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FREE MODULAR LATTICES

BY

RALPH FREESE1

Abstract. It is shown that the word problem for the free modular lattice on five

generators is recursively unsolvable.

In this paper we show that the word problem for the free modular lattice on five

generators, FM(5), is unsolvable. That is, there is no algorithm which can decide

for arbitrary lattice terms u and o in five variables if u = v holds identically in all

modular lattices. In fact, we show that there is a fixed lattice term u0 in five

variables such that there is no algorithm for deciding if u0 = v holds in all modular

lattices for an arbitrary five variable lattice term v.2

The free modular lattice on three generators, which is finite, was described in

1900 by R. Dedekind [7] and G. Birkhoff observed that FM(4) was infinite [2].

Interest in the word problem for free modular lattices greatly increased after P.

Whitman's solution of the word problem for free lattices appeared [36]. Some

partial results were obtained by K. Takeuchi [34], [35] (see Whitman's article [39]).

Positive solutions were announced by Schutzenberger [33] and Gluhov [17] but

these were refuted by Jonsson (see [38]) and Herrmann [20].

Interest in this problem was renewed in the late sixties partly because the wide

applicability of Whitman's results was becoming apparent. Perhaps the most

important result was that of G. Hutchinson and, independently, L. Lipshitz that

there is a finitely presented modular lattice with unsolvable word problem [24], [41].

Hutchinson went on to show that this presentation could have five generators and

one relation [25]. Moreover his results apply to many subvarieties of the variety of

all modular lattices.

Certain positive results were also described. R. Wille characterized those par-

tially ordered sets P such that the modular lattice freely generated by P is finite

[40]. C. Herrmann and A. Huhn have shown that for certain varieties of modular

lattices generated by submodule lattices the word problem for the free lattices in

these varieties is solvable [22]. Interestingly there is a nonempty intersection of

these varieties and those to which Hutchinson's results apply. In particular the

variety  é£  generated by all subgroup lattices of abelian groups has a finitely
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82 RALPH FREESE

presented lattice (five generators, one relation) with an unsolvable word problem.

However its free lattices have solvable word problems. This explains to some extent

why it was difficult to show FM(5) has an unsolvable word problem. This is

discussed more fully in §3.

There have been many recent results on four-generated modular lattices. Nota-

bly C. Herrmann has been able to effectively list all four-generated, subdirectly

irreducible modular lattices in the variety G generated by all complemented

modular lattices [19]. Hence four-generated finitely presented lattices in G have

solvable word problems but not for five generators since Hutchinson's result

applies here. Herrmann has also shown that the modular lattice freely generated by

two complemented pairs has a solvable word problem [21]. Some of the papers in

the references have additional results related to free modular lattices.

The basic idea of our proof is this; associated with each 4-frame (definitions

below) in a modular lattice is a ring with identity element. If ft is a ring with

identity and if L(R4) is the lattice of submodules of R4 as a left R-module, then

L(R4) has a 4-frame whose associated ring is R. Let R be a ring that contains a

finitely presented group with an unsolvable word problem. Let / be a homomor-

phism from FM(A") onto L(R4). It is possible to find a 4-frame in FM(A") which

maps under/ to the 4-frame in L(R4). Unfortunately it is not possible to pull very

much of the ring R back through/into FM(A') (see §3).

In [14] it is shown that the lattice L obtained by gluing L(F4) and L(K4) together

over a two-dimensional quotient (à la Hall-Dilworth) is not in the variety generated

by the finite modular lattices if F and K are countable fields of different prime

characteristics. If we now let / be a homomorphism from FM(A') onto L it is

possible to bring back through / those elements of F which are lined up with the

prime subfield of K in the gluing. It is now natural to try to glue L(R4) to L(S4) in

this manner, where R contains a group (or semigroup) with unsolvable word

problem and S is some ring. For the ring R used by Hutchinson (the endomor-

phism ring of an infinite-dimensional vector space) this is not possible, essentially

because the automorphisms of L(R2) come from those of R [31]. However for a

countable division ring D, L(D2) is the two-dimensional lattice with countably

many atoms, Ma. Of course this lattice has many automorphisms not induced by

D. Although it seems unlikely that a group with unsolvable word problem could be

embedded into a division ring, A. Macintyre, using some constructions of P. M.

Cohn, has shown that if F is a finitely generated free group and A7 is a finitely

generated normal subgroup of F then there is a division ring D containing F and

an element / G D such that if wë F then w G N if and only if wt = tw in D.

Using the lattice L as above with L(D4) in place of L(F4) we are able to pull this

same situation back into FM(5), proving that its word problem is unsolvable.

In this paper we use + and juxtaposition for the lattice operations. This

simplifies the apparent complexity of the lattice terms and makes it easier for the

reader to refer to [14]. For rings interpreted into modular lattices we use © and ®

for the operations. Other than this, our notation is taken from [4]. In particular for

a > b G L, a/b denotes the quotient sublattice {x G L: a > x > b}. If a + d = c
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and ad = b we say that a/b transposes up to c/d and write a/b ? c/d. We also

write c/d \ a/b.

We would like to point out that the proof of our theorem depends on some

ingenious results of others. We use John von Neumann's results on coordinates in

modular lattices, A. Macintyre and P. M. Cohn's skew field constructions, and the

modular lattice-theoretic construction of Marshall Hall and R. P. Dilworth. We

would also like to thank Bjarni Jónsson. Our lattice L was originally constructed to

solve his innocuous sounding problem "are there uncountable distributive sub-

lattices of free modular lattices?" [28], [14].

1. Preliminaries. A subset {ax, . . . , an, cX2, . . ., cXn) of a modular lattice L is

called an «-frame if

1
n

2 <*j II  ap       i=l,...,n, (1.1)
/-I

ax + cXi = ai + cu = a, + a„        i = 2, . . . , n, (1.2)

axcXi = a¡cXi = axa¡,       i = 2, . . . , n. (1.3)

This says that, provided they are distinct, a,,..., an generates a copy of 2" with

the a¡ as atoms and that {ax, cXi, a¡] generates a sublattice isomorphic to M3. We let

0 denote axa2 and we do not insist that this is the least element of L. Whenever we

have an «-frame in a modular lattice L, define cJX = cXJ, j ¥= \, and for 1, i,j

distinct Cy = (c,, -I- cXJ)(a¡ + aß. By Lemma 5.3 of [31],

% = (c¡j + cJk)(ai + ak) (1.4)

for distinct i,j, k. Let

R = {x G L: x + a2 = ax + a2 and xa2 = 0} (1.5)

and define operations © and ® on R by

x ®y =[(x + cx3)(a2 + a3) + (y + a3)(a2 + cX3)](ax + a2), (1.6)

x ®y =[(x + c23)(ax + a3) + (y + cX3)(a2 + a3)](ax + a2). (1.7)

The next theorem is essentially von Neumann's Theorem 8.4, p. 157 of [31]. Von

Neumann assumed that L was complemented, but his proof of this theorem does

not use this. That our definition of R is equivalent to von Neumann's follows easily

from Lemma 6.1 of [31].

Theorem 1.1. Let {ax, . . . , an, cX2, . . . , cXn) be an n-frame in a modular lattice

L, with n > 4. Then (R, ©, ®) defined above is a ring with unit. The null element of

R is ax and cX2 is the unit.

If x G a¡ + üj/0 (i.e. 0 < x < a¡ + af) then we let

«*(*) - ((■* + ak)(clk + aj) + cJk)(at + aj). (1.8)

This definition is independent of the choice of k distinct from / and/ Notice that if

x G R then ax2(x) = 1 © x, (1 = cx2). An n-frame {a„ cXJ) is called an «-frame of

characteristic q if axq2(ax) = a,, where af2 is ax2 iterated q times (cf. [14]).
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Lemma 1.2. Let {a¡, cXJ} be an n-frame in a modular lattice L, with n > 4, and let

(R, ©, <8>) be the associated ring. An element x G R has a two-sided multiplicative

inverse if and only if x + ax = ax + a2 and xax = 0. If this is the case then

x~] = (((x + c23)(ax + a3) + cx2)(a2 + a3) + cX3)(ax + a2).

Proof. A proof of the first statement is given in Lemma 2.3 of [15]. The second

statement can also be derived from this lemma or alternatively the reader can

verify directly that x ® x~x = x~x ® x = 1(= cx2). (Also see p. 158 of [31].)

The following situation will frequently arise. There is an index k with 1 < k < «

and an element bk such that 0 < bk < ak. In this situation we define bx =

(bk + c\k)a\ if * * 1 and b¡ = (bx + bx¡)a¡, i + \,k, and b - *, + • • • + b„. The

reader can check that bk = (bx + cxk)ak also holds. It is shown in [23] and Lemma

1.1 of [14] that {a, + b, cXJ + b) is an «-frame, whose least element is b. Moreover

if (a„ cXj) is an «-frame of characteristic q then {a¡ + b, cXj + b] is also. Also this

frame behaves properly with respect to the other indices. That is

(tv + cjk + b)(a¡ + ak + b) = (c0 + cjk)(ai + ak) + b = cik + b.

In the next four lemmas we assume that {a¡, c¡j} is an «-frame and that

bx, . . . , bk, b are as above. The readers can verify that bi + Cy = bj + c0 for all

i ¥=j. Thus bj < bj + cir These facts will be used extensively below.

Lemma 1.3. // x G a¡ + a,/O satisfies x + by > b¡ then a,y(x) + by > bj also holds.

Proof.

«i,(x) + by = ((x + ak)(clk + ay) + cJk)(aj + a,) + bj

= ((* + by + ak)(cik + aj) + cJk)(aj + a,)

= [{x + bj+ bj + ak)(cik + aj) + Cjk](a¡ + aj)

= {bj + (x + bj + ak)(cik + Oj) + cJk)(a, + a,)

> (bk + (x+ bj + ak)(cik + a,))(a,. + a,)

= (x + bj + ak)(cik + bk + ajXa, + aj) > bj.

Lemma 1.4. Suppose {a¡, cXJ] is an n-frame of characteristic q (q =£ 0). Let r be

invertibie in Z/qZ. Then

a»(<h) + bj = «¿(a,) + bj.

Proof. Let rt = 1 (mod q). Then a,;(a,) = ajj(af) by (2.11) of [15]. The lemma

now follows from two applications of Lemma 1.3.

Lemma 1.5. Let R be the ring corresponding to the n-frame {a¡, c,}. Let x be an

invertible element of R. If x + bx = x + b2 then x~x + bx = x_1 + b2.
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Proof.

x-x + b2 = (((x + c23)(ax + a3) + cX2)(a2 + a3) + cx3)(ax + a2) + b2

= (((x + c23)(ax + a3) + cx2 + b2)(a2 + a3) + cx3)(ax + a2)

= (((* + c23)(ax + a3) + cx2 + bx)(a2 + a3) + cx3)(ax + a2)

= (((* + bx + c23)(ax + a3) + cx2)(a2 + a3) + cx3)(ax + a2)

= (((x + b2 + c23)(ax + a3) + cX2)(a2 + a3) + cX3)(ax + a2)

= (((x + b3 + c23)(ax + a3) + cx2)(a2 + a3) + cX3)(ax + a2)

= (((x + c23)(ax + a3) + cx2 + b3)(a2 + a3) + cx3)(ax + a2)

= (((x + c23)(ax + a3) + cX2)(a2 + a3) + b3 + cX3)(ax + a2)

= (((x + c23)(ax + a3) + cX2)(a2 + a3) + bx + cX3)(ax + a2)

= x~x + bx.

We denote the ring corresponding to the frame {a¡ + b, c¡j + b] by R(b). Thus

R(b) = {x G L: x + a2 + b = ax + a2 + b and x(ax + b) = (ax + b)(a2 + b) =

b). The operations  ©  and  <8>  in R(b) are obtained from (1.6) and (1.7) by

substituting a¡ + b for a¡ and c,-, + b for e».

Lemma 1.6. Let zx, . . . , zm be invertibie elements of R and suppose z¡ + bx = z, +

b2, i = 1, . . . , m. Let w be a group theoretic term in m variables. Then z¡ + b is an

invertible element of R(b) and

w(zx + b, . . . , zm + b) = w(zx, . . . ,zm) + b.

Here w(zx + b, . . . , zm + b) is evaluated in R(b) and w(zx, . . . , zm) is evaluated in

R.

Proof. If w is a variable, say w = z¡, then

(z, + b)(a2 + b) = (z, + bx + b2 + b3 + • • • +b„)(ax + a2)a2 + b

= [z,. + bx + b2 + (b3 + ■ ■ ■ +b„)(ax + a2)]a2 + b

= (z, + bx + b2)a2 + b = (z, -I- b2)a2 + b = z¡a2 + b2 + b = b.

This trick of reducing z, + b to z, + bx + b2 will be used repeatedly below. From

this it follows that z,■ + b G R(b). Since (z¡ + b)(ax + b) = b and z¡ + b + ax + b

= ax + a2 + b also hold, z, + b is an invertible element of R(b). The following

calculations show that the inverse of z, + b in R(b) is the join of b and the inverse

of z, in R.

(z, + b)~x =[((z, -I- c23 + b)(ax + a3 + b) + cx2 + b)(a2 + a3 + b) + cX3 + b]

■ (ax + a2 + b)

= [((*< + c23 + bx + b2 + b3)(ax + a3) + cx2 + b)(a2 + a3) + cx3 + b]

■ (ax + a2) + b

= [((Zj + c23)(ax + a3) + cX2 + bx + b2+ b3)(a2 + a3) + cX3 + b](ax + a2) + b

= [(U + c23)(fli + a3> + cn)(a2 + a3> + cX3 + bx + b2 + b3](ax + a2) + b

= z,- ' + b.
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Here we have repeatedly used b¡ < b¡ + c¡j.

Let_y be one of the z, or one of their inverses and observe that since y + bx = y

+ b2,

(y + c23)(ax + a3) + b3 = (y + b3 + c23)(ax + a3) = (y + b2 + c23)(ax + a3)

= (y + bx + c23)(ax + a3) - (y + c23)(ax + a3) + bx.

Now, proceeding by induction, let w = yu, where y again is a variable or the

inverse of a variable. Thus by the inductive hypothesis u(zx + b, . . ., zm + b) =

u(zx, . . . , zm) + b = u + b. Thus using the above and b¡ < b- + c¡j we have

w(zx + b,...,zm + b) = (y + b)®(u + b)

= [(y + b + c23)(ax + a3+ b) + (u + b + cX3)(a2 + a3 + b)](ax + a2 + b)

= [(y + bx + b2 + b3 + c23)(ax + a3)

+ (u + bx + b2 + b3 + cX3)(a2 + a3) + b](ax + a2) + b

= [(y + c23)(ax + a3) + (u + cx3)(a2 + a3) + bx + b2 + b3](ax + a2) + b

= [(y + c23)(ai + a3) + (u + cX3)(a2 + a3)](ax + a2) + b

= (y <8> u) + b = w + b.

2. Unsolvability. Let FG(x,, . . . , xn) and FG(j>(, . . . ,yn) be free groups. Let A

be a finitely presented group with unsolvable word problem. Say A is generated by

x,, . . . , x„ subject to the relations m, = u2 = • • • = um = 1, where ux, . . . ,um are

group-theoretic terms (words) in x,, . . . , xn. Let N be the normal subgroup of

FG(x,, . . . , x„) generated by ux, . . . , um, so that A = FG(x„ . . ., xn)/N. Let

G = FG(x,, . . . , xn) X FG^,, . . . ,yn) and let H be the subgroup of G generated

by Xjy¡, i = 1, . . . , «, and Uj,j = 1, . . . , m.

Lemma 2.1. N c H.

Proof. Since the y¡ commute with the x^, and hence with the u¡, x,_l«yx, =

Actually N = FG(x,, . . . , x„) n //, as is shown in Lemma 6.5.1 of [3].

Lemma 2.2. There is a skew field D such that G is a subgroup of the multiplicative

group of D. Moreover there is a t G D such that for w G FG(x,, . . . , xn), w G N, if

and only if tw = wt in D. Also D satisfies the following.

x¡yj = yjXj,      i,j=l,...,n, (2.1)

tx¡yj = x¡y¡t,       i = 1, . . ., n, (2.2)

tUj = Ujt,      j = 1, . . . , m. (2.3)

Proof. This is Lemma 6.5.2 of [3]. Our D is Cohn's D(t; o). We shall assume

that D is generated by x,, . . . , xn,yx, . . . ,yn, t. If this were not the case we could

simply take the subfield generated by these elements. Thus D is countably infinite.

Let L(D4) be the lattice of subspaces of D4 as a left vector space over D. Let

a, = 0(1, 0, 0, 0), ... , a4 = D(0, 0, 0, 1), cx2 = Z>(- 1, 1, 0, 0), ... , c14 =

D(— 1, 0, 0, 1). It is easy to see that {ax, a2, a3, a4, cX2, cX3, c14} is a 4-frame in
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L(D4). Using elementary linear algebra it is easy to see that a subspace of D4 is a

complement of a2 in ax + a2/0 if and only if it has the form D(— 1, d, 0, 0), and

moreover for d' <* d, D(- 1, d', 0, 0) =£ D(- 1, d, 0, 0). Furthermore,

D(- 1, d, 0, 0) © D(- 1, ¿', 0, 0) = Z>(- 1, </ + </', 0, 0) and D(- 1, rf, 0, 0) ®

Z>(- 1, d', 0, 0) = /)(- 1, dd', 0, 0), where © and ® are defined by (1.6) and (1.7).

Thus the ring associated with the above frame is isomorphic to D and we will

identify each d in D with D(-\,d,0, 0).

Let q be a prime greater than 2« + 2 and K a countably infinite field of

characteristic q. Let L(K4) be the lattice of subspaces of KA as a vector space over

AT. Let a\ = Jf(l, 0, 0, 0), ... , a'A= K(0, 0, 0, 1), c'x2 = #(- 1, 1, 0, 0), ..., c'14 =

#(-1,0,0, 1). Let 0' be the least element of L(K4). The quotient sublattices

a, + a2/0 in L(D4) and a', + a2/0' m L(K4) are both isomorphic to Mu (the

countably infinite two-dimensional lattice). Let o: ax + a2/0-»a', + a'2/0' be a

lattice isomorphism such that

o(ax) = a'x,    o(a2) = a'2,    o(cX2) = c'12,    a(x,) = a^ '(a',),

oU) = «,n2+1+V>),    "(0 = «,2n+V,)- (2-4)

Recall that x, = D(— 1, x„ 0, 0), etc. We let a12(a',) be the element obtained from

(1.8) using the frame {a'¡, c',,}. This convention of letting the argument signify in

which frame aX2 is to be evaluated will be used below. Note that a[2(a'x) =

K(-\, r, 0,0) for r G Z.

Let L be the lattice on the disjoint union of L(D4) and L(K4) whose ordering is

the transitive closure of the orderings on L(D4) and L(K4), and the ordering

z + a3 + a4 < o(z), z G ax + a2/0. This is essentially the Hall-Dilworth gluing of

the dual ideal \/a3 + a4 of L(D4) to the ideal a\ + a'JO" of L(K4) via o. We have

kept the intervals \/a3 + a4 and a\ + a'2/0' separate, since this is more convenient

for our purposes. Thus L is actually the Hall-Dilworth sum of L(D4), Mu X 2, and

L(K4) glued over two-dimensional quotients. L is modular by [8] and [18]. The

sublattice of L generated by {a¡, a'¡) is diagrammed in Figure 1 of [14]. Note that

L(D4) and L(K4) are both sublattices of L and that in L a, + a2/0 /> a\ + a'2/0l

and the induced isomorphism, z ^> z +0', agrees with o. The inverse isomorphism

is z' —» z'(ax + a2), of course. Hence x, = (a[2l(a'x))(ax + a^ and similar formulae

hold for_y, and t. Thus all the elements we are interested in lie in the sublattice of L

generated by {a,, a'¡, cXj, c'XJ}. It is shown in Theorem 3.4 of [14] that this sublattice

is in fact generated by the five elements a3 + a'A, c23, c\3 + c24, a, + a2 and

c13 + c24. We may assume L is generated by these five elements. Let / be a

homomorphism of FM(5) onto L. As is shown in the proof of Theorem 2.1 of [14],

it is possible to effectively find a,, cXJ, a¡, c'XJ G FM(5) such that the following hold.

/(a,.) = a„      /(a,9 = a/,      f(cXJ) = c,,,      f(c'XJ) = c'XJ; (2.5)

{a„ cly} is a 4-frame   and    {a¿, c'^} is a 4-frame of characteristic q;    (2.6)

aj + az/O /• a, + a2 + a3 + a4/a3 + a4 /> a', + aj/0',

a, +0' = a;,       ¿ = 1,2,       c12 + 0' = c'12. (2.7)
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Whenever we have elements a,, cXJ, aj, c'XJ in FM(5) satisfying the above we let

«y - «Í2*'(«iX»i + %).    y< - «iV,+,(«iK«i + «b).    / = i,...,«,

t = a2r2(a',)(a, + a2). (2.8)

Observe that/(x,) = x,,/(y,) = y, and/(t) = /.

Let R be the ring associated with the frame {a„ c,7} (see (1.5)). Since arx2(a',) is a

relative complement of a2 in a', + a2/0' (by Lemma 1.4 of [14]), x,, y,. and t are all

in R. If 0 < r < q then a{2(a'x) corresponds to r in the ring associated with the

frame {a,', c'XJ). But this ring has characteristic q since the frame does. Thus, by

Lemma 1.2, af2(a',) is relative complement of a', in a', + a2/0'. Hence x,, y„ and t

are all complements of a, in a, + a2/0. Hence x,, y, and t are invertible elements of

R. Our goal is to adjust the choice of {a,, a'¡, cXJ, c'XJ} so that (2.5), (2.6), (2.7) still

hold and moreover the relations (2.1), (2.2), (2.3) also hold in R.

Suppose bj G FM(5) with 0 < b2 < a2. Then we let b, = (b2 + c12)a,, b, =

(b, + c,,)a„ /' = 3, 4, and b = b, + • • ■ +b4. Also we let b', = b, + 0' and b; =

(b', + c',,)a;, /' = 2, 3, 4, b' = b', + • • • + b4. Observe that b2 = b2 + 0' because c'12 =

c12 + 0'. Also observe that if (a,, cXJ, a,', c'Xj} satisfies (2.5), (2.6), (2.7) then {a,- + b,

ev + b, a; + b', c'XJ + b'} also satisfies (2.5), (2.6), (2.7) provided that/(b,) = 0 for

one, and hence all, i. Let R(b) be the ring associated with the frame {a, + b, cXJ +

b} and let x,(b) = [aX2x(a'x + b')](ai + a2 + b), i.e. x,(b) is the x, associated with the

new frame. (Recall that a12(a', + b') is obtained from (1.8) by replacing a, by

a] + b' and c¡j by c'y + b'.) The elements y,(b) and t(b) G R(b) are defined in a

similar manner.

Lemma 2.3. x,(b) = x, + b. Similar formulae hold for y,(b) and t(b).

Proof. By definition x, = aí^'íaiXa, + a2). Thus

x,. + 0' = «ina'.Xa, + a2 + 0') = af^V.Xa', + a2) = a.^a',).

Since b; = b, + 0', / = 1, 2, and since a¡2+1(a', + b') = a;2+1(a',) + b' by Lemma 1.2

of [14], we have        ... ....
x,(b) = a,'2+1(a'1 + b')(al + a2 + b)

= («;2+1(ai) + b')(a1+a2) + b

= b + (a^V.) + b')(a', + a2)(a, + a,)

= b + (ai2+1(a',) + b', + b2)(a, + a2)

= b + (b, + b2 + x, + 0')(a, + a2)

= b + b, + b2 + x, = b + x,..

From Lemma 1.4 we have a'x2 '(a',) + b', = a'+1(a',) + b2 and from this it easily

follows that x, + b, = x, + b2, / = 1, . . . , «, and similarly for y, and t. Combining

this and Lemmas 1.6 and 2.3 we have the following.

Lemma 2.4. Let w be a group theoretic term in 2« + 1 variables and let w be the

interpretation of w in R using x„ . . . , x„, y,,..., y„, t. Let w(b) be the corresponding

element of R(b) using x,(b), . . . , x„(b), y,(b), • • • , y„(b), *(">) (and, of course, multi-

plication in R(b)). Then w(b) = w + b.
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With the aid of the previous lemma it is easy to adjust the frames so that the

relations (2.1) (2.2) (2.3) hold in R. In order to make x, and y, commute, for

example, set b2 = (x, ® y, + y, ® x,^. Define the b, and b in the usual way. Then

in R(b) we have, since b > b2 and x, ® y, G R,

*i0>) ®„ y,(b) = x, ® y, + b + (x, ® y, + y, ® x,)a2

= b + (x, ® y, + y, ® x,)(x, ® y, + a2)

= b + (x, ® y, + y, ® x,)(a, + a,)

= b + x, ®y, + y, ® x,.

Similarly   y,(b) ®b x,(b) = b + x, ® y, + y, ® x,.   Hence   x,(b) ®b y,(b) = y,(b)

®b x,(b).

Also note that, by Lemma 2.4, if one of the relations of (2.1)-(2.3) already holds

in R it will always hold in R(b) (for any choice of b). Thus after relabelling we

obtain the following.

Lemma 2.5. There exist elements a,, a.'¡, cXJ, c'XJ G FM(5), /' = 1, 2, 3, 4,/ = 2, 3, 4,

such that (2.5), (2.6), (2.7) hold and the elements x,., y,, t, / = 1, . . . , «, defined by

(2.8) satisfy the relations (2.1), (2.2), (2.3) in R.

Theorem 2.6. The word problem for FM(5) is unsolvable.

Proof. Let G be the subgroup of (R, ®) generated by x,, . . . , x„, y,, . . . , y„.

Since the operation ® in R is defined in terms of the lattice operations, the map /

restricted to G is a group homomorphism from G onto G. But G satisfies (2.1)

which are the defining relations of the group FG(x„ . . . , xn) X FG(^„ . . . ,yn) =

G. Hence/|G: G —» G is an isomorphism of groups. Let w be a group-theoretic term

in x,,..., xn and let w be the corresponding element in G. We claim w G N (the

normal subgroup of G corresponding to N in G ) if and only ifw®t = t®w holds

in R. Firstly, if w G N then w G H by Lemma 2.1 and t commutes with everything

in H by (2.2) and (2.3). Conversely ifw®t = t®w then by applying / we get

wt = tw in D which implies w G N Ç D. Since / is an isomorphism on G, this

implies w G N. From this it easily follows that if the word problem for FM(5) were

solvable then the word problem for A = FG(x„ . . . , xn)/N would be solvable, a

contradiction.

Notice that for w G G, w ® t = t ® w holds if and only ifw®t — t®w = 0R

= a, which holds if and only ift = w_1®t®w. Hence if we choose u0 = a^ or

u0 = t, there is no recursive procedure to determine if v = u0 holds in all modular

lattices for five variable lattice terms v.

3. Discussion. We constructed the lattice L in such a way that the elements x¡, y¡

and t in D were lined up with nonzero elements of the prime subfield of K. This

served two purposes in the proof. First it allowed us to find inverse images x;. of xp

etc., in R and secondly it permitted us to make corrections in our frame and have

the new inverse images of the x, behave correctly with respect to the old ones (see

Lemma 2.3). It is natural to ask if this use of K is really necessary. That is, would it

have been possible to prove the unsolvability results by simply considering the
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homomorphism from FM(5) onto L(D4)1 The answer is no. If the answer were yes

then we would have as a corollary to the proof that F^5) has an unsolvable word

problem for any variety of modular lattices T containing L(D4). In particular for

the variety & generated by all subgroup lattices of abelian groups F^5) would have

an unsolvable word problem. However, by a theorem of Herrmann and Huhn [22],

[19], this is not the case.

The situation for word problems in varieties of modular lattices is this: if T is a

variety of modular lattices containing our lattice L, then Fcy(5) has an unsolvable

word problem. These varieties include the variety generated by all modular lattices

of breadth at most «, « > 4, and also the variety of all «-distributive lattices, for

« > 4. However, L is nonarguesian [27] and thus the following question is open: do

the free arguesian lattices have solvable word problems? Of course, by the results of

Herrmann and Huhn cited above, the word problem for free lattices in certain nice

varieties is solvable (see also [26]). Perhaps a more important problem is this: does

FM(4) have a solvable word problem?
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