.2 is impossible. Thus (cf. Remark

3.5) we are led to consider the "angular" paths

Í u3(t),        0<t<to, \u3(t),        0<t<t~o,
M4W   = /   ̂  a"d       U,(t)   =  1

[ux(t),     z0<z<i, jM2(,);     ,;<,<!.

It follows directly that t0 = A - B + 2 belongs to (0, 1) if and only if B - 2 < A

< B - 1 while t0= B - A + 2 belongs to (0, 1) if and only ifB+l<A<B +

2. Consider first w4. For aL = 0 and aR = 1 we see that (aR — aL)f(X) = X(l — X2)

> 0 for X in (0, 1) and so Theorem 3.3 allows us to deduce the existence of a

solution y = y(t, e) of (E2) for£-2</l<5-l such that in [0, 1], y(t, e) =

u4(t)+ ©(i/^-'ee-*'1'-'»1' ') with 0 < kx < 1. Similarly, in the case of u5, for

oL = 0 and aR = - 1 we see that (oR - aL)f(X) = - X(l - A2) > 0 for A in (-1, 0)

and so the problem (E2) forB+l<A<B + 2 has a solution y = y(t, e) such

that in [0, l],y(i, e) = u5(t) + ©(ifcf'ee -*1''- '~°|e~').

Finally if A = B — 2 then it is easy to show that (E2) has a solution y = y(t, e)

such that y(t, e) -+ t + B — 2 as e —* 0+ (as expected). Similarly if A = B — 1 or
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A = B + 1 a solution y exists and satisfies y(t, e) —» 0 as e —* 0+, while if A = B +

2 then y(i, e) —> - t + B + 2 as e —> 0+. The convergence is of course uniform in

[0, 1] for these choices of A and B.

Example 3.3. In this final example we illustrate the remark that Theorem 3.3 is

not necessarily valid if either px = 0 or qx = 0. The problem is

ey" = 1 - y'\    0 < t < 1, -y'(0) = 1,        y(l) = 0, (E3)

which has the unique solution y(t, e) = 1 — t for all e. Consider however the

"angular" path defined by ux(t) = uL(t) = - t for 0 < t < \ and ux(t) = uR(t) = /

— 1 for 2 < t < 1. The functions uL and uR are stable in the sense tnatf'(u'¿) = 4

> 0 and f'(u'R) = - 4 < 0. Moreover, (aR - oL)f(X) = 2 (1 - A4) > 0 for |A| < 1.

Nevertheless there is no solution of (E3) which is close to ux(t) in [0, 1].

4. The general problem. In this section we discuss several results for the general

problem

ev" =f(t,y,y'),        a<t<b,

P\y{a,e) - p2y'(a,e) = A,        qxy(b, e) + q2y'(b, e) = B, (91)

for constants px, p2, qx and q2 with the same properties as in §3. The function/ is

assumed to be at least continuous for all t in [a, b] and for all values of y and y'

under consideration. Moreover, for (t,y) in compact subsets of [a, b] X R,

f(t,y,y') = 0(|y'|") as |y'| -» oo for n > 2. Recalling our results in §3 we now

define certain reduced problems whose solutions we will use to study the existence

and the asymptotic behavior of solutions of (91), namely

f(t, u,u') = 0,       a <t <tL < b,

pxu(a) - p2u'(a) = A, (91J

/(/, u,u') = 0,        a < tR <t < b,

qxu(b) + q2u'(b) = B, (91*)

and

f(t, u, u') = 0,        a < t < b. (91)

Solutions of (9lL), (9LÄ) and (91) will be denoted by uL, uR and u, respectively.

Our experience with the simpler problem (91,) leads us to consider only solutions

of these reduced problems which are stable in senses to be stated shortly. First we

need to define some regions in (t, y,y')-space. In such regions we will seek

solutions of the problem (91) which are uniformly close to certain reduced paths

(that is, curves consisting of solutions of CSlL), (91/?) and/or (91)). However the

derivative of a solution of (91) may differ from the derivative of the corresponding

reduced path at one or more points in [a, b] by an amount of order one (cf. §3),

and therefore we must allow for this in the following definitions. Let a solution

u = uR(t) exist in [a, b] and let ccR = pxuR(a) — p2u'R(a). Then (cf. Theorem 3.2) we

define the domain 9)(wÄ) as follows. (Here and below S denotes a generic small

positive constant.)

<$(«*) = {(', v,y'): a<t<b,\y- uR(t)\ < 8, \y' - u'R(t)\ < dR(t)}
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where dR is a smooth positive function such that if p2> 0 then p2 l\A — coÄ| <

dR(t) < P2~ l\A - u3R\ + 8 for a < / < a + 8/2 and dR(t) < 8 for a + 8 < t < b,

while if /72 = 0 then dR(t) < 5 in [a, b].

We will also consider solution paths of the form (cf. Theorem 3.3)

a <t <t0(<tL),    (if tL>tR)

(tR <)t0<t<b,

uL(t),       a < t < tx,

■ u,(t),       tx < t < t2,

uR(t),       t2<t<b,

{ u,(t),       a <t <t2,

\ uR(t),       t2 < / < b.

Here u = uL(t) is a solution of the reduced problem (9lL) and « = u,(t) a solution

of the reduced equation (91) which we assume exist on the stated intervals. We

define the following domains.

<SD(i/,) = {{t,y,y')\ a<t <b,\y- ux(t)\ < 8, \y' - u\(t)\ < dx(t)}

where dx is a smooth positive function such that \u'L(t0) - u'R(t0)\ < dx(t) < \u'L(t0)

- M*('o)l + s for 'o - °/2 < ' < 'o + ô/2 and dx(t) <8 for t in [a, t0 - 8] u [/0

+ 8, b],

fiD(«2) = {(/,y,y'): a < / < b, \y - u2(t)\ < 8, \y' - u'2(t)\ < d2(t)}

where i/2 is a smooth positive function such that \u'L(tx) - u',(tx)\ < d2(t) < |u'L(tx)

- u',(tx)\ + 8 for /, - 8/2 < í < /, + 8/2, \u',(t2) - u'R(t2)\ < d2(t) < |w;(/2) -

uR(h)\ + 5 for '2 - 5/2 < z < i2 + 8/2 and ¿2(/) < 5 for / in [a, tx - 8] u [/, +

5, z2 - 8] u [i2 + 5, 6] and

^i«3) = {('.>.^Oi « < ' < 6. |v - «3(01 < ô> l>' - "á(0! < d3(t)}

where d3 is a smooth positive function such that \u',(t2) - u'R(t2)\ < d3(t) < lwX'2)

- uR(h)\ + á for '2 - 0/2 < z < z2 + 8/2, i/3(z) < Ô for / in [a + Ô, t2 - 8] u [r2

+ 5, b], and í73(í) = dR(t) for z in [a, a + 8/2] with uR replaced by u,.

Finally if u is any one of the solutions or solution paths defined above then we

define the domain ^(zz) as

%(») = {(t,y,y'): a <t <b,\y - u(t)\ < 8, \y' - u'(t)\ <8}.

We now define the various types of stability which solutions of the reduced

problems can possess (cf. [8] and Remarks 3.1 and 3.2 above for motivation). The

essential idea behind these definitions is that if a reduced path either fails to satisfy

the boundary condition at an endpoint or if it is not differentiable at a point in

(a, b), then the derivative of the solution of (91) under study behaves nonuniformly

there as e —»O"1". This much is already clear from §3. Consequently, in a neighbor-

hood of such a point we must supplement the reduced path with layer terms (such

as wL or »v above). Sufficient conditions for doing this are embodied in the

"l(/) = (A
[ uR(t),

u2(t) =

and
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definitions of stability which follow. We apologize for their somewhat technical

appearance; however, they are nothing more than straightforward extensions of the

stability concepts introduced in §§2 and 3.

In what follows the function / is assumed to be continuously differentiable with

respect toy andy' in the appropriate domain. Also if <$) is any one of the domains

defined above and J is any subinterval of [a, b] then the notation ^D n J is used as

an abbreviation for <$ n (J X Re-

definition 4.1. A solution u = uR(t) of (9lfi) which exists in [a, b] is said to be

strongly (weakly) y'-stable if there is a positive constant k such that f. < — k < 0,

(fy, < 0) in %(uR).

Definition 4.2. A solution u = u,(t) of (91) which exists in [a, b] is said to be

locally strongly (weakly) y'-stable if there is a positive constant k such that f. < — k

< 0 (fy < 0) in %(u,) n [a, a + 8] if pxu,(a) - p2u',(a) =*= A with p2 > 0 and

fy > k > 0 (fy > 0) in %(u,) n[b - 8, b] if qxu,(b) + q2u',(b) ¥> B with q2 > 0.
Definition 4.3. A solution path u = ux(t) with u'L(t0) ¥= u'R(t0) is said to be strongly

(weakly) y'-stable if there is a positive constant k such that f. > k > 0 (fy > 0) in

%(ux) n [a, /„] andfy. K - k < 0 (fy, < 0) in %(ux) n [/„, b].

Definition 4.4. A solution path u = u2(t) with u'L(tx) =£ u',(tx) and/or u'^t^ =?=

u'R(t2) is said to be strongly (weakly) y'-stable if there is a positive constant k such

that fy > k > 0 (fy > 0) in 6D5(m2) n [/, - 8, tx] and fy. < - A: < 0 (fy < 0) in

%(u2) n [tx, tx + 8] and/or fy > k > 0 (fy > 0) in %{u¿ n [t2 - 8, t2] andfy <

- k < 0 (fy < 0) in %(u2) n [t2, t2 + 8].

Definition 4.5. A solution path u = u3(t) is said to be locally strongly (weakly)

y'-stable if there is a positive constant k such that fy, < — k < 0 (fy < 0) in

6Dä(tz3) n [a, a + 8]. Moreover, if u',(t2) ^ u'R(t2) then we require also that fy. >

k > 0 (fy > 0) in <>Ds(u3) n [t2 - 8, t2] and fy. < - k < 0 (fy, < 0) in %(uj n
[t2, t2 + 8].

The final definition of stability we will need involves the partial derivative/ and

for this reason will be termed y-stability in conformity with the previous definitions

of y'-stability which involve/,,. This is a type of stability we have not encountered

before in our study of (91). It is used to guarantee that solutions of (91) and their

first derivatives are uniformly bounded in [a, b] (cf. [16]) and also to permit the

construction of layer terms when the reduced path is only weakly stable. More

general definitions of y-stability are often needed and the reader can consult [8] or

[9] for such definitions, as well as for further motivation.

Definition 4.6. A solution or solution path u = u(t) is said to bey-stable if there is

a positive constant m such that f > m > 0 in Ds(u) withy' = u'(t).

Using these definitions of stability we can begin our study of the nonlinear

problem (91). In the theorems below we assume without stating so each time that

the function/is continuous in (t,y,y') and continuously differentiable in y andy'

for all values of t,y,y' in the domain 9)(m) where u is the reduced solution under

consideration. Moreover, we tacitly assume that a solution of a reduced problem

(9ix), (9tÄ) or (91) is of class C<2) in its interval of existence. (With regard to the

"angular" path ux and possibly u2 and u3 we assume that the functions uL, uR and



A CLASS OF NONLINEAR ROBIN PROBLEMS 539

Uj which comprise these paths are of class C(2) in their respective intervals of

existence.)

Our first result is the analog of Theorem 3.2 of the previous section and therefore

we assume that/?2 > 0.

Theorem 4.1. Assume that the reduced problem (9lÄ) has a solution u = uR(t)

which exists in [a, b] and which is strongly or weakly y'-stable and y-stable. Assume

also that either pxuR(a) — p2u'R(a) = A or (if pxuR(a) — p2u'R(a) =*= A) (pxuR(a) —

p2u'R(a) - A)f(a, uR(a), A) < 0 for all X in (u'R(a),p2[(pxuR(a) - A)]. Then there

exists an e0> 0 such that the problem (91) with p2> 0 has a solution y = y(t, e)

whenever 0 < e < e0. In addition, for t in [a, b] we have that

y(t,e) = uR(t) + 6(wL(t,e)) + 6(e)

and

y'(t,e) = u'R(t) + 6(w'L(t,e)) + e(e),

where wL satisfies w'L(a, e) = P21(pxuR(a) — p2u'R(a) — A), lime^0+ wL(t, e) = 0 for

a < / < b and limE_>0+ w'L(t, e) = 0 for a < t < b.

Proof. Despite the general nature of the function / the proof of this theorem is

essentially a repetition of the proof of Theorem 3.1. Suppose for definiteness that

pxuR(a) — p2u'R(a) < A and define for a < t < b and 0 < e < e0,

a(t, e) = uR(t) - eym~\        ß(t,e) = uR(t) + wL(t, e) + eym'1,

where y > 0 is a constant to be determined momentarily and the function wL > 0

has the above properties for 0 < e < e0. Clearly pxa(a, e) — p2a'(a, e) < A <

px ß(a, e) - p2ß'(a, e) and qxa(b, e) + q2a'(b, e) < B < qx ß(b, e) + q2ß'(b, e) by

our choice of wL. It is just as easy to see that ea" > f(t, a, a') and eß" < /(/, ß, ß')

in (a, b) if y is chosen properly. Since /(/, a, a') = f(t, uR, u'R) + {f(t, a, u'R) —

f(t, uR, u'R)} + {/(/, o, a') — f(t, o, u'R)} we have first that

ea" - f(t, a, a') = eu'¿ - f(t, uR, u'R) + fy(t, ¿„ w^eym"1

>  -eM + ey>0    ify>M = max|w*|.

(Here £, = uR + 0 (e) is the appropriate intermediate point.) Secondly,

/(/, ß, ß') - eß" = f(t, uR, u'R) + fy(t, |2, u'R)[wL + eym-1]

+ {f(t, ß, ß') - f(t, ß, u'R)} - eu'¿ - ew'¿.

By the stability assumptions of the theorem the quantity {•} — ew'¿ is nonnegative

in [a, a + 8) and of order o(v(t, e)) in [a + 8, b] for v(t, e) = max{e, wL(t, e)} with

tin[a + 8, b}. Therefore /(/, ß, ß') - eß" > 0 in (a, b) for y > M.

The final step in the proof consists in establishing a bound on y'(t, e) for a

solution of ey" = f(t,y,y') satisfying a < y < ß. However it follows directly that

y'(t, e) = u'R(t) + Ü(w'L(t, e)) + 0(e) by arguing as in the proof of Theorem 3.1

and using the y'- and y-stability of uR. For example, if ax(t, e) = uR(t) — le —

H(t0 - 0 with / > 0 and ju > 0 then

f(t, ax, a'x) = f(t, uR, u'R) - fy(t, |„ u'R)[le + n(t0 - t)] + fy(t, «„ |2)u < 0
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since/ > 0 andfy < 0 for |, = uR + 0(e) and |2 = u'R + 0(/¿).

Thus Theorem 4.1 follows from Heidel's theorem [7].

The result corresponding to Theorem 4.1 for the reduced solution u = uL(t)

(with q2 > 0) follows now by making the change of variable t —» a + b — t and

applying Theorem 4.1 to the transformed problem. We leave its precise formulation

to the reader.

It is often the case with the nonlinear problems under consideration here that the

reduced equation has solutions u = u,(t) which cannot be made to satisfy either

boundary condition. However if u, is locally y'-stable and y-stable then it is not

unreasonable to expect that the problem (91) with p2> 0 and q2 > 0 has a

solution y = y(t, e) which is approximated by u, in [a, b]. This follows because the

nonuniform behavior of y' is confined to small neighborhoods of t = a and/or

t = b where we have y-stability and because the y-stability of u¡ is global. These

heuristic ideas are made precise in the next theorem which can be viewed as a

combination of Theorem 4.1 and its reflected counterpart for uL. The proof is

omitted.

Theorem 4.2. Assume that the reduced equation (91) has a solution u = u,(t)

which is locally strongly or weakly y'-stable and y-stable. Assume also that pxu,(a) —

p2u',(a) = A or (pxu,(a) — p2u',(a) — A)f(a, u,(a), X) < 0 for all X in

(u',(a),p2\pxu,(a) - A)] and that qxu,(b) + q2u¡(b) = B or (qxu,(b) + q2u',(b) -

B)f(b, u,(b), A) < 0 for all X in (u',(b), q2\B - qxu,(b))]. Then there exists an

e0 > 0 such that the problem (91) with p2 > 0 and q2> 0 has a solution y = y(t, e)

whenever 0 < e < e0. In addition, for t in [a, b]we have that

y(t, e) = u,(t) + e(wL(t, e)) + 0(w*(z, e)) + 6(e)

and

y'(t, e) = u',(t) + e(w'L(t, e)) + 6(w'R(t, e)) + 0(e),

where wL has the properties given in the conclusion of Theorem 4.1 with uR replaced

by u,, and wL satisfies w'L(b, e) = q21(B - qxu,(b) — q2u',(b)), limE_0+ wL(t, e) = 0

for a < t < b and lime_(0+ w'L(t, e) = 0 for a < t < b.

We consider next the situation in which the reduced problems (9lL) and (91*)

have solutions uL and uR which intersect at a point /0 in (a, b). Later (cf. Remark

4.4) we will see that such behavior is related to the nonoccurrence of the type of

boundary layer behavior described in Theorem 4.1. Recalling Theorem 3.3 we are

led to the following theorem.

Theorem 4.3. Assume that the reduced problems (9lL) and (91*) have solutions

u = uL(t) and u = uR(t) in [a, tL) and (tR, b) respectively with tL > /* such that

"¿Co) = M'o) = c and °l = u'lOo) =£ u'rOo) = aR at a point t0 in (tR, tL). Assume

also that the path u = ux(t) is strongly or weakly y'-stable and y-stable and that

(oR — oL)f(t0, c, X) > Ofor all X in (oL, oR). Then there exists an e0 > 0 such that the

problem (91) has a solution y = y(t, e) whenever 0 < e < e0. 7zz addition, we have
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y(t,e) = ux(t) + e(w(t,e)) + 0(e)   for a < t < b,

y'(t,e) - u'L(t) + 0(w'(z,e)) + 0(e)   for a < t < t0

y'(t, e) = u'R(t) + e(w'(t, e)) + 0(e)   for t0 < t < b,

where   the   continuous  function   w   satisfies   w'(t0 , e) = \(aR — oL),   w'(t0+,e) =

\(aL - aR), lim,,^,^ w(t, e) = 0 for a < / < b and lime_0+ w'(t, e) = 0 for a < t <

t0 and t0 < t < b.

Proof. Define for a < t < b and 0 < e < e0,

a(t, e) = ux(t) — eym~l

ß(t,e) = ux(t) + w(t,e) + eym-

and

a(t, e) = ux(t) + w(t, e) — eym~

ß(t, e) = ux(t) + eym~'

if oL < oR

if oy >aR,

where w has the above properties for 0 < e < e0. Then one verifies easily that each

of the inequalities of Heidel's theorem is valid. To obtain a bound on y'(t, e) we

estimate y'(t~, e) in [/0, b] as in Theorem 4.1 and y'(t +, e) in [a, t0] using the y'-

and y-stability of uR and uL respectively.

Suppose now that the reduced problems (9lL), (91) and (91*) have solutions

u = uL(t), u = u,(t) and u = uR(t) such that uL(tx) = u,(tx) and u,(t2) = u^t^ at

distinct points /, and t2 in (a, b) with /, < tL and tR < t2. If u'L(tx) = u'¡(tx) and

u¡(t2) = u'R(t2) it is clear (cf. the proof of Theorem 4.3) that if the path u = u2(t) is

y-stable then thé problem (91) has a solution y = y(t, e) for 0 < e < e0 such that

y(t, e) = u2(t) + 0(e) and y'(t, e) = u'2(t) + 0(e) for a < t < b. However if u'L(tx)

^ u',(tx) and/or u',(t2) ^ u'R(t2) then we have the situation described in Theorem 4.3

at t = /, and/or t = t2. The proof of the following result can be patterned after the

proof of Theorem 4.3.

Theorem 4.4. Assume that the reduced problems (9lL), (91) and (91*) have

solutions u = uL(t), u = Uj(t) and u = uR(t) such that uL(tx) = u,(tx) = cx, u,(t2) =

uR(t2) = c2, a, = u'L(tx) ¥= u'j(tx) = ju, and/or o2 = u',(t2) =^ u'^t^ = ij.2. Assume

also that the path u = u2(t) is strongly or weakly y'-stable and y-stable, and that

(zx, - ox)f(tx, cx, X) > Ofor all X in (a„ ja,) (if a, ^= ju,) and/or (\i2 - o^ftt» c2, X)

> Ofor all X in (a2, /i2) (if o2 ^ /Xj). Then there exists an e0 > 0 such that the problem

(91) has a solution y = y(t, e) whenever 0 < e < e0. In addition, we have that

y(t,e) = u2(t) + 0(w,(z, e)) + 6(w2(t, e)) + 0(e)   for a < t < b,

y'(t, e) - u'L(t) + e(w'x(t, e)) + 0(e)   for a < / < tx,

y'(t, e) = u',(t) + e(w'x(t, e)) + Ü(w'2(t, e)) + 0(e)   for tx < t < t2
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and

y'(t, e) = u'R(t) + 6(w'2(t, e)) + 0(e)   for t2 < t < b.

Here   Wj   (j = 1,2)   are   continuous  functions   satisfying   w'(tj~, e) =5(11, — of),

Wj(tj+, e) = ~(Oj - Hj), Hme^0+ Wj(t, e) = 0 for a < t < b and lime_0+ Wj(t, e) = 0

for a < t < t, and t, < t < b.j j j

We consider finally the case in which the reduced equation (91) has a solution

u = u,(t) which intersects a solution w* of (91*) at a point in (tR, b). A similar

result can be formulated if u, intersects a solution u = uL(t) of (9l£) in (a, tL). We

leave this as well as the proof of the following result to the reader.

Theorem 4.5. Assume that the reduced problems (91) and (91*) have solutions

u = u,(t) and u = uR(t) such that u,(t2) = uR(t2) = c2 at a point t2 in (tR, b). Assume

also that the path u = u3(t) is locally strongly or weakly y'-stable and y-stable and

that either pxu,(a) - p2u',(a) = A or (if pxu,(a) - p2u\(a) =t A) (pxu,(a) - p2u',(a)

— A)f(a, u,(a), X) < Ofor all X in (u',(a), p2\pxu,(a) — A)]. Assume finally that if

o2 = u',(t2) # u'R(t2) = /i2 then ( /x2 — o2)f(t2, c2, A) > 0 for X in (a2, fi^. Then there

exists an e0 > 0 such that the problem (91) with p2> 0 has a solution y = y(t, e)

whenever 0 < e < e0. In addition, we have that

y(t, e) = u3(t) + 6(wL(t, e)) + 0(w2(/, e)) + 0(e)   for a < t < b,

y'(t, e) = u',(t) + 6(w'L(t, e)) + 6(w'2(t, e)) + 0(e)   for a < t < t2

and

y'(t, e) = u'R(t) 4- e(w'2(t, e)) + 0(e)   for t2 < t < b.

Here w2(wL) has the properties given in the conclusion of Theorem 4.4 (Theorem 4.1

with uR replaced by u,).

We close this section with several remarks.

Remark 4.1. The boundary layer functions wL and w* are estimated very easily if

w* and uL (or u,) respectively are strongly (or locally strongly) y'-stable. Namely we

can take wL(t, e) « — kx~lp21e(pxu(a) — p2u'(a) — A)e~k^'~à)t for u = uR or u¡

and *>*(/, e) « kx1q21e(qxu(b) + q2u'(b) — B)e~k^b~')t for u = uL or u,, where

A:, is a positive constant, kx < k.

Similarly, the interior layer functions w, wx and w2 are of exponential type if the

reduced paths are strongly y'-stable. For example, in the case of Theorem 4.3 we

can approximate w by w(t, e) ^¿^kx1e(aR — aL)e*,('~'o)e for a < / < t0 and

w(t, e) ^\kx~le(aR - oyJe-^'-'o*"' for t0 < t < b, where 0 < kx < k (cf. [17],

[13]).
Remark 4.2. The y-stability of the various reduced solutions u implies that the

solutions of (91) described above are locally unique in the sense that for each

choice of z< there is only one solution y of (91) satisfying lim£_>0+ y(t, e) = u(t) in

[a, b] (cf. [16, Chapter 1]). However, for a given pair of boundary values A and B

the problem (91) may have more than one solution for all values of e > 0

sufficiently small (see Example 6.3).
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Remark 4.3. We note that it was not necessary to assume that/?, > 0 and qx > 0

in the statement of Theorem 4.3 whereas these restrictions were required for the

validity of Theorem 3.3. This is due to the fact that the path «, is assumed to be

y-stable in [a, b].

Remark 4.4. There is also a connection between the occurrence of interior layer

behavior and the nonoccurrence of boundary layer behavior for solutions of the

general problem (91) (cf. Remark 3.5). Suppose for example that the reduced

problems (9t¿) and (91*) have strongly or weakly y'-stable and y-stable solutions

uL and uR such that

uL(b) + u'L(b) < B    and    uR(a) - u'R(a) < A

but

f(b,uL(b),B- uL(b))<0   and   f(a, uR(a), uR(a) - A) < 0.        (4.1)

(Here we assume for simplicity thatp, = qx = p2 = q2 = 1 in (91).) Then Theorem

4.1 and its reflected version are inapplicable. However, suppose that \uL(r) —

w*(t)| is not too large for t = a or t = b. We claim that

(i) "¿(¿>) < uR(b) and

(ii) uL(a) > uR(a),

that is, uL and uR intersect at least once in (a, b). To verify inequality (i) set

te = uL(b) — uR(b) and note that

0 >f(b, uL(b), B - uL(b)) =f(b, uR(b) + «, u'R(b) - <o)

= fy(b, uR(b) + 9co, u'R(b) - <o)<o + f(b, uR(b), u'R(b) - <o). (4.2)

Suppose on the contrary that uL(b) > uR(b), that is, w > 0. Then the y'-stability of

uR implies that f(b, uR(b), u'R(b) — to) > 0 while the positivity of f implies that

fyu > 0. Thus fyw + f(b, uR(b), u'R(b) — <o) > 0 which contradicts (4.2). Similarly,

to verify inequality (ii) set v = uR(a) — uL(a). Then we have that

0 >f(a, uR(a), uR(a) - A) = f(a, uL(a) + v, u'L(a) + v)

= fy(a, uL(a) + 9v, u'L(a) + v)v + f(a, uL(a), u'L(a) + v). (4.3)

Suppose on the contrary that uL(a) < uR(a), that is, v > 0. Then

f(a, uL(a), u'L(a) + v) > 0

by the y'-stability of uL while fyv > 0 by the positivity of fy. Consequently

fy v + f(a, uL(a), u'L(a) + t>) > 0, which contradicts (4.3).

Thus when the inequalities (4.1) obtain the functions uL and uR intersect in (a, b)

and we can check further to see if Theorem 4.3 is applicable. Such will always be

the case if u'L(t0) and z<*(/0) (uL(t0) = uR(t0) = c) are adjacent zeros of /(íq, c, a).

Likewise if uL(b) + u'L(b) > B and uR(a) - u'R(a) > A but f(b, uL(b), B — uL(b))

> 0 and f(a, uR(a), uR(a) — A) > 0 then uL and uR intersect at least once in (a, b)

and there is the possibility of a crossing as described by Theorem 4.3.

5. Some singular phenomena. The results of the previous section are distinguished

by the fact that the convergence of a solution of the problem (91) to a reduced

solution takes place under the assumption of strong stability either at a boundary

point or at an interior point. Namely, in the case of boundary layer behavior we
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required for example at t = a that if pxu(a) — p2u'(a) ?* A then (pxu(a) — p2u'(a)

— A)f(a, u(a), A) < 0 for all A in (u'(a),p2\pxu(a) — A)]. Here u = uR or u,.

Similarly in the case of interior layer behavior we required that if u(t0) = it(tQ) = c

and aL = u'(t0~) ¥= ü'(t0+) = a* then (a* - oL)f(t0, c,X) > 0 for all A in (aL, aR).

However it is possible that the same qualitative results are valid if these strict

inequalities are replaced by suitable nonstrict ones. We term such phenomena

"singular" since they invariably involve the case in which the reduced equation

/ = 0 is singular at one or more points in (a, b) and along various solution

trajectories. For example, if fy(t0, y,y') = 0 for all y,y' of interest then the point t0

is a singular point of/(cf. [10, Chapter 3]). It will become apparent shortly that the

assumption of y-stability is crucial in obtaining the analogs of the theorems of the

previous section. This is not surprising since if f(t0, u(t0), u'(t0)) = 0 and

fy(t0, u(t0), u'(t0)) = 0 the solution u loses y'-stability in passing through /0 and so it

has to derive stability from they variable.

Consider first the case of boundary layer behavior. We only state and prove the

analog of Theorem 4.1 and then comment on the modifications necessary for

proving the analogs of the other boundary layer results.

Theorem 5.1. Assume that the reduced problem (91*) has a solution u = uR(t)

which exists in [a, b] and which is weakly y'-stable and y-stable. Assume also that

{Px"K{a) -P2<(a) - A)f(t,y,y') < 0   for (t,y,y')in <î>(u*) n[a, a + 8].

(5.1)

Then there exists an e0 > 0 such that the problem (91) with p2 > 0 has a solution

y = y(t, e) whenever 0 < e < e0. In addition, for t in [a, b] we have that

y(t, e) = uR(t) + 6(wL(t, e)) + 6(e)

and

y'(t,e) = u'R(t) + e(w'L(t,e))+6(e),

where wL(t, e) = - (m-h)x/2p2\pxuR(a) - 7>2 «*(<*) ~ A)e-(mc'')'/2{'-a) is a solu-

tion of ez" = mz, a < t < b, z'(a, e) = p2~1(P\UR(a) — p2u'R(a) — A).

Proof. It is only necessary to construct appropriate bounding functions a and ß.

Define for a < / < b and e > 0,

a(t, e) = uR(t) — eym   '

ß(t, e) = uR(t) + wL(t, e) + eym-1
if pxuR(a) - p2u'R(a) < A

and

if pxuR(a) - p2u'R(a) > A.
a(t, e) = uR(t) + wL(t, e) — eym   '

ß(t, e) = uR(t) + eym'1

Consider just the case pxuR(a) — p2u'R(a) < A. Clearly ea" > f(t, a, a') since w* is

y-stable. As for ß we have that

f(t, ß, ß') = f(t, uR, u'R) + (f(t, ß, u'R) - f(t, uR, «*)) + {f(t, ß, ß') - f(t, ß, «*)}

= fy(t,lu'R)(ß-uR)+{-}
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where £ is the appropriate intermediate point. Therefore,

f(t, ß, ß') - eß" = fy(t, i, u'R)(wL + eym-1) + {.}-«£- ew'¿

> mwL + ey — {■} — eM — ew'¿        (M = max|«*|)

> ey - eM + {■}

by our choice of wL. Now for t in [a, a + 8] the expression in parentheses is

nonnegative by assumption and for t in [a + 8, b] it is transcendentally small, that

is, {•} = <3(eN) for all N > 1. Consequently, if y = M + 1 and e is sufficiently

small, say 0 < e < e0, we have the desired inequality eß" < /(/, ß, ß') in (a, b).

For the situations described in Theorems 4.2 and 4.5 the corresponding "singu-

lar" analogs are valid if the locally weakly y'-stable function u, satisfies (5.1) with

m* replaced by u¡ and if

(qxu,(b) + q2u',(b) - B)f(t,y,y') < 0   for (t,y,y') in ^(u,) n[b-8,b].

(5.2)

Consider next the case of interior layer behavior. Once again we will only state

and prove the analog of Theorem 4.3 and simply indicate the modifications

required in the other interior layer results.

Theorem 5.2. Assume that the reduced problems (9lL) and (91*) have solutions

u = uL(t) and u = uR(t) in [a, tL) and (/*, b] respectively with tR < tL such that

"/.('o) = M*o) at%d °l = "K'o) ^ M'o) — oR at a point t0 in (tR, tL). Assume also

that the path u = ux(t) is weakly y'-stable andy-stable, and that

{or - oL)f(t,y,y') > 0   for (t,y,y') in <3)(i/,) n[t0-8,t0+ 8].      (5.3)

Then there exists an e0 > 0 such that the problem (91) has a solution y = y(t, e)

whenever 0 < e < e0. In addition, we have that

y(t, e) = ux(t) + e(wl(t, e)) + 6(wr(t, e)) + 0(e)   for a < t < b,

y'(t, e) = u'L(t) + e(w¡(t, e)) + 0(e)   for a < t < t0

and

y'(t, e) = u'R(t) + 6(w'r(t, e)) + 0(e)   for t0 < t < b.

Here w,(t, e) ={(em-1)1/2(aR - aL)e(e~'m'>'/2('-'o) is a solution of ez" = mz, a < t <

t0, z'(t0-,e)=\(oR-oL), and wr(t, e) = 5(em-')'/2(a* - oL)e-^'/2«-'°> is a

solution of ez" = mz, t0 < t < b, z'(t0+, e) = \(oL — a*).

Proof. Suppose for example that oL < a* and define for e > 0,

a(t, e) = «,(/) — eyzn-1,        a < t < b,

and

uL(t) + w,(t, e) + eym-1,        a < t < t0,
ß{', e) =  ,

MO + wÁl, e) + eym   \        t0 < t < b.

Then it is a straightforward matter to show that for y sufficiently large and e

sufficiently small, say 0 < e < e0, these functions satisfy the correct inequalities.
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Regarding the analogs of Theorems 4.4 and 4.5 we must assume that

( t«, - cj)f(t,y,y') > 0   for (t,y,y') in Q)(u) n [t, - 8, tj + 8].        (5.4)

Here y = 1 and/or 2 and u = u2 or u3.

We close this section with two remarks.

Remark 5.1. In discussing certain problems it is necessary to amend condition

(5.1) as follows. First of all, if u'R > 0 ( < 0) in [a, a + 8] andpxuR(a) — p2u'R(a) <

A (> A) then the proof of Theorem 5.1 shows that it is enough to assume in place

in (5.1) that

/(?, h*(0, A) > 0(< 0)    for/in [a, a + 8] (5.1)'

and for all A in [p2 1(pxuR(a) — A), u'R(a)) ((u'R(a),p21(pxuR(a) — A)]). Secondly, if

in the original condition (5.1), (pxuR(a) - p2u'R(a) — A)f(t,y,y') < p(e) for a

positive function ¡i which is such that /i(e) < L(e)e with L(e) = 0(1) depending

only on e, then the conclusion of Theorem 5.1 remains valid. Similar remarks apply

to the condition (5.2).

It is often necessary to amend also the condition (5.3). If w£ > 0 (< 0) and

uR > 0 (< 0) in [t0 - 8, t0] and [/„, r0 + 8] respectively and if aL < a* (aL > aR)

then the conclusion of Theorem 5.2 is valid if (5.3) is replaced by

f(t, ux(t), X) > 0 ( < 0)   for tin [t0~ 8, tQ + 8] and

for all A in (aL, o*) ((a*, aL)).     (5.3)'

Secondly, if in (5.3) (a* — oL)f(t, y,y') < KO witn M as before then the conclusion

of Theorem 5.2 is also valid. The conditions (5.4) can be modified in a similar

manner.

Remark 5.2. If we assume in the theorems of this section that the reduced

solutions are y-stable in a sense more general than that given in Definition 4.6 then

the layer corrector terms >v must be modified accordingly (cf. for example [9]). The

qualitative results are nevertheless the same.

6. Some examples. We discuss now several examples that illustrate the theory in

§§4 and 5.

Example 6.1. Consider the problem

ey" =y - ty' -y'3 =f(t,y,y'),        -1 < t < 1,

-y'(-l,e) = ,4,       y(l,e) = £. (E4)

Note that solutions of (E4) are unique by the maximum principle (cf. [16]). The

reduced equation u = tu' + u'3 is a Clairaut equation (cf. [10, Chapter 3]) whose

solutions are the straight lines u = u(t) = ct + c3 and their envelope u =

± 2(- t)3/2/3V3  which is a singular solution defined for z < 0 (see Figure 1).

Suppose first that B = 2. Then the straight line u = uR(t) = í + 1 is a solution

of the reduced problem (91*) corresponding to (E4) which is strongly y'-stable in

[-1, 1] since fy[uR(t)] = -t - 3 < -2 there. In order to apply Theorem 4.1 we must

determine for what values of A

(-«*(-!) - A)f(-l, «*(-!), A) = (-1 - A)X(l - A2) < 0
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ct + cJ, c > 0

u(t) = ct + c3, c < 0

Figure 1
- t,,' 4- „'3Solutions of the Clairaut equation u = tu  + u

for all A in (w*(-l) = 1, -A] or [-A, 1). If A = - 1 then y(t, e) = «*(/) is the

solution of (E4). If A > - 1 then (-1 - A)X(l - A2) < 0 for A in [-A, 1)

provided — A > 0, that is, for A < 0. Similarly, if v4 < — 1 then

(-1 - A)X(l - A2) < 0

for A in (1, -A] provided — A > I, that is, for .4 < - 1. Thus by Theorem 4.1 the

problem (E4) for A < 0 has a solution y = y(t, e) such thaty(i, e) —* uR(t) = t + 1

in[-l, l]andy'(/, e)-> 1 in(-l, l]ase-»0+.

Suppose next that A = 0 and B = 5/8. Then u = uL = 0 is a solution of the

reduced problem (9lL) and « = uR(t) =\t + | is a solution of (91*) which

intersect at i0 = — j. The corresponding angular path u = ux(t) is strongly y'-sta-

ble since fy\uL(t)] = - t >\ in [-1, -\] and 7>[«*(0] - - / - 3< - j in

[ — j, 1]. To apply Theorem 4.3 we must check the condition that

(°* -oJ/(-¿,0,A)>0

for A between oy and aR, that is,

/(-i,0,A)=iA(i-A2)>0
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for A in (0, ¿). Thus we deduce from Theorem 4.3 that the problem (E4) has a

solution y = y(t, e) such that

¡0,        -1 <t < -A,
y(t,e)^ux(t) = \ 4

'   \t  +Ï, -7</   <   1,

and

/Ce)-

2 8' 4

0,        -l</<-i,

1 i<f < 1,4

ase->0+.

We consider finally two applications of Theorem 4.5. Set B = 10/27. The unique

solution u of the reduced equation/ = 0 satisfying w(l) = B is u = uR(t) = z/3 +

1/27 and it intersects the lower branch u, (= — 2(— t)3/2/3V5 ) of the singular

solution at the point t2 = — 1/3 (cf. Figure 1). Since u¡ is singular we also know

that u',(t2) = u'R(t2) and so the corresponding reduced path u = u3(t) is of class

C(1)[-l, 1]. It remains for us to determine the values of A for which

(-«,(-1) - A)f(-l, u,(-l), A) = (-1/V3 - A)(-2/3V3 + A - A3) < 0

for A in (1/V3 , -A] or [-A, 1/V3 ). Note that if A = - 1/VJ then y(/, e)->
u3(t) andy'(/, e) -> u'3(t) in [-1, 1] as e -> 0+. If however -1/V3 - A > 0 then

(-1/V3 - A)(-2/3V3 + A - A3)

= (1/V3 + A)(X - 1/V3 )2(A + 2/V3 ) < 0

for all A in (1/V3 , -A], while if - 1/V3 - A < 0 then

(1/V3 + ^)(A - 1/V3 )2(A + 2/V3 ) i 0

for A in [ —2/V3 , 1/V3). Consequently we can apply Theorem 4.5 only if

A < — 1/V3 to conclude that the problem (E4) has a solution y = y(t, e) such

thaty(r, e)->w3(/)in[-l, 1] and y ' (t, e)^> u'3(t) in (-1, l]ase^0+.

Suppose finally that A = 1/3 and B = 26/27. Then the unique solution u of

/ = 0 satisfying zz(l) = B is u = uR(t) = 2//3 + 8/27 and it intersects the upper

branch u, (= 2(- t)3/2/3V3 ) of the singular solution at z2 = - 1/3. For this

choice of A and B note that oy = z^(- 1/3) = — 1/3 < u'R(— 1/3) = 2/3 = a* in

contrast to the previous problem. We first check the condition for a crossing at t2,

namely

|+j*-*>>«(«*-*a/(-3»2rx)~

for A in (-¿, \). But
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for such A and so there is a crossing at t2. Thus Theorem 4.5 tells us that there is a

solution y = y(t, e) of (E4) such that

-1 < z < -\,
y(t, e) -» u2(t) = ;

<t<l,

and

yV, «)
I <t < -3,

■J<t < 1,

ase^0+.

Example 6.2. Consider now the problem

ey" =y + ty' +y'"=f(t,y,y'),        - 1< t < 1,

y(-l,e)-y'(-l,e) = A       y(l, e) + y'(l, e) = 5, (E5)

for « an integer greater than two, which we will use to illustrate Theorem 4.2. Once

again solutions of (E5) are unique by the maximum principle. The function u¡ = 0

is clearly a solution of the reduced equation/ = 0 which is locally strongly y'-stable

since fy\0] = t. Suppose first that n is odd. In order to apply Theorem 4.2 we must

consider inequalities at z = — 1 and t = 1, namely

(u,(-l) - u¡(-l) - A)f(-l, u,(-l), A) < 0   for A in («;(-l), «,(-!■) - A]

or [ut(-\)-A, «;(-l» (6.1)

and

(u,(l) + u',(l) - 7?)/(l, «,(1), A) < 0   for A in («;(1), B - u,(l)}

or[B-u,(l),u¡(l)). (6.2)

Condition (6.1) is equivalent to -AX(l - A""1) < 0 for A in (0, -A] or [-A, 0)

and this is satisfied for \A \ < 1 (A =£■ 0) since n is odd. On the other hand,

condition (6.2) is equivalent to - BX(l + A"-1) < 0 for A in (0, B] or [B, 0), which

is true for all B ¥= 0. If A = B = 0 then y(t, e) = 0 is the solution of (E5) and so

from Theorem 4.2 we deduce that if n is odd and \A \ < 1 then for all values of B

the problem (E5) has a solution y = y(t, e) such that

y(r,e)-»0   in [-1,1]    and   /(/,e)-*0   in (-1, 1) as e ^0+.       (6.3)

If now n is even then condition (6.1) is clearly satisfied by all values of A > -1

(A =*= 0) while condition (6.2) is satisfied by all values of B > — 1 (B 7= 0). Thus

from Theorem 4.2 we deduce that if n is even and A, B > — 1 then the problem

(E5) has a solution y = y(t, e) satisfying the limiting relations (6.3).

Example 6.3. Consider next the problem

ey" = ty'3 +y3 -y =f(t,y,y'),        -l<t<l,

y(-l,e)-y'(-l,e) = A,       y(l, e) + y'(l, e) = B. (E6)

We will show that for certain choices of A and B this problem has at least two

solutions.
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The reduced equation / = 0 has many solutions but we single out just the

constant ones ux = 1 and tz2 = -1 which arey-stable since fy[± 1] = 2. Note also

that both m, and u2 are locally weakly y'-stable since/,- = 3zy'2. We consider only

w, in detail since the corresponding results for u2 follow by reflection (y —* -y). To

apply Theorem 4.2 we must check the two inequalities:

(«,(-1) - h',(-1) - A)f(-l, ux(-l), A) < 0   for Ain («',(-1), w,(-l) - A]

or[ux(-l)-A,u'x(-l)); (6.4)

(m,(1) + u'x(l) - 70/(1, «,(1), A) < 0   for A in («',(1), B - «,(1)]

or[B-ux(l),u'x(l)). (6.5)

Condition (6.4) is equivalent to (1 - A)X3 > 0 for A in (0, 1 - A] or [1 - A, 0),

which is satisfied for all A =£ 1. Similarly condition (6.5) is equivalent to (1 — 7?)A3

< 0 for A in (0, B - 1] or [B - 1, 0), which is satisfied for all B ¥= 1. Thus by

Theorem 4.2 the problem (E6) has a solution y = yx(t, e) such that for all A and B,

yx(t, e)-»l in [-1, 1] and y\(t, e)-»0 in (-1, 1) as e-»0+. Consequently this

problem has another solution y = y2(t, e) such that for all A and B y2(t, e) —> -1 in

[-1, l]andy2(i, e)^0in(-l, l)ase^0+.

Example 6.4. In this final example we illustrate some of the singular phenomena

discussed in §5. The problem is

ey" =y _ ty'3 = f(t, y, y'),       a < t < b,

- y'(a, e) = A,        qxy(b, e) + q2y'(b, e) = B, (E7)

whose solutions are unique by the maximum principle. Suppose first that a = q2 =

B = 0 and b = qx = 1, and consider the function u = uR(t) = 0. Clearly uR is a

solution of / = 0 satisfying uR(l) = B which is locally weakly y'-stable since

fy. = — 3zy'2. Now /(0, 0, 0) = 0 and so we cannot apply Theorem 4.1 but we

suspect that for all values of A there is a solution y = y(t, e) of (E7) such that

y(t, e)-.0   in [0,1]    and   y'(t, e)->0   in (0, 1] as e -+0+. (6.6)

To establish this we note that condition (5.1)' (cf. Remark 5.1) of Theorem 5.1

holds, namely

(-w*(0) - A)f(t, uR(t), X) = AtX3 < 0

for t in [0, 8] and A in (0, -A] or [-A, 0). Thus by Theorem 5.1 the problem (E7)

has a solution y = y(t, e) satisfying the limiting relations (6.6) for all values of A.

Suppose next that a = -I, A = qx = q2= I and B = 2, and consider the func-

tions u = uL(t) = -t and u = uR(t) = t. Clearly uL is a solution of the correspond-

ing reduced problem (9lL) while w* is a solution of (91*). These functions intersect

at t0 = 0 and the angular path u = ux(t) = \t\ is weakly y'-stable since/,. = -3zy'2.

However Theorem 4.3 is inapplicable because /(0, 0, A) = 0 for all A. We are led to

consider applying Theorem 5.2 since ux is y-stable and so we have to verify

condition (5.3)' (cf. Remark 5.1), that is, f(t, ux(t), X) > 0 for |f| < 8 and |A| < 1.

For t in [-8, 0], /(/, ux(t), X) = -t(l + A3) > 0 and for / in [0, S], f(t, ux(t), A) =

t(l — A3) > 0. Therefore Theorem 5.2 tells us that the problem (E7) has a solution



A CLASS OF NONLINEAR ROBIN PROBLEMS 551

y = y(t, e) such that y(z, e)-> |r| in [-1, 1] and

/(,,e)^f-l>       -Kt<0,yy'      I 1,       0<i < 1,

ase^>0+.

7. Concluding remarks. We close with some observations on the assumptions and

the conclusions of the theorems presented here.

First of all, in the case of more widely studied singularly perturbed boundary

value problems, for instance quasilinear Dirichlet problems (that is, f(t,y,y') =

0(|y'|) as |y'| —» oo), one expects both the solution and its first derivative to behave

nonuniformly at one or more points in the interval under consideration. Thus the

reader may feel that our results here for the Robin problem (91) are incomplete in

that a solution always behaves uniformly in [a, b}. It is however the assumption

that/ as a function ofy', grows faster thany'2 which precludes (in most cases) the

occurrence of the "usual" types of boundary and interior (shock) layer behavior.

This remark, which is not widely known, is due essentially to Vishik and Liusternik,

and the reader should consult [17, Chapter II] for a detailed exposition of their

results.

Finally, the definitions of stability which we have used to derive our results may

appear somewhat mysterious or artificial at first glance, especially those involving

local y'-stability and/or y-stability. With regard to y'-stability we were led to make

such definitions based on the observation that in order for boundary layer behavior

to occur at t = a (t = b) the linearized coefficient of y' must be nonpositive

(nonnegative). Here we linearize about the appropriate reduced path. The defini-

tion of y'-stability for an angular path then becomes more natural if we regard each

angular point as a "two-sided" boundary point. With regard to y-stability we

observed first that under such an assumption a (local) maximum principle applied

(cf. [16, Chapter 1]) and so solutions of (91) satisfy a priori bounds which are

independent of e. Moreover, at points of nonuniformity where/,, vanishes the layer

corrector terms are solutions of the equation ez" = mz, where m > 0 is the lower

bound on /. Thus it seemed natural to us to impose such a restriction, especially

when the absence of y-stability (even in the linear case) can lead to formidable

difficulties involving resonant behavior of solutions.
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