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LIE COHOMOLOGY OF REPRESENTATIONS

OF NILPOTENT LIE GROUPS

AND HOLOMORPHICALLY INDUCED REPRESENTATIONS

BY

RICHARD PENNEY

Abstract. Let U be a locally injective, Moore-Wolf square integrable representa-

tion of a nilpotent Lie group N. Let (%, X) be a complex, maximal subordinate pair

corresponding to U and let 5Q, = ker X n 3C. The space C°°(U) of differentiable

vectors for U is an 3Q module. In this work we compute the Lie algebra

cohomology HïÇXq, C°°(U)) of this Lie module. We show that the cohomology is

zero for all but one value of p and that for this specific value the cohomology is one

dimensional. These results, when combined with earlier results of ours, yield the

existence and irreducibility of holomorphically induced representations for arbi-

trary (nonpositive), totally complex polarizations.

I. Introduction. Let % be a connected, simply connected, nilpotent Lie algebra

over the complex field. Let M be an % module over C By Ap(%, M) we shall

mean the space of M valued, alternating, complex p-lineai forms on %. For

/ G Ap(%, M), X G % we define the "canonical action" of X on /by

(Xf)(Xx, ...,Xp) = X(f(Xx, ...,Xp))- £/(*„ ...,[x,xt],..., Xp).
i

This action defines an 3C-module structure on Ap(%, M). For A' £ DC we also

define a mapping 8X: Ap(%, M) -* A"-\%, M) by

8xf{Xx,...,Xp_x)=f(X,Xx,...,Xp_x).

We define the usual derivation 3: Ap(%, M)^> Ap+X(%, M) inductively by the

equation

W) = Xf -9(V)
for all A1 G %. (See Hochschild-Serre [3].) It is easily seen that

df(xx,... ,x,+i) - 2 (-i)'*,.(/(X ...,x¡,...,xp+x))

- S (-1)'+7X[*.> *>]. Xx,...,Xr,...,Xj,..., xp+l).
><J

The corresponding cohomology groups are denoted Hp(%, M).

In this paper we are interested in a specific case of the above construction. Let N

be a connected, simply connected nilpotent Lie group over R with Lie algebra 91.

Let U be an irreducible locally injective representation of N which is square
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integrable modulo its kernel. Let C°°(U) be the space of infinitely differentiable

vectors for U. (See [9].) For v G C°°(U) and X G 91, we set

Xv = dU(X)v = ^-\,_QU(exp tX)v.

This defines an 91 -module structure on C°°(U). This 91-module structure will be

extended as usual to an action of complexification 9lc of 91 on C °°( U).

Now let X G 91* be a linear functional which corresponds to U under the

Kirillov correspondence [4]. We extend A to a complex linear functional (also

denoted X) on 9lc. A complex subalgebra DC of 9lc is subordinate to A if X is null

on [DC, DC]. DC is maximal subordinate if DC has maximal dimension among all

such subalgebras. Let DCq = DC n ker X. DQ, is a complex subalgebra of DC which is

called the reduced subalgebra. In this work we are interested in computing

Hp(%), C°°(U)) for arbitrary maximal subordinate pairs (DC, X) corresponding to

U.

We shall explain our interest in this subject momentarily. First, however, we

need some notation. The form BX(X, Y) = X([X, Y]) on 9lc X 9lc is called the

antisymmetric form of the pair (DC, X) while the form <bx(X, Y) = -iX([X, Y]) on

DCq X DCg is called the Hermitian form of the pair. The subalgebra ^ of elements

of 9lc annihilated by Bx is called the radical of the pair. A fundamental result of

Moore and Wolf [5] says that a locally injective representation U is square

integrable iff "3^ is the center of 9lc. Local injectivity also implies that the center is

one dimensional. It is easily seen that <¡>x is Hermitian symmetric. It follows that

there is a basis Xx, . . . , Xd of DCq such that <px(X¡, X) = e/y where e¡¡ is zero if i **=/

and e,y G (0, -1, +1} for all i. The number p0 of positive values of e is called the

signature of the pair (DC, X) and the number d - p0 = q0 is called the deficit of the

pair. Our main result is the following

Theorem 1. Let U be a locally injective square integrable representation of N and

let (DC, X) be a complex, maximal subordinate pair corresponding to U. Then

Hp(%>, C°°(U)) = 0 ifp ¥= q0 where qQ is the deficit of the pair (DC, X). Furthermore

Hq°(%„Cx(U)) is one dimensional and the image of A*»-1^. CM(U)) in

A»»(DCo, CX(U)) under 3 is closed in the CX(U) topology.

The Cco(U) topology is defined as the weakest topology making all maps

v -» XXX2 • • ■ Xnv continuous from C°°([/) into the representation space of U

where X¡ G 91 and n G N. The corresponding topology on A'XDCq, C°°((7)) is

obtained by identifying A^DCq, C°°(i7)) with A^DCq)*) ® CX(U).

Our interest in this theorem is that it implies the existence and irreducibility of

holomorphic induction for not necessarily positive polarizations of nilpotent Lie

groups. Specifically, suppose DC satisfies, in addition to the above assumptions,

(i)DC + DC = 9LC,
(ii) DC n DC = % = Z(9lc).

Such subalgebras are called totally complex. In our previous work [8], we showed

that the existence and irreducibility of holomorphic induction for the pair (DC, X)

was equivalent to the fact that HP(CKV, X) is one dimensional when p equals the
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deficit and zero otherwise (Theorems 10 and 2). We refer the reader to [8] for

details and applications.

The existence and irreducibility of holomorphic induction has been proven

previously only in special cases. Camora [1] and Satake [10] proved it for the

Heisenberg group. Moscovici [7] proved it for groups which admit rational forms in

the case that (DC, X) satisfies a certain rationality assumption and X is "sufficiently

distant" from 0. In our previous work [8], we established the existence and

irreducibility in the case that DC is abelian. Moscovici has also shown the vanishing

part of our Theorem 1 above in the case that X is "sufficiently distant" from zero

[7].1

Several interesting features of Theorem 1 are worth mentioning. First, the

theorem does not assume that the subalgebra DC is totally complex. One can in fact

use our theorem to prove irreducibility in the case DC is real. This suggests that

there should be a way of defining realizations of U corresponding to arbitrary

complex maximal subordinate pairs (DC, X). Actually, the elimination of the totally

complex assumption seems to be an essential ingredient of the proof of Theorem 1,

as our induction scheme forces us out of the totally complex case.

The second interesting comment concerning Theorem 1 is that its proof is

constructive: Given a form / which is homologous to zero we could (given time)

explicitly construct a form /0 such that 3/0 = /.

II. Proofs. Our main tool in the proof of Theorem 1 is the lemma stated below.

Let Cp,p > 0 be a differential complex of vector spaces over C and let 3: C* —* C*

and 8: C* —> C* be differentials of degree +1 and -1 respectively. Let X = 35 +

8d. It is easily seen that X commutes with 3 and 8 and X is of degree 0. Let

Cp = (8CP+X + XC")/XCp = 8Cp+l/8Cp+x n XC.

The space 8CP+X + XC is 3 invariant since 35 = X — 53 and 3 commutes with X.

It follows that 3 induces a derivation 3^ of the complex Cp.

There is also a dual concept related to the kernel of X. Let Cp = ker X n ker 5.

On C£, 5 and 3 anticommute so again 3 gives rise to a derivation 3^ of Cfi.

Lemma 2. If X is injective on each Cp then 8 induces an isomorphism between

Hp(C*) and Hp-x(C*)forp > 0. Also H°(C*) = 0.

If X is surjective on each Cp then the injection of Cft in Cp induces an isomorphism

between HP(C*) and H"(C*)for all p.

Proof. We first consider the injective case. The identity 35 = -35 + X shows

that 5 anticommutes with 3 modulo the image of X so 5 induces a chain map 5^- of

Cp into Cp~x. Let the corresponding map on cohomology be 8X.

To see that 5j£ is injective, suppose / is a 3 closed element of Cp and 5/ is a

boundary in Cf. Then 5/ = 3g + Xh for some g G 8CP. We claim that dh = / so/

is a boundary in Cp. In fact

Xdh = dXh = 35/ = Xf - 53/ = Xf.

'Added in Proof. Recently J. Rosenberg has also proven the general result using some of our results

below.
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Hence dh = / as claimed.

To see that 8X is surjective, let g = 8gx + XC be a dx closed coset of Cf. Then

d8gx = Xh in C+x. We claim that h is closed in C+x and 8h = g mod XC. h is

closed because Xdh = dXh = 325g! = 0. Also

X8h = 8Xh = 535gl = (53+ 3ô)Ôgl = X8gx.

Hence 8h = 8gx = g mod VC, as claimed.

If p = 0, X = 53; so A' injective implies ker 3 = 0 as claimed.

Now suppose X is surjective. Let /': C(¡ -* Cp be the injection, i is a chain map.

Let /'* be the induced map on cohomology. We first show that i* is surjective. Let

/ G C, 3/ = 0. Let h G C be such that Xh = f. Then we claim that/ - 35A = g

belongs to Cp. Clearly i* maps the class of g onto that of/. To see that g belongs to

C{¡, we compute

8g = 8f- 535g = 8f-8(X - 53)g = 5/- 5/= 0,

Xg = Xf - dSXh = 35/ - 35/ = 0.

To see that /'* is injective suppose g G Cp and g = 3/ for some / G C~l. We

claim g = 3/i for some A in C^-1. To see this, let h0 be such that A7i0 = / and set

h = f — d8h0. Then g = 3A. To see that A G Cu"-1, we again compute

5/i = 5/- 535ä0 = 5/ - 5A7t0 = 5/ - 5/ = 0,

Xh = Xf - 8dXh0 = Xf- 53/ = 53/ - 53/ = 0.

This proves g is null in HP(C$) and hence our lemma is proven.

We shall also require a topological version of the above proposition. Suppose

that the C are locally convex topological vector spaces and that 5 and 3 are both

continuous. We endow HP(C*), Cf and Hp(Cf), i = 0, 1, with their respective

quotient (subspace) topologies (which may be non-Hausdorff). The mappings 8X

and i* are continuous, bijective mappings of vector spaces.

Lemma 3. If X has a continuous inverse W defined on the closure of the image of X,

then 8X is a topological isomorphism. If X is open, i* is a topological isomorphism.

Proof. From the proof of the above proposition, the inverse of 8X is given by

mapping cosets of the form g + XC into the cohomology class of W3g. This is

clearly continuous.

To prove the statement about /*, let X be an open mapping. We shall show that

/'* is open. Let ^ be an open subset of HP(C¡*). By definition of the quotient

topology, %> is a projection to HP(C*) of a set of the form % n Cg n ker 3 where

% is open in C. i*% will be open iff % n C£ n ker 3+ 3C'-1 is open in ker 3.

From the proof of Lemma 2, if h is any element of C and dXh = 0, then Xh — d8h

belongs to Cg n ker 3. Let % = (X - 35)-'%. Then % is open so X% is open m

C. Thus X^L n ker 3 is open in ker 3. It Xh G X% n ker 3 for some Ae%,

then Xh - d8h G % n ker 3n Cg so

*% nker 3+ dC'1 c 9l n ker 3n Cg + 3C'-'.

In fact it is not difficult to see that the " c " above is really an equality. This proves

the lemma.
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In our applications of the above lemma, 3 will be the derivation of

A'íDCo, C°°(Í7)) and 5 will be the map 8xf(Xx ■ ■ ■ Xp_x) = f(X, Xv . . . , Xp_x) for
some fixed X G DCg. The inductive definition of 3 shows that 35* + 5*3 is simply

the usual action of X on A^DQ, C°°(<7)). Hence 35* + 5*3= X. The crux of our

proof of Theorem 1 will be to find appropriate A"s and to describe C^ or Cf as the

case may be.

We now proceed to the proof of Theorem 1.

Proof. Let 2(91) denote the center of N. 2(91) is one dimensional by virtue of

the local injectivity of U. There is an element Y G 91 such that Y £ 2(91) but

[91, Y] c 2(91). We may pick Y so that X(Y) = 0. Let 91, be the centralizer of Y

in 91. 91, is the kernel of ad Y. 91, has codimension one in 91 as ad Y has a

one-dimensional image. Hence 9L, is an ideal in 91. Let Nx be the corresponding

subgroup of N. Let X, = X|9L, and let (7, be the irreducible representation

corresponding to X, under the Kirillov correspondence. Let Ux be realized in the

Hubert space DC,. It is a well-known consequence of Kirillov theory that U is

equivalent with the representation induced from Nx by t/,. Let X0 G 91 be

complementary to 91,. Äq may be chosen so X([Xq, Y]) = 1. Let Z = [Xq, Y]. We

use X0 as usual to realize U in L2(R, DC,) by restriction of functions to the

one-parameter subgroup defined by X0. The action of U on L2(R, DC,) is described

by the equations

( i/(exp tX0)f)(s) = f(s + t),       t G R,

(U(x)f)(s) = Ux(x<)(f(s)),       x G Nx,

where xs = (exp — íA'0)x(exp sX¿).

We shall require a description of the space C°°(U) relative to the above

realization.

Lemma 4. A function f in L2(R, DC,) is in C°°(i/) iff f is a C°(Unvalued

Schwartz map of R. That is to say, f is C™ as a mapping of R into C°°(i/,) and for

any polynomial function p and integer n, the function p(d / diff is bounded as a map of

R into C°(VX).

Proof. This is not difficult to prove from a few basic facts about C°° vectors.

However, it is somewhat quicker to use results of Corwin-Greenleaf-Penney [2].

Specifically, there is a connected subgroup Hx of Nx and a character x of //, such

that Ux is the representation of Nx induced by x and U is the representation of N

induced by x- Let ?T, be a vector complement to log Hx in 91, and let Tx = exp ?T,.

We use Tx to define a realization of Ux in L2Cöx) by restriction of functions to the

cross-section Tx and composition with the exponential map. Similarly we define a

realization of U in L2(% x R) by means of the mapping (t, s) -» exp t exp sX0 for

t G 9",, j G R. The results of [2] imply that in these realizations CCC(UX) is the

Schwartz space <;>(%) of rapidly decreasing C°° functions on 9", while C"(U) is

the Schwartz space on % X R. Our lemma follows easily from the fact that

S (5, X R) can be identified with the space of Schwartz maps of R into 5(9,).

Q.E.D.
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Our argument now splits into three cases depending on whether y G DC or

TgDC + DC or y £ DC + DC. First, however, let us make some preliminary

observations concerning Ux. Y is central in 91, so {/, is scalar on Y and the value

of Ux on exp sY is e2",A'(iy)/ = /. Hence exp sY belongs to the kernel of Ux. We

shall let / y be a generic symbol for concepts on 9L, or Nx reduced modulo Y. For

example <7,/ Y is the representation of Nx/Y where Y is the subgroup (exp sY\s G

R}. We note that í/,/ Y is a locally injective square integrable representation which

corresponds to Xx/Y. In fact 9L, is the orthogonal space of Y + 2(91) relative to

Bx¡ so sparse y + 2(91) is the radical of Bx¡. Hence 2(91)/ Y is the radical of

BXjy- The radical always contains the center so 2(91)/ Y is the center of 91,/ Y.

Hence Ux / Y is square integrable modulo its kernel by the Moore-Wolf Theorem

[5]. £/,/ T is nontrivial on 2(91)/ Y so Ux/ Y is locally injective. We are now ready

to deal with Case I.

Case I. y G DC.. In this case X([Y, DC]) = 0 so DC c (9L,)C, Case I will follow by

induction from the following lemma.

Lemma 4'. In Case I, //°(DCo, C°°(i/)) = 0 and Hp(%„ C°°(U)) is topologically

isomorphic with Hp-X(%)/Y, CX(UX/Y)).

Proof. It is easily computed that 3 U( Y) is the mapping of C °°( (7) defined by

3 U( Y)f(s) = isf(s). Since Y centralizes DCo, the canonical action of Y on forms / in

A'(DCo, C°°(f7)) is just/->3U(Y)f. It follows that Lemma 2 applies with 5 = 5y

and X = Y. The image of Y in A^DCq, C°°(t7)) is the set of forms j ->/(s) which

are zero at s = 0. It follows that the mapping/—»/(0) defines an isomorphism of

A'(DCn, C^cOVyA'iDCn, C°°(f7)) with A^DQ,, C°°( £/,)). The image in
A*-'(DCo, C°°((7)) of A^DCqC00^)) under 5r is the space of forms which are zero

whenever any argument belongs to the span over C of Y. This in turn is isomorphic

with Ap-\%,/ y CX(U)). It follows that the space Cf_1 of Lemma 2 is

8C/XCp-x n 8C = Ap~x(%)/Y, C°°(f7,)).

Lemma 2 implies the algebraic isomorphism of the spaces in question. The image

of dU(Y) is clearly closed and multiplication by (is)~x is continuous on the image

of dU(Y) by the closed graph theorem. Thus Lemma 3 also applies, proving

Lemma 4.

The signature of <bx /r is the same as that of <¡>x¡ while the dimension of DQ,/ Y

decreases by one. Hence the deficit decreases by one. Also the deficit of (DCq, X)

cannot be zero because Y is in the radical of <j>x. Therefore the validity of Theorem

1 for (DCn/ Y,XX/Y) implies Theorem 1 for (DCq, X,) and Case I follows by

induction.

Case II. y G DC + DC and Y g DC. In this case DC £ (9l,)c since Y cannot

centralize DC by the maximality of DC. Let DC, = DCq n (91,)c and let DQ =

spanc y + DC,.

Case II splits into two subcases.

Subcase H.A. Y G DC, + DC,. In this case there is a real V G 91, such that

y + iV G DC,.
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Lemma 5. dU(Y + iV) is injective on CX(U).

Proof. Suppose dU(Y + iV)f = 0. Then i(s + dUx(Vs))f(s) = 0 for all s. In

particular/(s) is an eigenvector for dUx(Vs) of eigenvalue -s. However dUx(Vs) is

skew-symmetric so f(s) = 0 unless s = 0. The continuity of / then implies / = 0.

This proves the lemma.

We cannot conclude directly from Lemma 5 that Lemma 2 is applicable as

W = y + iV need not centralize DQ,. However, for/ G A'(DC, C°°(U)) and W G

DC let

w*f{xx, ...,xp) = £/(*„..., [ w, xt],.. ,, xp)
i

so Wf = 3t/(JF)/ - W*f. It is clear that W(W) and the mapping W*: /-> PK*/

commute. Furthermore ff* is nilpotent on Ap(%ü, C °°( £/)).

Lemma 6. // dU(W) is injective on CX(U) then f—> Wf is injective on

APaCo, C°(U)).

Proof. If Wf = 0, then dU( W)f = W*f. By iteration 3f7( W)"f = ( W*)"f = 0 if n
is sufficiently large. Hence / = 0, proving the lemma.

Thus Lemma 2 is applicable with 5 = 5,^ and X given by the action of

W = Y + iV on A^DCq, C°°((7)). The main difficulty in our treatment of this

subcase will be the identification of the image of W.

To aid in this identification we introduce a new 9lc module. As we shall also use

this construction later, we shall be slightly more general than our current needs

dictate. Let Xx G 9lc ~(9L,)C. We define a mapping Dx¡ of C°°(i/) into the

product space II~_, C°°(f7,) by DXJ = (/0,/„ . . . ) where/ = W(Xx)J(0)/n\.

The image of Dx is denoted M* and is called the evaluation module relative to

Xx. We define an action of 9LC on Mx so that £>* is a Lie module homomorphism

as follows. For K G (%)c, let Kn = (ad Xx)"(K)/n\. For /- (/*/„ ... ) € A/*,

we set Kf= (g0, g„ . . .) where g„ = £,+,=„ W(K^fr We also define A',/ =

(/„ 2/2, 3/3, . . . ).

The action is extended to the rest of 9lc by linearity.

Lemma 7. Mx is an 9lc module and Dx is an 9lc module homomorphism. The

isomorphism class of Mx   is  independent of Xx, and as a vector space Mx =

nr.oC^t/,)-

Proof. The following identity in the complex enveloping algebra ttc(9l) of 91 is

well known.

*f*-  S (")(zdxxy(K)xi.
i+j=n\J '

This implies that

(X"x/n\)K=   2   Kjixi/n).
i +j — n
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Hence Dx Kf = KDX f. The property XXDX = DXXX is clear. The Lie-module

property of Mx follows easily from the surjectivity of £>* and the above com-

ments.

To prove the isomorphism of the various modules, assume that X2 is another

element of 9lc — (91,)c. From the Poincaré-Birkhoff-Whitt Theorem every element

X of U(9L) is expressible uniquely in the form

x = 2 (c¿x)xi)/n
1-0

where k is some integer depending on X and C¡(X) belongs to UC(9L,). In

particular we may write

*£/«!- 2 (c^xo/n
i-O

Let C: Mx¡ -h> MXz be the mapping C: (/0, /„...) -> (g0, g„ • • • ) where

fc(»)

&, = 2 9i/.(cn)I)/-
i-O

(Here we have extended 3J7, to U<.(9L1) as usual.)

Sublemma. CD* = D* C.

Proof. Let/ G C^í/) and let/ = (3<7(Jr,)/)(0)//!. Then

(dU(Cn,X[)f)(0) = Sc^Q,)^*,)'/^)).

Hence, if g„ is as above,

g„ = 2 (dU(CnJX')f)(0)/i\= W(XÏ)f(0)/n\.
i-O

This proves the sublemma.

We may also define an inverse C to C, for, by the same reasoning,

/(«)

*,7»! = 2 C„,,^//!
i-O

with C„, G llc(9l,). Hence C„, gives rise to a mapping C of A/*2 into M*. The

mappings C and C are inverse to each other. In fact

k(n) k(n)   l(i)

x-2/n\= 2 Q,jrf//!= 2 2 c^AM/ji
i-o i-oy-o

Thus

k(n)

2   Cn,iCi,j = 0),»
i-O

showing the inverse property. This proves the isomorphism of the modules.

To prove that Dx¡ maps C°°(U) onto II"_0 C"(£/,) for all Xx, we claim that it

suffices to prove this for one single Xx. In fact, the isomorphism C between Mx¡

and Mx is definable on all of n™_0 Cco(Ui) by the same formula. The mapping C
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is still inverse to C so if £>* maps onto the product space for a single Xx, then it

will map onto for all Xx. We choose Xx = X0, the (real) element of 91 complemen-

tary to 91, chosen above.

To prove our lemma, let / = (/0,/„ . . . ) belong to Mx. We need to show that

there is a function g G C °°( t/,) such that

/ = W(Xo)ng(0)/n\=(d/dtfg(0)/n\.

Let i//: R—»R be a C°° function which is supported in the interval [-1, 1] and

which is one on a neighborhood of 0 in R. Let h„ be the function hn(t) = t"^(t)f„.

Let X„ be a sequence of positive numbers and consider the functions

&,(') - K"K(\t) = f\KV)/,.
Let {X0, y„ y2, . . . , Yk) be a basis for 91 with Y, G 9L, and X0 as above. It is

possible to choose \, large enough so that

ldU(X3>Y?Yp'.- y^)g„||<2-"

whenever 2 n\ < n — 2. This is because

xten = (d/dt)mgn = \r V7¿'m)*,,(V)-

Then g = 2"_0 g„ converges in C°°(i/). It is easily seen that

W(Xoyg(0)/n\ = f„.

This proves the lemma.

The relevance of the above construction to our current problem is the following

lemma. Let Xx G 9lc ~ (9L,)C.

Lemma 8. Let f G C°°(/7); then f is in the image of dU(W) iff DXJ is in the

image of W in Mx . Furthermore W is injective on Mx .

Proof. From Lemma 7 it suffices to assume Xx = XQ. It is clear that if/is in the

image of 3i/( W) then Dx f is in the image of W.

Conversely, suppose Dx f = Wg. We need to show that / is in the image of W.

From Lemma 7, there is a g G C °°( U) such that g = Dx g. Then DXo(f — Wg) =

0 so it suffices to consider the case Dx / = 0.

Now, recall that W = Y + iV.

dU(Y)f(s) = dUx(Y*)f(s) = isf(s).

Hence

dU(W)f(s) = i(s + dUx(V'))f(s).

The spectrum of dUx(Vs) is purely imaginary so s + dUx(V) is invertible for

s ¥= 0. The inverse is given by
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for s > 0 and

(s + dUx(Vs)Yl = - f °V't/,(exp tVs) dt (*)
-'o

for s < 0.

These integrals converge in the strong operator topology on the representation

space of [/,. Let g be the mapping of R into the representation space of Ux given by

g(í) = -/(í + 3c/,(nr1/(j), s^o,   g(o) = o.

Sublemma. g g C°°(C/) and dU(W)g = /

Proof. From Lemma 4, we need to show that g is a C°° mapping of R into

C°°(UX) and all derivatives of g remain bounded in the CX(UX) topology when

multiplied by an arbitrary polynomial.

We begin by showing that g is a polynomially bounded mapping of R into

C°°(UX). To see this it suffices to show that g(s) belongs to C°°(i/,) and

||3i/,(yl)g(j)|| is polynomially bounded in í for all A in the enveloping algebra

U(9l,). For each j G R let A(s, t) denote e'ad V'(A) where ad Vs is extended as

usual to the enveloping algebra. Formally, we have the following identity for s > 0.

dUx(A)g(s) = [°°dUx(A)Ux(exp - tVs)f(s)e~s' dt

= f "V.iexp - tV°)Wx(A(s, t))f(s)e-st dt.

The analytic validity of this identity is easily verfied by differentiation under the

integral. Note that this implies g(s) G C°°(í7,). Now there are fixed elements

Ax • • ■ Ak G 11(91,) and polynomials p¡(s, t) such that

Ms, 0=2 P,{s, t)A,.
/-i

If p(s, t) is any polynomial, then foP(s, t)e~sl dt increases at most polynomially in í

as j —> oo. It follows that there are polynomials q¡(s) such that

\\dU(Ax)g(s)\\ < 2  %(*)l|3£/,(4)/(i)||.
/-i

The polynomial boundedness of / now is seen to imply the polynomial bounded-

ness of g(s) for large positive s. The case of large negative s is proven similarly. The

boundedness for all s will follow once we have shown that g is Cx as a mapping of

RintoC°°(i/,).

The fact that g is C°° at zero follows from the fact that lims^0 f(s)/s" = 0 for all

n since (d/ds)"f(0) = 0. In fact

lim   g(s)/s" =  lim    f °° s2e~s'Ux(exp - tVs)(f(s)/s"+2) dt.

As s -* 0+, s2e~sl —> 0 in Lx([0, oo)) and the rest of the integrand remains bounded

so limi_0+ g(s)/s" = 0. A similar computation for s < 0 shows (d/ds)ng(0) = 0.

To show that g is C°° at nonzero s we adopt another point of view. Again let
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s > 0. The function s -» C/,(exp — tVs)f(s) is merely

(i/(exp - tV)f)(s) = (U(expsX0)U(exp - tV)f)(0).

Let 5: C°°(f7) -* C°°(UX) be the map 8(f) = /(0). For j > 0 let 7; be the map

TJ= f™ e"U(exp- tV)f dt.

Then

g(s) = 8(U(exp sX0)TJ).

If we can show that s -> U(exp sX0)TJ is a C°° mapping of R into C°(U), our

claim will follow from the continuity of 5. The fact that Ts maps CX(U) into

C°°(U) is shown in much the same way that we showed that g(s) G C°°(t/,). In

fact, if B G 11(91), then

dU(B)TJ= [°° e's'U(exp - tV)W(B(t))f
Jo

= 2   C e-s'U(exp- tV)r¡(t)W(BM dt
i~\J0

where B(f) = e'adK5 and r, are polynomials. Differentiation with respect to s

under the integral is justified if s > 0 and shows the C °° nature of TJ.

It now follows from the product rule for differentiation that g is C °° f or í > 0

and

(fsJg(s) = s(<7(exp^0)( 2o(J)3i/W_^))

where

TJJ- (^)V = J^(-1Y/V*'<7(exp - tV)fdt.

Bringing the 3 U(XQ)" ~J past the integral defining T{ as above we see that

(í)"g(s) = ?, [¡^)e-s'U(exp - tV)fdtys)

where the a, are certain polynomials and them's are elements of C°°(i/). The proof

given above for the polynomial boundedness of g applies to the terms in the above

sum as well and shows the polynomial boundedness for (d/ds)"g(s) for s large,

positive. Similar arguments apply for negative s and our sublemma is proven.

To finish the lemma, we need only show the injectivity of W on Mx . We begin

by showing that dUx(W) = idUx(V) is injective on C°°(f7,). (Note that exp Y G

ker Ux.) Let Xn be the character of the center 2(A7,) of Nx defined by

Xo(x) = exp z X,(log x).

Let UXo be the representation of Nx induced by Xo- % results of Moore and

Wolf, Ux can be realized as a subrepresentation of UXo. The operator dUx(V) is a

left invariant differential operator so 3i/,(K)/= 0 implies that/ is constant on

right cosets of {exp tV\t G R}. As V g 2(91,) = span Y + Z(N), the constancy
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of /along F-cosets is inconsistent with the square integrability of/unless/ = 0.

Now suppose /= (/o,/„ . . . ) G Mx is annihilated by V. Then (Vf)0 =

dUx(V)f0 so/0 = 0. But/0 = 0 implies (Vf)x = dUl(V)fi so/, = 0. By induction it

follows that all/ = 0 and V is injective, proving the lemma.

It now follows from the proof of Lemma 6 that Lemma 2 applies to the complex

C = A'(DCo, M) with 5 = 5^ and X = W. Let Xx G DC, ~ %.

Lemma 9. Hp(%), Mx¡) and Hp(%0, CX(U)) are isomorphic. The isomorphism is

the map Dx induced by Dx on homology.

Proof. Let C = A'(DCo, C°°(f7)) and C = Ap(%, Mx). hei 8 be the deriva-

tion 5^ on C and 5 be 5^ on C. The previous lemma shows that Dx defines a

chain map from C to C such that / is in the image of W = X in C iff / is in the

image of W in C. It follows that Dx induces a chain isomorphism of the

complexes Cf and Cf. Lemma 2, applied to Cf and Cf, now shows that

//p(DCo, C°°(i/)) arid //'(DCq, Mx) are both isomorphic to Hp-x(C*) forp > 0 and

to zero for/7 = 0.

We are not yet finished as we still must show that the isomorphism can be

induced directly by Dx without the intercession of Cf. However, this follows easily

from the commutativity of the diagram below and the fact that the isomorphism of

H"(C*) with H"(C*) is given by 5*.

Dx,
C       -h>        C

swl l$w
Dx,

C"'1     ->      C'1

This finishes the lemma.

Remark. In the above lemma we have not made any claim that the isomor-

phisms are topological. This is because we have not shown that W has a bounded

inverse on either C°°(U) or Mx . Notice, however, that Lemma 9 does not involve

W at all except in its proof. We shall obtain the topological properties of the

isomorphism later without the aid of Lemma 2. In fact we have not even defined a

topology on M* as yet. This fact we remedy immediately. We give A/* the product

topology. Notice that the action of Xx on Mx is essentially a left shift so Xx acts

surjectively and Xx is an open mapping. The following is a counterpart to Lemma

6.

Lemma 10. The action of Xx on A^XDCo, A/* ) is surjective and open.

Proof. The action of Xx on/ G A^DQ,, A/* ) is given by

Xx-f=(Xx -Xï)f

where X* is as defined previously (Lemma 6). As a formal power-series

(xx - x*yx = 2 xx-("+l\x*)n.
n-0
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We let/„ be such that

(i)X¡»+l>f„ = (X*)y,

(ii)f„ = Oif(X*rf=0.
fn is then a finite sequence and it is easily seen that

(*,-*r)(2/,,)=/-
This shows surjectivity.

To see openness, let ^ be a neighborhood of zero in A'XDCj, A/* ) and consider

T = (Xx — Xf)^. It suffices to show that T is a neighborhood of zero. Let n be

such that (X*)n = 0 and let % = n ^(Xx)kGll. Let % = n *-o(-*T)"*%- % is

a neighborhood of zero. We claim "V, c °V". In fact, for / G %, the fn defined

above can be chosen in % so/ G (Xx — X*)^. This proves the lemma.

Now we apply the second portion of Lemmas 2 and 3 to A'XDCq, A/* ) with

5 = 5*. We come up with the following fascinating conclusion.

Lemma 11. Hp(%>, C°°(f7)) is isomorphic with Hp(%x, C°°((7,)).

Proof. Hp(%„ C°°(i/)) is isomorphic with //'(DCq, Mx) by the previous lemma.

From Lemma 2, Hp(%), Mx ) in turn is isomorphic with HP(CK0, C*) where C* is

the intersection of the kernel of 5* in A^DCq, A/* ) with the kernel of the canonical

action of Xx. A form/is in the kernel of 5* iff / is constant on additive cosets of

sparte Xx in DC, in each variable. It follows that restriction of such forms to DC, is a

vector space isomorphism onto AP(DC,, A/* ).

Sublemma. Let f = (f0, . . .) be a form in Ap(%), Mx). Then f is in the kernel of

the canonical action iff

f = (/o, XtU (Xrffo/2\, ..., (X*)%/n\, ...).

Proof. / is in the kernel of the canonical action iff Xx f = X\*f so

(/„ 2/2,... ) = (*f/0, xru...).

The sublemma follows easily from this.

It is now easily seen that the mapping Cg -* A'XDC,, C"(i/,)) given by mapping

/ = (/o> • • • ) mto tne restriction of /0 to DC, is a continuous chain isomorphism

with continuous inverse. It follows that HP(C*) and Hp(%x, C°°(i/,)) are isomor-

phic, even as topological spaces. Our lemma follows.

We may finally finish Subcase ILA. It is clear that //'(DC,, C°°(t/,)) and

Hp((%x + span«- Y)/Y, C°(UX/Y)) are identical. It is easily verified that DC, +

spartç y/ y is a maximal subordinate subalgebra in (9L,)C so by induction

Hp(%x, C°°(f7,)) is zero unless/) equals the deficit of <bx¡/Y-

Lemma 12. </>x and <t>\,/Y have the same deficit.

Proof. Consider the subspace DC of DGj spanned by W = Y + iV and A',. Since

y centralizes 91,, <^(W, W) = 0. We claim <bx(W, Xx) + 0. Of course X([Y, Xx]) ¥*

0 since Xx g 91,, while X([ Y + iV, Xx]) = 0. Hence X([iV, Xx]) = -X([Y, Xx]) ¥= 0.

Hence

<t>x(xx, y + ív) = -/x([*„ y - ív]) = -/2X([*„ y]) ¥= o.



46 RICHARD PENNEY

It follows that $x is nondegenerate on DC and there is a canonical basis for <bx

passing through DC. The matrix of <i>A on DC is of the form

\b 0)

where a = <t>\(Xx, Xx) is real and b = <t>x(Xx, W). The characteristic polynomial is

x2 — ax — \b\2. Hence A has one positive and one negative eigenvalue. On the

other hand, W is in the radical of the restriction of <i>A to DC,. Hence on DC,, <i>x loses

one positive eigenvalue and one negative eigenvalue and gains a zero eigenvalue.

As the dimension of the subordinate subalgebra also decreases by one, this makes a

net change of zero in the deficit. This proves the lemma.

It follows from the lemma that Hp(%, C°°(J7)) is zero if p ¥= q0 where q0 is the

deficit and Hq°(%, C°°(U)) is one dimensional. To finish Subcase II we need to

show that Hq<>(%, CX(U)) is Hausdorff-i.e. the image of 3 is closed in

Aq"(%, C°°(<7)). This will be the case if the image of 3 is closed in A9»(DC, Mx) for

the isomorphism of Hq°(%, C°°(i/)) and Hqa(%, Mx) is equivalent with the

statement that/is a boundary in A9(DC, C°°(f7)) iff/ G >Dx](dAq-x(%, Mx)). The

closeness would then follow from the continuity of £>*. But from the proof of

Lemma 11, //«»(DC, Mx) is topologically isomorphic with H^Xq, C°°(<7,)). The

closure property follows from this. This finishes Subcase H.A.

Subcase II.B. In this case Y G DC + DC but Y <£ DC, + DC,. Then there is a

V G 91, such that Xx = Y + iV G DC. We may pick the X0 used above equal to

2cV where c is a real constant chosen so that X([2cV, Y]) = 1. Unfortunately,

Subcase II.B now splits into two cases, depending on the sign of c.

Assume first that c > 0.

Lemma 13. The canonical action of Xx on Ap(cKq, C°°(U)) is surjective and open.

Its kernel is isomorphic with Ap(%), C °°( Ux)) under the mapping f -» /(0).

Proof. The openness will follow from the open mapping theorem once surjectiv-

ity is shown. We first consider/» = 0. As mappings on C°°(R, C^t/,)), dU(X0) is

d/ds and dU(Y) is multiplication by is.

W(XX) = i(s + (2c)-ld/ds).

g is in the image of 3 U(XX) iff -2c/g = (d/ds)f + 2csf. A solution of this equation

is

f(s) = -2ice^ [Sec,2g(t) dt

provided the / so defined belongs to C °°( Í7). To see that / does define an element

of C °°( U), note that it is easily computed by differentiation under the integral that

/ is valued in CX(UX). The fundamental theorem of calculus combined with

differentiation under the integral shows that/is a C°° mapping of R into C°°(t/,).

Hence we need only show that / and its derivatives are polynomially bounded.

However

(2c)-1||/(i)|| < e-^ fV||s(0ll dt < e-^ f Aft<
-'o •'o
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By l'HospitaPs rule this tends to zero as s —> ± oo. The polynomial boundedness of

/ follows similarly using the polynomial boundedness of g. The polynomial

boundedness of the derivatives of/ is proven using the Leibnitz rule for differentia-

tion and FHospitaFs rule as above.

The kernel of dU(Xx) is obviously all elements of the form ve~^' where v G

C°°(UX). The isomorphism with C°°(UX) is clear.

For p > 0, the first two statements of the lemma follow as in Lemma 10. To

prove the statement about the kernel, suppose / is in the kernel of the canonical

action. Then

du(xx)f-x*f = o

i.e.

(d/ds + 2cs + 2icX*)f = 0.

To solve this equation we need some notation. If S and T are arbitrary elements

of 9LC, we let

es(T)= f (adS)"(T)M
n = 0

If w is ap-form on DQ,, valued in some arbitrary vector space, we set

es»(Yx,...,Yn) = o,(es(Yx),...,es(Yn))

whenever S normalizes DCg. The relevance of this to our current problem is that

(d/ds){e°xf(Yx, . . . , Y„)) = X*e°xf(Yx, ..., Y„),

as the reader may easily verify. For/ G A^DQ,, C(U)) we set

fis) = e^iXf(s).

Then the equation we wish to solve is equivalent with

(d/ds + 2sc)f(s) = 0.

From the above comments we obtain the solution

fis) = e~cs2e^isX'v

where v is a fixed element of AP(CXÜ, C°°(t/,)). This shows that/-»/(0) = t; is an

isomorphism onto AP(CKX), C°°(/7,)) as claimed. This proves the lemma.

We are now in a position to apply Lemmas 2 and 3 with 5 = 5* and X = A", in

the surjective case. The module Cg is the intersection of the kernel of the canonical

action and the kernel of 5*i so under the isomorphism of Lemma 13, C^ is chain

isomorphic with A^DC,, C °°( Ux)) where Xx acts trivially. It follows from Lemmas 2

and 3 that //''(DCq, C°°(i/)) is topologically isomorphic with //'(DC,, C°°(t/,)) =

//'(DC, + Y/Y, C°°(/7,/Y)). As DC, + Y is maximal subordinate in 91,/Y, we

are in a position to apply induction. Our sub-subcase will be done if we show that

the deficits of <bx and <i>A are the same. Now

^(A-,, Xx) = -/X([ Y + iV, Y - iV]) = c"1 > 0.

As Xx is orthogonal to the rest of DC,, it follows that <f>x  has one fewer positive
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eigenvector than <¡>x. Since the dimension of DC, is one less than that of <X0, the

deficit remains constant.

Next suppose c < 0. In this case we have

Lemma 14. The canonical action of Xx on AP(CK1), C°°(i/)) is injective and Xx has a

continuous inverse defined on its image. A form f is in the image of Xx iff

r°°eAe2£rcJ,f/(i) ds = 0.
•'-oo

Proof. As in the proof of Lemma 13,/is in the image of Xx iff

-2/c/ = (d/ds + 2cs + 2ciX\*)g. (*♦)

Solving as before we have a solution of the form

g(s) = -2ice-^e~2icsX< Ç e'2cfit) dt

where fis) = e2icsXf(s). Suppose

f °V/(,) dt = 0.
•'-oo

We claim that in this case g represents an element of C°°(t/,). Since e2"'*' is

polynomial in s, one can see that for g to be in C °°( Í7) it suffices to show that

h(s) = r* [' e'2cf(t) dt
•'-oo

defines an element of C °°( U).

We claim that h(s) is bounded in C°°(i/,). To see this let <b be an element of the

continuous dual C~°°(UX). From the Banach-Steinhaus theorem, it suffices to show

that <ä(j)(Y„ . . . , Y„), <i>> is bounded for all such <f> and all Y„ . . . , Y„ G DCj,.

But

(h(s)(Yx, ..., Y„), <*>> = e-^r e^{f(t)(Yx, ..., Yn), </>> ds.
■'-oo

From l'Hospital's rule, the limit of the left-hand side of the above as s —* oo is equal

to

Urn (2cs)-l{f(s)( Y„ . . . , Y„), <^> = 0.

Note that to apply l'Hospital's rule we need /JJ, = 0. It also follows from

l'Hospital's rule that the -oo limit is zero.

Similarly we may prove the polynomial boundedness of h. Also, by using the

Leibnitz rule for differentiating products and l'Hospital's rule we can show the

polynomial boundedness of the derivatives of h. This proves the sufficiency part of

the lemma.

Conversely, suppose/ is in the image of Xx. Let g be as above, g is the unique

solution of (**) which satisfies lim^^ g(s) = 0. In order for g to define an

element of Ap(%0, CX(U)) we must have lim^^ h(s) = 0 where

h(s) = (2ic)-le2i"x'g(s).

This necessitates the condition on the integral off.
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To see the injectivity of Xx, it suffices by the proof of Lemma 6 to consider Xx on

C °°( U). The kernel of Xx is the space of functions of the form fis) = e~c^v for v

fixed in C°°(t/,). However, such functions are not square integrable unless v = 0.

Clearly, the integral defining g is a continuous inverse to Xx on its image. This

proves the lemma.

Now we may apply Lemmas 2 and 3 with C = A^DQ,, C°°(i/)) and 5 = 5*i so

X is given by the canonical action of Xx. The module Cf-1 is 8(C)/8(C) n

XC~x. The image of A^DCq, C°°(<7)) under 5*_ is isomorphic with

A*-'(DC,, C°°(i7)). The above lemma implies that the mapping D of 5(C) into

Ap-\%x, CX(UX)) given by

D:f^Ces2ce2sciXf(s)ds
•'-oo

induces a vector space isomorphism of Cf-' onto A'-'(DC,, C°°(i/,)).

Lemma 15. D is a chain mapping.

Proof. Let/ G A""'(DC,, C°°(f7)). We define

fis) = e2i"xfis)

as before. Note that 2iscXx = -sX0 + 2iscY. As Y is central in 91, and DC, C 91,,

it follows that fis) = e~sX°f(s). Recall that we have defined Y' = esX°(Y) for

Y G 91,. The following computation now follows for Y,, . . . , Yp G DC,.

(9/)-(Y„ . . ., Yp)(s) = dfiYr, ..., Yp-*)(s)

= 2 (-l)'3t/(Yx*)f(Yx-*. - • Yr ' • • Yp-<)(s)
/-i

- 2 (-i)/+yX[^ *,]"> r? • • • y- •• • *r • • • yp-*)(s).
i<j

Noting that W(Yx')h(s) = 3í/,(Y,)A(j) for any h G C°°(Í7), we see that (df)~(s) =

91 (/CO) where 3, refers to the Ap(%x, C°°(t/,)) coboundary operator. Multiplying

by e    and integrating we get the desired conclusion, thus proving the lemma.

It now follows from Lemma 14 that Cf-' is chain isomorphic with

A'-'(DC,, C°°(£/,)). Hence Lemmas 2 and 3 imply the following

Corollary 16. Hp(%0, CCC(U)) is topologically isomorphic with

Hp'x(%x, Cx(Ux))forp > 0. Ifp = 0, H'ÇXq, C^í/)) is zero.

Again, this will prove our theorem once we show that the deficit </>x is one unit

less than that of <f>A. This is a calculation similar to that done in the c > 0 case. We

shall omit it here. This finishes Subcase II.B.

Now we proceed to the final case

Case III. Y Í DCq + DCq. In this case a very fortunate circumstance occurs which

aids immensely in computing the cohomology.

Lemma 17. There is a real element X¿ G DC n 91 ~ 91, such that X([X¿, Y]) = 1.
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Proof. Let X0 be as above-i.e. X0 G 91 ~ 91,, X([X0, Y]) = 1. Since (9L,)C +

DC = 9LC we may write X0 = Y, + //, where Y, G (91,)c and //, G DC. We define

a new linear functional X' on span^D^ + DQ, + Y + 2(9lc)) by

(i) X'(X) = X([ Y^, A]), A G spancí Y + Di,, + 2(9LC)),

(ii) X'(X) = X'(A-)", A G DCo.
This is well defined, for if X G DQ n DCq, then

X([ Y„ A"]) = X([ Y, + //„ A]) = X([A0, A"]).

Hence, since X0 is real,

X([ Y„ X]) = X([A-0, Ä]) = X([A0, A])-= X([ Y„ A"])".

Clearly X' satisfies X'(X) = X'(A")~. Thus X' is a real linear functional. We extend X'

linearly to 91 and then by complex linearity to 9lc.

Now, the form Bx is nondegenerate on 91/2(91) and X' is trivial on 2(91).

Hence there is a Y2 G 91 such that X'(A) = BX(Y2, X). Now for X G D^

X'(A) = /?A(Y„A) = /?A(Y2,A-).

Thus Y, — Y2 annihilates DC,, relative to Bx. Hence from the maximality of DC,

Y, — Y2 G DC. It follows that in the decomposition X0 = Y, + //, we may take

Y, = Y2. Thus AÓ = X0 — Y, is a real element of 91 which also belongs to DC.

Furthermore, it follows from X'(Y2) = 0 that Y, G 91, so X([A"Ó, Y]) = 1 as desired.

This proves the lemma.

We, of course, now choose X0 = X¿. As X0 acts on CX(U) as d/ds, it is clear

that dU(X0) is injective on C°°(U) and hence on A^DQ,, C°°(t7)) by Lemma 6. As

in the proof of Lemma 14, it is easily seen that the canonical action of A"0 has a

continuous inverse and a form/in AP('XV, Cx>(U)) is in the image of the canonical

action of A0 iff

f°° e~sX°f(s) ds = 0.
-'-oo

It now follows as in Lemma 15 and Corollary 16 that //'(DCo, C°°(t7)) and

Hp~x(%x + Y/Y, C°°(U/Y)) are isomorphic for p > 0. Case III is then com-

pleted by computing the deficit of <¡>x . We leave the details to the reader.

This finishes the proof of Theorem 1.    Q.E.D.

Concluding remarks. Having been through the proofs, the reader may wonder

at this point about the roles played by the square integrability and the local

injectivity. The roles are, in fact, the same. The local injectivity is to preclude the

Lie algebra cohomology of DCq from entering the picture. The necessity of this

precaution is exemplified by the case where U is one dimensional so DC = 9LC.

Then C°°(U) = C and DCq acts trivially. Then A^DCq, C°°(J7)) is just the/>th Lie

algebra cohomology space of DCq. Certainly our Theorem 1 need not be true in this

circumstance.

The role of the square integrability is to insure that the representation Ux/Y

used in the induction scheme is locally injective. It seems plausible that there is a

generalization of Theorem 1 which assumes neither square integrability nor local
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injectivity. Such a theorem probably would require a knowledge of the Lie algebra

cohomology of the kernel of U. Of course, it is only the locally-injective, square-in-

tegrable case which is relevant to holomorphic induction.
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