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ON THE GROUP OF VOLUME-PRESERVING

DIFFEOMORPHISMS OF R"

BY

DUSA MCDUFF

Abstract. The group of all diffeomorphisms of R" which preserve a given volume

form is shown to be perfect when n > 3. Some useful factorizations of such

diffeomorphisms are also obtained.

In this note we prove

Theorem. Let S2 be any volume form (that is, nonvanishing C °° n-form) on R".

Then the group Dif fnR" of all C °° diffeomorphisms of R" which preserve the form ñ is

perfect, provided that « > 3.

Remark. It follows easily from Moser [7] (see [3]) that there are only two distinct

cases of this theorem, namely volnR" < oo and volnR" = oo.

When « = 1, the group DiffaR is either trivial or isomorphic to R, and the

theorem is trivially true in the first case and trivially false in the second. On the

other hand, the case « = 2 is potentially interesting. It has been shown by Thurston

[8] and Banyaga [1] that this is the only dimension in which the identity component

of the group of compactly supported volume-preserving diffeomorphisms of R" is

not perfect. Also, the volume-preserving and symplectic cases coincide in dimen-

sion 2. The present arguments do not work for the group of symplectic diffeomor-

phisms in any dimension. However the contact case is more tractable (see Banyaga

and Pulido [2]).

A proof of the above theorem in the case when vol^R" = oo is given in [6]. The

present proof is easier and more direct. It also yields a factorization lemma

(Lemma 1) which turns out to be crucial in working out the normal subgroups of

DiffaR". This, together with the generalisation to manifolds other than R", will be

discussed elsewhere.

The present methods owe much to Ling [4] who used them to calculate the

normal subgroups of the group of all diffeomorphisms of R". Extra techniques are

needed here in order to deal with the difficulties which are caused by the fact that

the radial maps xh»à(||x||)x do not preserve volume. In particular, in order to

prove the factorization lemma when « = 3 we use a surprising but very elementary

observation about knots in R3 (Lemma 8).

This paper is organised as follows. In the first section, we state the main lemmas

and then use them to prove the Theorem. The factorization lemmas are proved in

§2 and the lemmas about cells are proved in §3. For the convenience of the reader,
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104 DUSA McDUFF

the needed results about extending volume-preserving diffeomorphisms are stated

in an appendix.

1. We will say that an element / G DiffaR" admits a Ling factorization with p

factors if it may be written as a product «, • • • hp of diffeomorphisms h} G

DiffßR", each of which has support in a locally finite union H1>0C, of disjoint cells.

(By definition, a cell is a smoothly embedded closed «-disc.) For short, we will

often call such a union H1>0C, a disjoint union.

The main factorization lemma is the following.

Lemma 1. If n > 3, every element o/Diff^R" has a Ling factorization.

Remark. This lemma is also true in the symplectic case when « > 4. However it

is not clear that the disjoint unions HJ>0C, which support the various factors are

contained in disjoint unions of symplectic cells (i.e. cells which are symplectically

embedded discs). Therefore Lemma 4 may fail in the symplectic case.

When volnR" < oo, a second factorization lemma is useful.

Lemma 2. // « > 3, any diffeomorphism f G DiffnR" with support in the interior of

a cell C is the product hxh2h3 of three elements hj G DiffaR" which are supported by

the interiors of cells E,, where Ej c Int C and voln£^ < |volnC.

These lemmas are proved in §2. We also will need two results about cells which

will be proved in §3.

Lemma 3. Let « > 2. Suppose that Hi>0C, is a disjoint union of cells and that

w¡ > volnC,for all i > 0. Suppose also that 2,(h>/ — volnC,) < voln(R" — H1>0C,),

with strict inequality if both sides are finite. Then there is a disjoint union Ll¡>0D¡

of cells D¡ which have ñ-volume w¡, contain C, and satisfy the condition

voln(R" - H,.>0Z>,) = oo </voln(R" - H,>0C,) = oo.

Lemma 4. // H,>0C, and \1¡>0D¡ are disjoint unions such that volnC, = voln/), for

all i and volß(R" - H(>0C,) = volj/R" - HI>0Z>,.), then there is g G DiffnR" such

that g(C¡) = D¡ for all i.

Proof of Theorem. Case (i). volnR" = oo. (This argument is adapted from Ling

[4]-)
By Lemma 1 it suffices to show that any element « with support in some disjoint

union H(>0C, is in the commutator subgroup of DiffaR". By considering the

restrictions of h to H,eyC, and Hjg/C, separately, for some suitable subset J of N,

we may suppose that volj/R" — HI>0C,) = oo. Then, by Lemma 3, we may replace

the C¡ by larger cells which satisfy the conditions volnC, < volnC,+ , for all / and

voln(R" — HJ>0C() = oo. It now follows from Lemma 4 that there is g G DiffaR"

such that g(C¡) Q C,+ , for all i. (Take the D¡ in that Lemma to be suitable subcells

ofC,+ 1.)

Define 5 G DiffnR" by

s(x) = h(ghg~x) ■ ■ ■ (g'«g"')(x)   if x G C, for some i > 0,

= x    otherwise.
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Then supp í Q H1>0C, and suppgsg-1 Ç H(>,C„ so that [s, g] = sgs~xg~x has

support in Ui>0C¡. Also, inspection shows that within each C, we have hgsg~x = s.

Therefore, [s, g] = h, and « is a commutator as required.

Case (ii). V = volnR" < oo.

We first show that DiffnR" is generated by elements « which are supported in the

interior U/>0(Int C,) of some disjoint union of cells whose volumes v¡ = volnC,

satisfy

(i) \v¡ < vi+x < v¡ for all /' and

(ii)2,ü,. <\V.
Notice to begin with that, by Lemma 1, DiffaR" is generated by elements « with

support contained in some disjoint union H/>0(Int C,"). By Lemma 2 we can

represent each « as a 34-fold product of elements «' which are supported in fli>0C¡,

with C; c C," and also v'¡ < (f)V <\ v¡'. (Here v¡ = volnC/ and v" = volaC,".)

Thus 2,-u/ <\V. After renumbering, we may assume that v'0 > v'x > • • ■ . Now

define the numbers v0, vx, . . . with v[ < v¡ < v'¡ + |o,_, inductively as follows. Let

v0 = v'0. Put vi+x = v'i+x < v¡ < o¡ if o/+, > \vt, and put vi+x = v'i+x + \v¡ < v¡

otherwise. Clearly, the u, satisfy condition (i). They also satisfy condition (ii). For,

because v¡ < v¡ + jv¡_x, induction shows that v¡ < 'Zk=ov[_k/2k. Summing over /',

we obtain

2 », < 2Í 2 1/2*)»; = S 2«;; < 2(if) =\v.
i i   \k=0 I i

Thus, by replacing the cells C/ by larger cells C, with volumes v¡ as in Lemma 3, we

may suppose that the conditions (i) and (ii) are satisfied.

We now show that any « which satisfies these conditions is a product of

commutators in DiffnR". First, use Lemma 3 to find a disjoint union Uj>xDi such

that C, c D¡ and voln/), = u,_, for all i > 1. (There is enough room for this by

(ii).) Next, use Lemma 4 to find a diffeomorphism g G DiffnR" which takes C, onto

Di+X for each i > 0. Because (f)2t), < u, + , by (i), it follows from Lemma 2 that any

diffeomorphism with support in Int C, may be written as the product of at most 9

diffeomorphisms which are supported by cells in Int C, which have volume less

than o/+l. Therefore, we may construct elements s, lj and kj for 1 < j < 9, such

that

(a) supp s c HI>0(Int Q,

(b) s = kx ■ ■ ■ k9 where supp k- c U/>0(Int E0) and where the cells E¡j c Int C,

satisfy volaE0 <vi+x,

(c) each lj maps EtJ into Int C,+ , and satisfies supp(g-1^) Q U1>0C, so that lj

coincides with g outside the C, and

(d) s = h(lxkxlx~x) ■ ■ -(l9k9l9-x).

In fact, one can define these mappings inductively over the C¡, starting with s = «

on C0. Given s on C,, one chooses the kj and lj on C, satisfying (b), (c), then defines

s on C, + , by (d). Now, comparing formulas (b) and (d) we have kx ■ • • k9 =

h(Ixkxl{~x) ■ • ■ (l9k9l9~x) or, in other words,

« = kx- ■ ■ k9{l9k9l9x)~l ■ ■ ■ (lxkxlx-x)~\
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Clearly the right side of this equation is congruent to the identity modulo the

commutator subgroup. In fact it is not difficult to express it as a product of 9

commutators.   □

Remark. We will see that if « > 3 every / G DiffaR" has a Ling factorization

with at most 14 factors. It follows that there is a number M such that every element

of DiffßR" is the product of at most M commutators. The present proof would give

M = 28 if volßR" = oo, and M = 10206 otherwise, although presumably one could

do much better.

2. Proof of the factorization lemmas. We will call a continuous map F, from [0, 1]

to the group DiffaR" provided with the compact-open C "-topology, an il-isotopy

from F(0) to F(l). Also, if X is an «-dimensional submanifold of R" which is closed

as a subset of R", we will write DiffS20(Ar, rel 9) for the subgroup of DiffnR"

consisting of diffeomorphisms which are fí-isotopic to the identity by an isotopy

"~~* /, which is supported by the interior Int X = X — dX of X. For convenience,

we will assume throughout this section that ñ is the standard volume form

dxx A " ' " /\dxn on R" if volnRn = oo, and otherwise, that it is spherically sym-

metric, that is that ß(x) = f(||x||2)í/x, A ' ' ' A^x„ for some nonvanishing smooth

function f. This is permissible by the generalisation of Moser's theorem to noncom-

pact manifolds [3].

The following result is surely well known. However I know of no proof in the

literature.

Lemma 5. Every element of DiffaR" is 0,-isotopic to the identity.

Proof. If volßR" = oo, an ñ-isotopy from /to the identity may be constructed as

follows. First compose / with translations to take it to an element g which fixes 0.

Then make g linear by the standard isotopy given by

g,(x) = g(tx)/t,       0 < t < 1,    and   g0(x) = lim g(tx)/t.
t-+o

Finally, join g0 to the identity by a path in the connected group SL(n, R).

If volßR" < oo, we may identify (R", Í2) with (D, ß0), where D is an open disc in

R" centered at 0 and Q0 = dxx A • • ■ /\dx„. Then, if / is an ß0-preserving

diffeomorphism of D, by restricting the isotopy described above to a suitable

neighbourhood U of 0 we get a path/, of fí0-embeddings of U into D such that/0 is

the inclusion and /, = f\ U. By Lemma A in the Appendix, there is an ambient

ñ0-isotopy h, of D which equals/, near 0. Thus/is ñ0-isotopic to «,"'/, an element

which is the identity near 0. (Observe that this procedure is valid even if / does not

fix 0 since there is no need for the isotopy/, to fix 0.)

Now notice that the subgroup of ñ0-preserving diffeomorphisms of D which are

the identity on some open disc Dc = (x: ||x||<e) may be identified with the

group Gx of diffeomorphisms of R" — {0} which are the identity outside some

open disc Dx = (x: ||x|| < X) and which preserve ß0. (Indeed, to make this

identification, it suffices to construct an ñ0-preserving diffeomorphism \p: D — De

—> Dx — {0}. Choosing a so that voL, Dx = voln (D — De), we may take ^ to be a
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radial diffeomorphism of the form x —» 0(||x||)x, where 0 is a suitable diffeomor-

phism [e, u) -» (0, X] and ft is the radius of £>.) Any element / of the group G\ is

fl0-isotopic to the identity by the "Alexander" isotopy /,, where /0 = id and

/„ 0 < t < 1, is defined by/,(x) = tfix/t). The result follows.   □

We next show that, just as in the non-volume-preserving case, DiffßR" is

generated by diffeomorphisms which are supported by disjoint unions of annuli,

Ui>0Ar Here

A,- {x:X2/< \\x\\ <X2l + ,},

where 0 = Xq < X, < • • •   and X, —> oo. (Observe that A0 is in fact a disc.)

Lemma 6. If n > 2, every f G DiffnR" may be written as a product gx g2 where

each gj belongs to some group Diff^H^o^,, rel 3).

Proof. By Lemma 5 there is an S2-isotopy /„ 0 < t < 1, from /0 = id to /, = /

Let ft, = 1 and choose a number ft2 so that the image/,( ¡u,S) of the unit sphere ft,5

under the isotopy/, lies inside the sphere ¡u2S of radius ¡i^ for all /. Then, by Lemma

A, there is an ß-isotopy g, defined inside fi2S which equals /, near ¡ixS and the

identity near fcS. Next, choose ju3 < jn4 so that /,( fi3S) always lies outside /x25 and

inside fi4S. Then g, may be extended to the interior of fi4S in such a way that it

equals the identity near ¡u^S and /x45 and equals/, near /¿3S. Continuing in this way,

we construct g, to equal/ near each fi2,_,S' and to equal the identity near each

H2¡S, where u, < fa < • • • and ¡i¡ —» oo. Clearly, g, and g2 = gx~xf have the

required form.    □

Lemma 7. Let A be the annulus 0 < X, < ||x|| < X2 and r be the ray segment (Ay:

X, < X < X2}, where \\y\\ = 1. Then, any element f of T)iffao(A, rel 3) which equals

the identity on r is the product of at most 5 elements of DiffW(A, rel 3) which are

supported by cells.

Proof. Case (i). « > 4. Taking the derivative djL of / at points ty of r, one gets a

loop / h» dffy, X, < t < X2, in SL(n, R). This loop is contractible because / is

ß-isotopic to the identity relative to the boundary of A. Since / = id on r, these

derivatives df^ in fact lie in the subgroup Gn of SL(n, R) consisting of matrices

with first row (1, 0, . . . , 0). Because G„ =a SL(n - 1, R) and

TTxSL(n - 1, R)^.TTxSL(n, R) « Z/2Z   if « > 4,

this loop contracts in Gn as well. It follows that there is « G DüÍq^A , rel 3) which

has support in a cell containing r such that fh = id near r. To see this, first

construct a (not necessarily volume-preserving) isotopy/, with/0 = /,/, = /outside

a small neighbourhood of r in A for all t, and/, = id in a tubular neighbourhood T

of r. Then, by Lemma A, there is an fi-isotopy «, in Diff^/l, rel 3) extending

/~l/,|3F, which is supported by a cell containing r and is such that «, = f~x on T.

Clearly, we may take « = «,. Thus fh has support in a cell of the form A — (nbhd

of r), and so/ = (fh)h~ ' may be factored into 2 elements of the required type.

Case (ii). « = 3. In this case the loop / \-+ df^, X, < t < X2, need not contract in

G3. Instead it is homotopic in G3 to a loop in SO(2) which represents an element of
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the kernel of the homomorphism Z — trxSO(2) —»Z/2Z = ttxSL(3, R). For each

integer k, let yk be the loop representing the element 2k G Z » ttxSO(2) which is

defined as follows. yk(t), for t G [X,, X2], is the rotation through the angle 4trff(k, t),

where 9(k, •) is a smooth function of t which has graph as in Figure 1 if k > 0. We

put 9(0, i) = 0 for all t, and 9(-k, t) = -9(k, t).

-J-—1-i-1-1-
X,       A,+ a   X,+ 2a     X,+ (/fc-l)a    X2

a=(X2-X,)/i

Figure 1.  Graph of 0(k, • ) for k > 0

Consider the diffeomorphism gk of A which rotates each sphere of radius

t, X, < / < X2, about the axis r and through the angle 4ir9(k, t). (Thus g0 = id and

8-k = 8k1-) Since ß is spherically symmetric, gk preserves Q. Also, because yk

contracts in SL(3, R), it is not hard to see that gk G Diffno(y4, rel 3). Given any

/ G Diffao(A, rel 3), we may choose k so that the loop / h> d(gkxf)ty contracts in

G3. The argument of case (i) then applies to show that gk '/ may be factored into 2

elements which are supported by cells. Therefore, in order to factor / into 5 factors,

it suffices to factor each gk into 3 factors.

When k = 1 this may be done as follows. Clearly, it suffices to find two elements

hx, «2 G Diffñ0(^, rel 3) which are supported by cells of the form A — (nbhd of

ray) and are such that «,«2 = g, near the ray y, since then we have g, = «, • «2-

(«,«2)"'g,. Such «, and «2 may be found because of the well-known fact that a

ribbon in R3 with a total twist of 4tt between its fixed ends E and F may be

untwisted by passing it once around F. (See Figure 2.) Thus g,, and hence also

g_, = gxx, has the required factorization.

When \k\ > 1, observe that gk is the product of k "disjoint copies" of g, or g_,,

one supported in each annulus A¡ = {x: X, + ia < ||x|| < X, = (/ + l)a}. There-

fore, each gk also factors as the product of 3 elements of Diff¡¡(¡(A, rel 3) which are

supported by cells. (Each of these cells will contain the union of k disjoint cells,

one in each Ar)   □
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pass behind and

under F

Figure 2

The last ingredient in the proof of Lemma 1 is the following result about knots.

Lemma 8. Let y, and y2 be two smooth arcs from P to Q in R3 whose interiors are

disjoint. Then there is a smooth arc y0 from P to Q which is unknotted with respect to

both yx and y2.

Proof. Arrange the knot y, u y2 so that all crossings are 2-fold, and none

involve y2. (See Figure 3.) Call a crossing an over-crossing 0 if, when y, is traversed

from P to Q, one goes over the crossing before going under it. Otherwise call the

crossing an under-crossing U. Then y, U y2 may be unknotted by changing all

under-crossings to over-crossings.

Let y0 be a smooth arc from P to Q which lies vertically above y, and very close

to it except near the under-crossings, where it goes over instead of under. It is easy

to check that y0 u y2 is unknotted. To see that y0 u y, is also unknotted, notice

that it bounds an immersed disc which intersects itself only at the under-crossings.

If we shrink the disc starting with the end Q, it always happens that the first time

we reach an under-crossing we are in the process of contracting the two inner

strands. (See Figure 4.) This may always be done. When we return to this

under-crossing there is no longer any obstruction there and the disc may be shrunk

further towards P.    □
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^-.f.i.-nrr^To

from p pépkimnwwf

jjjr     this is shrunk first

too

Figure 4

Proof of Lemma 1. By Lemma 6, it clearly suffices to show that if A is an

annulus in R", then any element / of Diffw(A, rel 3) is a product of at most 7

diffeomorphisms each of which has support in some cell contained in A. Let r be

the intersection of the ray {Xy : X > 0} with A. Then, by altering/ near r (that is, by

replacing/by ffx where/, G T)iffm(A, rel 3) is supported by a small neighbourhood

of r), we may suppose that the intersection r n fir) consists of two connected arcs.

It follows easily (using Lemma 8 when « = 3) that there is a smooth arc r0,

connecting the two boundary components of A and disjoint from r u fir), which is

unknotted with respect to both r and fir). (See Figure 5.) This means that there is

an fi-isotopy t \-> g, G Diffm(A, rel 3) which is the identity near r0 and is such that

gx(r) = fir). By altering g, near r we may suppose that g, = / on r. Then, by

Lemma 7, gf1/is the product of 5 elements of Diffno(/l, rel 3) which are supported

by cells. Since g, is supported by a cell of the form A — (nbhd of r0), it follows that

/ has the required factorization into 7 factors. (The extra factor comes from the

preliminary modification off.)   □

Remark. The proof shows that every element of DiffnR" has a Ling factorization

with at most 14 factors. No attempt has been made to find the smallest number of

factors which are necessary.

Figure 5
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Proof of Lemma 2. Suppose that / G DiffaR" is supported by Int C, where,

without loss of generality, we assume that C is a disc in R". Choose a closed region

W c C with volume } vo^C which is bounded by a hyperplane intersected with C

and let V be an open e-neighbourhood of W in C such that vola( V u fV)

<I voljjC. (See Figure 6. Such V exists because/ = id near 3C so that W overlaps

fW.) Then there is a (non-volume-preserving) isotopy g, with support in V u fV

such that g0 = id and also, g, = / on W. (For instance, one might take g, =

fp,~xf~xp„ where/?, is an isotopy with support in F which shrinks W so close to 3C

that/ = id onpx(W).) Since (V \j fV) - W is connected, it follows from Lemma

A that we may actually choose g, to preserve volume. Then gx '/ preserves volume

and, because it equals the identity on W and near 3C, it has support in a cell of

volume less than § volaC. It will be one of the factors of/ We will complete the

proof by expressing g, as a product of 2 factors of the required type.

Px(W)is
shaded

By construction, g, has support in V u fV. Since vola( V U fV) < § volaC there

are disjoint cells Bx, . . . , Bm in (Int C) - ( V u fV) such that j volaC =

Sf_, volftBj. (See Figures 6,7.) Join 3C to Bx by a smooth arc y, and, for

1 <j < m, join dBj_x to dBj by a smooth arc y.. We may suppose that these arcs

are disjoint and do not meet V or the boundaries 3C and 3Ä except possibly at

their endpoints. Thus the complement in C of a suitable neighbourhood of

(Jj Bj u y7 will be a cell. Clearly, g, = id near Uy Br The idea now is to modify g,

so that it equals the identity near (J7 B} u y7 and hence has support in a cell.

As a first step, notice that we may assume that the arcs g,y, all lie outside W.

For, if they do not, we may find an isotopy k, (which we may assume to be volume

preserving because « > 3) which pushes the arcs g,y, outside W, and has support in

V. Then we may factor kx gxkx~ ' instead of g,.

Now, let « be a (non-volume-preserving) diffeomorphism which is the identity

near U/.Bj U y, U gxyß and near 3C, and which pushes the support of g, outside

W. Then hg,h~x is an isotopy with support in Int(C - W) such that hgxh~x = g,

near Uy Bj u y,. By Lemma A there is an element q G DiffnR" with support in

Int(C — W) which equals g, near (Jj Bj u y,. Then

the boundary of V

Figure 6
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supp q   'g, c Int[ C - ( \jj Bj u y,)]

so that both q and q ~ xgx are supported by cells in Int C with volume less than

3 vol„C Thus/= q(q~ g¡)(g¡~ f) has the required factorization.    □

Figure 7
3.

Proof of Lemma 3. There is a (non-volume-preserving) diffeomorphism « of R"

which takes each cell C, onto the disc C,' of radius \ centred at x, = (/, 0, . . . , 0).

(To see this, first choose a diffeomorphism which takes the centre of each C, to x,

and then shrink the images of the C, down.) Therefore, the problem reduces to

finding a locally finite collection of disjoint discs D[ which contain the C/ and

whose («„^-volumes satisfy the given conditions. Care is needed when

volj^R" — H,C,) < oo since in this case the D[ must be chosen so that

vol (R- - H O;) - vol (R- - LI C,) - 2 (w, - vol C,).

However, because we can choose the D{ to have nice geometric shapes, we can

make them fill up as much or as little of R" as necessary. For instance, we may take

them to be annuli /x < ||x|| < X, with a hole drilled along the negative x,-axis so

that they are cells, and distorted along the positive x,-axis so that C,' Ç D[ for all /'.

(See Figure 8.)

Figure 8
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Proof of Lemma 4. As in the proof of Lemma 3, we may identify the cells C,

with the set of discs centred at the points x, and with radius \. It is now not

difficult to construct an increasing sequence of cells C," with C" c Int C/'+, for all

i, whose union is R" and which are such that C¡ c Int(C/+, — C,") for all /.

Moreover, if the w¡ are any positive numbers such that w¡ —» volaR" as / —> oo and

volaC, < wi+i — w¡ for all i, then we may clearly choose the C" so that volaC," =

w¡. Let D¡" be a similar sequence for the cells D¡ with volaZ)," = w¡ also.

Now use Lemma A to construct an fi-isotopy/, such that/,(C,") = D" for all /'.

(Construct an isotopy/ in Dif^R" so that/,(C,") = £>,". Then extend/|C," to an

isotopy/ in such a way that/,(C2") = D2, and so on.) By Lemma A again, there is

an ñ-isotopy «, with support in U.i>0lnt(D"+x — D") which moves each cell/i(C,)

onto D¡. Clearly, g = «,/, satisfies the required conditions.    □

Appendix. The following lemma gives all the information we need about extend-

ing volume-preserving isotopies. It is proved by Krygin in [5].

Lemma A. Let W be an (n — 1)-dimensional compact submanifold of R" and

suppose that gn0<t<l,isa smooth family of embeddings of W into some open

subset UofR", with g0 equal to the inclusion. If each component ofR" — gx(W) has

the same £2- volume as the corresponding component of R" — W, there is an isotopy /,

in DiffaR" with support in U and such that f0 = id, andfx = g, on W. Moreover, if g,

is defined on some components V of R" — W, and if it preserves il on V and preserves

the total volume of the other components of R" — W either for all t or when t = 1,

then we may suppose that / = g, on V for those values of t.
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