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Abstract. An analogue of the "Langlands conjecture" is proved for a large class

of connected unimodular Lie groups having square-integrable representations

(modulo their centers). For nilpotent groups, it is shown (without restrictions on the

group or the polarization) that the L2-cohomology spaces of a homogeneous

holomorphic line bundle, associated with a totally complex polarization for a flat

orbit, vanish except in one degree given by the "deviation from positivity" of the

polarization. In this degree the group acts irreducibly by a square-integrable

representation, confirming a conjecture of Moscovici and Verona. Analogous

results which improve on theorems of Satake are proved for extensions of a

nilpotent group having square-integrable representations by a reductive group, by

combining the theorem for the nilpotent case with Schmid's proof of the Langlands

conjecture. Some related results on Lie algebra cohomology and the "Harish-

Chandra homomorphism" for Lie algebras with a triangular decomposition are also

given.

0. Introduction. Since the appearance of Kirillov's thesis [21] on nilpotent Lie

groups, the key unifying idea in the study of unitary representations of more or less

arbitrary connected Lie groups has been the association of irreducible or at least

primary representations with coadjoint orbits or "generalized orbits." This one

principle is the basis for what one may call the Kirillov-Kostant "orbit method,"

which encompasses many of the deepest results of the representation theory of both

solvable and semisimple Lie groups. (See, for example, [3], [5], [14], [21], [22],

[25]-[28], [35], [36], [40], [43], [46], [49]. This is not by any means a complete list-it

is only a small sample of the literature to suggest the scope of the subject.) At the

very least, it seems that for any connected Lie group G, all the representations

needed to decompose the regular representation should be obtainable from some

sort of "quantization process" involving polarizations for elements of the (real)

dual g* of the Lie algebra g of G that satisfy some sort of integrality condition.

The most familiar instance of this construction is the one used by Kirillov to

construct all the irreducible unitary representations of a nilpotent Lie group, and

which one can also use to construct the (unitary) principal series of a complex (or

more generally, quasi-split) semisimple group. In this situation, one starts with an

element A G g* and a real polarization b, for X, that is a Lie subalgebra b of g that is
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2 JONATHAN ROSENBERG

a maximal totally isotropic subspace of g with respect to the alternating bilinear

form Bx(-,-) = A([•,•]). If one assumes that the connected subgroup H of G

corresponding to i) is closed and has a unitary character Xx with differential i\,

then inducing xx to 6 will give a unitary representation of G. Under favorable

circumstances, this representation will be irreducible and independent of the choice

of H). (Of course this is a vast oversimplification since one usually has to worry

about nonconnectedness of the stabilizer Gx of A, "admissibility" of fj, and the

"Pukanszky condition." These problems disappear in the nilpotent case, though.)

However, even to deal with the Borel-Weil theorem for compact groups and the

representations of the four-dimensional "oscillator group," one needs to consider

complex polarizations, which are subalgebras not of g but of its complexification.

When such a polarization is positive (see 1.1 below), one can often construct an

irreducible representation of G by an analogue of the inducing process called

"holomorphic induction." Roughly speaking, this involves considering L2-sections

of a homogeneous line bundle that are holomorphic in certain directions given by

the polarization. This process can be used to construct the Borel-Weil realization of

the irreducible representations of a compact group, the Harish-Chandra holomor-

phic discrete series for a noncompact semisimple group corresponding to a hermi-

tian symmetric space [17], the irreducible representations of a type I solvable group

[5] or of a group with cocompact nilradical [36], [27], and even the traceable factor

representations of a group with cocompact radical [35], [36] that need not be type I.

But to treat general Lie groups, even positive complex polarizations are not

sufficient. The orbits corresponding to the nonholomorphic discrete series of

semisimple groups do not admit positive polarizations, and in fact even some of the

square-integrable representations of the semidirect product of SL(2, R) and the

3-dimensional Heisenberg group cannot be obtained by holomorphic induction.

Nevertheless, Schmid's proof [42], [43] of the "Langlands conjecture" has given the

orbit method yet another success-a geometrical realization of the discrete series on

the L2-cohomology of line bundles over coadjoint orbits. (An alternative geometri-

cal realization using harmonic spinors [4] is also related to the orbit picture for

general Lie groups, and in fact may ultimately make it possible to dispense with

polarizations entirely in the case of nilpotent groups-see [47], [48], [30].)

The purpose of this paper is therefore to consider the representations of a fairly

broad class of unimodular Lie groups on L2-cohomology spaces of line bundles

with respect to nonpositive polarizations. Our primary concern is with totally

complex polarizations, which seem inextricably liked to square-integrable represen-

tations whenever they occur. In the nilpotent case, the most general polarizations

for which harmonically induced representations can be defined can be reduced to

this case anyway (see §3). For semisimple groups, the tempered representations

needed for the Plancherel theorem [18], [46] can all be constructed by unitary

induction from cuspidal parabolics once one knows how to construct the discrete

series. (Alternatively, they may be constructed directly from orbits by a method

that essentially comes down to this [46, §8].) For more general groups (including

almost all solvable ones), the place of the square-integrable representations in the

general pattern is very obscure; nevertheless, the geometrical realization of the



SQUARE-INTEGRABLE REPRESENTATIONS 3

discrete series is an interesting subject in itself and is of course a prerequisite to

understanding how to construct more general representations from coadjoint orbits

or "generalized orbits."

It should be pointed out that the study of totally complex polarizations in the

nonunimodular case appears considerably more complicated, as is evidenced by

the breakdown of the Connes-Moscovici index theorem [10] and by the very

complicated conditions of Rossi-Vergne [39], Fujiwara [15], and Zaitsev [50] for

nontriviality of holomorphically induced representations even from a positive

polarization. We are apparently a long way from understanding this situation.

The plan of this paper is as follows. § 1 contains the basic definitions concerning

(not necessarily positive) polarizations and some facts about their behavior in the

nilpotent case. These are used in §2 in the proof of Theorem 2.4, which is a sort of

a nilpotent analogue of the Borel-Weil-Bott-Kostant Theorem [24] on Lie algebra

cohomology.2 This result is then used in §3 to prove our first main objective, a

conjecture of Moscovici and Verona. (This is Theorem 2 of [31] with all the

technical conditions on the polarization removed.) We also briefly discuss the

correct interpretation of "harmonic induction" for polarizations that are not totally

complex, again for nilpotent groups with square-integrable representations. §4 is

concerned with certain nonnilpotent groups with square-integrable representations,

including in particular the [/-groups studied by Ann [1], plus some solvable

unimodular groups with a particularly simple structure. The primary objective here

is to combine the results of §3 with the (very deep) results of Schmid on the

semisimple case to give an improved version of some results of Satake [41]. The

main results are Theorem 4.3, which relates square-integrable representations to

coadjoint orbits, and Theorem 4.8, which proves a generalized form of the "Lang-

lands conjecture." §5 is independent of most of the rest of the paper but is included

because it helps to "explain" the results of §4. The purpose of this section is to

show that the universal enveloping algebras for the groups considered in §4 are

sufficiently like those of semisimple groups so that one would expect similarities in

the representation theory.

It is a pleasure to acknowledge numerous helpful conversations with Alain

Connes, Roe Goodman, Philip Green, Henri Moscovici, David Vogan, and Nolan

Wallach on subjects connected directly or indirectly with this paper, as well as the

hospitality of the Institute for Advanced Study that made these conversations

possible. Many of these discussions have found their way into the text (it is hoped

in ways that will not offend the participants!). The author is particularly indebted

2After this paper was completed, the author received a copy of Lie cohomology of representations of

nilpotent Lie groups and holomorphically induced representations by R. Penney, which was written almost

simultaneously with the present work. Penney gives another proof of Theorem 2.4 and then deduces

Theorem 3.1 in the same way. Both proofs use the same inductive framework and case-by-case analysis,

based on the equivalents of Lemmas 1.5 and 1.6 of this paper. However, the proofs differ in their

analysis of the various cases. The author prefers the present proof because of the relative simplicity of

Lemmas 2.2 and 2.3, which have some independent interest. Penney's proof, on the other hand, has the

advantage of not requiring spectral sequences and only using a simple algebraic lemma (his Lemma 2)

instead.
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to Henri Moscovici for having introduced him to this subject and to its literature

and techniques.

He also wishes to thank Michel Duflo, first of all for suggesting many of the

ideas of §5 in lectures given at the University of Maryland in December, 1978, and

secondly for suggesting several improvements in the original version of the

manuscript (including a generalization of Theorem 2.4, deferred to a future paper).

Finally, but perhaps most importantly, thanks are due to Richard Penney for

detecting several errors in the original proof of Theorem 2.4 and for suggesting the

use of weak polarizations as a means of avoiding them.

The following terminological and notational conventions are in effect throughout

the paper. The word "representation" when applied to groups always means

"strongly continuous unitary representation." We usually shall not distinguish

between a representation and its unitary equivalence class. The only fields used are

the real and complex numbers R and C, except in §5 where most remarks are valid

over any algebraically closed field of characteristic zero. Lie algebras are denoted

by lower-case Gothic letters. For Lie algebras over R, the corresponding connected

Lie group (simply connected unless constrained by context to be a subgroup of a

larger group) is denoted by the corresponding capital Roman letter. If a is a real

Lie algebra, a* denotes its real dual space, ac the complexification of o, and U(aç)

its complexified enveloping algebra. The symbols § and <8> denote the Schwartz

space of rapidly decreasing smooth functions and the projective tensor product of

topological vector spaces, respectively. (The only topological vector spaces needed

are Fréchet spaces of the familiar sort.)

1. Preliminaries on polarizations.

1.1. Let g be a Lie algebra over R, g* its dual vector space over R. An element X

of g* defines an alternating bilinear form Bx on g (which we extend by C-bilinear-

ity to the complexification gc) by Bx( ■, • ) = X([ •, • ]). By a polarization for X, we

mean a (complex) Lie subalgebra of gc such that

(i) b is a maximal totally isotropic subspace for gc with respect to Bx and

(ii) b + b (often called ec) is a Lie subalgebra of gc. Here "~" denotes complex

conjugation of gc relative to the real form g. If b satisfies (i) but not necessarily (ii),

we call b a weak polarization. Everything to be said in this section is valid for weak

polarizations. From Bx we can also manufacture a hermitian sesquilinear form Hx

on b by

Hx{u, v) = iBx(u, v) = iX([u, v])    for u, v G b-

b is called positive if Hx is nonnegative, negative if Hx is nonpositive, totally real if

Hx = 0 (equivalently, if b = b)> totally complex if Hx is nondegenerate modulo the

radical gA c of Bx (equivalently, if b + b = gc)-

1.2. A certain nonnegative integer q(f), X) will turn out to be an important

invariant of the pair (b, A). We will call it the negativity index of the polarization

since it measures the deviation of b from being totally complex and positive. To

define it, let gx c be the radical of Bx as before and let bc = b n b be the radical of

Hx. Then Hx induces a nondegenerate (although not necessarily definite) hermitian
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inner product on í)/bc. We get

q{f), A) = dim^bc/öx c) + (no. of minus signs in the signature of Hx on b/bc)

= dimc(b/g\,c) — (no- °f Pms ñgps in the signature of Hx on f)/i>c).

1.3. In the rest of this section we will be interested only in the case when g is

nilpotent. Via the Kirillov correspondence [21], A defines an irreducible representa-

tion itx of the connected, simply connected group G having Lie algebra g (or more

precisely, a unitary equivalence class of such representations). The number n =

dimc(b/gx>c) which appears in the second expression for q(f), A) is independent of

the choice of b and is the Gelfand-Kirillov dimension of irx; it is the unique n such

that the image of £/(gc) under trx is isomorphic to the Weyl algebra A„ (over Q.

Furthermore, one may take the space of C "-vectors for ttx, which we denote by

("a)«>> to De tne Schwartz space S (R"), in such a way that the action of U(§¿) on

("x)oo Just becomes the standard representation of An by polynomial differential

operators in n variables. (See [21, Theorem 7.1] and [20, Proposition 3.3].)

1.4. For the rest of this section, we make the further assumption that G has

one-dimensional center Z and has square-integrable representations modulo Z (see

[28]). This forces the dimension of G to be odd. We fix A G g* with nontrivial

restriction to the center 3 of g; then irx is square-integrable modulo Z and its

restriction to Z has differential /A|j [28, Theorem 1].

In this situation, let b be a weak polarization for A. Then gx = 3 and n =

(dimc b) — 1 = ((dim G) — l)/2. We will need to compare q(i), A) with the nega-

tivity index of a weak polarization for some functional ft gotten by restricting A to

an ideal g' of g. Therefore assume n > 0, so that 3(2)(g) D 3, and choose.yG3(2)(g)\3.

Let g' be the centralizer of y in g, which is an ideal of codimension 1 in g. For

convenience, put n = 3C + Cy, which is a 2-dimensional central ideal in g^.

Case I. b ç gc- Since n is central in g^, [n, h] = 0 and n + b is subordinate to A;

hence n ç b since b is maximal subordinate. We may assume X(y) = 0, in which

case the restriction of A to g' induces a linear functional v on g'/Ry.

Lemma 1.5. In this situation, the group L corresponding to g'/Ry has square-inte-

grable representations, and the image b of b in tíc/Cy is a weak polarization for v.

Also, q®, A) = ?(b, ")+ 1.

Proof. To show v gives rise to square-integrable representations of L, it is

enough by [28, Theorem 1] to show that the stabilizer Lv of v in I* is just the image

Z of Z. But if t G g' and the image / of t in I is in I„, then for all s in g\

K[t, s]) = 0, or X([t, s]) = 0 (since X(y) = 0); hence / G n and te 3. That b is a

weak polarization for v is obvious by dimension counting.

Finally, note that n ç b n b» so that the map from g^ to Q'c/Cy has one-dimen-

sional kernel on b Pi b and induces an isomorphism from the nondegenerate

quotient of Hx to the nondegenerate quotient of Hr. Thus Hx and Hv have the

same number of minus signs in their signatures, and dim^bc/sc) = dim^bç/ïç) +

1. The assertion about negativity indices follows.
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Case II. b í gé- ^n this case, b n gc is an ideal of codimension 1 in b, and

m = b n ker A n gc is an ideal of codimension 1 in b D ker A. As before, if we

assume X(y) = 0, A induces a functional v on I = g'/R.y, and v determines a

square-integrable representation of L.

Lemma 1.6. In this situation, the image í¡ofíir\Q'c in lc = Q'c/Cy is again a weak

polarization for v. Then q(ï), A) and q(f), v) are related as follows:

(a) //b n b 3 Í) n b n q'c, then q(i), A) = q(t>, v) + 1;

(b) if b n b Q q'c and b n b = image of (b n b) in Ic, then the orthogonal

complement oft)(~) q'c in b (relative to Hx) is l-dimensional modulo b fl b, and Hx is

definite on this \-dimensional space. If it is positive, then a(b, A) = o(b, v); if it is

negative, q(t), A) = q(%, v) + 1 ; _

(c) if b D b Q gé an^ 5 Pi b w strictly bigger than the image of b PI b [i.i.,

((*> n o¿) + n) n ((b n q'c) + n) D (b fl b) + n], then o(b, A) = ?(b, r).

Casey (a), (b), and  (c) are mutually exclusive, and all can occur.

Proof. It is clear that the three cases are mutually exclusive and exhaustive.

Examples of all three will be given later, along with an example of Case I (the

situation of Lemma 1.5).

(a) Suppose bnbDbnbngc- Then dimc(b n b) = dimc(b n b n gy + l.

Choose basis elements t,,..., tn for b fl g^ whose images tx, . . . ,tn diagonalize Hr

on b; more precisely, assume H„(t¡, tf) = 0 for / ¥=j and

»,& *) =

0 for 1 < i < p

-1       for/7 +1 < i < p + r

+ 1     for/? + r + 1 <i < n

By definition of the negativity index, q(t), v) = p + r - 1, and by construction of v

from A, Hx(t¡, tß = H„(t¡, tj). Since b n b $ gc> we may choose t0 G b n b not in

g¿. Then t0 lies in the radical of Hx, so we have diagonalized Hx by means of

t0, . . . , tn. It is clear that the signature of Hx has/7 + 1 zeroes and r minus signs, so

<7(b, A) =/; + r = q(î),p)+ 1.

(b) Suppose b D b Q Q'c- Then if t G_b \ (b n q'c), ííí|nt) = rad(//A), so there

exists s G b with //A(/, 5) ^ 0. If b n b = rad Hp is equal to the image of b D b,

then if we construct a basis diagonalizing Hy as in (a), the elements /,, . . . , tp will

be a basis for the radical of Hx. The orthogonal complement of b n g^ will be

one-dimensional modulo this radical, and if t0 G b \ (b n Q'c) is orthogonal to

b n q'c, then since it is not in the radical of Hx, we must have Hx(t0, t0) ^ 0. Thus

the signature of Hx has the same number of zeroes as that of //„, and will have one

extra plus or minus sign. The rest is clear.

(c) Again suppose b D b Q Q'c Dut suppose b n b is bigger than the image of

b n b- Since dim^n/Sc) = 1, the radical of Hy then has dimension one larger than

that of Hx. Choose a basis as above; we may assume that t2, ■ ■ ■ , tp G b Pi b and

that /, ^ rad Hx. Choose t0 G b \ (b n gc) orthogonal to t2, . . . , tn as in (b). Since

H\('i' *j) = 0 foTj > 1 and r, ^ rad Hx, necessarily Hx(tx, t¿) ¥= 0. The matrix of
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Hx in the basis t0, t„ then has the form

0       0

-Ir    0

0       /,

a GC\ {0},

and since the determinant of (f ¡}) is negative, the signature of Hx has (p — 1)

zeroes, (r + 1) minus signs, and (n — p — r + 1) plus signs. In particular, we have

a(b, A) - (p - I) - 1 + (r + 1) -> + r - 1 - a(b, r).
1.7. Examples. We give examples to illustrate the four cases above. It will suffice

to take for g the 5-dimensional Heisenberg Lie algebra with basis jc„ x2,yx,y2, z,

where \xx,yx\ = [x2,y2] = z, [xx, x2] = [xx,y2] = [.y,,.^] = [yx, x2] = 0. Let y =

>>2, so g' is spanned by xx,yx,y2, and z. Finally, let X(z) = 1, X(xß = A(_yy) = 0 for

j = 1, 2.
(1) Take b to be spanned by yx, y2, and z. This is an example of Case I, which

happens to be totally real (although there are more general examples).

(2) Take b to be spanned by xx, x2, and z. This is an example of Case 11(a), which

happens to be totally real (although there are more general examples).

(3) Let b = C(x2 ± iy2) + Cxx + Cz. Then b D b = Cx, + Cz Ç q'c, and b = b
= Ci, + Cz. This is an example of Case 11(b) in which the signature depends on

the ± sign in x2 ± iy2.

(4) Let b = C(jc, + iy2) + C(x2 +/>,) + Cz. Then b is totally complex, and

í) n Qc — C(x, + iy2) + Cz. In the mapping g' -^ \,y2 goes to 0; hence b = Cx, +

Cz is totally real (even though b is totally complex). This is an example of Case

11(c).

2. Cohomology of nilpotent Lie algebras of differential operators acting on the

Schwartz space. This section contains applications of §1 to the computation of

some Lie algebra cohomology groups. We use standard facts about the

Hochschild-Serre spectral sequence for Lie algebra cohomology relative to an ideal

that may be found, for instance, in [7, Chapter XVI, §6]. Some of these results were

previously obtained in [33] by similar means; however, the present methods offer

an improvement in several respects:

(a) We do not require our polarizations to be totally complex. This has an

interesting geometrical consequence which will be discussed in §3.4. Anyway, the

generalization seems more or less unavoidable since the natural inductive process

starting from a totally complex polarization often leads to consideration of polar-

izations that are not totally complex for a smaller group.

(b) We do not require our polarizations to be commutative.

(c) Penney's inductive step in the non-Heisenberg case [33, p. 32] appears to

break down for 5-dimensional groups, since then his 91q and (dKv coincide. This

could be remedied by treating this case separately or appealing to Example 1 in

[31, §5], but this seems aesthetically unappetizing.



8 JONATHAN ROSENBERG

The following special fact, essentially noted by Penney, is crucial to what

follows:

Lemma 2.1. Let a be the 1-dimensional abelian Lie algebra over C, acting on §>(R)

by multiples of the differential operator d/dx + ax, where a G C and x is the

coordinate on R. Then

H°(a, §(R)) = 0     if Re a < 0, C if Re a > 0,

H\a, S(R)) = C     if Re a < 0,0 if Re a > 0.

Proof. The solution space of the differential equation (d/dx + ax)f(x) = 0 is

spanned by f(x) = e'ax /2, which lies in S exactly when Re a > 0. This proves the

result about H°. Similarly, given g G S, the solution of (d/dx + otx)f(x) = g(x)

with initial condition/(x) —» 0 as x -* -oo is given by

f(x) = e—72 fx ea'^2g(t) dt,

which lies in S exactly when either Re a > 0 or else Re a < 0 and /fj, ec"'/2g(t) dt

= 0 (see proofs of [33, Sublemmas 21 and 22]). This proves the assertion about Hx.

We also need one other cohomology computation, based on properties of the

Cauchy-Riemann operator:

Lemma 2.2. Let a be the two-dimensional complex abelian Lie algebra, acting on

S (R2) by linear combinations of the polynomial differential operators

? = x, + ix2   and   3/3? + P = \(d/dxx + id/dx2) + P(xx, x2),

where xx and x2 are the coordinate functions on R2, f is the complex coordinate on C

(identified with R2), and P is a polynomial function in two variables. Then

Hk(a, S(R2)) = {
0     ifk=¡k\,

C    ifk = 1,

and the spectral sequence with E2 terms Hp(C(d/dÇ + P), Hq(C^, S(R2))) converg-

ing to Hk(a, S (R2)) collapses so as to have

Ep,q . unless p = 0,q= 1,

-H°cC      ifp = 0,q= 1.

Proof. Obviously the fact about the spectral sequence is stronger than that

about the cohomology alone. And since J acts injectively on S (R2), E^'q = 0 if

q = 0. To reduce the calculation of E2hl and E2A to standard facts in complex

analysis, it is helpful to apply [19, Theorem 1.4.4] to construct a function <p G

C°°(R2) such that 3<p/3f = P. Then 3/3f + P can be rewritten as D =

<?^(3/of) o ef.

First we show that E2U = 0. This amounts to showing that if / G S (R2), then /

can be written in the form

AS) = &(?) + e^>4(e*nM0)
3?



square-integrable representations 9

for some g, h G S (R2). First choose \p G CC°°(R2) such that \p = 1 on some

neighborhood of (0, 0). By [19, Theorem 1.4.4] again, there exists £ G C °°(R2) such

that 3|/3f = ej. Then if h = t^£, h G CC°°(R2) and k =f - Dh vanishes identi-

cally in some neighborhood of (0, 0). Hence k(xx, x2)/(xx + ix£ makes sense and

defines a function g G S(R2), and/ = fg + Dh.

Finally, we must show that Hl(a, S(R2)) = E2l is one-dimensional i.e., that D

has 1-dimensional kernel on S(R2)/(x, + ¿x2)S(R2). Suppose that/ G S(R2) is a

representative for a coset of fS killed by D. Then there exists a function

h G S (R2) such that (Df)(Ç) = ÜKS), or 3(/0/3Í = e*Sh. Let *(£) = /tf)«*^"1
for f ^ 0. Then k is C°° in the punctured plane and 3&/3f = e^h. By [19, Theorem

1.4.4] again, there exists \p G C°°(R2) with 3i///3f = e^/i everywhere. Hence

3(A: — i/O/S? = 0 in C \ {0}, i.e., k — 4> is holomorphic. Since/, qp, and u> are C°°,

the formula for k indicates that k — \p can have at worst a simple pole at 0, and

will have a removable singularity if /(0) = 0. Thus k extends toaC" function in

the whole plane when /(0) = 0, and in this case, / = Çe~*k. Since / and its

derivatives die rapidly at infinity, so do e~*k and its derivatives; hence/ G fS

when /(0) = 0. On the other hand, if / = e^ in some neighborhood of 0, then

clearly / £ f S, but yet Df vanishes in a neighborhood of 0; hence Df G f S. So

the kernel of D on S /f S is exactly one-dimensional.

The following technical lemma, showing that under suitable hypotheses, Lie

algebra cohomology "commutes with direct integrals," will also be needed:

Lemma 2.3. Suppose a (complex) Lie algebra m acts on S (R") s § (R) <g> § (R"~ ')

by a "continuous direct integral"

/•©
a = I     7T o a(j) a!s,

where it is a fixed representation of m on S (R"~ ') by polynomial differential operators

and {a(s)} is a one-parameter group of automorphisms of m. (By this we mean that

for x G m,/ G S (R), g G S (R""1), and s G R,

(a(x)(f ® g))(s,-) = f(s)(v(a(s)x)g)(-).)

Assume that for each q, Hq(ir(m), §>(R"-1)) may be identified with a Fréchet space

Vq. (By this we mean that if we view Hq(ir(m), S (R"~ ')) as the qth cohomology group

Zq/Bq of the standard complex Homc(A*m, S(Rn_1)), and if we give the cochain

spaces their natural Fréchet topologies, then we assume Bq is closed in Zq and Zq/Bq

is topologically isomorphic with V . See [33, Section II] for further discussion of the

topologies here.) Then for each q,

Hq(o(m), S(R")) s S(R) <§> Vq.

Note. In most applications of this lemma, Vq will be either zero- or one-dimen-

sional, so that it is not necessary to complete the algebraic tensor product.

Proof. Let Cq, Cq denote the cochain groups Hom^A'm, S(R"~')) and

HomciA'm, S(R")), respectively, and let 8q: Cq -* Cq+\ 8q: Q-+Q+l denote

the corresponding coboundary operators (as in [7, Chapter XIII, §8]). For s G R,
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let es: S(R")-> S(R"-1) denote "evaluation at s," defined by es(f)(xx, . . . ,xn_x)

= f(s, x,, . . . , x„_,) for/ G S (R"). Then es induces maps Cq -* Cq in the obvious

way, which we denote by the same symbol, and es ° 8„ = S„ o a(i) ° es, so that es

maps cocycles to cocycles, coboundaries to coboundaries, and induces maps

Hq(a(m), S(R")) -* Hq{tr ° a(s)(m), %(Rn~x)).

Composing with the map on cohomology induced by a(-s) and putting these

together for all s, we get maps

9q: Hq(o(m), S(R")) -* S(R) ® Hq(m(m), S(R"-1)) - S(R) <& K,.

Our problem is to show 9q is an isomorphism.

For this we need the fact (a consequence of the nuclearity of S) that if £ is a

closed subspace of a Fréchet space F, then S ® E may be identified with a closed

subspace of S ® F [16, Chapitre II, §3, no. 1, Corollaire à Proposition 10], and

S ® F/S (§> E is topologically isomorphic with S ®(F/E). (There is clearly a

continuous injection from S ® F/S ® E into S ® (F/E). By the open mapping

theorem, it will be a topological isomorphism if it is surjective. For the surjectivity,

see [16, Chapitre I, §1, no. 2, Proposition 3].)

Now let us complete the proof. To show 9q is surjective, we must show that any

Schwartz function <p: R—> Vq comes from an element of (ker 8q). Since Vq =

(ker 8q)/(im 8q~l), by the results on Fréchet spaces just quoted, (p can be lifted to

a Schwartz function <p: R —» (ker 8q). "Twisting" by a, we can view <p as an element

4> of Cq such that e,($) = a(s)«p(j). But then es ° ««(^) = 8£„ a(s)(a(s)y(s)) = 0 for

all s; hence fi/(t//) = 0 and the cohomology class of \j/ maps to <p under 6q. To prove

09 is injective, suppose \¡/ G Cq is a cocycle whose cohomology class maps to 0

under 0q. This means e5(i//) is a 7r ° a(s)-coboundary for each s. Now the space of

^-coboundaries for m may be identified with CJ~'/(ker 8q~x). Again, by the above

result on Fréchet spaces, the Schwartz function defined by ¡p from R to this space

can be lifted to a Schwartz function <p: R—» Cq~\ and es(\p) = 8q~^s)(o(s)<p(s)).

Thus <p defines an element of Cq ~ ' such that es(8a((p)) = eJ(</') for each s, so that

^(f) = 'r' and the cohomology class of \p is trivial.

We are now ready for the statement and proof of the main theorem of this

section. For this we adopt the notation of §1 above. The idea of the proof is to use

the Hochschild-Serre spectral sequence and Lemma 2.3 to reduce all cohomology

calculations down to the situations of Lemmas 2.1 and 2.2. Note that Lemma 2.1

alone will not suffice; Lemma 2.2 is needed as soon as one deals with the (unique

up to isomorphism) 5-dimensional non-Heisenberg group with one-dimensional

center, square-integrable representations, and a totally complex polarization. (This

is [31, §5, Example 1] or the group r53 in the notation of [11]. The group T56 in

Dixmier's list has square-integrable representations but no totally complex polari-

zations.)

Theorem 2.4. Let g be a nilpotent Lie algebra with one-dimensional center 3 such

that the corresponding group G has square-integrable representations modulo Z. Let

A G 3* — {0}, extended as before to a complex linear functional on gc, let t) Q qc be

a weak polarization for X, and let -n^ denote the irreducible representation of G, the
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differential of whose central character is -iX. Let (ir^^ denote the Cx'-vectors of tt_x

viewed as a Qc-module, and let q(i), A) be the negativity index ofî), as in §1. Then

H (b n ker A, (-n x)\ = {
V V  ~X'X'      \ C    fork- a(b, A).3

Proof. Let dimR g = 2« + 1, so that dimc b = n + 1 and dimc(b n ker A) = n.

The proof is by induction on n. When n = 0, there is nothing to prove. When

n = 1, g is Heisenberg, (,n_x)aa is S(R), and b acts by homogeneous first-order

polynomial differential operators. This case is just a restatement of Lemma 2.1, for

if x,y, z are a basis for g with [x,y] = z, we may (without loss of generality, since

x and y play symmetrical roles) assume b contains x + ßy for some ß G C. If we

represent x as usual by d/dt and y by -iX(z)t, then b acts by multiples of

d/dt + ai, where a = -iX(z)ß. Also, we have

Hx(x + ßy,x + ßy) = /A([x + ßy, x + ßy}) = i(ß-ß)X(z) = 2 Im(0)A(z),

so that when lm(ß)X(z) > 0, q(í), X) = 0 and Re a > 0, and when Im(ß)A(z) < 0,

<7(b, A) = 1 and Re a < 0.

Now assume n > 1, and suppose that the theorem is known for algebras of

smaller dimension. We choose y G 3(2)(g) \ 3, let g' = 38(.y), n = 3C + Cy, and

consider the various cases of §1.

Case I. b Ç gé and n Ç b- The Hochschild-Serre spectral sequence for the ideal

Cy of b gives

H'((f) n ker A)/Cy, Hq(Cy, (^)J) =* Hk(\) n ker A, (ttJJ.

As a Cy-module, ("n_x)x is just S(R) ® S(Rn"'), where Cy acts by multiples of

x, ® 1 (x, the coordinate in the first factor). So H°(Cy, (tt^^) = 0 and

//'(Cy, (t_x)x) = S(Rn_1). Thus the spectral sequence collapses and

//*(b n ker A, (7T_A) J « tf*-'((i| n ker A)/Cy, S(R"~X)).

Here we may identify (b n ker A)/Cy with b fl ker v, where b is (as in §1) a weak

polarization for the functional v of §1 on I = g'/Ry, and S(R"_I) may be

identified with (7t_y)x. By inductive hypothesis, Hk~l(§ n ker v, (,T_r)00) = 0 for

k - 1 t¿ q(%, v), C for k - 1 - a(b, i'). But by Lemma 1.5 a(b, A) = q(%, v) + 1.

Thus //*(b n ker A, (77^)^) = 0 if k * q(i), A), C if k = a(b, A).

Caie II. b $ gé and b n gé is an ideal of codimension 1 in b-

Note that m_x decomposes, when restricted to G', into a direct integral

/e(w ) du, where ¡i ranges over the affine space of elements of (Ry + 3)* restrict-

ing to A on 3, and where w denotes the square-integrable representation of G'

whose central character has differential -/ft. If ju^ denotes the restriction of our

original A to n, then each ju is conjugate to juq via an element s of G (not in G'). If

we assume as we may that X(y) = 0, then the kernel of w_ has Lie algebra

spanned by (Ad s)y, and w       is lifted from a representation of the quotient of G'

3The reason for relating cohomology of tt_x to the negativity index of (h, X) (instead of relating

cohomology of irx to the "positivity index" of (b, X)) is that wx will appear in L2-cohomology of the line

bundle defined by X exactly when tt_x has nontrivial Lie algebra cohomology.



12 JONATHAN ROSENBERG

by this group. Furthermore, the element 5 effects an isomorphism from L (the

group with Lie algebra g'/Ry) to G '/ker it^ carrying w to ir^.^- Correspond-

ing to the direct integral decomposition of tt_x, we also have a "smooth direct

integral" decomposition of (•jt_x)00 as S(R") = §>(R) ® S(Rn~'), where y acts only

on the first factor and where the second factor in the tensor product may be

identified with (tt^«,.

By Lemma 1.6 we have three subcases, (a), (b), and (c), to consider. First assume

we are in case (a) or case (b), and let t0 be the basis element of b not in q'c

constructed in the proof of Lemma 1.6. Note that m = q'c C\ ker A n b is an ideal

of codimension 1 in b D ker A. In case (a), we may assume tQ = w is real, i.e.,

belongs to g and not just to gc. In case (b), we may assume tQ = w + iy, where

w G g \ g'. (Indeed, we may clearly choose /0 so that A([/0,_y]) = 1. Let w and t> be

the real and imaginary parts of t0, so that Bx(w, y) = 1 and Bx(v, y) = 0, i.e.,

v G g'. Depending on the sign of Hx(t0, t0), we may assume that Bx(w, v) is either

-1 or 1. Now 5x(i0, b n Q'c) = 0 since t0 is orthogonal to b n gé with respect to Hx,

and Bx(t0, b n Q'c) — 0 since t0 G b and b is Bx-totally isotropic. So both w and v

are Bx-orthogonal to b n gc- Now w — iy (if Bx(w, v) = -1) or w + iy (if Bx(w, v)

= 1) is Bx -orthogonal to both t0 and to b n gé> hence lies in b since b is maximal

fiA-totally isotropic.) In either case, the one-parameter group generated by w will

conjugate » to the other tt.^'s and will map m into itself. The action of m in the

various tt_m's can thus be viewed (via this one-parameter group) as coming from the

action of b on (ir.,^)«,, so that (tt^)«,, as an m-module, may be identified with a

continuous direct integral of conjugates of (ir__)oe> as in 2.3. Now ir , viewed as a

representation of L, is associated with the linear functional v (the image of jUq on I),

and so Hq(m, (w.^«,) — Hq(0) n ker v, (ir_,)„), which is given by the induction

hypothesis to be one-dimensional for q = a(b, v), zero otherwise. Hence by Lemma

2.3,

H"{m, (O J - S (R) ® H «($ n ker v, (,jj ml0 if «* •& ">'
IS(R)     \fq=q(\),v).

Furthermore, the action of (b n ker A)/m on Hq(il,"\m, (w^),») will be given by

multiples of a first-order differential operator acting on S (R), namely, the image of

/0. This operator on S(R) will be of the form considered in Lemma 2.1, with the

sign of the real part of a depending on the sign of Hx(t0, t0). Thus

H"(Ct0, S(R)) =

0 if p = 0 and H^ tQ) < 0

or/7 = 1 and Hx(t0, t0) > 0,

C if p = 0 and 7/x(/0, f0) > 0

or/7 = 1 and Hx(t0, t0) < 0.

Since we have a spectral sequence

H"((f) n ker A)/m, Hq(m, (n_x)J) -* 7/*(b n ker A, (w_x)J

with only one nonzero E%-q term, we finally conclude that Hk(í) n ker A, (tT^)^) is

nonzero for only one value of k, and for this value of k, it is one-dimensional. The
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degree of the nontrivial cohomology will be

\q(f),v) if Hx(t0, t0) > 0,

\q(i),v)+l     if H^t» t0) < 0.

But by Lemma 1.6(a)(b), this is just a(b, A).

We are still left with Case 11(c), in which y G (b n q'c) + (*> n 8c)> hence f) C\ q'c

contains an element of the form y + iw, w G g' (this is the element tx in the proof

of Lemma 1.6). Things are slightly more complicated in this case because we will

have fi(y + iw) ¥= 0 for ¡i ¥= n^; hence (it^)^ and (w.^«, are not conjugate as

m-modules and we cannot identify Hq(m, (it^)^) with S(R) ® Hq(m, (w.^«,)-

In the simplest examples of this subcase, m splits as a Lie algebra semidirect sum

m = C(_y + iw) + f, where f is some ideal in m of codimension one. Under these

circumstances, one can show using the induction hypothesis, Lemma 1.6(c), and

Lemma 2.3 that

0 ifa^a(b,A)- 1,

S(R) ® S(R) = S(R2)    if a = a(h, A) - 1,
H"& (<^U = ,

where Cw acts by multiples of x, ® 1 and Cy acts by multiples of 1 ® x2. The

cohomology of b n ker A can then be computed by first using the spectral sequence

for the ideal f of m to compute the m-cohomology from the f-cohomology, then

using the spectral sequence with E%,q terms

tf'((b n ker A)/m, Hq(m, (tr_x)J).

Because we can choose an element of b fl ker A, not in m, that acts essentially by

(3/3x, + /3/3x2)/2 + P, P a polynomial in x, and x2, the situation reduces to

that of Lemma 2.2. This lemma then completes the proof.

However, as Richard Penney has kindly pointed out to the author (correcting an

error in a preliminary version of this paper), y + iw may instead lie in the derived

algebra of m, in which case we cannot find an ideal of m supplementary to

C(y + iw). This necessitates a somewhat more elaborate calculation, although the

ultimate result is the same. What follows is essentially Penney's argument, some-

what recast in the present language of spectral sequences.

As mentioned above, we may realize (v^^ as S(R) ® (*-pJm so that.y acts by

multiplication by ixx ® 1 (x, the coordinate on the first factor). If Z0 is as in the

proof of Lemma 1.6(c), then t0 may be assumed to act by 3/3x, ® 1 + (terms

commuting with x, ® 1). Let W be the subspace of ("n_x)x consisting of elements

which, when viewed as Schwartz functions/: R —» (,n_li)aa, satisfy

('o)m-/L,-o = 0   for all m > 0,

or in other words, which vanish to infinite order at x, =0 (relative to the

differential operator given by f0). Since /0 normalizes m, W is an (b D ker A)-

submodule of (ir_x)x.
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Lemma 2.5 (Penney).4 The element y + iw of m acts bijectively on W. The natural

map fr-*(f\x _0, t0-f\x =0' ■ • • ) identifies (^_x)M/rV with the ^-module of formal

power series ("'_)j0)0O[[-x]] (on which t0 acts by 3/3x).

We do not include the proof of this lemma here, since it is somewhat long and

computational. It should be remarked, however, that it is clear that y + iw acts

bijectively on the submodule of M consisting of functions vanishing in a neighbor-

hood of x, =0. (Away from x, = 0, y + iw has spectrum bounded away from the

real axis, since w is skew-adjoint and [y, w] = 0.) The difficulty is thus to check

that_y + iw acts similarly on functions only vanishing to infinite order at 0.

Next we need an algebraic lemma, also present in Penney's paper, but in a rather

disguised form.

Lemma 2.6. Let a be a finite-dimensional Lie algebra (say over Q, let f be the

one-dimensional subalgebra of a spanned by a nilpotent element v, and let M be a

a-module. The Ex terms of the Hochschild-Serre spectral sequence for H*(a, M)

associated to the subalgebra t of a are

E{-q = Hq(l, Hom(A*(a/f), A/)),

nonzero for at most q = 0 and q = 1.

(a) If v acts injectively on M, then Ep,° = 0 for all p. If v acts surjectively on M,

then Ep,x = 0 for all p. Thus, if v acts bijectively on M, H*(a, M) = 0.

(b) Suppose furthermore that f is complemented by an ideal m of a, that v acts
<t>

surjectively on M, and that there is an exact sequence of m-modules M —» N —> 0 with

M = Mf © (ker <¡>) (as vector spaces-in general, Mx is not a submodule). Then <¡>

induces isomorphisms

Hp(a, M) = Hp(a, f ; M) (relative Lie algebra cohomology)

-^ Hp(m, N).

Proof, (a) If / G Hom(AJ(a/î), M)\ then t; • (f(x)) = f(v ■ x) for x G A^(a/ï);

hence for large n, v" ■ (f(x)) = f(v" • x) = 0 and / = 0 provided v acts injectively

on M. Similarly, if v acts surjectively on M and g G Hom(A7(a/f), M), we can

choose h0 such that v ■ (h0(x)) = g(x) for all x. Then (g — v • h0)(x) = h0(v ■ x),

and we can choose hx with t> • (hx(x)) = h0(x), then set hx(x) = hx(v ■ x). This gives

(g — v • h0 - v ■ hx)(x) = hx(v2 ■ x), etc. Since v acts nilpotently on AJ(a/f), we see

that f acts surjectively on Hom(A7(a/f), M) and E{x = 0.

(b) As for the second part of the lemma, recall that Hp(a, f; M) = EP'° is the

cohomology of the complex Hom(A*(a/f), Af)f. The fact that this coincides with

the cohomology of a follows from the collapsing of the spectral sequence in (a)

above. Since a = f + m, any cochain determines (by composition with <i>) an

element of Hom(A*m, N). Furthermore, the mapping <¡>^: Hom(A*(a/í), M)1 —>

Hom(A*rrt, N) obtained in this way is a bijection because of the nilpotence of the

action of v on m. (If / is a cochain sent to 0, this means first that / vanishes on

4See R. Penney, Lie cohomology of representations of nilpotent Lie groups ...   in this issue of these

Transactions, Lemmas 7 and 8.
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(A*m)f, then on (A*m)1', etc., hence / = 0. Surjectivity follows from surjectivity of

<t> and of the action of v.) One checks readily that </>„, commutes with the

differentials of the two cochain complexes, hence defines isomorphisms of

cohomology groups.

Proof of theorem (continued). With the aid of the lemmas, we rapidly

conclude the proof of 2.4. First note that by the first statement of 2.5 and by the

last assertion of Lemma 2.6(a) (with v = y + iw), Hk(i) n ker A, W) = 0 for all k.

Thus if M = (t^.^IIx]], the second statement of 2.5 and the long exact cohomology

associated to 0 -h> W^>(tt_x)x -* (tt_*)«,/ W-> 0 imply that Hk(i) n ker A, (tt^)«,)

= Hk(t) n ker A, M) for all k. Now apply (b) of Lemma 2.6 with v = t0, N =

i^-^x- All °f the hypotheses are satisfied since 3/3x acts surjectively on power

series in x, with kernel the "constant functions." Thus by the lemma, Hk(ï) n

ker A, M) » Hk(m, (w^«,) for all k. By Lemma 1.6(c), q(%, v) = q(\), A); thus by

inductive hypothesis, Hk(m, (tt_m )x) vanishes except when k = a(b, A) and is

one-dimensional in this case. Since we have seen that //*(b n ker A, (7^)^) »

Hk(m, (t-hJoo) for all k, we are done.

3. Applications of Lie algebra cohomology to the study of harmonically induced

representations of nilpotent groups. The results of §2 easily imply an analogue of

the "Langlands conjecture" for nilpotent Lie groups, via an argument that has

more or less become standard since it was introduced by Schmid [42], [43] in the

semisimple case. However, the technical details in the nilpotent case are somewhat

different [31], [33], because A-finiteness is no longer a useful condition and because

there is no Casimir element in the enveloping algebra to work with.

As formulated by Moscovici and Verona [31], the basic problem is the following.

Suppose G is a connected, simply connected nilpotent Lie group (for the moment

not assumed to have one-dimensional center or square-integrable representations).

By the basic result of Kirillov theory [21], there is a natural bijection from the

coadjoint orbit space Q*/G to G. Given A G g*, one can realize the irreducible

representation -nx associated with the G-orbit of A by choosing a totally real

polarization b for A and inducing up to G the character Xx of the corresponding

subgroup H of G, with differential ¿A. This is fine for treating nilpotent groups by

themselves, but if G occurs as a normal subgroup of a larger Lie group S, it is

desirable to choose b to be invariant under the stabilizer of A in S, which is usually

impossible if we require b to be totally real, but often possible if we allow b to be

complex [5], [13]. When b is positive, "holomorphic induction" using b still

produces an irreducible representation of G unitarily equivalent to the one gotten

from a totally real polarization [5, Lemma HI. 1.1]. However, it is reasonable to ask

what happens when b is not positive, in which case the Hubert space of the

holomorphically induced representation degenerates to {0}. Bott's refinement [6] of

the Borel-Weil theorem suggests that when b is not positive, one should still be able

to produce from b an irreducible representation, but only on a higher cohomology

space of the associated line bundle, not on partially holomorphic sections.

One is therefore naturally led to study the L2-cohomology of the "partially

holomorphic" line bundle defined by A and b- As pointed out by Moscovici and
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Verona [31, p. 63], this only makes sense when E/D carries an /¿-invariant

hermitian structure, or when b is relatively ideal, i.e., b n b is an ideal of b- (Here E

and D are the groups with Lie algebras e = (b + b) n g, and b = b n g, respec-

tively. By [5, Theorem 1.4.10], every positive polarization for a nilpotent group is

relatively ideal.) In this case, if one divides out by b n ker A (which is also easily

seen to be the Lie algebra of the kernel of the Kirillov representation of E

associated with A|e), one may as well assume b is one-dimensional, is the center of e,

and is the Lie algebra of the stabilizer of A|e in E. In particular, E has square-inte-

grable representations and satisfies all the hypotheses of §§1 and 2. Then b defines

an invariant complex structure on E/D, x\ defines a homogeneous holomorphic

line bundle (^ on E/D, and one can define the L2-harmonic spaces (or L2-

cohomology spaces) of ^ [31, §2]. By inducing these representations of E up to G,

one gets unitary representations of G which will be degenerate or irreducible

exactly when the harmonic representation of E is so. Thus to study harmonically

induced representations of G it is enough to replace G by E and assume G has

one-dimensional center and square-integrable representations.

Another motivation for the study just of groups with square-integrable represen-

tations comes from Penney's notion of "canonical objects" in the Kirillov theory

[32]. Given A as above, one can associate to A certain Lie subalgebras boo(A) and

f »(A) of g, with the properties that boo(A) is an ideal in f M(A) and that each algebra

is the orthogonal complement of the other for the bilinear form associated with A.

In particular, b«,(A) contains the Lie algebra qx of the stabilizer of A in G and is

subordinate to A. There exist polarizations b for A with b«,(A)c Çf)Ç f<>o(A)c; in

fact, very often (but not always) all polarizations have this property. Thus (by

induction in stages) the Kirillov representation of G associated with A can be

constructed by first constructing the Kirillov representation of KX(X) associated

with the restriction of A and then by inducing. However, the representation of

KX(X) defined by A is square-integrable modulo //„(A), so that if we divide out by

i)oo(A) n ker A, consider a polarization b contained in r^AL^., and replace g by

foo(A), we are back in the situation of §§1 and 2.

We are now ready for our main result on nilpotent groups, which was conjec-

tured by Moscovici and Verona in [31].

Theorem 3.1. Let G be a connected, simply connected Lie group with one-dimen-

sional center Z and square-integrable representations modulo Z. Let A G g* and

assume A|ä is nontrivial (so -nx is irreducible). Let b be a totally complex polarization

for X, so that the line bundle £^ over G/Z is holomorphic with respect to the

associated complex structure. Let %q(£x, b) denote the qth L2-cohomology space of

£^, i.e., the Hilbert space of L2 ^-valued harmonic (0, q)-forms. Then %q(tx, b)

vanishes for q =£ a(b, A) (as defined in 1.2) and G acts irreducibly, via a representation

equivalent to trx, on X"®*^, b).

Proof. Since 3 acts by iX on all spaces of (^ -valued forms, OC7^, b) will be a

multiple of ttx for each q. By [31, Lemma 4] or [33, Theorem 10], the multiplicity of

itx in %q(tx, b) may be identified with the dimension of the "formal harmonic
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space"

%q(n_x, b) = (<D G %_x ® A"(i) n ker A)*: $±range(S + 8*)},

where %_x is the Hubert space of w_^, 8 is the "formal coboundary operator" for

(b n ker A)-cohomology, and 8* is the formal adjoint of 8. But as a consequence of

the ellipticity of the 3-Laplacian □ = (8 + 8*)2 = 88* + 8*8, the formal harmonic

space (which may be identified with the kernel of the closure of □) is actually

contained in (w^)» ® A9(b n ker A)* [33, Proposition 3] and so defines a subspace

of the (algebraic!) Lie algebra cohomology space //9(b (1 ker A, (tt.*)«,). In fact,

when the coboundary map for the standard complex defining

Hq(\) n ker A, ("n_x)x) has closed image in the Fréchet space of ç-cochains, the

formal harmonic space and Lie algebra cohomology space coincide [33, Theorem

2]. By Theorem 2.4, the Lie algebra cohomology space vanishes except when

q = q(t), A), when it is one-dimensional. Thus %q(ir_x, h) = 0 except when q =

a(b, A), and in this case, the coboundary map has a range which is of finite

codimension in the space of cocycles, hence is closed by the closed graph theorem.

So this proves the result, along with a "Hodge theorem" for the Lie algebra

cohomology (every cohomology class has a unique representative in the formal

harmonic space).

Corollary 3.2. Let G be any connected, simply connected nilpotent Lie group, let

A G g*, and let b be a relatively ideal polarization for X. Let irq(X, h, G) be the

harmonically induced representation associated to b and A, in the sense of [31]. Then

irq(X, b, G) vanishes for q =£ q(i), A), and is irreducible and equivalent to trx when

q = rffc A).

Proof. As remarked above, this reduces immediately to the case of square-inte-

grable representations.

Remark 3.3. Theorem 3.1 gives an interesting example of the index theorem of

Connes and Moscovici [10]. In fact, let E = 2,even A«(b n ker A)*, F =

2, odd A?(b n ker A)*, and let S, 'S be the induced vector bundles over G/Z

(when we view E and F as trivial Z-modules). Then 3 + 3* is a G-invariant elliptic

operator from sections of E^ ® & to sections of tx® 'S; hence by the index

theorem, the L2 kernel and cokernel of 3 have finite formal degree, i.e., are finite

multiples of nrx. However the kernel and cokernel of 3 + 3* are just the sums of the

even and the odd L2-cohomology spaces, respectively. Thus the formal harmonic

spaces %q(-n_x, b) of the proof of 3.1 are all finite-dimensional. Furthermore, the

index theorem gives

2 (-l)'(mult of ttx in %q(£x, b)) = ± 1
i

(the term on the right is evaluated exactly as in [31, p. 70]). This is of course what

one gets from 3.1 ; conversely, we could prove 3.1 from the index theorem if we had

a sufficiently powerful vanishing theorem for L2-cohomology. ([29] applies in the

case of "sufficiently generic" A.) The reader will of course note the extreme

similarity with the arguments of [4, §3].
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3.4. Since Theorem 2.4 was proved for arbitrary polarizations, not just for totally

complex or even relatively ideal ones, it is of interest to see if Theorem 3.1 has an

analogue for polarizations that are not totally complex. To fix ideas, suppose G and

A are as in 3.1 but b is totally real. Let m = b n ker A n g and let M be the

corresponding subgroup of G. By analogy with the proof of 3.1, we expect the Lie

algebra cohomology of b n ker A (which we computed) to correspond to the formal

harmonic spaces

%q(ir„x, b) = {4> G %_x ® A«m*: <S>Um(d + d*)},

where d now corresponds to exterior differentiation in the direction of m. In other

words, we are led to consider %q(ñx,tf)={L2 E^-valued ^-forms on G/Z,

harmonic in the direction of m}. Unfortunately, because of the global L2 condition

(with respect to the invariant measure on G/Z, not on G/MZ), these spaces

vanish for all q. In fact, this is not surprising since when b is not totally complex,

the "Laplacian" of the 3 complex is not elliptic, only partially elliptic in the

direction of E. However, in the totally real case, Theorem 2.4 says that the space

spanned by the ranges of the operators -n_x(x), x G m, has codimension 1 in (ir^^,

(and as mentioned above, is necessarily closed by the closed graph theorem).

Hence, up to scalars, there is exactly one element of (ir_x)_ao (the dual of (■T.\)a0)

annihilating this space. This statement is exactly Corollary 3.4.3 of [20]. The

general case of Theorem 2.4 may be viewed as a generalization of Howe's

observation.

4. A large class of Lie groups with square-integrable representations. In this

section, we combine the above results on nilpotent groups with W. Schmid's proof

of the "Langlands conjecture" for semisimple groups [42], [43] to obtain geometric

realizations of the square-integrable representations of a large class of Lie groups in

terms of the Kirillov-Kostant "orbit picture". Throughout this section we make the

following standing assumption:

Hypothesis 4.1. G is a connected Lie group with a closed connected normal

nilpotent subgroup N such that

(i) G/ N is reductive,

(ii) the center Z of N is central in G, and

(iii) N has square-integrable representations modulo Z.

Proposition 4.2. // G satisfies 4.1, then G is unimodular.

Proof. Since A' and G/N are unimodular, it is enough to show that the

conjugation action of G on iV preserves Haar measure. Since Z is central in G, this

action fixes Z pointwise, hence will be unimodular if and only if the action of G on

n/3 (the Lie algebra of N/Z) is unimodular. Let A G n* have nonzero Pfaffian (see

[28, §3] for the definition)-the set of such A's is Zariski dense in n* by assumption

(iii). Then A defines a nondegenerate alternating bilinear form Bx on n/3. If g G G,

then g • A has the same restriction to 3 as A (since 3 is central), hence lies in N • X by

[28, Theorem 1]. Therefore, changing g by an element of N if necessary, we may

assume g stabilizes A. Then g acts on n/3 by a symplectic transformation for Bx,

hence acts unimodularly.
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The importance of groups satisfying 4.1 is indicated by several results of N. Anh.

By [1, Theorem 4.4], any connected Lie group with nilpotent radical must satisfy

4.1 (with N = rad(G)) if it has square-integrable representations modulo its center.

(The restrictions on the center of G/N are easy to remove using [46, §3].) On the

other hand, a group satisfying 4.1 with S = G/N semisimple will have square-inte-

grable representations modulo its center if and only if S has square-integrable

representations, i.e., rk S = rk K, where K is the inverse image in S of a maximal

compact subgroup of the adjoint group of S. Furthermore, according to [2], the

class of all connected unimodular Lie groups having square-integrable irreducible

representations modulo their centers is not much more general than the set of those

satisfying 4.1. (Essentially, to get the general case one need only replace the

nilpotent group N by a solvable "//-group". On the other hand, many (perhaps

all?) //-groups, for instance [38, Example 4.13], satisfy 4.1 with respect to some

normal nilpotent subgroup, although not necessarily with respect to the nilradical.)

It is convenient to have a characterization of those groups, among those

satisfying 4.1, which have square-integrable representations modulo their centers,

in terms of their coadjoint orbit spaces. The following theorem does this and more,

in that it provides a parametrization of the square-integrable representations

whenever they exist. The result is not really new; it is basically an explication of [2,

Théorème 1, Corollaire à Théorème 5] in our situation, but we include a detailed

proof for later reference.

Theorem 4.3. Let G be a Lie group with center Z(G) satisfying 4.1 with respect to

some simply connected normal nilpotent subgroup N. Then the regular representation

of G is type I. Furthermore, G has square-integrable representations modulo Z(G) if

and only if there exist G-orbits O in q* for which

(i)for any ¡j. G O, G^/Z(G) is compact (here G^ = stabilizer of ¡x in G), and

(ii) O is "integral", i.e., for any fi E O, there is a character Xp. °f ^ w'tn

differential //x|a .

Finally, if G has square-integrable representations, then the set Gd of equivalence

classes of such is in natural one-to-one correspondence with the set of regular (cf.

[12, §1.11]) orbits satisfying (i) and (ii)' ("admissibility"-see below).

Proof. By [28, Theorem 6], the regular representation of N is a direct integral of

square-integrable representations trx, each of which extends to a projective repre-

sentation mx of G by the proof of 4.2. Also, by the proof of 4.2, G = N ■ Gx

(Gx = stabilizer in G of an element A G n* in the Kirillov orbit associated with ■nx),

and N n Gx = Z. Let ax G H2(G/N, T) be the Mackey obstruction to extending

ttx to G. Then a^1 determines a central extension of G/N by T, whose universal

covering will be of the form (semisimple) X (vector group) X (Heisenberg), hence

type I. (This is because G/N is reductive; hence its universal covering is of the

form S X (vector group) with S semisimple, and ax must be trivial on S.) This

proves the first statement.

As far as the second statement is concerned, we see by a trivial case of [23,

Theorem 2.3] that G will have a square-integrable representation with central
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character eiX on Z if and only if G/N has a square-integrable ax'-representation. If

we assume (as we may without loss of generality) that G/N is simply connected,

we may write the central extension of G/N by T defined by axx as S X Vx X Hx,

where S is semisimple, Vx is a vector group, and Hx is either T itself or else a

Heisenberg group with compact center. Since Hx always has square-integrable

representations, we conclude that G has a square-integrable representation with

central character e'K if and only if the following two conditions are satisfied:

(4.4)(iii) S (which is isomorphic with G/rad(G)) satisfies the Harish-Chandra

condition rk K = rk S, where K is the inverse image in S of a maximal compact

subgroup of the adjoint group of S, and

(iv) the image of Vx in G is compact modulo Z(G).

Note  that  if (ii)  is  satisfied,  then  the  cocycle  defining  the  group  extension

1 ̂  n -> G -> (G/N) = S X Vx X (//A/T) -* 1

must be trivial on Vx. Since it is always trivial on S, we see that G is an extension

\-^(SXV)N->G^>W->\, (4.5)

where (SX V) ■ N is a semidirect product with Adn(F) a torus, W is a vector

group of even dimension, and axx is totally skew on W. (The last condition will be

true for almost all A if it is true for one A.)

Now let us rephrase (4.4) in terms of coadjoint orbits. Suppose (4.4) holds with

respect to some A G n* with nonzero Pfaffian and (4.5) is the corresponding

decomposition of G. Without loss of generality, we may suppose S X V G Gx.

First choose a G §* with stabilizer a Cartan subgroup T of S contained in K. (This

is possible since rk K = rk S; furthermore, note that T is connected by [45,

Proposition 1.4.1.4].) Also choose ß G ö* and regard the triple (a,ß,X) as a

functional on the Lie algebra m of M = (S X V) ■ N. Extend this functional to

obtain an element n of g*. We claim Gpi/Z(G) is compact. Indeed, if g G G^, then

in particular gEGx = SxVXW, where W D Z is two step nilpotent and

W/Z = W, W as in (4.5). If we write g = svw with s G S, v G F, and w E. W,

then since g stabilizes the restriction of /x to Gx, we have í G T and w G Z. Thus

G^ = T X V X Z, which is compact modulo Z(G). Furthermore it is clear that we

can choose a and ß so that e^ exponentiates to T X V X Z, hence to Gß. Thus if

G has square-integrable representations, it has orbits satisfying (i) and (ii). Also

note that G^ is always connected in this case.

Conversely, suppose (i) and (ii) are satisfied for O = G • ¡i, and let A = ju|n. By

(ii), Nx Q GM n N = Z; hence A has nonzero Pfaffian. Put Gx = S X V X J^with

S semisimple, V vector, W nilpotent with W n Z(G) = Z. The stabilizer in Gx of

the restriction of ju, to S + b + fb is compact modulo Z(G); hence 5 has a Cartan

subgroup contained in K, V is compact modulo Z(G), W has square-integrable

representations modulo Z, and (iii) and (ii) of (4.4) hold.

Finally, let us consider the parametrization of the square-integrable representa-

tions of G when they exist. We may as well assume G is simply connected and we

are interested in representations of G extending the representation trx of N, where

A G n* is fixed and has nonzero Pfaffian. Furthermore, we may divide out by the
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kernel of trx and assume Z is one-dimensional, A|ä ¥= 0. The classification of the

square-integrable representations of G now reduces to the problem of finding all

the square-integrable axx representations of G/N, or equivalently, of finding all

square-integrable (ordinary) representations of Gx = 5 X V X W, where W is

Heisenberg with center Z and we have fixed a central character on Z. By the

Harish-Chandra parametrization of Sd (as extended to groups with possibly infinite

center in [46, §3]), the fiber GdX of Gd over irx is parametrized by (T'/6^) X V,

where 7" is the "regular" part of the dual of T and % is the Weyl group of (G, T).

This parameter space in turn may be identified with the set of regular coadjoint

orbits of SX F satisfying (i) and (ii)-see [46, §7]. (There is an unavoidable

confusion at this point due to the fact that there are basically two ways to associate

representations to orbits, that differ by half the sum of the positive roots. In the

case of a compact group, this amounts to parametrizing representations by highest

weights or else parametrizing them by the coadjoint orbits that support the Fourier

transform of the character. If the latter parametrization is used, only regular orbits

are associated to representations. For our purposes, the second parametrization is

more suitable, since this becomes the Harish-Chandra parametrization in the

noncompact semisimple case.)5 Finally, given a coadjoint orbit for S X V, we

choose the corresponding orbit for Gx = S X V X W with restriction A|a on 3 and

extend to a G-orbit in g*. Since G = NGX, this orbit restricts only to the one we

started with on qx, so we have our desired parametrization of Gd.

We will be interested in studying realizations on L2-cohomology spaces of the

representations classified in Theorem 4.3. Since our tool for decomposing L2-

cohomology will be, as in §3, to relate formal harmonic spaces to Lie algebra

cohomology of the C°° -vectors, it is useful to have a description of the latter. The

following is probably a special case of some (as yet unproven) general theorem

about C°°-vectors for tensor products:

Theorem 4.6. Let G be a connected Lie group with a connected normal nilpotent

subgroup N, let m be a representation of N whose equivalence class is fixed by G, let a

be the "Mackey obstruction" of m, let ñ be the projective extension of it to G, and let a

be a unitary a~x-representation of G/N. (Thus ñ ® o is a well-defined (ordinary)

unitary representation of G.) Then the space of C x'-vectors of tt ® a may be identified

(topologically) with S(R") ® ffw, where n is the Gelfand-Kirillov dimension of m and

a^ is the space of C00-vectors of a with the C"-topology (see [45, §4.4.1]).

5 For a very readable discussion of the relative merits of the two ways to associate representations to

orbits, see §8 of [27]. Strictly speaking, what we have said is valid only if G is simply connected.

Otherwise, ax may not be trivial on the maximal semisimple subgroup Sx of G (it may be of order 2)

and p, "half the sum of the positive roots," may not be integral (it is always half-integral at worst). The

correct parameterization of Gd in the general case is by "admissible" rather than by integral orbits,

which are orbits that define representations of the universal covering group that descend to ordinary

(rather than projective) representations of G.Foi example, if G is the semidirect product of SL{2, R)

and the 3-dimensional Heisenberg group, Gd corresponds to discrete series representations of the

twofold covering of SL(2, R) that do not descend to the linear group. The admissible orbits in this case

are exactly the half-integral ones.

In what follows, we are primarily interested in constructing (rather than parameterizing) representa-

tions, so it will suffice to deal with the simply connected case.
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Proof. Any C°°-vector for w ® a must in particular be a C°°-vector for the

restriction of ■n ® a to N, which is m ® 1. We may identify the Hubert space of

ñ ® a with L2(R") <8> %0 (Hubert space tensor product), where %a is the Hubert

space on which o acts, or with L2(R", %a) (L2-space of vector-valued functions). In

the identification of the Hubert space of trx with L2(R"), iM becomes S(R").

Similarly, the space of C °°-vectors for -n ® 1 must consist of vector-valued

Schwartz functions (C°° functions on R" with values in %a all of whose derivatives

have norms rapidly vanishing at infinity). Consider such a function/: R—*%„■

Going up to a covering group or to a central extension of G/N by a torus, we may

assume a is actually an ordinary representation (instead of a cocycle representa-

tion). By Goodman's Theorem [45, Theorem 4.4.4.10], / will be a C°°-vector for

7? ® a if and only if / lies in the domain of the closure of ((§ ® o)aa(x))m for all

x G g and for all m > 1.

Now the representation -nx of U(nc) may be viewed as the composition of the

isomorphism ¿/(n^/ker^^,) —> An(C) with the standard representation of the Weyl

algebra An on S (R"). Since the adjoint action of G on U(nc) preserves ker^^,), it

induces an action of G on U(nc)/keT(trx) = An(C). This action will be derived

from a Lie algebra homomorphism g —> Der(,4n), where Der(An), the Lie algebra of

derivations of An, is just An(C)/C since every derivation of An is inner [12, Lemma

4.6.8]. By a theorem of Duflo [12, Proposition 10.1.4], this map lifts to a Lie algebra

map 0: q —> A„, and nx is just ttx ° 0. Hence for x G g, ^(x) is a polynomial

differential operator on R", and the space of C°°-vectors of 7? coincides with that

for -nx (even topologically), which is § (Rn). Let x G g, put 7?00(x) = Dx and

ax(x) = D2, and suppose/: R" —> %a is a C°°-vector for m ® a. We want to show

that for each t G R",/(0 lies in the domain of the adjoint of D2, all m > 1.

First note that S(R") ® ox may be identified with a space of rapidly decreasing

functions R" —> ax Q %a, hence with a subspace of L2(R", %„). Furthermore,

S(RB) ® a^ is contained in the space of C°°-vectors for m ® a, by [45, Proposition

4.4.1.10], and so by [34, Corollary 1.2], (w ® o)x(x) is the closure of its restriction

(Dx® \ + \® D2)m to S(R") ® ax. We have seen that /lies in the domain of the

closure of (Dx ® \)m for all m; hence by an easy induction on k, f lies in the

domain of the closure of D{ ® Dk for all j and k. Furthermore, for each k,

(1 ® D2)~(f) must again be a C°°-vector for the action of N, hence is again

represented by a smooth function R" -» %a. For £ G ax and <p G S (Rn),

<(1 ® Dk)*(f), <p ® f> = f <(1 ® Dk)*(f)(s), 0W) ds
JR"

= </, «p ® Dkt) = ( </(5), Dki)W> ds.

Letting 9^5, (the Dirac measure at t) in the weak topology of S ', we get

<((1 ® Dk)*(f))(t), O = <f(0, DkO; hence/(i) G dom((Dk)*) and (Dk)*(f(t)) =

((1 ® D2)*(f))(t). Since x G g was arbitrary, applying Goodman's theorem again

gives/(/) G ax, so/: R"^>ox¡. The proof also shows that \\Dk(f(t))\\ is again a

Schwartz function of t; since the seminorms £h» ||/)*||| generate the topology of
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ax,f G S(R", ax) = S(R") ® ox. Thus S(R") ® ox and the space of C°°-vectors

for -n ® a coincide as spaces. Since the topology on the former is stronger than that

of the latter, they coincide topologically by the open mapping theorem.

Now we are ready to prove the analogues of Theorems 2.4 and 3.1 in this

context.

Theorem 4.7. Let G be as in 4.1, let Z be one-dimensional, let ju, G g* be such that

/t|8 ^ 0, and let b be a polarization for fi that is "admissible for n", i.e., such that

b n nc is a polarization for X = ¡x\n. Let tt_x ® a be, as in 4.6, a unitary representa-

tion of G extending a multiple of the Kirillov representation of N associated to -X. Let

m be a Lie subalgebra of b such that m n nc = b D nc n ker A. Then for all

q > q(í) n nc, A),

H"(m, (t_x ® a)J m //*-*(»nnc,x)(m/ (m n nc); ajt

and for q < q(t) n nc, A),

Hq(m, (t?_a ® a)J = 0.

Furthermore, m acts on the one-dimensional cohomology space

(as explained in [9, Proposition 2.2]) according to the linear functional -jtr ad|mnnc.

Proof. By 4.6, (if_x ® a)x may be identified with (■7t_x)x ® ax. Furthermore, a

may be (by the discussion preceding (4.4)) identified with an irreducible representa-

tion of a direct product of a reductive and a Heisenberg group, hence has a

distribution character. (By this we mean that a maps C00 functions of compact

support to trace class operators, so that /(-»Tr a(f) defines a distribution. This

follows easily from the corresponding fact for semisimple groups.) By [8, Théorème

2.6], ax is a nuclear Fréchet space. Replacing S (R) by ax in the proof of Lemma

2.3 (in the case of "trivial twisting"), we see that for any q,

Hq(m n nc, (t?_x ® a)J « Hq(m n nc, (w_x)J ® ax.

By Theorem 2.4, we therefore have

„« <~    «   ^   ^      i°        if « ^ «7(f) n nc, A),
Hq(m n nc, (w.x ® a)x) =

{ °oo     if a = a(b n nc, A).

Moreover, these identifications respect the action of m/m n nc. Since we have a

spectral sequence converging to H*(m, (ñ_x ® a)x) with E%q terms

Epq = H"(m/ (m n nc), Hq(m n nc, (t7_x ® o)J),

the first part of the theorem follows.

The second part of the theorem is really a consequence of M. Duflo's results on

enveloping algebras. We may view (ñ_x)x as a module X for the Weyl algebra

A = i/(nc)//(A), where the primitive ideal /(A) is the kernel of the action of U(nc)

on X. Then the b-module structure on X is obtained via a canonical Lie algebra

homomorphism 0 of b into A (see [12, Lemma 10.1.2 and Proposition 10.1.4]). So it

is enough to show that for any A -module X made into an b-module in this fashion

and for any j > 0, the action of m on Hj(m n nc, X) is given by -|tr ad|mnn .
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The proof of this last fact is almost identical to that of Theorem 5.7 below. First

consider the case wherej = 0, so that HJ(m n nc, X) = xmnnc. Let a G m and let

b = 9(a) - jtr adnc/(f)nnc)a. By [12, Lemma 10.1.2(h)], we have b ■ (1 ® 1) = 0 in

the A -module

indi^U^, nc) = U(nc) ®u^nnc) Cx.

This shows that b lies in the annihilator of 1 ® 1, which is the left ideal A9(m n nc)

of A, so that 6 will also annihilate xmnnc for any A -module X. On the other hand,

a acts unimodularly on nc (by 4.2) and trivially on 3, so that

tr adnc/(i,nnc)tf = -tr admnnca.

This proves the theorem in the ca.se j = 0.

The general case is handled by induction on j, using the standard "dimension-

shifting" argument suggested by [9] and [44] (cf. the proof of 5.7 below). We

assume the theorem for 0 < j <j0 and embed X into E = Homc(yi, X), say with

quotient B. Since U(nc) and hence A are free U(m n n^-modules because of the

Poincaré-Birkhoff-Witt Theorem, E is injective as a í/(m n n^-module. Thus

HJo(m n nc, E) = 0, and we get from the long exact cohomology sequence a

surjection HJo~l(m n nc, B) —>* HJo(m n nc, X). Now the desired information

about Hj°(m n nc, X) follows immediately from the inductive hypothesis applied

to HJo~x(m n nc, B).

Theorem 4.8. Let G be a group satisfying 4.1 and also having square-integrable

representations modulo its center Z(G), hence satisfying condition (i) of 4.3. (The

proof of that theorem showed that if (i) is satisfied for some orbit, then both (i) and (ii)

are satisfied for certain (possibly other) orbits.) Let O be a G-orbit in g* satisfying (i)

and (ii), let ft G O, and let b be a totally complex polarization for ¡u which is

admissible for n, i.e., such that b n nc is a polarization for X = /i|n. (In general, such

an b may or may not exist-see the discussion in 4.12 below.) Let £M be the line bundle

on G/ G associated with /x, which is holomorphic with respect to the complex structure

defined by b, and let ■nq(ri, b, G) denote the representation of G on OC7^, b), the qth

L2-cohomology space of £M.

Let p = b n nc n ker A. By [12, Proposition 10.2.1], b = f + (b n Q\¡c) (L¡e

algebra semidirect sum), and b D g*iC is a polarization for ¡i\^. Since qx is of the form

§ + D + ft) with § semisimple, 0 abelian, and fö two-step nilpotent with center 3, we

can further split b D QXtC as 8(i,c + u> where g^ is reductive and contains a Cartan

subalgebra t for §, the group T corresponding to which is compact modulo Z(G), and

where u is nilpotent and is normalized by g^. We assume (without great loss of

generality) that u = (u n êc) ©(un fûc) (so that b is also admissible for ñ and for

§). Choose an ordering for the roots oftc in Sc so that u n §c consists of negative root

spaces for tc, and define a linear functional \p on tc ¿7_y \¡/(t) =\i tr(ad r)|6; note that ip

is real-valued on t. Extend \p to an element of g* by requiring that \p be identically

zero on n, b, fb, and the root spaces for tc in §c. \p is the "Duflo shift" of [14] and

[27, §8].
Then if (p + ^)|, is singular, ^(ÊM, b) = Ofor all q. Otherwise, %q(£ll, b) = Ofor

q ^ q(i), n) and w*(l,'M)( (i, b, G) is irreducible, square-integrable, and associated with
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the coadjoint orbit of ft + \p. Here q(f), ¡j.) is just q(i), ju, + xp) as defined in 1.2, // we

let b = P + b + bc + 3C Ç. b, where b is the Borel subalgebra of §c containing all the

negative root spaces for tc. (Note that b is a polarization for ju. + if w/ievi //ie /after is

regular. If n is also regular, the two polarizations coincide, and if ju. is "sufficiently

regular", q(b, (i) = q(i), ¡i).)

Proof. Fortunately, we have so much machinery at our disposal that the proof is

not as bad as the statement! To begin with, the proof of [46, Lemma 7.5.3] goes

over without change and enables us to replace b by b, Q^ n S by t. We assume in

what follows that this has been done. Note that Z acts on all the 3C(£ , b) by e'x,

so that each •nq is a direct integral of irreducible representations of the form

7!x ® a, where a runs over the ax'-dual of G/N and the measure defining the

decomposition is absolutely continuous with respect to the ax'-Plancherel measure

ß of [23, Theorem 2.3]. Just as in the proof of Theorem 3.1, Lemma 6 of [42] gives

us the decomposition

%"{%, b) « %, ®fB%0 ® {%q(*_x ® o, b)}^ dß(a), (4.9)

where all the tensor products are Hubert space tensor products, DQ and %a are the

Hubert spaces of ttx and a, respectively, rJ is the contragredient representation to a,

and

%q(ñ_x ® a, b) = {$ G %_x ® %¿ ®A«(D + u)*: $±range(S + 5*)}.

(4.10)

Here 8 is the "formal coboundary operator" for Lie algebra cohomology of the

solvable Lie algebra p + u (which is a complement to q^ in b), and the subscript

-fi in (4.9) means that we further require $ in (4.10) to be a -/¡u-eigenvector for

8M,c-

Also, again as in the proof of 3.1, we may use [33, Theorem 2] to identify

%q(7T_x ® a, b) with a subspace of the Lie algebra cohomology space

Hq(p + u, (ñ_x ® ö)x), which coincides with the latter if the latter is finite-dimen-

sional. By Theorem 4.7, we have

Hq(p + u, (tt_x ® o)J « //*-«(0nnoA)(U) ¿J

Assuming as usual that G/N is simply connected, we may regard è as an ordinary

representation ox ® o_x of Gx = S X V X W, where èr, G (S X V)' and a_x is the

square-integrable representation of W with central character e~'x. Since u was

assumed to split as (u n §c) ® (u n föc), another (relatively trivial) application of

Theorem 4.7 gives

//î-9(t,nncA)(U; ¿j m //9-«(inn0\)-ç(6niB^u n ^ (ax)J.

By [43, Corollary 3.7], this latter space is finite-dimensional, so that the formal

harmonic space will coincide with the Lie algebra cohomology. We have finally

reduced everything down to knowing /® H*(u n §c, (àx)x)_ll^^,i dßs(ax), where

\¡/x(t) =5 / tr(ad í)li,nn (this enters by the second part of Theorem 4.7 when we

keep track of the t-eigenvalues) and where ßs is the Plancherel measure for S. This
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is exactly what is given by the Langlands conjecture [42], [43]. Unfortunately,

Schmid's results are only stated for linear groups, whereas we have assumed S

simply connected. (At the very least, we need to deal here with the metaplectic

group.) However, linearity of 5 is only used in [43] for knowing a form of Blattner's

conjecture, and the author has been assured by David Vogan and Nolan Wallach

that this is now known for arbitrary semisimple groups by other methods, unfor-

tunately unpublished.6 Since our intention here is not to go into the details of the

semisimple case, we assume the full Langlands conjecture here and trust that the

details will eventually be written out elsewhere.

Now let p be one-half the sum of the positive roots for tc in §c, divided by / so as

to be real-valued on t. Then we have \p = \px + p.

By a theorem of Casselman and Osborne [9], H*(u n 3C, (ô^,,,,)^ +li, > will be

nonzero for only finitely many a, G S, so that we may assume a, is square-integra-

ble. [43] then shows that H*(u n âc, (ô1)00)_((l+^) is nonzero only if (ft + \p)\t is

regular, and then only for a, with Harish-Chandra parameter given by the orbit of

(ft + i//)|8; furthermore, the cohomology only shows up in degree

q0= #{« G Af+|</i+ r/>, a> <0} + #{a G A"+|< ft + ^ a> > 0},

where A+ and A + are the compact and noncompact positive roots of (tc, §<-), and

here it is one-dimensional. (Again, we have divided by / to make everything

real-valued on t.) However, we claim that q0 is exactly q(b, ( ft + »/Ois); this is easy

to check since the root spaces in b diagonalize H +^ and since each compact (resp.

noncompact) root gives rise to a copy of §u(2) (resp., êl(2, R)) inside a.

Putting everything together, we have found that %q(S, , h) vanishes for all a

when (ft + i/Olg is singular and is nonzero for exactly one value a, of a otherwise.

Furthermore, ■nq' is irreducible, square-integrable, and associated with the

coadjoint orbit of ¡x + \p via the parametrization of 4.3. It remains to check that

a, = q(b, ft). But we have shown that

a\ = <7o + <7(ï) n nc, A) + a(b D <r>, A)

= q(b, (ft + MJ + a(b n nc, (ft + ifO|„) + «?(b n ft, (ft + *)|s)

(since \p vanishes on n and fo)

= a(b, ft + i//) = q(b, ft)

(since b is the orthogonal sum of b,    |nncn ker A, and b D fô).

Remark 4.11. Many cases of Theorem 4.8 are almost covered by [41, Theorems 1

and 2]. The essential difference is that we are dealing here with the full L2-

cohomology space, whereas Satake's methods only covered a certain subspace

consisting of forms with a nice decomposition relative to the semidirect product

decomposition of the group considered. (See [41, pp. 185-187] for a more precise

description.) We have therefore proved that this subspace coincides with the whole

space. In fact, despite the difficulty pointed out in [41, footnote to p. 187], it is

6See also the comments in G. Zuckerman, Tensor products of finite and infinite dimensional representa-

tions of semisimple Lie groups, Ann. of Math. (2) 106 (1977), 306.
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possible to see why this should be true-in the correspondence between L2-

cohomology and Lie algebra cohomology, Satake's subspace corresponds exactly to

the E2 term in the Hochschild-Serre spectral sequence. The identity of the two

spaces is due to the fact that the spectral sequence collapses. Perhaps one could

show this directly by developing a spectral sequence machinery for L2-cohomology,

but the analytical details seem forbidding. Note also that, as in the nilpotent case, a

weak form of 4.8 could be obtained from [10] and a vanishing theorem based on

curvature estimates.

Remark 4.12. It is worth discussing at this point to what extent Theorem 4.8

answers the problem of finding geometrical realizations for the square-integrable

representations of the groups considered in 4.3. The difficulty here is that the

author knows of no way to characterize the real Lie algebras that admit totally

complex polarizations. (Among nilpotent Lie algebras, these seem to be rather rare,

although among semisimple algebras they are of course common.) The most

interesting class clearly included, although admittedly rather special, consists of

semidirect products SN, where S is semisimple with rk K = rk S, N is Heisenberg,

and S acts on N via a homomorphism into a symplectic group.

On the other hand, given a regular orbit O satisfying (i) and (ii) of 4.3 and given

ft G O, it is quite plausible that there should exist a solvable polarization b for ft

which is admissible for n and such that b n nc is relatively ideal. If so, one could

presumably obtain an irreducible representation of G by harmonic induction, as in

the nilpotent case (cf. §3 above). However, [11, Théorème 2] does not seem quite

strong enough to guarantee existence of such polarizations, and there are some

technical complications in working out the details of the procedure, so we give here

a more ad hoc method for constructing representations that still suffices for

constructing all the representations of 4.3.

As usual, we reduce inductively to the case where N is Heisenberg. Let ft G g* be

regular and satisfy (i) and (ii) of 4.3, and let A = ¡u|n. We may assume A|ä ̂  0, then

assume 3 is one-dimensional. (Otherwise, divide by 3 n ker A.) If n has no proper

g-invariant ideals other than 3, then n is Heisenberg, the image of gx in Der(n) is

âp(n/3), and ft has a totally complex polarization. (This is the Satake situation.)

Otherwise, n has an abelian ideal a ^ 3 contained in 3<2)(n) and normalized by g.

(If n is not Heisenberg, take a = 3(2)(n) n [n, n]. If n is Heisenberg, take any

g-invariant ideal c ^ 3 of n and let a = c n c-1- with respect to Bx.) Applying the

Mackey machine to the normal subgroup A of G, we see that the square-integrable

representation of G associated with ft + p is induced from the representation of

CN(A)GX associated with the restriction of ft + p, where CN(A) is the centralizer of

A in N. Now A is central in CN(A), and is the stabilizer of A restricted to the Lie

algebra of CN(A). Thus CN(A) has square-integrable representations modulo A. If

a, = a n ker A and Ax is the corresponding subgroup of A, A x lies in the kernel of

the representation of CN(A) associated with the restriction of A. So if we replace Z

by A/Ax and N by CN(A)/AX, we are reduced to the case of a smaller nilpotent

normal subgroup. Continuing inductively, we see that m is induced from a represen-

tation of a subgroup for which 4.8 applies (with N Heisenberg if we like). So 4.8
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enables us to construct all square-integrable representations of groups satisfying

4.1.

5. Lie algebras with a triangular decomposition. In this final section, we show that

certain properties of the enveloping algebras of semisimple Lie algebras also hold

for the Lie algebras of the groups with square-integrable representations considered

in 4.3. This helps "explain" why some analogue of the Langlands conjecture might

be valid for such groups.

Definition 5.1. Let k be an algebraically closed field of characteristic zero and

let g be a finite-dimensional Lie algebra over k. We say g has a triangular

decomposition b + n + n" if the following three conditions hold:

(i) b, n, n" are Lie subalgebras of g such that g (as a vector space) is the direct

sum of b, n, and n~.

(ii) b is abelian, n and n" are solvable and of equal dimension, b normalizes n

and n", and n (resp. n") acts unimodularly on g/(b + n) (resp. g/(b + n~)).

(iii) There exists a regular element/ G g* such that b = Qp n + n"Ç ker/ and

h + n, b + n~ are subordinate to / (hence are polarizations, since dim n =

dim(g/b)/2).
The obvious examples of such algebras g are semisimple Lie algebras, where we

take b to be a Cartan subalgebra, n (resp. n~) to be the sum of the positive (resp.

negative) root spaces for some ordering of the roots of (g, b)- However, the

complexifications of the Lie algebras considered earlier in this paper are also

examples, if we take b + n to be a totally complex polarization for some real

regular linear functional/, and if n" is the complex conjugate of n.

What is nice about such algebras is the existence of a "Harish-Chandra homo-

morphism". The following proposition is basically due to M. Duflo.

Proposition 5.2. Let q be a Lie algebra over k with a triangular decomposition

g = b + n + n". Let Z(g) be the center of U(q). Then there exists a unique algebra

homomorphism 9: Z(g) —> i/(b) = S(b) such that iff G g* and Qf = b, n Q ker/ and

if u G Z(g), then Xr(w) = 9(u)(f~). (Here we use the notation of [12, 10.4.1].

Associated to f is a primitive ideal 1(f) of (7(g); ~Xj(u) is the unique element of k such

that u — X/(M) e 1(f)- The precise meaning of f~ will be explained below.)

Proof. It was pointed out to the author by David Vogan that the usual proof for

g semisimple still works. Namely, by the Poincaré-Birkhoff-Witt Theorem, we have

a vector space direct sum decomposition

(7(g) = (7(b) © i/(g)n ® nU(n) (7(b). (5.3)

Let 9 be the projection of Z(g) onto the first factor in the decomposition (5.3). This

is a linear map, although it is not obvious that it has any other nice properties.

However, if / G g*, Qf = b> and n Ç ker/, then b + n is a solvable polarization for

/; hence by [12, Theorem 10.3.3], If, the kernel of ind~(f\i)+n, g), is primitive. Now

the representation ind~(/|i) + n, g) acts on i/(g) ®u(t,+n) k, where k is viewed as a

one-dimensional (b + n)-module via /~ = / + p. Here p is another character of

b + n, which vanishes on n since n acts unimodularly on g/(b + n) [12, §5.2]. Let
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u G Z(g), and write u = 9(u) + 2 b¡n¡ + 2 «,a,, where n¡ G n, a, G t/(b), and

Uj G n"i/(n"). Then

X/«)(1 ® 1) = k(1 ® 1) = 9(u)(l ® 1) + 2 ¿,",(1 ® 1) + S ",*,0 <8> 1)

= 9(u)(f~)(l ® 1) + 0 + 2 a,C/~H ® 1.

Since í/(g) ®t/(6+n) A: a U(n~) as î7(n>modules, this forces S a,(/~)w, ® 1 = 0.

Since we may vary /~ within a Zariski open subset of b* and we may assume the

a/s are linearly independent in f7(b) Ä S(b), it follows that 2 ufy = 0; hence

u — 9(u) G U(o)n. Furthermore, we have shown that x/.u) = 0(")(/~) f°r / as

specified.

It remains to show that 9 is an algebra homomorphism, uniquely determined by

the above property. The uniqueness is clear from the fact that any two polynomials

on b* agreeing on a Zariski open subset are equal. The homomorphism property

follows from the fact that if ux, u2 G Z(g), then

0(uxu2)(f~) = x¿uxu2) - xAux)xA[u2) = (9(ux)9(u2))(f~).

Remark 5.4. For nonsemisimple g, the proof of injectivity of 9 given in [45,

Lemma 2.3.3.5] breaks down. However, if g is the complexified Lie algebra of a Lie

group G for which there exist regular coadjoint orbits with compact stabilizers

modulo Z(G), then vanishing of 1-cohomology of compact groups with coefficients

in a vector space together with Proposition 5.4.1 of [37] shows that these compact

stabilizers in G/Z(G) are conjugate within an open set. This implies existence of a

Zariski open subset V of g* such that / G V implies Qf is conjugate to b- Then by

[12, Theorem 10.3.9], 9 is injective. (The author learned this argument from a

lecture of M. Duflo at the Special Year in Harmonic Analysis, University of

Maryland, 1978.)7

5.5. Examples. When g is semisimple, 9 is of course the Harish-Chandra

homomorphism. If g is the complexified Lie algebra of a nilpotent Lie group with

square-integrable representations and a totally complex polarization, then b is the

center of g and in fact Z(g) = t/(b) by [28, Theorem 3], so 9 is just the identity

map. A similar phenomenon occurs for certain unimodular solvable Lie algebras

(the Lie algebras of the "//-groups" of [2])-see [38, Theorem 4.7].

For a nontrivial example, let g be the semidirect sum of êl(2, k) and the

3-dimensional Heisenberg algebra. A basis of g is h, x,y, u, v, z, where [h, x] = 2x,

[h,y] = -2y, [x,y] = h, [u, v] = z, [h, u] = u, [h, v] = -v, [x, v] = u, [y, u] = v.

Let b = kh + kz, n = kx + ku, n~= ky + kv. Then the conditions of 5.1 are

satisfied, and an element in Z(g) not in U(kz) is

a = huv + xv2 — yu2 + z{j(h2 — h) + xy + _yx).

In the decomposition of (5.3), we have a = z(h2 + 3h + 2)/2 + (2zyx — yu2 +

v2x + hvu + 2vu), so 9(a) = z(h2 + 3/t + 2)/2.

7A more refined analysis of 9 in a situation generalizing this case, having the advantage that it yields a

description of the image, will appear in a forthcoming paper of Duflo.
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With the above preliminaries out of the way, we can now prove an analogue of

[9, Corollary 2.7] or of [44, Theorem 3.3]. This in turn could be used directly (along

with the link between formal harmonic spaces and Lie algebra cohomology) to

prove, just as in the semisimple case, that in the situation of Theorem 4.8, the

representations it occurring in the Plancherel decomposition of %q(iZli, b) must all

have the same infinitesimal character. (This in some sense explains why only

discrete series representations appear.)

Theorem 5.6. Let g be a Lie algebra over k with triangular decomposition

b + n + n", and let X be a Q-module. (Then, by restriction, X is also an n-module,

and b acts on the n-cohomology of X according to [9, Proposition 2.2].) Then for

j > 0, u G Z(g), and £ G HJ(xx, X), one has u- £ = 9(u) ■ £

Proof. The proof (following Vogan) is by induction on j. If j = 0, we may

identify £ with an element of X such that n • £ = 0. Recall from the proof of 5.2

that u G 9(u) + t/(g)n; hence u ■ £ = 9(u) ■ £. Thus suppose j0 > 0 and the theo-

rem is known for / <j0, and let £ G HJo(n, X). We may embed X into an injective

í7(g)-module, say into A = Homk(U(o), X), with some quotient B. Then we have a

long exact cohomology sequence • • • -* HJo~x(n, A) —> HJo~x(n, B) -» HJo(n, X)

-* HJo(n, A), the maps of which commute with the actions of J7(b) and of Z(g).

Since A is injective, HJ(n, A) = 0 for j > 1. Thus HJo(n, X) is a quotient of

HJo~x(n, B) as a U(b)- and Z(g)-module (for/, > 1, we even have an isomorphism),

so there exists r¡ G HJo~ x(n, B) mapping onto £. Since u ■ tj = 9(u) ■ r/ by inductive

hypothesis, u ■ £ = 9(u) ■ £.

Corollary 5.7 (cf. [9, Corollary 2.7]). In the situation of the theorem, if X has

an infinitesimal character x and if there exists ^Oi« some Hj(x\, X) which is a

weight vector for b with weight ft, then x is determined by x(«) = 0(«)(fi) (for

u G Z(g)).

Proof. Apply the conclusion of the theorem to £.
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