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ON A SIMPLICIAL COMPLEX ASSOCIATED

TO THE MONODROMY

BY

GERALD LEONARD GORDON

Abstract. Suppose we have a complex analytic family, Vr \t\ < 1, such that the

generic fibre is a nonsingular complex manifold of complex dimension n. Let T

denote the monodromy induced from going once around the singular fibre and let

/ denote the identity map. We shall associate to the singular fibre a simplicial

complex T, which is at most n-dimensional. Then under certain conditions on the

family V, (which are satisfied for the Milnor fibration of an isolated singularity

or if the V, are compact Kahler), there is an integer N > 0 such that

(TN - ¡fHk(V,) = 0 if and only if Hk(T) = 0.

1. Introduction.

1.1. In this article, we let V be a complex hypersurface having normal crossings,

where the complex dimension of V is «. Then we shall construct a simplicial

complex T corresponding to V, where the real dimension of T is at most «. In fact,

to each integer N > 0, we shall associate to F a complex TN, where Tx = T. Then

we shall see how these complexes have applications in studying the monodromy

about V.

To be more specific, suppose we have V embedded in a complex analytic family

Vt, \t\ < 1, where V0 = V, such that the nearby fibre is nonsingular and let T

denote the monodromy induced from going once around the origin. We let ak

denote the number of terms of the type

1     1
1       1

0

1     1
0     1

* ~k+~l

in the Jordan canonical form of the matrix of T acting on Hk(V,). Then if the

analytic family is either (i) embeddable in a compact Kahler manifold with V,

being compact or (ii) is the Milnor fibration about an isolated singular point, then

we shall show that there is an N such that dim Hk(TN) = ak. Similar results are

true for k = « in case the components of V0 satisfy certain conditions, regardless of

the type of singularity.
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Throughout this article, we shall always denote Ht(X) to mean homology with

rational coefficients, for any space X. Moreover H^(X) or H^(X) will denote

closed or compact support, respectively.

The author would like to thank the referee for bringing his attention to the paper

by Steenbrink [14] and for providing the present proof of Theorem 3.2.

2. Construction of the simplicial complex.

2.1. Let W be a complex manifold of complex dimension « + 1 and let F be a

hypersurface of W having normal crossings, i.e., V = U ¡eiX¡ where each X¡ is a

submanifold of W codimensionc = 1 and V is locally given by LTj_ i zf* = 0,

where a¡ > 1 is the multiplicity of X¡ = (z, = 0}. For /,, . . . , ik e / put X¡ ¡ =

n*„iX. One can suppose that each X¡ ¿ is connected. If not, take the

monoidal transform with center on all but one of the components, which creates

the new X's but X¡      , is now connected.

We also suppose that V is connected by looking at each component.

2.2. Then the simplicial complex T is constructed as follows. To each i with

Xj # 0, we associate a vertex a¡. For i <j, we join o, to Oj if and only if X» ¥^ 0.

Note that Xijk =£ 0 implies that each of the X¡j, Xjk and Xik is nonempty. Then, we

put a 2-simplex oijk with boundary the o¡j, oik and ojk if and only if XiJk ̂  0. We

continue in this fashion so that to each X,      ,     ^ 0 we associate an «-dimen-
'i ■ ■ ■ f#i+i

sional face a,      ,     whose boundary will be the sum of the a,      ;     ,    .

Then T is a simplicial complex. We formally define the boundary of T by

9r = {t| t is a face of 3a for some o 6T}. If / is finite, then T is compact. But T

need not be locally finite.

2.3. We note that T is not necessarily «-dimensional. For example, let us

start with Ufe/Sj, which is a family of curves in general position. We let V =

U ie/(Sj X CPX), i.e., Xj = S, X CP,. Then there are no triple points, hence T is a

one-dimensional complex which is isomorphic to the usual dual of U ¡s/S/-

2.4. As stated above, we have a subcomplex of T which we call its boundary. For

example, if V, is defined by xyz = t in C3, then T will be a two-dimensional

triangle.

Thus, in general, we have the exact sequence

0 - H<(Y; Z) -» Hcn(T, dT; Z) hHcn_x(oY; Z).

Recall, H^(X) denotes homology with compact support.

2.4.1 Definition. Let B(T) c H¿(T, dT; Z) be the subgroup defined by a 6 B(T)

if and only if 3+a has a representative of the form 2 ± o¡ , such that X¡ ¡ is a

noncompact curve.

Then, of course, H^(T; Z) c B(T). The two-simplex of the example xyz = / is a

member of B(T).

2.5. Let it: W -» D be a holomorphic function, where D is the unit disk in the

complex i-plane. Suppose that if V, = tr~x(t), then it: W — V0-* D — {0} is a

locally trivial fibre bundle with fibre a complex manifold and that V0 has normal

crossings.
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Let f: D' —> D be given by fis) = sN where D' is the unit disk in the complex

j-plane. Then let f* W be the induced fibre space over D. Then Mumford [12] has

shown that if N divides the lcm(a,, . . . ,ak) and one blows-up along centers over

V0, then one has a new V0 with normal crossings and multiplicities equal to one,

i.e., V¿ is locally given by II*_ x z¡ = 0; the a,.'s are equal to one.

2.5.1. If T is the complex which corresponds to V0 and we take D' -» D given by

j -» í N, we designate by TN the simplicial complex which corresponds to V0, where

Vq has multiplicities equal to one.

3. Applications of F to questions about monodromy.

3.1. Suppose we have it: W —> D where tt^1(0) = V0 has normal crossings with

7r\W — V0 being a locally trivial fibre bundle whose fibre V, is a nonsingular

manifold. Assume further that V0 is locally given by iT*»^, = 1, i.e., we study TN

and V0 = U M Because TN is induced from the N to one cover of D' D,

Vq, which isthe study of TN corresponds to the study of TN on the original W

T on f*W - V¿.
Then we know from Clemens [3] that (TN - I)k+lHk(Vt) = 0. Let ak be the

number of terms of the type

1     1
1

0

0

k+ 1

1     1
0     1

k+ 1

in the Jordan canonical form of the matrix TN.

3.2 Theorem. Suppose that the fibres Vt are compact and that there exists an

embedding of W c W X CP1, where W is a compact Kahler manifold. Suppose

further that the following diagram commutes.

W   c   W X CP1

D      c      CP1

where ir' is the projection onto the second factor. Then dim Hk(TN) = ak.

Proof of Theorem 3.2. We first prove it for W being complex projective. We

use the notation of Steenbrink [14]. We look at the limiting mixed Hodge structure

on Hk(X00), whose weight filtration we denote by {Wk}"_0. The filtration may be

described in two different ways, which are the same by Steenbrink [13, §5]. In one

way, W¡¡ = Im(T— I)k(Hk(V,)). L the other way there is a spectral sequence

converging to H*(XX) with £*-° = W$ in Hk(XJ, cf. Steenbrink [14, §2.9].

Furthermore, Ekfi = H\Xt , ) with the differential being the alternating sum

of the restriction maps. Here X, , denotes the disjoint union of the X¡ , .

But this cochain complex computes the cohomology of TN: £*°-» ^*(rV Q- The

spectral sequence degenerates at E2, so that Ek(>:=*Hk(TN, C).
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However, if W' is a compact Kahler manifold, then the techniques still go

through. Namely, if V0 is a compact Kahler variety, then Hironaka [8] has shown

that any complex analytic space can be resolved to normal crossings using

monoidal transforms. Furthermore, Blanchard [2] has shown that the monoidal

transform of a Kahler variety is still Kahler. Hence we stay in the category of

compact Kahler varieties.

Then in this case, w£ is still the image of (T - I)kHk(Vt), cf. Clemens [3].

Moreover, the spectral sequence still has E^° = W£ as we are in the case of

normal crossings, cf. Griffiths-Schmid [7, Chapter 4]. Furthermore, the spectral

sequence still degenerates at E2, which follows from the principle of the two types,

cf. Gordon [6].    Q.E.D. for Theorem 3.2

3.3. Suppose V0 dominates a hypersurface V c C + 1 for « > 1 and suppose that

V has an isolated singularity at the origin. Let X0 denote the "inverse" image of the

proper transform of V in X0. I.e., because the multiplicity of the proper transform

of V in any resolution is always one, there is only one component of V0 which

maps onto V. All the other components are sent to the isolated singularity. Let X0

denote this component.

We let T'N c Tjy be the simplicial complex associated to U,-^^. This corre-

sponds to removing the open star of the vertex o0 E TN.

Let V be defined by {/= 0). Recall that the Milnor fibre associated to V is

given by V, - {z G C"+1|/(z) = < and \z\ < e) for e sufficiently small, 0 < \t\ < e.

3.4 Theorem. // we are in the situation of 3.3, then dim Hk(T'N) = ak.

Proof of Theorem 3.4. This follows from Steenbrink [14, Corollaries 3.9 and

3.10]. Namely to define the mixed Hodge structure on the Milnor fibre, one is

forced to mod out by the contribution given by the proper transform. This

corresponds to removing the star of the vertex o0 in TN.    Q.E.D. for Theorem 3.4

3.5. We note that one must pass to T'N as seen in the example in 4.2 that follows.

3.6 Definition. A complex manifold X is quasi-Kähler if there is a compact

Kahler manifold X such that X embeds in X so that X — X is a subvariety

(perhaps empty).

3.7 Theorem. 3.7.1. Without any restrictions on Vt, we have

(i) // we take homology with closed support on V„ then dim H"(TN) > an,

(ii) if we take homology with compact support on Vr then dim B(TN) > an.

3.7.2. // each of the X¡ ¡ is quasi-Kähler and we take homology with closed

support on Vt, then dim H"(TN) = an.

3.7.3. // each of the X¡ ¡ is quasi-Kähler and in addition V0 dominates an

irreducible variety, then in homology with compact support we have dim B(TN) = an.

Proof of Theorem 3.7. 3.7.1 follows from the Leray spectral sequence associa-

ted to the inclusion of W — V0 c W. The reason we must distinguish between

compact and closed support is discussed in Gordon [5, §4].

3.7.2 follows because in Gordon [6] it is shown that under these hypotheses, the

Leray spectral sequence degenerates at E2.
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To prove 3.7.3, if V0 dominates an irreducible variety we let X0 denote the proper

transform. For « > 2, each curve Xt ¡ will be compact if ij > 0 for ally. This is

because each curve will be of codimension greater than one. Hence for « > 2,

B(TN) = H^(TN), as each closed «-simplex of TN must have on its boundary at

least one a,     ¡ with i, > 0 for ally.    Q.E.D. for Theorem 3.7

3.8. We need the hypothesis that V0 dominates an irreducible variety, for if one

considers xyz = t in C3, then N = 1, and we find B(TN)^*Z but T = / on H2(V,).

3.9. What Theorem 3.7 says is that to compute the space Image^^ — I)"Hn(V,),

each «-tuple point of V0 corresponds to a generator and the relations are given by

the curves X, ; , in closed support (but only the compact curves in compact

support). Hence in dualizing to form TN, each «-face of TN is a generator, and the

(« — l)-faces give relations; but to compute compact support, we allow relative

cycles whose boundaries correspond to compact curves.

3.10. It would be nice to say that if each of the X¡ ¡ is quasi-Kähler, then if

Hk(TN) ^ 0, we have that (TN - I)kHk(V,) =t 0, as in Theorem 3.2. However, this

is not so. For example, let us consider the example of Kodaira [10] of a family of

Hopf surfaces Vt such that the singular fibre V0 is a surface acquiring a double

curve. Here V, is diffeomorphic to S1 X S3. If we blow-up along this double curve,

we obtain X0 and Xx, nonsingular compact Kahler surfaces with X0 n Xx being

two disjoint lines. Then blow-up along one of these lines obtaining X2, so that

X¡ n Xj is a line for i ¥=j and there are no triple points. Also, the multiplicity of A',

is 2 and X2 is 3. Thus N = 6. Then T is the boundary of a two-simplex, so that

H2(T6) = 0 but HX(T6; Z)^Z. But T6 = / on H2(V,). (In fact, T2 = /.)

What happens is that if one forms the 1-cycle in V0 by joining a point in X¡ n Xj

by a real line c, in X¡ to X¡ n Xk for {i,j, k) = (0, 1, 2), then as z = t defines V,

near X¡, we can find a section over c, in V,, hence we get a one-cycle a, in Vt. Then

[a,] ¥= 0, since 0 ¥= [cQ + c, + c2] G HX(V0). Hence a, is a representative of the

generator of Hx(Vt). Let ety be the class which represents the one-cycle in V, which

is the fibre over a point in AT„, cf. Gordon [5, 2.4] where a„ = g~x(y0¿) in the

notation of [5]. Then (T6 — I)[ax] = a10 + a02 + ax2. But in this example, al2 =

aio> fli2 = a2o> an<i also aio = 2û2o- The last equality follows because Xox is not

homologous to X02 in X0. Hence, a¡j = 0, i.e., (T6 — I)[ax] = 0.

Thus, Hk(TN; Z) ^ 0 implies one can find an a G Hk(V,) with (TN - I)ka = a',

but we do not a priori know if a' is a nonzero class of Hk( V,).

3.11. Given an element of Hk(TN), one can easily construct the element a G

Hk(Vt) with (TN — I)ka ¥= 0. The construction is the same as is done in Gordon [5,

§§4 and 5], especially [5, Propositions 4.4.1 and 5.3]. An example is given in 4.1.2.

4. Some examples.

4.1. In this section, we shall give some examples of the simplicial complex. We

shall first give an example of an isolated singularity for which Hn(TN) =£ 0. Let us

take the example of Malgrange [11].

4.1.1 Proposition. Let V c C3 be defined by x^h2 + xs + ys + zs = 0. 77«?«

there is a resolution of V to V0 such that the second betti number of T is 4.
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Proof of Proposition 4.1.1. We shall always denote the proper transform by

X0.

First take the monoidal transform with center the origin in C3. Then Xx n X0

gives 3 lines each counted twice, and we blow-up along each of these lines yielding

X2, X3 and X4. This gives a resolution of V with Xx P\ X0 = 0. For 2 ■< i ~<j < 4

we have that X¡ C\ Xj n X0 has two distinct points.

But to construct T, it is necessary that each component of XiJk be connected, so

we blow-up one of the two triple points for each of the XijQ. This gives us X$, X6

and X-, with the multiplicity of X¡ for /" = 0, 1, 2, 3, 4, 5, 6, 7 being

1, 6, 8, 8, 8, 2, 2, 2, respectively.

Then with all this data, we can give a presentation of T: there are 8 vertices, 18

edges, and 15 faces. Then T can be described as: We start with three one chains,

o23, a34 and o24, which form a one-cycle y,. Then we form two cones over yx with

vertices o0 and ox. This defines one 2-cycle. Over each of the boundaries of the

2-dim faces o023, o034 and o024, we form the cones with vertices o5, o6 and o7

respectively. This gives 3 other 2-cycles and finishes the description of T. Q.E.D.

for Proposition 4.1.1

Figure 1

4.1.2. One can easily give a class y2 G H2( Vt) with ( T24 - I)2y2 ¥• 0 where

Vt = {(x,y, z)|x^2z2 + x8 + ys + z8 = t}. Namely, take the cone with vertex o7.

Locally at Xijk, we have Vt is given by xayaJzak = / where a¡ = 1, 6, 8, 2 for

/' = 0, 2, 4, 7, respectively. We note that if P is the triple point, then [t,ß2JT3>k(P)]

n (xaya'z"k = t) - g#x(y0JJk) contains gcd(a(, ap ak) distinct cycles, cf. [5, §2.4] for

the notation being used.

Hence, take the map of the unit disk into itself given by 5 —» s24 = t where

24 = lcm(l, 2, 6, 8). Then if we take the induced fibre product from this mapping,

we find that the number of points mapping onto Xijk is gcd(a¡, a,, ak), hence we get

one point for XQJk and two points for X241. Similarly, X41 and X21 are covered two

to one, so that we must add a new component A'g m X-, « CP2 with X01 = Aq8 ss

CP, and À^g œ A"^ « CP, and X24i ¥= 0. Hence when we blow-up along A'og to

get normal crossings, we get an X9 and the following configuration as a part of r24.
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Figure 2

In each double curve, Xip where (i,j) = {(2, 4), (2, 7), (2, 9), (8, 9), (4, 8), (2, 8),

(4, 9), (7, 9), (4, 7)}, take a real line c;> between Xijk and Xiß where the triples run

over 247, 248, 489, 289, 479 and 279. Then let y, = 2y cip which is a one-dimen-

sional cycle in A,, for / = 2, 4, 7, 8, 9. Then y¡ = 3#c, as noted in Gordon [5, §5].

Let c, be the cross-section in Vt over c„ as discussed in [5, Proposition 5.3], and let

a, = 2, c,.. Then (T24 - I)2ax ¥■ 0.

4.2. That we must pass to T'N c TN for isolated singularities is given by the

following example. Consider the singularity V = {(x2 + .y3)(x3 + y2) + z2 = 0} in

C3. Then V is nonsingular except at 6 isolated points.

4.2.1 Proposition. There is a resolution of V to V0 such that the second betti

number of T associated to V0 is equal to one.

Proof of Proposition 4.2.1. We shall just briefly sketch the resolution. First

blow-up the origin in C3. Then this creates Xx with A', n X0 a line in CP2 such that

X0 is singular along this line. Then blow-up this line creating A"2 with X2 n X0

being two lines meeting in two points P, and P2. Next, blow-up each of the points

P, and P2 creating X3 and A"4 such that X¡ n X0 = Xi C\ X2 = a line for i = 3 and

4. Then blow-up along A", n A0 for /' = 3 and 4 which creates X5 and X6,

respectively. Finally, we blow-up along one of the lines of X2 n X0, yielding an X7,

and X0 is nonsingular in a neighborhood of U, Xt n X0.

Hence, we have a resolution of the origin with eight components A,, / =

0, 1, . . . , 7, of multiplicity (1, 2, 4, 5, 5, 10, 10, 5) respectively. There are 8 vertices,

12 edges and 6 faces on T.

The other five points are given by a 2-fold covering branched along 2 curves

intersecting transversely at smooth points of each of the curves, i.e., 0 = z2 +

(x + gx(x,y))(y + g2(x,y)) is the local equation of V at each of the other 5

isolated points, where the leading term of the g¡ is of degree two. Hence, each of the

five singular points will be resolved with one monoidal transform which contributes

A"g, X9, Xx0, Xxx, XX2, all of multiplicity two.

A representation of T is given in Figure 3.    Q.E.D. for Proposition 4.2.1
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Figure 3

Thus, if V, = {(x2 + y3)(x3 + y2) + z2 = t}, then for t sufficiently small, and

for all N, (TN — I)2H2(V,) =£ 0. This follows because if for some N this were not

true, i.e., (TN — I)2H2(Vt) = 0, it would also be zero if we replace N by (20) • N.

But by Proposition 4.2.1 and Theorem 3.2, (T20* - /)2//|(F,) ^ 0.

But, if we consider the local monodromy, i.e., V, n Dt, for Dt a sufficiently small

ball about the origin, we have that (F20 - I)2H2(V, n De) = 0. This last fact

follows from the results of Sebastiani-Thom [12] which state that the monodromy

of V, n Dt is minus the monodromy of ((x2 + y3)(x3 + y2) = t) n De.

The reason this happens is as follows: At all the triple points xa'ya2z"2 = t, we

have gcd(a,, a2, a3) = 1, so that when we form the 20 to one cover, 20 =

lcm(l, 2, 4, 5, 10), we add no new triple points, hence no new faces are added when

we form T20.

However, if one forms the one-cycle y0 in A0 by joining X026 to Ar067 by a real line

in A^, joining A"^ to A057 by a real line in A07, Ar057 to X025, and finally, A"025 back

to A026, then y0 = 3#c0. Furthermore, c0 is a compact 2-chain in X0 such that if it:

V -» V is the resolution, then 7r#c0 is a compact 2-chain in V — S, where S is the 6

points which constitute the singular locus of V. But tt#c0 cannot be deformed so

that it lies in De n X0.

However, as in 4.1.2, we can form a2 G H2(Vt) and (T20 — I)a2 = a G H2(V/)

such that a2 has a representative which lies in V, n De, i.e., a2 G H2( V, n De) and

TNa2 ¥- a2 for all N.

Analogous to this, one can show

4.2.2 Proposition. Suppose P is an isolated singularity of a hypersurface in C+l

and there is a resolution of the isolated singularity so that H"(TN) ¥= 0 for some N.

Then for all M, (TM - I)""x ^ 0, where T denotes the local monodromy about P.

4.3. One can also give examples with « > 1 where (TN - I)2 ¥= 0, but H„(T) =

0, i.e., one must go to TN for Hn(TN) ¥= 0. For example, take the example of Karras

given by z3 = (x + j>6)(x2 + y6). Then the monodromy of the Milnor fibre has

(7-990 _ 7)2 = g and //2(f) = o. But //2(r990) ¥= 0, which means that if one looks

at the monodromy in all of C3, (F990 - I)2 ¥= 0.
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4.4. One can give a large class of examples where H"(TN) ^ 0. Namely, let

V(n0, ...,«„; m0, ..., m„) = {(z0, . . . , zn)|IÏ?=0 zf> + 2?_0 z,* = 0} with each m,

> 1 and each «, > 0. Then by the same method used by Malgrange [11], one can

show that if all the «, and m¡ are even, then there is an N > 0 such that for the

monodromy of the Milnor fibre,

(TN-I)n^0   if and only if ¿   — < 1.
;=0    mi

After having made the calculation for several other examples, it appears that

H"(YN(nQ, . . . , «„; m0, . . . , mn)) ¥= 0 when *L%0n¡/m¡ < 1, even if the «, or m, are

odd.

There seems to be a connection between these examples and with the concept of

modality of Arnol'd [1]. For example, xp + yq + zr + xyz is unimodal if \/p +

\/q + \/r < 1. For all of these, we have that H2(TN(l, 1, 1; p,q,r))^0 if

\/p + \/q + l/r < 1. However, x3 + y3 + z4 + xyz2 is also unimodal (it is t/,2

in [1, p. 227]), but T24 = / for this singularity.
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