
TRANSACTIONS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 261, Number 1, September 1980

ON RANDOM FOURIER SERIES1

BY

JACK CUZICK AND TZE LEUNG LAI

Abstract. Motivated by Riemann's Rx summation method for i.i.d. random

variables Xx, X2, ■ ■ ■ , this paper studies random Fourier series of the form

2f° a„Xn sin(n( + $„), where {a„} is a sequence of constants and {$„} is a

sequence of independent random variables which are independent of (X„). Ques-

tions of continuity and of unboundedness are analyzed through the interplay

between the asymptotic properties of {a„} and the tail distribution of Xx. A law of

the iterated logarithm for the local behavior of the series is also obtained and

extends the classical result for Brownian motion to a general class of random

Fourier series.

1. Introduction and summary. In this paper we study random Fourier series of the

form

SU) = f   anXn sin(nt + <i>„) (1.1)
n-l

where {an} is a sequence of constants, A, A,, A"2, . . . are independent and identi-

cally distributed (i.i.d.) random variables, and {í»„} is a sequence of independent

random variables (possibly constants) which are also independent of the sequence

{X„}. These notations and assumptions will be used throughout the sequel. Classi-

cal examples of (1.1) are the Rademacher series (where the Xn take the values 1 and

-1 with probability ^ and the <!>„ are constants) and the Steinhaus series (where the

Xn are degenerate and the 4>n are uniform on [0, 2tt]). Since the pioneering work of

Paley and Zygmund [23] on the Rademacher and Steinhaus series, a great deal has

been learned about the analytic properties (such as pointwise convergence, continu-

ity, etc.) of these series, and the results have been extended to the general setting in

which Xn are independent, symmetric (or more generally A"„e'*" are symmetric),

and have finite variances but are not necessarily identically distributed (cf. [10],

[20], [21]).
In §§2 and 3 we shall extend the classical results on the Rademacher and

Steinhaus series in another direction. We shall assume that the Xn are i.i.d. but drop

the usual assumptions of finite variance and symmetry. For every nonnegative

function / on [0, 27r], let / denote the nondecreasing rearrangement of /, i.e.,

fix) = sup{.y: X{t G [0, 2ir\. fit) <y} < x} for 0 < x < 2tt, where X denotes

Lebesgue measure. Let M(fix)) = fix). This notation will be used throughout the
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sequel. Note that in the present i.i.d. case, if X is symmetric and has a finite

variance a2, then for every sequence {an} G I2, S(t) converges a.s. for every ;;

moreover, assuming that a ¥= 0, a necessary and sufficient condition for the a.s.

uniform convergence of S(-) is

for some 0 <8 < 1        (1.2)

(see Corollary 2.8 of [20]). However, when EX2 = oo, (1.2) is no longer sufficient

for the a.s. uniform convergence of S(), and in fact (1.2) does not even guarantee

that the series (1.1) converges a.s. for every fixed t. On the other hand, if X is

nondegenerate, the condition (1.2) is still necessary for the a.s. uniform conver-

gence of S(-) even when EX2 = oo or when A is not symmetric (see §2 below). For

a given sequence {a„} satisfying (1.2), it is therefore natural to ask what minimal

conditions on the tail distribution of X will guarantee the a.s. uniform convergence

of S(-). We shall study this problem in §§2 and 3. To give some flavor of the

interplay between the sequence {an} and the tail distribution of A in the conditions

for the a.s. uniform convergence of S(-), we now specialize the general results of

§§2 and 3 to the particular case an = n~a (a > \) in the following

Theorem 1. Let a > {-, and set an = n~a in (1.1).

(i) If E\X\x/a < oo, then P[S(t) converges a.e.] = 1, where "a.e." (almost every-

where) is with respect to Lebesgue measure. Moreover, z/4>n = Ofor all n, then

S(t) converges a.s. for every fixed t <=> E\X\ 'a < oo. (1.3)

(ii) For a > 1, if E\X\x/a < oo, then

P\S(t) converges uniformly in /] = 1. (1-4)

(iii) For \<a <\, if EX = 0 and E {\X\x/a(log+\X\)ß} < oo for some ß >

(1 - a)/ a, then (1.4) still holds.

(iv) For a = 1, if EX = 0 and £(|A|log|A"|) < oo, then (1.4) stiff holds.

(v) For a = 1, if either X is symmetric or e'9" is symmetric for all n, then (1.4) still

holds under the weaker moment condition that E{\X\\og log(|A"| + e)} < oo.

(vi) For \ < a < 1, there exists a symmetric random variable X such that

^dA-l'^Oog+lAl)^} < oo for all ß < (1 - a)/a and

P[ S(t) converges at every í] = 0 (1.5)

for all choices of the marginal distributions o/ {$„}•

(vii) For a = 1, there exists a symmetric random variable X such that

£{|A|[log log(|A| + e)f} < co for all ß < 1 and (1.5) holds for all choices of {$„}.

Moreover, there exists a zero-mean random variable X and a sequence {<&„} such that

(\.5) holds and E{\X\(\og+\X\)l3} < oo for all ß < 1.

(viii) Let a > 3/2. Assume that E\X\x^a~X) < oo when a > 2. For a < 2, assume

that EX = 0, that £(|A|log|A|) < oo when a = 2, and that E{\X\x^a-x\log+\X\)ß}

< oo for some ß > (2 — a)/(a — 1) when 2 > a > 3/2. Then P[S() is continu-

ously differentiable] — 1.

/{'|log/|1/2} dt < oo
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Note that the minimal assumption £|A|1/a < oo in (1.3) for the a.s. convergence

of S(t) at every fixed / is also sufficient for the a.s. uniform convergence of S(-)

when a > 1, and that for a < 1 the moment conditions in parts (iii), (iv), (v) of the

above theorem are only slightly stronger than the minimal moment condition in

(1.3). Moreover, for On = 0, the additional assumption EX = 0 when a < 1 is in

fact necessary for the a.s. continuity of S(-), since 2f n~a sin nt is discontinuous

at t = 0 if a < 1 (cf. [28, pp. 61, 70]) and therefore the a.s. continuity of S(-) is not

preserved when X„ is replaced by X„ + n in (1.1) in this case. Parts (vi) and (vii) of

the above theorem show that the moment conditions in parts (iii), (iv), (v) are in

some sense minimal for the a.s. uniform convergence of S(). These results are

obtained as a special case of a general theorem on the a.s. unboundedness of S(-)

proved in §3. For independent (but not necessarily identically distributed) symmet-

ric random variables Xn, classical results on the a.s. unboundedness of S(-) require

the regularity condition EXf = 0((EX2)2) or EX2 = 0(E2\Xn\) (cf. [7, p. 135] and

[10, p. 77]). We are able to remove this kind of regularity conditions in §3 and

thereby obtain Theorem l(vi), (vii).

One motivation for our investigation of the convergence and continuity of

random Fourier series without the classical assumptions of finite variance and

symmetry comes from the study of summability methods for i.i.d. random vari-

ables. Letting A, A,, ... be i.i.d., Kolmogorov's strong law of large numbers can

be restated as follows: EX = it iff the (C, 1) limit of Xn is u a.s. This result has

been extended in [14] to give the Cesàro (C, a) and Abel (A) limits of Xn: For

a > 1,

EX = ii

^A-n^M(C,«)a.s.    (i.e.,   üm "i ('+ ^ ~ * )w (" + «) = M  a.s.)

«**„->/i(yO a.s.    (i.e.,   lim (1 -X)£x/A/= m   a.s.). (1.6)

A summability method which involves series of the form (1.1) is Riemann's Rx

summability. Let {A„} be a sequence of real numbers. We say that An -» A(RX) if

00

lim (2/ir)^n-xAn sinnt = A (1.7)
/->0+ !

(cf. [4]). By analogy with (1.6), it is natural to ask what kind of moment conditions

on A would be sufficient for Xn -» n(Rx) a.s. Note that from the results of Kuttner

[12], [13], Rx summability implies (C, a) summability for every a > 2, and there-

fore in view of (1.6), EX = ¡u, is a necessary condition for Xn —* ¡i(Rx) a.s. Viewing

the summability method in (1.7) as some sort of "averaging operation" on the

sequence {A„}, it is natural to expect that the a.s. continuity of SJ° n~xXn sin nt at

í = 0 or, of more fundamental interest, its a.s. continuity on [0, 2w] may not

involve much more than the necessary condition EX = 0. Theorem l(iv) shows that

this is indeed the case, i.e., the slightly stronger assumption ZsdAlloglAl) < oo (in

addition to EX = 0) is sufficient for the a.s. continuity of 2 n ~ xXn sin nt on [0, 2w]

(although the condition EX = 0 alone is not sufficient, as Theorem l(vii) shows).
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The above point of view leads us to another interesting question concerning

series of the form (1.1). First in connection with the rate of convergence in the

(C, 1) limit of Xn, the Hartman-Wintner law of the iterated logarithm says that

EX = 0and£A"2 = a2

=> lim sup ( -t-,-;-I
n^oo   \2 log log«;

and corresponding laws of the iterated logarithm for the (C, a) and the Abel limits

of Xn have been obtained in [14]. By analogy with these results, it is natural to

expect that a similar law of the iterated logarithm would also hold for the Rx limit

of Xn. This indeed turns out to be the case. In fact, by specializing the results of §4

to the particular case an = n~a and <ï>„ = 0, we obtain

Theorem 2. Let \<a<\, and set a„ = n~* and q>„ = 0 in (1.1). // EX = 0,

£A"2 = a2,and E{X2(\og+\X\Y) < oo for somep > (6a + l)/(2a - 1), then

lim supS(/)/ {2|í|2a-|(loglog|íf')}'/2 = AxJ2o   a.s., (1.8)
/-»O

where Aa = tt/2 if a = 1, and

Aa = -4a-T(l - 2a)cos((2a - 1)tt/2)    if a ¥= 1. (1.9)

We note that the requirement a < 3/2 in Theorem 2 is natural since by

Theorem l(viii), S() is a.s. continuously differentiable when a > 3/2. Obviously,

replacing Xn by — Xn in Theorem 2 shows that the lim inf of the normalized S(t) in

the left-hand side of (1.8) is — AxJ2a a.s. For the special case a = 1 in Theorem 2,

we obtain the law of the iterated logarithm for the Rx limit of the i.i.d. sequence

{X„}, i.e., if EX = 0, EX2 = a2, and £{A2(log+|A"|y} < oo for some/7 > 7, then

limsupj f¡n-|Ansin«í|/(2|/|loglog|íf')'/2 = (7r/2)1/2a    a.s.    (1.10)
t^o    \ i /

When A is a standard normal random variable,

OO

W(t) = 7T-|/2iA + (2/w)1/22 n~xX„ sin nt,        0 < t < it,
i

is the standard Wiener process (cf. [1, p. 261]), and (1.10) reduces to the classical

law of the iterated logarithm for Brownian motion. Thus Theorems 2 and 7 of §4

are extensions of this important result to random Fourier series. Moreover, Theo-

rem 2 provides an analogue (for random Fourier series) of Hunt's law of the

iterated logarithm [5, Theorem 11] for the random Fourier-Wiener transform

/S0 h-"(<?"" - l)dW(u).

2. Convergence and continuity. Throughout this section, almost sure (a.s.) conver-

gence means convergence with probability 1, while the phrase "almost everywhere"

(a.e.) is with respect to Lebesgue measure on the real line. As pointed out in §1, if

X is symmetric and has a finite variance a2 ¥= 0, then (1.2) is necessary and

sufficient for the a.s. uniform convergence of S( ■ ). In general, without assuming X

to be symmetric or to have a finite variance, (1.2) is still necessary for S(-) to

a, a,.
= a    a.s.,
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converge everywhere a.s. if X is nondegenerate, as is shown by the following

Lemma I. If X is nondegenerate, then

P[S(t) converges for every il = 1 =*> [an] satisfies (1.2).

Proof. Let X*, X*, ... be i.i.d. and independent of the sequence {(Xn, $„)}

such that X* and Xn have the same distribution. Let

S*(t) = 2 °ÁXn - X;)sin(nt + *„).

If S(t) converges everywhere a.s., then so does S*(t). Since Xn — X* is symmetric

and is independent of <E>„, this in turn implies by Billard's theorem [10, p. 49] that

P[S*(t) converges uniformly in t] = 1. Applying Corollary 3.2 and Theorem 4.1 of

[18] together with Corollary 2.8 of [20], it follows from the a.s. uniform convergence

of S*(t) that {an} satisfies (1.2), thus completing the proof.

Without the assumptions of symmetry and finite variance on X, the condition

(1.2) on {an} is, however, not sufficient for the a.s. uniform convergence of St/). To

give an example showing this, let an = n~a(a >{), E\X\x/a = oo and <J>„ = 0.

Then (1.2) is satisfied (see Remark 2.7 of [20]), but S(t) does not even converge a.s.

at t = j it, as is shown in the following

Proof of (1.3). Assume that S({-ir) = 2f n~"Xn sin(mr/2) converges a.s. Then

limm_>00(2w + l)~aA"2m+1 = 0 a.s. and hence E\X\1/a < oo by the Borel-Cantelli

lemma. To complete the proof of (1.3), we now assume conversely that /TlA"!'/" <

oo. First consider the case {- < a < 1 and note that our assumption implies that

E\X\ < oo. Since 2" n~a sin nt converges for every / (cf. [28, pp. 61, 70]), we can

assume that EX = 0. With this assumption, define

X'n — XJ[\Xm\<n«] — EXI[XJq<H.y

Since E\X\1/a < oo, it follows that

Í/?(n-«A-n')2</rÍA-2(   2    n-2")}
1 I        \\X\Kn' I)

<  CO,

1*1 <

and therefore 2 n~aX'n sin nt converges a.s. We note that since EX = 0,

JV N

2 «""(sin nt)EXIim<n.x - - 2 «""(sin ni)EXIm>n^
i i

= -ElX 2 n'" sin nt\.       (2.1)
I      n<min(N, |Jql/°) >

Since 2 n~a sin nt converges and E\X\ < oo, (2.1) implies that

N

2 «_a(sin nt)EXI^x^<naX converges as TV -» oo. (2.2)
i

Noting that /'[¡AJ < n" for all large n] = 1 by the Borel-Cantelli lemma, the a.s.

convergence of 2f° n~"Xn sin nt follows in the case \ < a < 1. The case a > 1 is

now treated in the following



58 JACK CUZICK AND T. L. LAI

Proof of Theorem l(ii). Since a>l,2f>M_a<00 and an application of the

three-series theorem shows that 2|«~"Arn| < oo a.s. if £"|^\"j1/" < oo. Hence the

desired conclusion follows.

Suppose that X is symmetric and has a finite variance a2 > 0. Then it follows

from the Paley-Zygmund theorem [10, p. 45] that for any sequence of constants a„,

P[ S(t) converges for almost every r] = 1 <=> 2 an < °°- (2.3)

In view of (2.3) we shall assume that {an} G I2 in connection with questions on the

a.s. convergence of S(t). Given {an} G I2, the following theorem gives conditions

on the tail distribution of X which guarantee the a.s. pointwise or uniform

convergence of the random Fourier series S(t) as defined in (1.1).

Theorem 3. (i) Let {an} G I2. If

2 E(min{\anX\2, l}) < oo,

then

P[ S(t) converges for almost every f ] = 1.

Conversely, if

either X is symmetric or e'*" is symmetric for all n,

then (2.5) implies (2.4).

(ii) Suppose that there exist nonnegative constants bn such that

(2.4)

(2.5)

(2.6)

2 alE(X2I[w<b^ < oo,    and for some 0 < 8 < 1,

f["(M\     2 a2E(X2Im<b
n=\

>"'t}'/!)/( /|log/|1/2}

2 E{min(\a„X\, l)/[m>*j} < oo,
n = \

and

then

2 \anE(XIm<bj)\\Ee^\< co,
n = \

P\S(t) converges uniformly in r] = 1.

dt < oo,     (2.7)

(2.8)

(2.9)

(2.10)

Remarks, (i) If the sequence {a2E(X2I^x^<bnX)} is nonincreasing, then (2.7) is

equivalent to

2 a2£(^Vl<M))12/{«0ogn)1/2}2
n = 2 * = ;

< oo (2.7*)

(see Remark 2.7 of [20]). In general, without the monotonicity assumption on

{a2E(X2Iüx¡<K])}, Marcus [17, Theorem 1] has shown that (2.7*) => (2.7).
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(ii) Under the symmetry assumption (2.6), (2.9) holds and (2.10) is equivalent by

Billard's theorem [10, p. 49] to

P\ S(t) converges for every t~\ = 1. (2.11)

(iii) Obviously  (2.7)  and (2.8)  imply (2.4).  On  the other hand,  if (2.4) is

strengthened into

2
n = 2

(oo ■) 1/2

2  £min(|«,A-|2, l)j     /{«(log«),/2} < oo, (2.12)

then by choosing

bn = | an\ - ' if an + 0       (b„ arbitrary if an = 0), (2.13)

it is easy to see that (2.7*) and (2.8) both hold.

As an immediate corollary of Theorem 3, we obtain the following

Corollary 1. Let {an} G I2 such that (1.2) holds. If EX = 0 and EX2 < oo, then

(2.10) holds.

Proof. The conditions (2.7)-(2.9) are satisfied with bn defined by (2.13), noting

that

OO OO

2 \an\E{\X\l{M>x]) <   2 a2nEX2 < oo.
n—1 n=1

As another application of Theorem 3(ii), we obtain the following result which

implies Theorem l(iii), (iv) and (viii).

Corollary 2. Suppose that {an} G I2 such that for some y > 0,

2<£(log«)1 + T<oo. (2-14)
i

For x > 0, define

rP(x) = mini« > 1:   2 \ak\ > x f a2(\ogk)x + A, (2.15)
{ k=\ k=n I

<p(x)=2K|- (2-16)
A:=l

Then <p(x) = o(x) as x -* oo. //£{|A"|<p(|A"|)} < oo and EX = 0, then (2.10) holds.

Proof. Without loss of generality we can assume that 2£L„ ak > 0 for all «.

Then xp(x)\cc. Define bk = inf{x > 0: x¡¿(x) > k). Then

(      /-Kl*l)      \)
^E{\akX\Ilm>bk]} = El\X\i   2j |at|) j = ^{|^|<p(|^|)} < ».      (2-17)
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and therefore (2.8) and (2.9) both hold, noting that EX = 0. Moreover,

2 E{a2X2(logk)x + ym<bki}<E[x2(     2     a2(logky + A\
fc-l {      \k-w\x\) I)

[ I <KI*1) \ )
<*ll*ll   .2   kllj>   by (2.15),

= E{\X\<p(\X\)} < oo. (2.18)

It is easy to see that (2.18) implies (2.7*). Therefore by Theorem 3(h), the desired

conclusion follows.

We note that for the case an = «"" (a > j), the condition (2.4) holds iff

£"|A|1/a < oo. Hence the first part of Theorem l(i) is a special case of Theorem

3(i). Moreover, this choice of an satisfies the condition (2.14) for all y > 0, and as

x —» oo,

<p(*)~Cax<,/">-1(logx)(I + Y)(1-a)/a       (£<a< 1),

~Calogx        (a=l), (2.19)

where Ca is a positive constant depending on a and <p is as defined in (2.16). Hence

Theorem 1 (iii), (iv) follow immediately from Corollary 2. Theorem l(ii)-(iv) can in

turn be used to check that />[2S° nx~aXn cos(nt + $„) converges uniformly in

t] = 1 in Theorem l(viii) and therefore the desired a.s. differentiability of

25° n~aXn sin(nt + 4>„) follows.

As another application of Theorem 3(ii), we obtain the following

Proof of Theorem 1(v). Assume that /sdAllog log(|A| + e)} < oo. Takeß > 1

and let bk = A:/(log k)ß for k > 3. Since ak = k~x,

OO

2 E{min(\akX\, l)/[m>*j}
* = 3

<2^[|A:-1A|>1]+£Í|A|(      2      k-\\.
1 I \bk<\X\<k I j

Noting that for all large |x|

2     k~x < 2 fc-'-jSlogloglxl,
bk<\x\<k \x\<k <.2\x\(\o%\x\f

we obtain (2.8). For all large «,

2 k-2E{x2im<bk]) < ( 2 k-2)E{x2im<br])
k=~n \k = n I

+ e\x2{ 2 k-2)ilm>J

= 0((log«)^)-

Since ß > 1, (2.7*) follows. Since the symmetry condition (2.6) is assumed, (2.9)

holds. Therefore the desired conclusion follows from Theorem 3(ii).
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The following simple example shows that it is not enough to replace the

symmetry assumption (2.6) in Theorem l(v) by the assumption EX = 0. In this

connection, it also illustrates the significance of the assumption (2.9) in Theorem

3(a).
Example. Let an = « ' and <&„ = 9, where 0 < 9 < it. Suppose that the random

variable X has the following distribution:

P[X = -l]= c,       P[X > t]= df°°f(x)dx   foTt>2,

where fix) = l/{x2(log x)2} for x > 2, and c, d are positive numbers defined by

the equations

c + d f°°/(x) dx=\,       c = d f°°x/(x) dx.

Then EX = 0 and

E{\X\(\og+\X\f)<co    ifj8<l,

= oo    if ß > 1. (2.20)

Define bk = &/{(log £)(log log k)}. Then by the argument used in the proof of

Theorem l(v), it can be shown that the assumptions (2.7*) and (2.8) are satisfied.

However, noting that S(t) = 2 «-IA"„ sin(«/ + 9) and that sin 9 ^ 0, we obtain

that
"    00

P[S(t) converges at t = 0] = P 2 n   xXn converges
i

= 0

by the three-series theorem, since

2 "   lEXJ[\n-,x„\<\]-2 "   lEXI[X>n] = 00.

In view of (2.20), the above example also proves the zero-mean part of Theorem

l(vii), and we have already proved Theorem l(i)-(v), (viii) by making use of

Theorem 3 and its corollaries. We now give the proof of Theorem 3, which we

preface by the following result of Marcus [19, Theorem 1.3]:

Lemma 2. Let {(Z„, 4>„)} be a sequence of independent bivariate random vectors

such that E(Znei">") = Ofor all « and 2,° EZ2 < oo. If for some 0 < 8 < 1

then />[215 Zn sin(nt + <!>„) converges uniformly in t] = 1.

dt < oo,

Proof of Theorem 3. Under the symmetry assumption (2.6), the equivalence

between (2.4) and (2.5) follows from the Paley-Zygmund theorem, as has been

shown in [10, p. 45]. We now use a different argument to prove (2.4) =* (2.5)

without the symmetry assumption (2.6). Note that (2.4) is equivalent to

2(a„A-„)2<oo    a.s. (2.21)
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(cf. [10, p. 27]). Hence (2.4) implies that with probability 1, {anXn cos $„} G I2 and

{anXn sin $„} G I2. Therefore by Carleson's theorem [2], (2.5) holds.

To prove (ii), let X'n = A„/[K|<iJ, A„" = XJm>Kt By (2.8), SrMTI < oo a.s.
(cf. [10, p. 27]). By (2.9) and the independence of {Xn} and {&„},

2 \anE(X'n cos *„)| + 2 WnE(X„- sin *„)| < oo.
i i

Therefore it suffices to show that

2 tf„(A„' cos 4>„ - EX'n cos ^>„)sin nt    and

2 ûn(A„' sin 4>„ — £'A'n' sin 4>n)cos nt    converge uniformly a.s.       (2.22)

Since   E(X¿)2 > max{Var(A„' sin <!>„),   Var(A„' cos <&,,)},   the   desired   conclusion

(2.22) follows from (2.7) and Lemma 2.

3. Conditions for unboundedness. Consider the random Fourier series

2 z„ sim> + *„), (3.1)
i

where {(Z„, $„)} is a sequence of independent bivariate random vectors. We say

that (3.1) is unbounded a.s. if

sup max
N '

2 Z„ sin(«f + *„) =  00 = 1.

In the case where Zne'*" are symmetric and

EZ* < C(EZ2)2 < oo    for some C > 0 and all n,

Kahane [10] showed that a sufficient condition for (3.2) to hold is

2*=i

2* + l-l

2    EZ2
n = 2k

1/2

= oo.

(3-2)

(3.3)

(3-4)

Recently Jain and Marcus [7] replaced the assumption (3.3) by the assumption

EZ2 < C(E\Zn\f < oo   for some C > 0 and all «, (3.5)

but they needed an additional assumption that EZ2\ (i.e., EZ2 be nonincreasing).

However, in our subsequent applications where we show that the moment condi-

tions in Theorem 1 are in some sense nearly minimal, the regularity conditions (3.3)

and (3.5) fail to hold. In the following theorem we remove these regularity

conditions and use the condition (3.4) in a slightly stronger form.

Theorem 4. Let {(Zn, <&„)} be a sequence of independent bivariate random vectors

such that

EZn = 0   for all n, (3.6)
OO

2 EZ2 < oo,    and (3-7)
i

oo 24 + ,-l

2 £     2    Zn = oo. (3.8)
*-1 n = 2*
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(i) If Zne'9" is symmetric for every n, then (3.2) holds, and consequently

63

2 Zn sin(ni + <!>„) converges at every t = 0,   and (3-9)

2 Zn sin(n/ + On) is the Fourier-Lebesgue series of a bounded function = 0.

(3.10)

(ii) If Zn and 4>„ are independent for every n, then (3.2), (3.9), and (3.10) still hold

(without any assumptions of symmetry).

Remarks, (i) Since EZn = 0, the Marcinkiewicz-Zygmund inequalities [16] imply

that there exist absolute constants A, B ( > 0) such that

AE\

2*=-'-l

2  z2
n = 2k

'/2-1

< E
2*+'-l

2      Zn
„ = 2*

<BE< 2  zl
n-2"

'/21

(3.11)

(3.12)

Hence the condition (3.8) is equivalent to

Since E{Ç2,%, Z„2)'/2} < {2™=/ EZ2}X/2, the condition (3.12) implies the condi-

tion (3.4).

(ii) Suppose that EZn = 0 and that (3.3) holds. Then by the Paley-Zygmund

inequalities [10, p. 24],

2*+i_i /2* + 1-l \1/2

2  zn>Ü   2  Ez2
n = 2k \    rt-2*

>(ï)-n(i.C-),

and therefore

2 /2* + 1-l \'/2

>(|)  min{l/6,(2C)-1}(    ^    EZ2\    . (3.13)
2* + 1-l

2   zn
n = 2*

Hence (3.8) is equivalent to the classical condition (3.4) under the assumption (3.3)

of Kahane.

(iii) Suppose that EZn = 0, EZ2\,, and (3.5) holds. Then as shown in [7, pp.

136-137], the condition (3.4) implies that

oo      2*+1-l

2      2    Zn = oo    a.s.,
fc-l      n = 2*

and therefore a fortiori (3.8) holds. Hence (3.8) is equivalent to the condition (3.4)

under the assumptions (3.5) and EZ2\ of Jain and Marcus.

We preface the proof of Theorem 4 by the following three lemmas.

Lemma 3. Let W be a symmetric random variable independent of the random

variables U and V. If | U\ is stochastically larger than | V\ (i.e., P[\ U\ > x] > P[\ V\

> x]for all x), then E\W + U\ > E\W + V\.
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Proof. Let F(w) be the distribution function of W and let g(x) = E\W + x\.

Since W is symmetric, g is an even function. Moreover, for x > 0,

g(x) = E\ W + x\= f   (\w + x\+\-w + x\)dF(w)

Je oo
max(w, x)dF(w).

o

Therefore g(|x|) is nondecreasing in |x|. Hence

E\W+ U\ = Eg(\ U\) > Eg(\ V\) = E\ W + V\.

Lemma 4. Suppose that the random variables £/,,..., Un are independent and

symmetric, and that the same is true for the random variables Vx, . . ., V„. If \U¡\ is

stochastically larger than \ V¡\ for i = 1, . . . , «, then

E\UX + ■ ■ ■ +U„\>E\VX + - ■■ +V„\.

Proof. By Lemma 3,

E\VX+ ■ ■■ +Vn\<E\(Vx+ ■■■ +Vn_x)+ U„\< •••  <E\UX + - ■ ■ +U„\.

Lemma 5. Let Ux, . . . , Un, /,,...,/„ be independent random variables such that

P[Ij = 1] = P[Ij = 0] =\forj = 1, . . ., «. Then E\L)_X Ujlj\ > \E\Zj_x Uj\.

Proof. Note that £|2ï Uj\ < E\Z"X IjUj\ + £|2,(1 - Ij)Uj\ and that IjUj and

(1 — Ij)Uj have the same distribution.

Proof of Theorem 4(i). First consider the particular case where 4>„ is uniformly

distributed in [0, 2ir] and Zn is symmetric and independent of i»„ (« = 1, 2, . . . ).

Define

/(x) = (l-|x|)+,       0(x)=  n/(2-"x),
n~0

Sj(t) =   2 Z„ö(2-^+2)«)sin(«/ + *„),
n = \

2'-\

S*(t) =   2 Z„0(2->«)sin(«/ + $„),       H* = max S*(t),
n—l *

Pj(t) = 2 2 ' Zn9(2-«+*n)sin(nt + $J, P/(t) = (Pj(t))+ ,
n-2>

tj = inf{t > 0: Sj(t) > ///}    (inf 0 = oo).

Then by an argument similar to that in [10, pp. 74-75], Sf+2(t) = Sj(t) + Py(t),

max, Sj(t) > Hf and therefore i, < oo; moreover, ///+2 - Hf > Sj*+2(tJ) - S/tj) =

Pj(tj). Since ///î (cf. [10, p. 74]), this implies that Hf+2 - /// > P/(tj), and

therefore

2//¿+2 > H*k+2 + H*k+ ,>//* + //* + 2 Pj+(tj). (3.14)
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We now show that as k —> oo,

El^P/itj)    ^oo,    and

vJip/(tj)} = o(i).

(3.15)

(3.16)

Let S, denote the a-field generated by {(Zn, <!>„): « < 2>' — 1}. Then the random

function Pj(-) is independent of ^ and /, is ^-measurable. Since 4>„ is uniform in

[0, 2tt] and is independent of Z„, it follows that PÁÍ) has the same distribution for

every fixed t, and therefore PXtj) has the same distribution as Pj(0). Moreover,

since Zn is symmetric, we have

EPj*(tj) = EPj+(0) = EPr(0) =\E\Pj(0)\. (3.17)

To prove (3.15), let /„ = /[|sin,.,>2-./i,. Then />[/„ = 1] = />[/„ = 0] =\ and

|Z„ sin <&„\ > 2_1/2|Zn/n|. Moreover ZnIn is symmetric and Z„ is independent of /„.

Therefore by Lemma 4,

E\Pj(0)\> 2~X'2E

>2-x/29({-)E

'I' Z„/nô(2-^2>«)
n = 2>

V* ' -1

2   zjr
n-2>

>jKl)E 2   z„
n = 2J

,   by Lemma 5. (3.18)

From (3.8), (3.17), and (3.18), (3.15) follows.

To prove (3.16), we first note that for y > i + 2,

EiP/itJPfit,)) = £{P,+(04^+(iy)|^]}

= (EP+^EP/Q)) = (EP+OMEP/itj)),

and therefore

P/{tj) and P,*(i¡) are uncorrelated if ji - j\ > 2.

Moreover,

Var />/(/,) < £|P7.(/,)|2 = £|/>,(0)|2 < * 2 ' EZ2.EZ2

n-2<

Using the inequality Var( U + V) < 2(Var (7 + Var F), we obtain that

(3.19)

(3.20)

Var   2/»/(',)    <2 Varí     2     P/(ry)]+Varf      2      */(*)]
>■ y odd,/'<* ' lj even,/'< A: ■<

< 4 2   £Zn2,   by (3.19) and (3.20).
71=1

(3.21)

From (3.7) and (3.21), (3.16) follows.



G6 JACK CUZICK AND T. L. LAI

From (3.15) and (3.16), it follows that

{^(i^^jj/^íi"^)}  -1    as*->oo. (3-22)

Using the inequality P[Y > XEY] > (1 - X)2(EY)2/(EY2) for 0 < X < 1  and

Y G L2 such that Y > 0 a.s. (cf. [10, p. 6]), we obtain from (3.22) that as k -+ oo,

2,Pj+(tJ)>\El2lPJHtj)

> P 2P/(tJ)>XE\2Pj+(tJ) > (1 - X)2 + o(l) (3.23)

for every fixed 0 < X < 1. From (3.15) and (3.23), it then follows that Pfê? Pj+(tj)

= oo] = 1. In view of (3.14), this in turn implies that />[lim-_>00 Hf = oo] = 1.

Since Hf < max, 2„<2> Z„ sin(n/ + <&„) (cf. [10, p. 74]), we have proved (3.2), and

therefore by Billard's theorem [10, p. 49], (3.9) and (3.10) also hold.

Now returning to general case where the (Zn, <ï>n) satisfy the assumptions of

Theorem 4(i), we note that since Z„e'*" are independent symmetric, it suffices to

prove the a.s. unboundedness of the random Fourier series

2 Z„e„ sin(nt
i

*»). (3.24)

where {e„} is a Rademacher sequence independent of the sequence {(Z„, $,,)}. Let

Zn = Z„e„. Then Z„ is symmetric and the assumptions (3.6)-(3.8) still hold with Z„

replacing Z„ (see Remark (i)). Hence we can assume without loss of generality that

Z„ is symmetric. Making this assumption and using the same argument as in [10, p.

77], we can reduce the problem of a.s. unboundedness of (4.1) to the a.s. un-

boundedness of

2 Z„ sin(«i + *„),
i

(3.25)

where {¥„} is an i.i.d. sequence of random variables uniformly distributed in

[0, 2tt\ and independent of the sequence {(Zn, $„)}. Since we have already estab-

lished the a.s. unboundedness of (3.25) with Z„ symmetric, the proof is complete.

Proof of Theorem 4(ii). Let {Z*} be a sequence of independent random

variables such that {Z„} and {Z*} are independent and Z* has the same distribu-

tion as Z„ for every «. Note that £|2*_, Za\ < £|2™_,(Z„ - Z*)| since {F, =

2?_, Z„, Y2 = 2?=/(Z„ - Z*)} forms a martingale. Moreover, (Z„ - Z*)e'*- are

independent symmetric. Hence by Theorem 4(i), (3.2), (3.9), and (3.10) hold when

Z„ is replaced by Z„ — Z*. By this implies that (3.2), (3.9), and (3.10) have to hold

(for Zn) since {Z„} and {Z*} have the same distribution.

We now apply Theorem 4 to the random Fourier series (1.1) where the Xn are

i.i.d.
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Theorem 5. Let {an} G I2 and assume that X is symmetric and nondegenerate.

Suppose that there exists t//: [0, oo) —> {1, 2, . . . } such that

\x2(     2     a2]
{     \wMxn    I

< oo,   and (3.26)
W\x\)

2{      min     \an\}G+(2k)=co, (3.27)
k=l  V 2k<n<2k + < >

where C^,(«) > 0 is the unique solution of the equation

nE(min{(XImx[)<n]/G+(n))2, \XIMX\}<n}\/%(>*)}) = 1 (3-28)

//A"/[lM|A.|)<n] is nondegenerate, and G^(n) = 0 otherwise. Then (3.2), (3.9), and (3.10)

hold with Zn = anXn.

Remark. Suppose that \an\¡, and that lim inf^ja^l/laj > 0. If 0 < EX2 = a2

< oo, then (3.26) holds and G+(«) ~ anx/2 for\p= 1; therefore with this choice of

4> and under the above regularity conditions on {a„}, (3.27) is equivalent to

oo    /2* + l-l        \1/2

2        2     «2        =oo, (3.29)
* = 1\   « = 2* /

which is in turn equivalent to the divergence of the integral in (1.2) under the

further assumption that 22 l2k ' a2| (cf. [10, p. 64] and Remark 2.7 of [20]).

The function G^ defined by (3.28) is related to the following result of Klass [11,

p. 166]:

Lemma 6. Let Y, Yx, Y2, . . . be i.i.d. random variables such that EY = 0 and

E\ Y\ > 0. Let S„ = 2? Y¡. For y > 1, let G(y) be the unique solution of

yE(min{(Y/G(y))2,\Y/G(y)\}) = 1. (3.30)

Then E\Sn\ = 2ESn+ and

|G(«) <E\S,\<. 2G(«).

Proof of Theorem 5. Let X'n = XJmx |)<2*, for 2k < « < 2k+x, and let X[ = 0.

By (3.26),

2 E(anX:)2 < 2 a2nEX2Iwxfí<n] =e\x2(     f     <¿)) < «•       <3-31>
1 1 (        \n = ̂ (|X|)      I)

By Lemma 4,

E
2*+1-l

2    anX'n
n = 2*

2*+1-l

2 x'„
n-2*

>  (        min        K|)J
v2*<n<2* + l '

I(     min     \an\)G^(2k)    for all large A:.
->v2*<n<2'

The last inequality follows from Lemma 6, noting that {A"„': 2k < « < 2k + x] is a set

of 2k i.i.d. symmetric random variables. Hence (3.27) implies that
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2*
k=l

2* + ,-l

2    anXn
n = 2k

= oo. (3.32)

In view of (3.31) and (3.32), it follows from Theorem 5 that (3.2) holds with Z„

replaced by anX'n. By the generalized contraction principle of Jain and Marcus [8,

Theorem 5.1], this in turn implies that (3.2) holds with Z„ = anXn in the case

<!>„ = 0, and the result then extends to the general $„ (which are independent of

the symmetric random variables Xn) by a theorem of Marcus [18, Corollary 3.2].

As an application of Theorem 5, we now give the proof of Theorem l(vi), (vii) in

the following

Corollary 3. (i) Let \ < a < 1, and let X have density

/«« = CJ {|x|(|x|log|x|)1/a},        |*| > e,

= 0,        \x\<e, (3.33)

where Ca is chosen so that f™^ fa(x) dx = 1. Then X is symmetric and

£{|A-|1/"(log+|A|)Y} < oo    if y < (1 - a)/a,

= oo    if y > (1 — a)/a.

Moreover, (3.2), (3.9), and (3.10) hold with Z„ = «~"A„. Hence with probability 1,

2^° n~aXn sin(«r + 4>n) converges a.e. but not everywhere.

(ii) Let 1 < ß < 2, and let X have density

fix) = C/ {x2(log|x|)(log log|x|)^},        \x\ > e',

= 0,       |x|<e£, (3.34)

where C is chosen so that /"„, fix) dx = 1. 77ie« X is symmetric and

£{|A-|[loglog(|A-|+e)]1'} <oo        ify<ß-\,

= oo        if y > ß - 1.

Moreover, (3.2), (3.9), and (3.10) hold with Z„ = n~xX„. Hence with probability 1,

2f° «_IA"n sin(«r + 3>n) converges a.e. but not everywhere.

Proof. Let an = n~a, and let \p(x) be the smallest integer > xx/a if x > 0,

setting \p(0) = 1. Since ¿'lA"!'/" < oo, (3.26) holds and it follows from Theorem l(i)

that P[S(t) converges a.e.] = 1. Defining G^,(n) as in (3.28) and making use of the

density functions (3.33) and (3.34), it is easy to show that

G^(n) ~ /)„«"/ (log «)    for a < 1 (i.e., the case (3.33)),

~ Dan/ {(log n)(log log n)ß~l)    for a = 1 (i.e., the case (3.34)),

(3.35)

where Da is a positive constant. Noting that ß — 1 < 1, we obtain (3.27) from

(3.35). Therefore by Theorem 5, (3.2), (3.9), and (3.10) hold with Z„ = n""A"„.

4. Law of the iterated logarithm related to local behavior. In this section we shall

assume that EX = 0 and £A"2 < oo, and we shall study the local behavior of the

series (1.1) with

an = <?(«-") (4.1)
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for some a > j. An obvious modification of the proof in §2 shows that parts

(ii)-(v) and (viii) of Theorem 1 can be extended to cover the case (4.1). Hence S(-)

is a.s. continuous, and in the case a > 3/2, S(-) is a.s. continuously differentiable.

A useful tool in our analysis is the following well-known bound, due to Salem and

Zygmund [25], for the maximum of a random trigonometric polynomial.

Lemma 7. Let k be a positive integer and let U0, Ux, . . ., F0, Vx, . . . be random

variables. Let P(t) = 2q Un sin(«r + Vn) be a random trigonometric polynomial of

degree < k. Let M = max, |.P(0|. Then there exists a random interval I of length not

less than (2k)~x such that minteiI\P(t)\ > \M. Consequently for every X > 0,

Ee™'2 < 2k f2'(&^') + Ee~™^) dt.

In the case where X is subnormal (i.e., Ee™ < exp(jX2) for all X), Kahane [9]

made use of the above Salem-Zygmund bound to estimate the order of magnitude

of the modulus of continuity of S(). By using a truncation technique together with

a modification of Kahane's argument, we can remove the subnormal assumption

on X in the following

Theorem 6. Suppose that {an} satisfies (4.1) for some \ < a < § and that EX = 0

and EX2 < oo. Then with probability 1,

sup   \S(t)- S(t')\= 0({«2"-'|log«|}1/2)   ashiO. (4.2)
\t-t'\<h

Proof. Let a2 = EX2. Define

X'n   =   A„/[|^|<„./2(log2„)-l/2]   -   £A'/[|A-|<nl/2(log2„)-'/2j,

X*   = XnI\^x^>ny/i(Xo%2n)-,,i^.

We note that

S(t) = 2 a„X'n ún(nt + *„) + f <*„*; sin(nt + 4>„)
i i

oo

+ 2 a„{EXI[m<nm{Xos2n)->n$sin(nt + í>„)
i

- Sx(t) + S2(t) + S3(t),    say.

Since I^AV^i^.^g;,,,)-,^! < (£A"2)(log 2«)1/2/«1/2, and since

|sin(x + y) - sin x\ < 2 min(l, \y\), (4.3)

we obtain that for \t — t'\ < «

\S3(t)-S3(t')\<2(EX2){    2    «1/2«N(log2«)1/2+    2    |an|(log2«)1/2/«'/2)
"■ n<h~x n>h~l '

= G(«"-,/2|log«|1/2),   by (4.1). (4.4)

The finiteness of EX2 implies that

2("log2«)-,/2/s|An"|= e\\X\ 2 («log2«)-1/2| < oo,
1 y   n'/2(iog2n)-i/2<ixi >
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and therefore 22x>(« log «)~1/2|A"n"| < oo a.s. In view of (4.1), this in turn implies

that with probability 1,

"-'^(logm)-'/2 2  \anX:\=0(\),   and (4.5)m

2 n\anX¿'\= o(w3/2-"(log w)1/2)    by the Kronecker lemma.        (4.6)
n = i '

From (4.3), (4.5), and (4.6), it follows that with probability 1

sup    |S2(/)-S2(/')|<2Í«   2   n\anX;\+    2   K*"„"|)
\'-''\<h V     „<A-i „>A-i 1

= 0(«"-'/2|log«|1/2). (4.7)

We now consider Sx(t). Given a positive integer m, define vQ = 0, vk = m2k~x,

Nk = 2"k, and

PkO) =        2       anX'n sin(«/ + $„),
Nk<n<Nk+,

K = sU\ogNk+l)/(     2     «~2a)]I/2.
I \Nk<n<Nk + l I)

where 8 is a positive constant (not depending on m and k) to be specified later. In

view of (4.1) and the bound |A"„'| < 2n1/2(log 2«)~1/2, we can choose 8 sufficiently

small so that

(XkanX'n)2 < 1    for Nk < n < Nk+U k m 1, 2,.... (4.8)

If Z is a random variable such that EZ = 0 and \Z\ < 1, then it is well known that

E exp(rZ) < exp{\t2(EZ2)(\ + ^\t\)}    for |r| < 1 (4.9)

(cf. [15, p. 255]). In view of (4.1), (4.8), (4.9), and the fact that £{A"„' sin(«r + $„)}2

< a2, we can choose 8 sufficiently small so that

E exp{XkPk(t)} II       E exp^A-; sin(«i + $„)}
Nk<n<Nk + ,

< exp(| log A^+,)    for all k and t. (4.10)

Replacing X'n by - X'n in (4.10), we also obtain that

E exp{ -X,/>*(/)} < exp(i log Nk + X). (4.11)

Let Mk = max,|.Pfc(i)|. It then follows from (4.10), (4.11), and Lemma 7 that

E exp(\XkMk) < 2Nk+x C%'E(eXkPk^ + e'^^) dt

<8wexp(|logATt+1). (4.12)

In view of (4.12), we can choose a sufficiently large positive constant C (not

depending on m and k) such that for all k > 1,
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maxax|/>,(0|>C(log^+1)1/2(       2        n-A'
\Nk<n<\k+l I

< exp{ -\8C(\og Nk+x)}Eexp(\XkMk) < Nk2x. (4.13)

Noting that P¿(t) = - 2f'   ' nanX'n %in(nt + 4>„ - \tt), we can use a similar argu-

ment and choose C sufficiently large so that

1/21
maxiax|P¿(r)| > C(log Nx)l/2( 2   n2'2") ' <NX- (4.14)

By the argument of Kahane [10, pp. 66-68], the estimates (4.13) and (4.14) can in

turn be used to show that with probability 1

sup   15,(0 - 5,(01 = G(«"-'/2|log h\x/2).
\t-f\<h

(4.15)

From (4.4), (4.7), and (4.15), the desired conclusion (4.2) follows.

While the modulus of continuity sup|,_,,|<A|5(í) — 5(i')| can be effectively

estimated by the preceding argument involving the Salem-Zygmund bound for the

maximum of a random trigonometric polynomial, this approach fails to handle the

more delicate problem of the law of the iterated logarithm related to the local

fluctuation of 5(0 — S(t0) as t —» /„. Instead of a single logarithmic term as in (4.2),

the local behavior of 5(0 as t —* t0 involves a log log term as in (1.8). To establish

such iterated logarithm results, we shall use the Salem-Zygmund bound in another

way together with an embedding technique to reduce the problem to the Gaussian

case where we are able to obtain precise estimates of the local fluctuation of the

Gaussian process by proving certain properties of its covariance function.

We first note that

S(t0 + «) - 5(0 = 2 fl„A„{sin(«/0 + «« + $„) - sin(«r0 + $„)}
i

oo

= 2 an{Xn sin(«/0 + 3>„)}(cos «« - 1)
i

oo

+ 2 <*n{X„ cos(«'0 + <!>„)}sin nh
i

= (/,(«) + U2(h),   say.

Hence if it can be shown that

P\ui(h)= oflAp-'^Ooglogl/tl-'y^JasA^ol = 1

for/ = 1, 2, then

S(t0 + «) - 5(/0) = o(|«|a-1/2(log logl«!-1)'72)   a.s.

(4.16)
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Since cos «« - 1 = sin(-w/2) - sin( — it/2 + ««), both Ux(h) and U2(h) can be

written in the form Z(«) — Z(0), where

Z(i) = 2 b„Yn sin(nt + 9), (4.17)
i

and bn, 9 are constants and {Yn} is sequence of independent zero-mean random

variables. The following theorem gives conditions on b„ and Yn for the law of the

iterated logarithm to hold for Z(0 as t -> 0. It also includes Theorem 2 as a special

case and gives the law of the iterated logarithm (1.8) in the stronger form of an

integral test.

Theorem 7. Suppose that Yx, Y2, . . . are independent random variables such that

EYn = 0, EY2 = a2 < oo for all n, and

n

liminfn-^o^O. (4.18)
n—»oo -

Let \ < a < \, and assume that

sup£{F„2(log+|Fn|y} <oo (4.19)
n

for some p > (6a + l)/(2a — 1). Let bn, 9 be constants and define the random

Fourier series Z(t) as in (4.17). Let

oo

0,(0 = E(Z(t + s) - Z(s))2 = 2 b2a2{sin(n(t + s) + 9) - sin(ns + 9)}2.
i

(4.20)

Assume that

2  \h-bk+x\=0(n-°), (4.21)
k = n

and that there exist positive constants c and 8 such that

vs(t) > c\t\2a~x   for all \t\ <8and \s\ < 8. (4.22)

Let g be a positive nonincreasing function on (0, a] with a > 0. Then

P[\Z(t) - Z(0)| < Vy2(t)g(\t\)for all small \t\>0] = lorO        (4.23)

according as

f t-x(g(t))(3-2a)/i2a~ncxp{ -¿g2(0} dt < oo or = oo. (4.24)
•'0+

The proof of Theorem 7 depends on the following lemmas.

Lemma 8. Let  {U(t), \t\ < 1} be a real separable Gaussian process such that

EU(t) = Ofor all t. Define

o2(t) = E(U(s + t) - U(s))2. (4.25)

Assume that there exist positive constants ß < 2, \ < y < 1, c, < c2, and 8 such that

for all \t\ < 8, \s\ < 8 and \h\ < 8,
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o2(0 > cM*    and (4.26)

|a2(/ + «) - a2(h)\ < c2|/|nmax{|/|, \h\)f-™. (4.27)

(i) Let g be a positive nonincreasing function on (0, a]. Then

P[\U(t) - U(0)\ < a0(t)g(\t\) for all small \t\ > 0] = 1 or 0

according as 1(g) < oo or = oo, (4-28)

where 1(g) = /u+ t-l(g(t)f2/ß^xexp{ -\g2(t)} dt.

(ii) Let Z(t) = Z(0) + U(t) - U(0) + R(t), where {R(t), \t\ < 1} is a stochastic

process such that with probability 1

R(t) = o(|r|*/2(log log|/|-*)'I/J)   as t ->0. (4.29)

Then (4.28) still holds when U(-) is replaced by Z(-).

Proof. To prove (4.28), we shall restrict to the case / > 0, as the case t < 0 is

obviously analogous. Since o2(0) = 0, (4.27) implies that

aj(t) < c2\t\ß   for all |/| < 8 and |j| < 8. (4.30)

We shall use the following transformation of Nisio [22, p. 320]:

Y(n + t) = {U(2~n - t2-"-x) - U(0)}/a0(2-" - t2~n-x),

0 < t < 1, n = 1, 2,_      (4.31)

Clearly EY(t) = 0 and £T2(0 = 1. For n > «0 (sufficiently large) and s, t G [0, 1],

E{ Y(n + t) - Y(n + s)}2 = E(W - V)2, (4.32)

where

W= {U(2~n - t2-"-x) - U(2~" - s2-"~x)}/a0(2-n - ¿T"-').

V = [U(2-n - s2-"-x) - U(0)}

■ {(a0(2"" - s2-"-x))~l - (a0(2- - ß— ,))~1},

and by (4.26) and (4.30),

(c,/c2)|i - sf < EW2 < (c2/c,)|i - s\ß; (4.33)

moreover, by (4.26) and (4.27),

EV2 =
{o2(2-" - /2—■) - a2(2-" - .2—')}2

(a0(2-" - t2-"~x) + 0-0(2-" - s2-"-x)}o2(2- - t2~"-x)

< c2(2-"-x\t - s\)^ß2-^x-^ß"/ {c22-2«"+»}

< (2^c2/c,)2|i - s\2yß. (4.34)

Since 2(EW2 + EV2) > E(W - V)2 > EW2 - 2(EW2)X/2(EV2)X/2 and since 2y

> 1, it then follows from (4.32)-(4.34) that there exist positive constants C2 > C,

and 8* such that for all n > n0 and s, t G [0, 1] with \t - s\ < 8*,

Cx\t - sf <E{ Y(n + 0 - Y(n + s)}2 < C2|/ - $f.
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For u, v G [0, 1] and n > «0, noting that

2-"-x(u + v) < {2~n+x - (1 - v)2-"} - {2~n - u2-"-x) < 2_"(« + »),

a similar argument as before shows that for u + v < 5*,

C,(h + vf < £{ r(n + u) - Y((n - 1) + (1 - v))}2 < C2(u + v)ß.

Hence for all t, s > n0 + 1 such that \t — i| < 5*,

C,]r - sf < E(Y(t) - Y(s))2 <C2\t - sf. (4.35)

Using the identity 2 Cov(A, Y) = Var A + Var F - Var(A" - y), we obtain that

for m > n > n0 and s,(£ [0, 1],

2\E{(U(2-" - t2~n-1) - U(0)){U(2-m - s2-m~x) - U(0))}\

= |a2(2-m - Í2-"1-1) + o2-„_t2-.->(-2-" + /2-"-')

-a2-„_,2-„-,(-2-" + t2-"-x + 2~m - s2""-x)\

< c2(2~mß + 2-'"^-«(i-r)^))      by (4.27) and (4.30). (4.36)

From (4.26) and (4.36), it then follows that for m > n > n0 and s, t G [0, 1],

\E{Y(n + t)Y(m + s)}\ < (2x+ßc2/cx)2-^-x/2^m-"\ (4.37)

In view of (4.35) and (4.37), we obtain by a theorem of Quails and Watanabe [24,

pp. 2034-2035] that if « is a positive nondecreasing function on [1, oo) then

P[ | Y(u)\ < h(u) for all large u] = 1 or 0

according as

(""(«(tO/^-'expl-j«2^)} du < oo or = oo.

Applying the change of variable t = t(u) = 2~" — 2~"~l(u — «) for « <«<« +

1 (« = 1, 2, . . . ) to the integral above and defining g(r) = h(u), we obtain (4.28)

with / restricted to positive values.

To prove (ii), we first note that by (4.26) and (4.29), R(t)/a0(t) =

o((log log|/|-')_1/2) a.s. A standard argument (see for example the proof of

Theorem 5.1 of [6] and Lemma 1.4 of [24]) first reduces the problem to the case

where (log log t~x)x/2 < g(t) < 2(log log rx)x'2 so that R(t)/a0(t) = o(\/g(t))

a.s., and then proves (ii) from (i) under this additional assumption on g.

Remark. For the special case where U(t) is stationary, Sirao and Watanabe [26,

Theorems 4, 5] have established Lemma 8(i) under the further assumption that

a2(0 is concave and nondecreasing for t > 0. This assumption of concavity and

monotonicity of a2(/) is rather stringent in view of our applications, and we are

able to replace it by the assumption (4.27) using the argument above.

Lemma 9. Let y > 0. Suppose that Yx, Y2, . . . are independent random variables

such that EYn = 0 for all « and (4.19) holds for p > 4(1 + y) + I. Letting EY2 =

a2, assume that (4.18) holds. Then redefining the Yn on a new probability space if

necessary, there exist independent normal random variables |,, £2, . . . on the same

probability space such that £„ has mean 0 and variance a2 (n = 1,2,...) and

(2y,-2ê,)/{«1/2(log»)-Y}-^0   a.s. (4.38)
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Proof. Let/(0 = t/(\og t)4iX+y\ and let v„ = 2, of. The conditions (4.18) and

(4.19) imply that

c,« < vn < c2n    for some c2 > c, > 0 and all «, and (4.39)

2 (/(üj)-1£{y„2/[y„2>/(„„)]}<oo. (4.40)

Hence by a theorem of Strassen [27, Theorem 4.4], there exists a standard Wiener

process W(t) such that (redefining the random variables on a new probability space

if necessary) with probability 1

2 F, = W(vn) + o{(logvn)(vJ(vn))l/4) (4.41)

Setting £, = W(v„) — W(vn_x) (v0 = 0), the desired conclusion (4.38) follows from

(4.39) and (4.41).

Lemma 10. Let {bn} be a sequence of constants such that b„ = 0(n~a) for some

a > j. Let {Yn} be a sequence of independent random variables such that EYn = 0

for all n and (4.19) holds for some p > 1. Let {í»„} be a sequence of independent

random variables which are also independent of the sequence {Yn}. Then with

probability 1,

sup
t

2  bnY„ sm(nt + %)
2*<n

= 0(kx^22-k^-^2)). (4.42)

Proof. Define F„" = YnI^>(n/Xo%n)u,x and let Y'n = Y„ - F„" - EY;. Using

the assumption that (4.19) holds for somep > 1, it is easy to show that

2(«log«)"1/2£|F„"|< oo, and (4.43)

2  \bn\ \EY:\=o[ 2 n-a~x/2) = 0(m~a+x/2). (4.44)
n = m \ n — m J

By (4.43), the fact that bn = 0(n~a), and an argument similar to (4.5), we obtain

that with probability 1

2   \bny:\= 0(m-("-1/2)(logm)1/2). (4.45)

Note that EY'n = 0 and sup„ E(Y¿)2 < oo. Therefore using the exponential bound

(4.9) and an argument similar to that in Theorem 7 (see (4.10)-(4.13)), we can

apply the Salem-Zygmund bound in Lemma 7 to show that

max
t

>C{2-*(2"-1>(log2fc+1)} 1/2 - 0(2-*/4),2       6„F;sin(«/ + 4»„)
2*<7!<2t+1

where C is a sufficiently large positive constant. Hence by the Borel-Cantelli

lemma, it follows that with probability 1

sup    2  bnY'n sin(«i + <3>J = 0(fc1/22-*("-'/2)).
'       2k<n

From (4.44), (4.45), and (4.46), the desired conclusion (4.42) follows.

(4.46)
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Lemma 11. Let \ < a <§ and let {bn} be a sequence of constants satisfying (4.21).

Let y be a real constant. Then

b, = 0(«-"), (4.47)

2 «3/2|A„ - An+1|(log«)_Y = 0(m^2-a(\ogm)-y),   and        (4.48)
1 = 2

2 rtx'2\bn - A„+1|(log n)~y = 0(/«-<"-1/2>(logm)-r). (4.49)

Proof. Let An = 2£L„|AA: - bk+x\. Since |¿>„| < An, (4.47) follows. Since

n\\ogn)-y - (n - \)\\og(n - \))~y ~Xnx-\\og n)~y

for X ={- or |, and since An = 0(n~"), we obtain (4.48) and (4.49) by using

summation by parts.

Proof of Theorem 7. Since p > (6a + l)/(2a — 1), we can choose n and y

such that

7,(«-i)>i,       y>tj(|-a), (4.50)

and /» > 4(1 + y) + 1. By Lemma 9, redefining the random variables on a new

probability space if necessary, there exist independent normal random variables £„

such that E£n = 0, Ei2 = of and (4.38) holds. Let

U(t) = 2 b¿n sin(nt + 9). (4.51)
i

Then E(U(t + s) - U(s))2 = vs(t), where os(/) is as defined in (4.20). We now

show that 1/(0 satisfies the condition (4.27) with ß = 2a — 1.

By (4.19), of = O(l), and by Lemma 11, b„ = 0(«~"). Moreover,

|t>,(/ + «) - t>,(A)|
OO

< 2 ^^|sin(nr + «(« + i) + 9) - sin(«(/t + 5) + ö)|
1

X {|sin(«(r + h) + ns + 9) - sin(ns + 9)\

+ \sin(nh + ns + 9) - sin(ns + 9)\).    (4.52)

First consider the case \h\ < \t\ and |i| > 0. Then by (4.3) and (4.52),

\vs(t + h) -vs(h)\ <8Í    2    è2a2«2|/|(|/|+2|«|)+    2    bfof]
l n<|ir' n>\'\~' '

<C|i|2a_1    if|«|<|f|<S,

for some positive 8 (sufficiently small) and C (sufficiently large). Hence (4.27) holds

in this case. Now consider the case a > 1 and |«| > |f| > 0. Then by (4.3) and

(4.52),

\vs(t + «) - vs(h)\

<8Í3|r||A|    2    "2bfof+\t\        2 nbfof+     2    bfof]

< C\t\ \h\2a~2   ifO<|i|<|A|<«.



ON RANDOM FOURIER SERIES 77

Since 1 > (2a - l)/2, (4.27) still holds. For the case a = 1 and |A| > \t\ > 0, take

\ < y < 1 and note that by (4.3) and (4.52),

|„,(/ + A)-«>,(A)|<c(|f||A|    2     1+ 2 (n\t\)yn-2+    2    «"2)
I n<\h\~' |A|-'<n<|i|-' n>\'\~' '

< 3(1 - y)-1C|i|Y|A|1~1'   if 0 <|í| <|A| < 8.

Finally, for the case a < 1, we obtain by (4.3) and (4.52) that

\vs(t+h)-vs(h)\<c\\t\    2    "'-2a+    2    n-A

< (1 - a)-x(a — i)-1C|i|2a_1    if 0 <|í| < 8.

Hence (4.27) again holds.

In view of (4.22) and (4.27), U(t) satisfies the assumptions of Lemma 8 with

ß = 2a — 1. Hence by Lemma 8, it suffices to show that for some p > 0,

Z(0 - Z(0) = I/(r) - (7(0) + R(t)

with/?(0 = o(|fr~1/2/(log|ir1)P)    a.s.       (4.53)

Let 5„ = 2Ï F, and 5„ = S„ - 2Ï (,. By (4.38), with probability 1,

5„ = 0(«1/2(log«)-Y). (4.54)

Let m = m(t) be the positive integer of the form m = 2k defined by

m = 2k <\t\~'(log|t\'y < 2k+x. (4.55)

By Lemma 10, with probability 1,

sup 2    b„Y„sin(ns+9)
= m+l

+ sup 2    b¿„sin(ns + 9)
n = m + \

= o(a'/22-*<"-'/2>) = odíi-'^oogiír1)-^"1^^

Let An(/) = sin(«i + 9) — sin 9. Summation by parts gives

)•      (4.56)

2 A„Fn{sin(«i + 0)-sin0}
«-i

m-l

= Am5mAm(0+  2 {bA„(t)-bn+xAn+x(t)}Sn
n-l

- 2 htn{sin(nt + 9)-sin 9} + bmSmAm(t)
n-l

i-l

+ 2 {bnK(t)-bn+An+x(t)}s„.
n-l

(4.57)
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+ 1

Since 14,(01 < 2|sin(n//2)| and |A„(0 - An+,(0| < 2|sin(i/2)|, we obtain that

m-\ m-\

2 IAA.W - *.+A+i(0| |4| < 2 2 \K - bH+l\ |sin(«//2)| |5„|
n-1 n-1

ffl-1

+ 2|sin(//2)| 2  \bn+lS„\- (4-58)
n-1

From (4.54), (4.55), and the fact that bn = 0(n~a), it follows that with probabil-

ity 1

bmSmAm(t) = 0(|ir-1/2(log|/|-1)-"(a-1/2)-Y),   and (4.59)

m—\ im \

I'l 2 \bn+A\= 0[\t\^ n-^2(\ogn)-y\
n=l V      n = 2 /

= 0(|/r-,/2(log|/|-1)"(3/2-a)_1'). (4.60)

Moreover, by (4.3), (4.54), (4.55), and Lemma 11,

2 \b„ - bn+x\ \sin(nt/2)\ \S„\  - ol\t\     2      "3/2\b„ ~ bn+x\(log «H
n = 1 \      2<n<|<|_l /

OÍ    2    nl/2\bn-bn+x\(logn)-y)
V»>|f|-' /

= o(\trx/2(log\t\-xyy). (4.61)

From (4.50) and (4.56)-(4.61), it follows that (4.53) holds for some p > 0, and the

proof is complete.

As an immediate application of Theorem 7, we obtain the following

Corollary 4. With the same notations and assumptions as in Theorem 7, write

log2 x = log log x and log^ x = log(logfc_, x)for k > 3. Then for k > 5,

|z(0 - z(0)| < o¿/2('){2 lofci/f1 + I^LLiogji,!-1

-i _n1/2
+ • • • + 21ogk_,|i|      + (2 + 8)logk\t\   ')

for all small \t\> 0

= 1 or 0 according as 8 > 1 or 8 < 1.

We now apply Corollary 4 to give the following

Proof of Theorem 2. Since an\,, 2£_„|a* — «*+1l = a„ and therefore {a„}

satisfies the condition (4.21). Without loss of generality we shall assume that o > 0.

Then (4.18) holds. We now show that the condition (4.22) is satisfied by

oo

VÂ0 = o2^n~2a{sin(nt + ns) - sin ns}2.
i
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Note that for t =£ 0,

vs(t)>4o2(sin^)2(-^-)' 2 cos2(\nt + ns).      (4.62)
V */   V B|f| / r/4«i|*|/2<5ir/16

For s # 0, let Px, . . ., Pm be m points placed consecutively (in the counterclock-

wise direction if s > 0 and in the clockwise direction if 5 < 0) on the unit circle

such that the arc joining P¡ and Pi+l has length \s\. Then as m -» oo and s —»0, the

number of points P¡ falling in a given arc of length ir/16 is asymptotic to m/32,

uniformly in the position of the initial point Px. Hence in view of (4.62), there exists

8 > 0 sufficiently small such that for 0 < |/| < 8 and 0 < |s| < 8,

Therefore (4.22) holds with t ^ 0 and í =£ 0. Clearly (4.22) also holds when / = 0.

The case s = 0 is contained in

«o(0 ~ K"2\tf"~X   as t -> 0, (4.63)

where Aa is as defined by (1.9) with A, = 7r/2.

To prove (4.63), we note that for 0 < a < b,

\t\2a 2 M~2asin2»/

a|/|-|<n<A|/|-'

~\t\2a-,jbx-2°sin2xdx   M|rJ-»0 + . (464)

Moreover, as |/| -» 0 + ,

2     n~2a sin2 nt < t2    2     «2_2a ~ (3 - 2a)~ V-2"|/|2a_1,     (4.65)

n<a\t\~' n<a\t\~'

and

2     «-2"~(2«-l)-1(|/|/A)2a-'. (4.66)

n>fc|/|"'

Therefore letting a|0 and b -» oo in (4.64)-(4.66), we obtain

o0(0~o2|/|2a_1 f°°x-2"sin2x</x

= (7r/2)a2|/|2a-',    ifa=l,

= ^ao2|/|2"-1,    ifa*l(¿<a<f)

(cf. [3, p. 319]). Hence (4.63) follows. The desired conclusion (1.8) then follows

from Corollary 4.
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