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BINARY SEQUENCES WHICH CONTAIN NO BBb

BY

EARL D. FIFE

Abstract. A (one-sided) sequence or (two-sided) bisequence is irreducible pro-

vided it contains no block of the form BBb, where b is the initial symbol of the

block B. Gottschalk and Hedlund [Proc. Amer. Math. Soc. 15 (1964), 70-74]
proved that the set of irreducible binary bisequences is the Morse minimal set M.

Let M+ denote the one-sided Morse minimal set, i.e. M+ — {x0xxx2 . . . :

. .. x_xx0xx . . . e A/}. Let P + denote the set of all irreducible binary sequences.

We establish a method for generating all x e P +. We also determine P + — M +.

Considering P + as a one-sided symbolic flow, P + is not the countable union of

transitive flows, thus P+ is considerably larger than M+. However M+ is the

u-limit set of each x e P +, and in particular M * is the nonwandering set of P +.

0. Introduction. The Morse minimal set has been characterized [3] as the set of all

doubly-infinite sequences on two symbols which have the property that they

contain no block of the form BBb, where b is the initial symbol of the block B. Let

us call (two-sided) bisequences, (one-sided) sequences and blocks (finite strings)

which satisfy this property irreducible. What is the set of all irreducible sequences

on two symbols? Is it the same as the one-sided version of the Morse minimal set?

We shall develop a procedure to construct every irreducible sequence. We then use

this to show that, not only does the set of all of them properly contain the

one-sided Morse minimal set, but that there are uncountably many irreducible

sequences for which no "tail" is in the one-sided Morse minimal set.

This problem of irreducibility was first considered by Axel Thue [8] in 1912. He

was concerned with constructing bisequences which repeated in a uniformly

minimal fashion. It is evident that every binary (i.e. using two symbols) sequence

and bisequence must contain a block of the form BB, where each occurrence of B

represents the same block. Thus there is no stronger nonrepetitive condition for

binary sequences or bisequences which holds for blocks of all lengths than that

they be irreducible. Thue constructed what is now known as the Morse-Thue

bisequence and established its rôle in determining all irreducible binary bise-

quences.

Independently, Marston Morse constructed the Morse-Thue bisequence in 1917

while working on his dissertation. He first published it in 1921 in [6]. Later in 1944,

Morse and Hedlund [7] proved the bisequence to be irreducible. Finally in 1964,

Gottschalk and Hedlund [3] proved the aforementioned characterization of the

Morse minimal set. It was not until after [3] had appeared in print that Thue's
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116 E. D. FIFE

work, having appeared in a relatively obscure journal, became well known. For a

more complete history, see Hedlund [4].

Although the problem of determining all irreducible binary bisequences has been

of sufficient interest to have been solved at least twice, the analogous problem for

binary sequences (one-sided) has remained unsolved. We solve it here.

It is not always easy to decide whether or not a binary block is irreducible. To

illustrate, the 200-block

0010011010010110011010011001011001101001

0110100110010110100101100110100110010110

0110100101101001100101100110100110010110

1001011001101001011010011001011010010110

0110100110010110011010010110100110010110

is not irreducible, but no block of the form BBb is readily recognizable.

In the solution to the two-sided problem, this recognition difficulty can be

avoided. Any block which appears in some irreducible bisequence must appear in a

special type of block called a Morse block (see §1), and Morse blocks are relatively

easy to recognize. Unfortunately, blocks which appear in irreducible sequences

need not appear in any Morse block. Thus a different approach is needed.

We establish a method for generating all irreducible binary sequences by

associating with each binary sequence a sequence on three symbols which we call

an algorithm sequence. (The algorithm sequence is actually used to generate the

binary sequence.) The existence of a block of the form BBb in the binary sequence

is reflected in the existence of an easily recognizable block in the algorithm

sequence. From the algorithm sequence we can also easily determine whether or

not an irreducible binary sequence can be extended to an irreducible binary

bisequence. There are, in fact, uncountably many irreducible binary sequences

which cannot be so extended.

The results of this paper are contained in the author's doctoral dissertation

written at Wesleyan University. The author is grateful to Professor Ethan M.

Coven for his valuable suggestions.

1. Preliminaries. A flow (X, T) consists of a nonempty compact, metrizable space

X and a continuous map F of A" into itself. A subset E of X is invariant provided

T(E) C E. If X' is a nonempty, closed, invariant subset of X, then (A", T) is a

subflow of (X, T). A flow (X, T) is minimal provided it contains no subflows other

than itself.

If £ is a nonempty subset of X, then {T"E: « > 0} is called the orbit of E and is

denoted 6(E). The closure of 6(E) is denoted Cl 6(E) and is called the orbit-

closure of E. If £ is a nonempty subset of X, then (Cl 0 (E), T) is a subflow of

(A, T).
Let S+ denote the set of all binary sequences and S the set of all binary

bisequences. That is

S + = {x = x0x,x2 ... : x, = 0 or 1 for /' = 0, 1, 2, ... }
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and

S = {x = ... x_,x0x, ... : x, = 0 or 1 for /' = . . . , -1, 0, 1, . . . }.

(As a reminder to the reader, throughout this paper we shall superscript sets of

binary sequences with a + .) Given the product topology, S and S + are compact,

metrizable spaces homeomorphic to the Cantor set. A compatible metric for S (for

S +) is given by d(x, y) = \/(k + 1) where k is the largest nonnegative integer such

that x, = y¡ for |/| < k (i < k). Let a: S^S (o: S+ -*S+) be defined by

[a(x)], = x, + , for /'=... , -1, 0, 1, . . . (i = 0, 1, 2, . . . ). The map o, called the

shift transformation, is continuous. Any subflow of (S, o) or (S+, o) is called a

symbolic flow.

We shall have occasion to pass from bisequences to sequences. Thus if x G S we

shall denote x0x,x2 ... by x + .

An n-block is a string of « consecutive 0's and l's. Blocks are an essential tool in

the study of symbolic flows in that they represent the cylinder sets which form a

basis of open and closed sets of the topology, e.g. in place of the set UB = (x G

S + : x, . . . x, + „_, = bx . . . bn], we consider the block B = bx . . . bn. Thus an

arbitrary open set about a point x can be taken to be a block which appears in x

starting at a specified place. The «-block x^ . . . xk+n_x will often be denoted by

x[k; «]. The length of a block B will be denoted by 1(B), and the set of all blocks

will be denoted by 65 .

The dual block of B = bx . . . bn is the block B = bx . . . bn where b, «■ 0Ü* b, — 1,

and bi■= 1 if b¡ = 0. For example, if B = 011011, then B = 100100.

We define a sequence of blocks A0, A,, A2, . . . inductively by letting A0 = 0 and

An+\ = AnAn{orn > °- Thus A i = 01, A2 = 0110, and A3 = 01101001. Notice that

An is a 2"-block. A block B is a Morse block provided B = An or An for some

« > 0.

A block C is reducible provided there is a block B with initial symbol b such that

BBb is a subblock of C, i.e. for some integer i > 0 and some integer « > \, ci+k =

Ci+k+„ for all 0 < k < «. A block which is not reducible is irreducible. Let

<dP = {B G © : B is irreducible). It is evident that if B G <3> and C is a subblock of

5, then Cel Morse and Hedlund showed in [7] that every Morse block is an

element of 9.

Let P+ = {x G S' + :no reducible block appears in x), equivalently P + = {x G

S + : xt■ . . . x¡+n G 9 for all /', « > 0}. Observe that P+ is a nonempty, closed,

invariant (under o) subset of 5 + ; thus (P +, o) is a subflow of (S +, o).

We define /x G S by jUç . . . ju2"„, = An for each « > 0, and ju_, = ft-i for each

i > 1. /x is the Morse-Thue bisequence, and jit+ = jUq/í, y^ . . . is the Morse-Thue

sequence. Morse and Hedlund proved in [7] that no reducible block appears in u.

Thusit+ G P + .

Let M+ = Cl 0(/x+) and M = Cl 0(/x). Observe that M+ is a collection of

sequences, and A/ is a collection of bisequences. The flow (M, o) is the (two-sided)

Morse minimal set. (The Morse minimal set is usually defined as C\{on¡i: « =

0, ±1, ±2,...}, however since (M,o) is minimal, nonnegative powers of o

suffice.) The flow (M +, a) is the one-sided Morse minimal set.



118 E. D. FIFE

Remark 1.1. (i) M+ = {x + G S + :x G M}.

(ii) (A/+, o) is a subflow of (P+, o).

2. Algorithm sequences. We wish to establish a method for generating irreducible

sequences. We shall do this by considering the problem of how to extend an

irreducible block to the right to obtain an irreducible block of greater length. The

following lemma, which is the one-sided analog of Lemma 4 of [3], states a minimal

condition any extension must satisfy.

Lemma   2.1.   Let   « > 0   and  p > 0.   If   x G P+    and   if   x[p; 2"+l] =

AnAn, AnÄn, AnAn or ÄnÄn, then for each m > 0, x[p + m ■ 2", 2"] = An or A„.

In order to repeatedly apply this lemma to increasing values of «, we wish to

extend a Morse block DD to an irreducible block which ends in a Morse block

twice as long. From the following tree, it is evident that there are only three such

extensions.

DD

DDD is reducible

(1)

DDDDD is reducible

(2)

DDD is reducible

(3)

DDD is reducible

Thus the only ways to extend DD to an irreducible block which ends in a Morse

block twice as long are

(1) DDDDD,
(2) DDDDDD and

(3) DDDD.
To make this process rigorous we introduce the following definitions.

Let <S ' = {B G <S> : B ends in 01 or 10).

The canonical decomposition of a block B G % ' is B = CDD where DD is the

maximal terminal Morse block of B. It should be noted that C might be the empty

block. However D is never empty since B G 9> ' if and only if the maximal terminal

Morse block of B has length at least 2. To illustrate, we list the canonical

decomposition of three blocks (where the dots separate the blocks C, D and D).

01101001 =0110- 1001,       010110 = 01   01 • 10,       0100110 = 010   01 • 10.

Notice that in the first case, C is the empty block.
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Define three maps a*, a*, and a*, each mapping % ' into "35 ', by

a*(CDD) = CDD DDD,       a*(CDD) = CDDDDDD

and

a*(CDD) = CDDDD.

For example, recalling that 010   0110 is the canonical decompostion of 0100110,

we have

a*(0100110) = 010 • 01 • 10 • 01 • 01 ■ 10 = 0100110010110,

a2*(0100110) = 010 - 01 - 10 • 01 - 10 - 10 - 01 = 010011001101001

and

a*(0100110) = 010 • 01 • 10 • 10 • 01 = 01001101001.

To aid in remembering the evaluations of each of these maps, observe the

following.

(i) If C is the empty block, then the evaluation of each af is precisely one of the

irreducible extensions of DD observed from the tree.

(ii) The a*'s are subscripted in lexicographical order where D proceeds D.

(iii) The evaluation of each a* ends in a block obtained from a Morse 4-block by

substituting D and D for 0 and 1.

It is convenient to think of these maps as algorithms for extending blocks in % ',

hence we call them algorithms. Composition of algorithms is read from right to left

and is denoted by juxtaposition. Thus a*af(B) means first apply af to B and then

apply af to a*(B).

The composition of « algorithms is called an algorithm n-block. The algorithm

«-block B* is subscripted with positive integers increasing from right to left, i.e.

B* = b* . . . b*. (Of course since a*, a* and a* have been designated as specific

algorithms, an algorithm block such as a*a*a* is not at variance with this

subscripting convention.)

Let % * denote the set of all nonempty algorithm blocks, and let 9* = {B* G

<&*: B*(0l) is irreducible}.

Since our objective is to generate sequences in S+ as well as blocks in %, we

shall also consider left sequences of algorithms called algorithm sequences. They

will be denoted x*,y* or z*, subscripted, as in the case of algorithm blocks, from

right to left with positive integers, e.g. x* = . . . x*x*x*. The set of all algorithms

sequences is denoted S*.

Let «® " = {B G %': 1(C) < 21(D) where CDD is the canonical decomposition

of B).

The members of S* may be thought of as maps from $ " into S + as follows.

x*(B) = y = y0yxy2 . ■ ■ , where for each « > 1, ^[0; «] is the initial «-block of

x*n ... x*x(B).

Remark. If B G %" and « > 1, then x* . . . xf(B) is an initial subblock of

x*+\ ■ ■ ■ x*(B)-lt follows that x*(B) is well defined.

It is an easy exercise to show that u+ = ... a*a*a*(0l).
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Let P* = {x* G S*: x*(01) G P + }. We shall show that in order to study P+, it

is sufficient (in some sense) to consider P* (Theorems 2.3 and 2.11).

The following lemma is a direct consequence of Lemma 2.1, and its proof is

illustrated by the tree following Lemma 2.1.

Lemma 2.2. Let x G P+ and let x[p, 2k+x] = DD where D = Ak or Ak. Then

there exists an integer r > 2k + 2 and an algorithm b* such that x[p; r] = b*(DD).

Theorem 2.3. Let x G S+ where x, = x0. Then x G P+ if and only if there exists

an algorithm sequence x* G P* such that x*(01) = x or x. Furthermore, if such an

x* exists, it is unique.

Proof. It suffices to prove =>. Let x G P + . Since x is also in P+, we may

suppose that x0x, = 01. By the definition of P*, it suffices to find an x* G S* such

that x = x*(01).

Let k be the smallest positive integer such that x0 . . . xk is not an initial

subblock of B*(0l) for any B* G <S *.

If x2x3 = 00, then since x G P+, x4 = 1. Thus x0 . . . x4 = 01001 = a*(0l), so

k > 5.

If x2x3 = 01, then since x G P + , x4x5 = 10. Thus x0 . . . x5 = 010110 = a*(0\),

so k > 6.

If x2 = 1, then since x G P + , x3 = 0. Thus x0 . . . x3 = 0110 = a*(01), so k > 4.

Therefore there exists an algorithm b* and an integer r, 3 < r < k, such that

¿>*(01) = x0 . . . x.

Let B* be the algorithm block of greatest length such that 5*(01) is an initial

subblock of x0 . . . xk. Let CDD be the canonical decomposition of 5*(01), and let

C — x^ . . . xp_x. By Lemma 2.2, there exists an integer t > 2l(DD) and an

algorithm c* such that x[p; t] = c*(DD). Thus x[0; t + p] = c*B*(0l). If t + p >

k + 1, then x0 . . . xk is an initial subblock of c*B*(0\), contrary to the choice of k.

If t + p < k + 1, then c*B*(0l) is an initial subblock of x0 . . . xk, contrary to the

choice of B*. Therefore x = x*(01) for some x* G S*.

It is readily verified that x* is unique,    fj

The reader is invited to use the procedure indicated in the proof of Theorem 2.3

to verify that

A^ÁXA2A3 ... = ... x*xfx*(01).

It might also be instructive to express the 200-block in the introduction in terms of

algorithms.

We may consider the elements of P + to be of two basic types-those which begin

01 or 10, and those which begin 001 or 110. Theorem 2.3 related those elements in

P+ of the former type to P*. Before considering the theorem relating those

elements in P+ of the latter type to P* (Theorem 2.11), we shall need several facts

concerning binary blocks and algorithm blocks.

Let 9 be the substitution 0: 0 -> 01, 1 -> 10. Extend 9 to a map of <$ into $ by

9(bx . . . bn) = 9(bx) . . . 9(bn). We shall use the following three properties of the

substitution 9 without comment.
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(i) If C, D G %, then 9(CD) = 9(C)9(D).

(ii) If B G «ft, then 0(5) =0(5).

(iii) 0(/l„) - 4,+ , for each « > 0.

We denote successive applications of 0 by exponentiation. Thus 9"(B) denotes

0(0"-1(5))forall« > 2.

Remark 2.4. Let B* G <$> * and let B G <33 ". Then

(i) 0[/?*(5)] = 5*(0(Ä)),

(ii) 9[B*(0l)] = ß*a3*(01).

Proof, (i): Observe that if CDD is the canonical decomposition of B, then

0(C) • 0(Z>) • 9(D) is the canonical decomposition of 9(B). The result then follows

via induction on l(B*).

(ii): Note that a3*(01) = 0(01).    □

Lemma 2.5. Let x* G 5"* a«¿ let B G iß ". F/ten 0[x*(fi)] = x*(9(B)).

Proof. Use Remark 2.4.   □

The following lemma and its proof are contained in the proof of Theorem 3.1 of

[7].

Lemma 2.6. Let B = b0 . . . b, G 9> have the property that for at least one of k = 0

or k — 1, bk + 2n+x = bk+2nfor all nonnegative integers « such that k + 2« + 1 < t.

Let C be a block with initial symbol c such that CCc is a subblock of B. Then 1(C) is

even.

Lemma 2.7. Let B be a binary n-block and let 9(B) = b0 . . . b2n_x. Then b2j+x =

b2J for all j, 0 < j < n.

Proof. See §12.29 of [2].   Q

Lemma 2.8. Let B* G <$> * and let B*(0\) = c0 . . . c,. Then

(i) There exists k = 0 or 1 such that

ck+in+\ = ck+2n   forO < « <\(t - k - 1).

(ii) If B is a block with initial symbol b such that BBb is a subblock of B*(0\), then

1(B) is even.

Proof, (i): Let B* = b* . . . b* and let C* = b* . . . b*. If b* = af, then

B*(0l) = C*(01001) = 0-[C*(1001)] =O-[C*(0(1O))] = 0 • 0[C*(1O)].

Thus by Lemma 2.7, (i) holds with k = 1.

The proofs for bx = a* and b* = a* are analogous,

(ii): Apply Lemma 2.6 to part (i).    □

Lemma 2.9. LetB^%. Then

(i) B G <3> if and only if 9(B) G 9,

(ii) B* G 9* if and only if B*a* G 9*.

Proof, (i): (=*) Let 9(B) = b0 . . . b2p_x and let B = b'0 . . . bp_x. Then

b2i = b¡    for allO < i < p - I. (1)
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Suppose 0(5) G 9. Then some subblock of 9(B) has the form CCc, where C is a

block with initial symbol c. By Lemma 2.6,1(C) is even, call it 2«. Let

bk ■ ■ ■ bk+4n = CCc be the first subblock of 9(B) of this type. (2)

Thus

K+i = °k + 2n+i    for 0 < i < 2«. (3)

By Lemma 2.7 we have

b2i+x = b2i    for each /', 0 < i < p - 1. (4)

We show that k is even. Suppose k is odd. Then by (4) and (3), bk_x = bk =

bk + 2„ = bk+2n_x,thatisbk_x = bk + 2„_x. Similarly bk+2n_x = ^+4„_,.Thus

bk-\  = bk + ln-\ = bk + 4n-V (5)

Combining (3) and (5), we have bk_x+i = bk_x+2n + i for 0 < i < 2«, i.e. for

C = Z>^_, . . . bk + 2n_2, C'C'c' is a reducible subblock of 9(B), contradicting (2).

Thus k is even; say k = 2m.

Define F> = i/0 . . . d„_x  by d,,= bk+2i for 0 < i < n - 1. Then by (1), /) =

bkbk + 2bk + 4 ■  ■ ■ bk + 2n-2    -   b2mb2m + 2 •  ■  ■ è2m + 2r,-2    =  èmèm+l  ■ ■  ■ 4*+»-l-     ThuS

/)/)</0 is a subblock of Ä. Therefore B <£ 9.

(«=) Suppose B & 9. Then there exists a block C with initial symbol c such that

CCc is a subblock of B. Since c is the initial symbol of both 0(C) and 9(c), it

follows that 9(C)9(C)c is a subblock of 0(B). Thus 9(B) G 9.

(ii): Combine (i) with Remark 2.4.    □

Lemma 2.10. x G P+ if and only if 9(x) G P+.

Theorem 2.11. Let x G S+ with x0 = x, = x2. Then x G P+ if and only if there

exists an x* G P* such that

(i) x*(001) = x or x and

(ii) x*a* G P*.

Furthermore if such an x* exists, it is unique.

Proof. Without loss of generality we may suppose that x0 = 0. Thus XoX,x2 =

001.

(<=) Suppose there exists an x* G S* such that x*(001) = x or x and x*a2 G

P*. By our assumption, x*(001) = x rather than x. From Lemma 2.5,

0(x) = 0[x*(OOl)] = x*(0(OOl)) = x*(010110) = x*aj(01).

Since x*a2* G P*, 9(x) G P + and therefore by (2.10), x G P +.

(=>) Suppose x G P + . Then ox G P + . Furthermore [o-xjrlox], = 01. Thus by

Theorem 2.3, there exists a unique x* G P* such that x*(01) = ox. It then follows

that

x = 0[ax] =0-[x*(01)] = x*(001),

thus proving (i). By Lemma 2.10, 0(x) G P+. Now applying 0 to both sides of (i)

and using Lemma 2.5, we have

0(x) = 0[x*(OOl)] = x*(0(OOl)) = x*(010110) = x*a*(01).
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Hence x*a2*(01) G P +, that is x*a* G P*, thus proving (ii).    □

3. Determination of all irreducible sequences. From Theorems 2.3 and 2.11, in

order to determine whether a binary sequence is irreducible, we only need to

consider its algorithm sequence. Thus we now wish to determine which algorithm

sequences are in P* = (x* G S*: x*(01) is irreducible}. We do this by first

determining which algorithm blocks are in 9* (Theorem 3.14), and then conclud-

ing that P* consists of all sequences in S* which have the property that every block

lies in <dp* (Corollary 3.15).

We begin with a remark and a series of lemmas which provide useful informa-

tion about algorithm blocks in ^P *.

Lemma 3.1. If B* G 9* and C* is a subblock of B*, then C* G 9*.

Proof. Let C* = bf . . . bf and let CDD be the canonical decomposition of

b*-\ ■ ■ ■ 6f(01)- (If k = I, then C is the empty block and DD = 01.) Now use

Lemma 2.9 and the fact that DD = A,_xA~t_x = 0'_1(O1) or DD = A,_XA,_X =

0'-'(H)).    □

Remark 3.2. Let B* G 9> *. Then

(i) B*a*(0l) = 0 ■ [B*a3*(10)].

(ii) B*a*(0\) = 01 • [B*a*(0\)l

(iii) l(B*a*(0\)) = l(B*a*(0\)) + 1.

(iv) If x0 . . . xp = B*a*(0l), then p is odd and x2n+, = x2„ for « =

0,\,...,\(p- 1).

Proof of (iv): From (ii) and Remark 2.4,

x0. . .xp = 01 ■[B*a*(0\)} = 0(O)-0[B*(O1)] = 9[0-[B*(0\)]].

Therefore l(x0 . . . xp) is even, i.e. p is odd. Now apply Lemma 2.7.   □

Lemma 3.3. Let B* G 9 *. Then

(ï)IfB*a* G 9*, then some initial subblock of B*a*(0\) is of the form BBb.

(ii) // B*a* $9*, then some initial subblock of B*a*(0l) is of the form BBb.

Proof, (i): Suppose B*a* & 9*, i.e. B*a*(0l) = x0 . . . xp is reducible. If no

initial subblock of x0 . . . xp is of the form BBb, then x, . . . xp = B*a*(\0) is

reducible, i.e. B*a* & 9*. But by Lemma 2.9 B* G 9*, contrary to the hypothe-

sis.

(ii): Let B*a* & 9* and let B*a*(0l) = x0 . . . xp. Suppose that x, . . . xi+2k is

of the form BBb, that is xi+J = xi+j+k for 0 < / < k. By an argument similar to (i)

we can show that i < 2.

Suppose /' = 1. Then xx+j = xx+J+k for 0 < / < k. By Remark 3.2,p is odd and

x2n+, = x2„ for 0 < « < \(p — 1). In particular, x0 = x, and x2k = x2k + x. Fur-

thermore by Lemma 2.6, k is even, soxt = xk+x. Thus we have x0 = x, = x^^., =

xk and x0 = xk + x = x2k+x = x2k, that is x0 = xk = x2^. Therefore x, = xj+k for

0 < j < k; equivalently x0 . . . x2k is an initial block of the form BBb as desired.

D

Lemma 3.4. B*a* <=9* if and only if B*a* <e9*.
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Proof. By Lemma 3.1, if B* G 9*, and B*a* G 9* and B*a* $9*. So

suppose B* G 9*.

Let x0 . . . xp = B*a*(0\) and y0 . . .yq = B*a*(0l). By Remark 3.2, p is odd,

q = p — \ and

x, ...x, = 1 -[/?*a3*(01)] = 0-[5*a*(10)] = y0...yp_x.

Equivalently,

yj^xJ+x    foxO<j<p-\. (1)

(<=) If B*a* $ 9*,it follows directly from (1) that B*a* &9*.

(=>) Suppose B*a* & 9*. Then by Lemma 3.3 an initial subblock of B*a*(0l) is

of the form BBb, i.e. there exists an integer k > 1 such that x, = xi+k for

0 < / < k. From (1), it follows that^, = x, + , = x, + i+* = yi+k for 0 < i < k — 1.

Furthermore by Remark 3.2, x2k = x2k+x. Thus yk = xk+x = x, = 0 and >>2¿ =

*2*+i = x2k = x0 = 0. Since y0 = 0, we have y0 = yk= y2k. Therefore yt = yi+k

for 0 < / < k, i.e. .y0 . . . y2k is of the form BBb. Hence B*af & 9*.   □

Lemma 3.5. Le/ B* G <3B *. F«e«

(i) £*af G 9* if and only if B* a* a* a* G 9*,

(ii) A*aJ G 9* if and only if B*a*a*a* G <ÍP*.

Proof. By Lemma 3.4, it suffices to prove (i), and by Lemma 3.1, (i) is valid if

B* G 9*. So suppose i'E?'.

Let x0 . . . xp = B*a*(0l) and y0 . . .yq = B*a*a*a*(0\). Then x0 . . . xp =

0[B*(1001)]and

^...7i = 0-[fi*a3*a3*(1001)] =O-02[B*(1OO1)]. (1)

Hence

02(x,) =yAl-3^4,-2^4,-i^4,    for 1 < f < yj, (2)

and therefore

•*( = ^4,-3   for 1 < i < />. (3)

Furthermore, since 92(b) = bbbb, (2) gives us

74,-3 =^4/    for 1 < / < p. (4)

(«=) Suppose B*a* & 9*.~Ry Lemma 3.3 there exists an integer k > 1 such that

x0 . . . x2k is of the form BBb; equivalently

x, = xi+k    for 0 < i < k. (5)

By (2) and (5) we have

>,4/-3J'4>-2>'4/--l74/ =   "   (Xj) = "   (Xj + k) = ^ + 4*-3^4y + 4*-2^4/+ 4*- 1 >"4,+4*:

for 1 < j < k, i.e.yj = yi+4k for 1 < i < 4/c.

However by (3), (4) and (5), y0 = 0= x0= xk= y4k_3 = y4k. Thus y¡ = yi+4k

for 0 < /' < 4k. Therefore y0 . . .yik is of the form BBb, and hence B*a*a*a* G

9*.
(=>) Suppose B*a*a*a* G 'S5*. By Lemma 3.3 there exists an integer k > 1 such
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that^Q . . .y2k is of the form BBb, that is

y i = yi+k   for 0 < i < k. (6)

We show that k is a multiple of 4. Observe that

JV . ,yt = 010010110 (7)

is the initial 9-block_ of B*a*a*a*(0\). By (1), B*a*a3*a*(0\) = 0 • 02[£*(1OO1)]

and, since 92(b) = bbbb,

y^^y^y^y«^ = OHOor lOOl    forO < i < ±(9 - 4). (8)

Now by Lemma 2.8, k is even, so if k = 4« + 2, then rC + 3=4« + 5 = 4(« + 1)

+ 1. Consequently by (8),

.y*+3.y*.M>'*+j>'*+« = oí loor looi.

But by (6) and (7),

yk+3yk*4?k+syk+é ■ y*y*ysyt> = °101-

Hence A: = 4« for some «. Furthermore from (7), « =^ 1 because _y0 . . . ys is not of

the form BBb. Thus « > 2.

From (6) we have_y, = yi+4n for 0 < / < 4«, and in particular y4j_3 = y^+n„-3

for 0 < j < «. Thus by (3), x, = ^_3 = >'4(j,+n)_3 = x„+> for 1 < j < «. Further-

more from (6), (4) and (3), x0 = 0 = y0 = y4n = y4n_3 = xn. Thus xy = x,.+n for

0 < j < », i.e. x0 . . . x2n is of the form Bfi¿>. Therefore B*a* &9*.    O

An inadmissible block is an algorithm block of the form b2n_y3 . . . b* for « > 0

where

(i) b* = af or a*,

(») b2n + 2b*n + 2 - «*«2*. a*«3* or fl3*af

and if n > \

(iii) ¿>* = a* for each /, 2 < / < 2« + 1.

Observe that b* . . . bf is inadmissible if and only if b*b*_xbf is inadmissible

and b*_x and bf are separated by an even number of a*'s. Thus each of the

following is an inadmissible block:

afa*af,    a*a*a3a3af    and   a*afa*a3a3a3a2.

We shall show that 9* consists of all algorithm blocks which contain no

inadmissible subblocks (Theorem 3.14).

Lemma 3.6. If B* G 9 *, then no subblock of B* is an inadmissible block.

Proof. By Lemma 3.1, it suffices to show that if B* = b2n+3 . . . bf is inadmissi-

ble, then B* G 9*. Observe that

afa*af(0\) = 010011001011 • 010011001011 • 0,

a*a*af(0\) = 01001011 • 01001011    0-01101001
and

a*afaf(0\) = 010011 • 010011 • 0 • 010110

each contain a block of the form BBb as indicated. The result now follows from

Lemmas 3.4, 3.5 and induction on «.    □
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Lemma 3.7. Let B* = bf . . . bf G 9> * be such that

(i) n > 3,

(ii) // C* is a proper subblock of B*, then C* G 9* and

(iii) there exists a block B with initial symbol b such that BBb is an initial subblock

ofB*(0\).
Then bf_3 . . . bf(0\) is a subblock of B.

Proof. Use the fact that for any D* = df . . . df e 9>*,

2*+1 <l(D*(0l)) < 2(2*+1 - 1)

to show that if l(bf_3 . . . bf(0l)) > 1(B), then (ii) is not satisfied.    □

The main result of the section-the determination of 9 *- is proved by induction

on the length of the algorithm blocks. Lemma 3.8 begins the induction and

Lemmas 3.9, 3.11-3.13 are the individual cases we shall need to consider in the

inductive portion of the proof. There are 363 algorithm blocks of length less than

or equal to 5, thus the verification of Lemma 3.8 was done by computer.

Lemma 3.8. Let B* G 9>* with l(B*) < 5. Then B* G 9* if and only if no

inadmissible block appears in B*.

Lemma 3.9. Let B* G 9* be such that

(i) l(B*) > 3 and

(ii) every proper subblock of B*afaf is in 9*.

Then B*afaf G <3>*.

Proof. Let B* = bf . . . bf. We first note that B*afaf cannot be inadmissible,

for if C* = B*afaf, then c* =£ a*.

If « = 3, then l(B*afaf) = 5, thus the lemma is valid by Lemma 3.8.

Let « > 3 and suppose B*afaf G 9 *. By Lemma 3.3 there exists a block B with

initial symbol b such that BBb is an initial subblock of B*afaf(0l). By Lemma 3.7,

afaf(01) = A0AXA2A2 is an initial subblock of B. (1)

Thus B*afaf(0l) = B*(A0ÄXA2Ä2) = AqÄ^B^A^].

Observe that bf & a3, for otherwise, bfafaf = a3afaf, which is inadmissible.

Let C* = bf ... b*. If bf = af, then

Bfafaf (01) = A^X\8*{A^) = A„Äx\C*a^A^]

= AoAi'v\C yA2A2A2A2A2j^ = AqAxA2 ■ yC (A3A3)^.

Similarly we have that if bf = a* then

Bfafaf(0\) = A^A^-IC^A,!,)].

Thus by (1), in each case the block B, and hence the block afaf(01) =

A,y4xA2Ä2, must appear in either C*(A3A3) = 03[C*(O1)] or C*(A3A3) =

03[C*(1O)]. But 03(O) = ,43 jind 03(1) = Ä3, so C*(A3A3) and C*(A3A3) are each

concatenations of >l3's and A3s.
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Since l(A0AxA2A2) = 11 < 16 = 2l(A3), A,yAxA2A2 must appear in some

/j)(i)/i(2)/j)(3) where each D(l) is A3 or A3. Furthermore since AQAXA2A2 =

01001101001, it follows by inspection that the only appearance of A3 or A3 in

A0AXA2A2 is as the terminal 8-block. Consequently AqAxA2A2 must be a subblock

of some DWD(2) where D(i) = A3 or A3. It is now easily shown that A0AXA2A2 is

not a subblock of A3A3, A3A3, A3A3, or A3A3. Therefore B*afaf(0l) contains no

initial reducible blocks, and hence B*afafe.9*.   □

Remark 3.10. (i) For all « > 1, the canonical decomposition of AqA2A3 . . . An is

CDD where C = A0A2I3 . . . A„_x and D = J„_,.

(ii) For all« > 1,

a*a* . ■_.a2,a*(01) = /Iryi^T, . . . An+2.
n-times

(iii) For all « > 2, AXA0A0A2A3 . . . An = ytn+1.

Lemma 3.11. Let B* £ 9* and suppose that each proper subblock of B*a*a*af is

in 9*. Then B*a*a*af G <3>*.

Proof. Let B* = bf . . . bf and let B = AXA0. By Remark 3.10, if bf = aj for

1 < / < n, then B'a^a^afiOl) = AqA2A3 . . . /ln+4. Hence again by Remark 3.10,

5 • [B*a*a*af(0l)] = ^„ + 5 G 9. Thus if J* - aj ... aj, then B*a2*a2*af £ 9*.

So suppose there exists an integer i, 1 < i < «, such that ¿>^ ̂ = aj, and let r be

the least such integer. Now bf = a*, for otherwise ¿>* = af, and then the inadmis-

sible block afa*a^ would be a subblock of B*a*a*af, which by Lemma 3.6 is not

in9*.

If /■ = «, then by Remark 3.10,

/?-[/?*a*a2*af(01)] = J.[fl3«aj':..fl*flf(0i)] = ¿-[^(V^... ÄH+3)]

(n+l)-times

= BAqA2A3 . . . An + 2- [a*(^n + 3)J  = A„ + 3A„+3An + 3-

Since An + 3An+3An+3 is a subblock of

^n + 6 = An + 3An + 3An + 3An + 3An + 3An + 3An + 3An + 3>

it follows that £ • [^aJaJafiOl)] G 3», so B*a*a*af G <3>*.

Suppose r < «. Let C* = bf . . . bf+2. (If r = « - 1, let C* be the empty

algorithm block.) Now bf+x ^ a* for otherwise the following situations occur: if

r = 1, then b*bfa* = a*a3a*; and if /■ > 1, then bf+xbfbf_x = a*a3a*. In either

case the inadmissible block a^a*a* appears. Therefore bf+x = af or a*.

Suppose bf+x = af. Then by Remark 3.10,
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5-[5*a2*a2*af(01)] = B ■[C*afa*a^. . . a*af(Ol)]

(c+l)-times

= JS-[c*afa*(^0J2J3...Jr+3)]

= BA^Ä, ...Ar+2-[ C*af a*( Ir+3)}

= Ar + 3'[C   \Ar+3Ar + 3Ar + 3Ar + 3Ar + 3}\

=   C   \Ar + 3Ar + 3Ar + 3Ar+3Ar+3Ar + 3)

= C*a*(Ar+3Ar+3) = C*a*2afL . . .^(0\).

(/■+3)-times

Thus if B*a*a*af G 9 *, then

C*a*a* . . .a* G 9*.

(r+3)-times

But by Lemma 2.9, we would then have C*a2 & 9*, and hence by Lemma 3.4,

C*af $9*. But C*af = C*bf+X = bf . . . bf+x which by the hypothesis is in 9*.
Therefore if bf+, = af, then B*a*a*af G 9*.

By a similar argument, if bf+, = a* then B*a*a*af El 9*.   □

The following two lemmas are proved in a manner similar to that of the previous

lemma.

Lemma 3.12. Let B* E 9* and suppose that each proper subblock of B*a3a*af is

in 9*. Then B*a*a*af E9*.

Lemma 3.13. Let B* G 9* and suppose that each proper subblock of B*afa3af is

in 9*. Then B*afa*af e9*.

% Theorem 3.14. Let B* G 9> *. Then B* G 9* if and only if no inadmissible block

appears in B*.

Proof. (=>) See Lemma 3.6.

(<=) The proof is by induction on l(B*). Suppose B* contains no inadmissible

blocks. If l(B*) < 5, then by Lemma 3.8, B* G 9 *.

Suppose that « > 5, and that if C* G •$ *, where l(C*) < «, and C* contains no

inadmissible blocks, then C* Œ 9*. Let B* = bf ... bf.

Since B* contains no inadmissible blocks, neither does bf . . . b2. So by the

inductive hypothesis, bf . . . b* G 9 *. If bf = a*, then by Lemma 2.9, B* G 9*.

So suppose bf =£ a*. By Lemma 3.4, we may suppose bf = af.

Since B* contains no inadmissible blocks, b3b2 ¥= afa2, a*a3 or a*af. If b* =

af, then by Lemma 3.9, B* G 9 *. If b3 b* = a*a2, a3a2 or af a*, then by Lemmas

3.11, 3.12 and 3.13 respectively, B* G 9*. If b*b* = a*a*, then by Lemma 3.5,

B* G 9* if and only if D* = bf . . . b*b*bf G 9*. It is easy to check that no

inadmissible block appears in D*. But l(D*) = « — 2 < «, so by the inductive

hypothesis, D* G 9 *. Therefore B* G 9 *.    □

The following corollary is a direct consequence of Theorem 3.14.
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Corollary 3.15. Let x* G S*. Then x* E P* if and only if no inadmissible

blocks appear in x*.

Remark 3.16. A sufficient (although certainly not necessary) condition for an

algorithm sequence x* to be an element of P* is that none of the blocks af a*, a* a*

or afaf appear in x*. For example,   . . . af af af G P*.

4. Determination of the one-sided Morse minimal set. Recall that the one-sided

Morse minimal set Af+ is the set {x+ G S + : x G A/}. In this section we show

how to determine whether or not a binary sequence x = x*(B) (where B =

01, 10, 001 or 110) is an element of M + by considering x*.

Let 911 = {B E 9> : B appears in ju + }; equivalently 911 = {B E 9> : B appears

in some Morse block}. It is evident that if B E 911, then every subblock of B is

also in 911.

Let 911* = {B* G $*: B*(0\)E 911} and let M* = {x* G S*: x*(0\) E M + ).

Observe that 911 ç 9, 911* ç 9 * and M* C P*.

The correspondence between M+ and M* is analogous to that of P+ and P*.

This is reflected in the similarity of the statements of Lemmas 4.3, 4.4 and 4.12 to

Theorems 2.3, 2.11 and Corollary 3.15, respectively. As in the case of P*, we first

show that M + Q {x*(B): x* E M* and fiel") (Lemmas 4.3 and 4.4). We then

determine 911* (Theorem 4.11) and use 911* to determine M* (Corollary 4.12).

Lemma 4.1. Let B G 9>. Then B E 91L if and only if 9(B) E 9H.

Proof. (=>) Use the definition of 91L and the fact that 9(An) = An+X.

(<=) If An = cxc2 . . . cv, then cxc3c5 . . . c2*_, = An_x and c2c4c^ . . . c2„ = J„_,.

Thus if 0(A) is a subblock of An, then B is a subblock of An_, or An_,.    □

Recalling that for y, z G S+,y E Cl 6(z) if and only if every block which

appears in y also appears in z, the following is a direct consequence of Lemma 4.1.

Lemma 4.2. Let x E S +. Then x E M+ if and only if 9(x) E M +.

Lemma 4.3. Let x E S + with x0 = x,. Then x E M + if and only if there exists an

algorithm sequence x* E M* such that x*(01) = x or x.

Lemma 4.4. Let x G S + with x0 = x, = x2. Then x E M+ if and only if there

exists an algorithm sequence x* E M* such that

(i) x*(001) = xorx and

(ii) x*a* E M*.

Proof. The proof is analogous to that of Theorem 2.11.    □

We shall show that each block in 9H has the property that it can be extended

arbitrarily far to the left and still be in 9H. We then employ this concept to

determine which algorithm blocks map 01 to a block which can be extended

arbitrarily far to the left to a block in 911 (Theorem 4.11).

Let B = 6, . . . bn E 9d. The reverse block of B is the block Br = b„ . . . bx.

Notice that (BC)r = CrBr. In the case of Morse blocks, we have A2n = A2n and
Ar      = A



130 E. D. FIFE

Lemma 4.5. Let B G 9>. Then

(ï)IfB G <^L,thenBr G 9H.

(ii) If B G 911 and k > 0, then there exists a k-block C such that CB G 91t.

(iii) // B is a 2"-block such that BC G 9!t with C = AnAn, AnÂn, Â~nAn or Â~nÀ~n,

then B = An or An.

Proof, (i): Use the fact that A2n = A2n for each n > 0.

(ii): Extend Br to the right k places to a subblock BrC of some An. Then by (i),
CB = (BrCrY E 9IL.

(iii): By (i), Cr E 911, thus Cr = /i+[/c; 2"+1] for_some k > 0. By Lemma 2.2,

Br = n[k + 2" + 1; 2"] = An or An. Thus 5 = An or J„.    D

Lemma 4.6. // B* E 9L*, /Ae« eoe/y subblock of B* is in 91L*.

A pathological block is an algorithm block of the form ¿>2n+2 . . . bf for n > 0

where

(i) bf = af or a*,

(Ü) ¿>2*„ + 2 = af

and if « > 1,

(iii) bf = a3* for 2 < / < 2« + 1.

Observe that B* = bf . . . bf is a pathological block if and only if bfbf = afaf

or af a*, and ¿>* and bf are separated by an even number of a*'s. Thus each of the

following is a pathological block: afaf,afa*a*a* and af 0*0*03* a^af.

We shall show that 9H* consists of all algorithm blocks B* E 9 * which contain

no pathological blocks (Theorem 4.11).

Remark 4.7. Let n > \. Then

(i) If « is even, then 0"(O1) ends in 01.

(ii) If « is odd, then 0"(O1) ends in 10.

Lemma 4.8. If B* E 911*, then no subblock of B* is a pathological block.

Proof. By Lemma 4.6, it suffices to show that if B* is a pathological block, then

B* G 9H*.
Let B* = b*n+2 . . . bf be a pathological block and let C* = b*n+2 . . . b^. Ob-

serve that

C* = af a£ ...at,
2n-times

and that bf = af or a*.

Suppose bf = af. Then by Remark 2.4,

B*(0\) = C*af(01) = C*(01001)

= 0-[C*(1001)] =0-[af 0^^01(1001)]
2/i-times

= 0 • [af(92n{IxAx))] = 0 • [af{I2n+xA2n+l)]

~ 0 ' A2n+lA2n+lA2n+lA2n+\A2n+l = 0 ' A2n+lA2n + 2A2n + 2'
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If fi*(01) G 91L, then by Lemma 4.5, there exists a (22n+1 - l)-block D such that

DO- A2n+X — A2n+2 or A2n+2. In particular D ■ 0 must be A2n + X = 02"(O1). But

by Remark 4.7, 02"(O1) ends in 01. Hence there is no such block D. Therefore if

bf = of, then 5* G 911*.
Similarly if b* = a*, then B* G 9H*.    □

Lemma 4.9. Let n > 2, let B* = bf . . . bf E 91L* and let CDD be the canonical

decomposition of B*(0\). Then

(i)//

B* = aj...a*,

then C is the empty block. ntimt*

(ii) If bf = af or a*, then there exists a block E E 9IL such that EC = DD.

(iii) //

B* = a*L...a*bf_2k+x...bf
(2k-l)-times

for some positive integer k such that 2k — 1 < « and bf_2k+l ¥=a3, then there exists

a block E E 9IL such that EC = D.

(iv) //

B* = «? • • • a*b:-2k   -ht

2k-times

for some positive integer k such that k < 2« and bf_2k ^ a*, then there exists a

block E E 911 such that EC = D.

Proof, (i): Recall from Remark 2.4,

al.._.a*(0l) = 9"(0l) = AnIn.
n-times

(ii)-(iv): The proof is by induction on «. Suppose

B* is not of the form a* . . . of. (1)

If « = 2, (ii) and (iii) are readily verified, and (iv) is vacuously true.

Proceeding inductively on «, suppose that « > 3 and that (ii), (iii) and (iv) hold

for all algorithm blocks of length less than «.

Let B* = bf . . . bf satisfy the hypothesis of (ii), (iii) or (iv).

Let C* = bf_x . . . bf, and let FGG be the canonical decomposition of C*(01).

From the inductive hypothesis, it follows that one of three situations occurs: F is

the empty block, F is a nonempty terminal block of GG, or F is a nonempty

terminal block of G. (Note that if F is a terminal block of G, then F is also a

terminal block of GG.) We consider each of these three cases separately.

Case 1. Suppose that F is the empty block. Observe that G = An_x or An_x.

Furthermore, 01 is an initial block of C*(01), thus G = An_x. Now applying

Remark 2.4,

C*(01) = An_xAn_x = 0-'(Ol) = oj ■ . ■ o3*(01).
(n — l)-times
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If bf = af, then B* = af . . . af, contrary to (1). So suppose bf = of or a*.

If bf = af, then

B*(0l) = ¿>*C*(01) = of(GG) = GGGGG.

Hence C = G and D = GG. Thus for E = GGG, EC = GGG ■ G = DD.

If Z>* = af, then

£*(01) = è*C*(01) = af(GG) = GGGGGG.

Hence C = GG and Z) = GG. Thus for E = GG, FC = GG ■ GG = DD.

Therefore the lemma is valid for Case 1.

Case 2. Suppose F is a nonempty terminal block of GG. Let H E 91L such that

HF = GG.

We claim that bf ^ af. For suppose bf = of. Since B*(01) G 911, by Lemma

4.5, there exists a block K G 911 such that l(KF) = 2/(G) and K- [B*(0\)] G 91L.

Now

K-[B*(0\)] = K-[bf(FGG)] = K-[af(FGG)\ = K- FGG GGG,

so by Lemma 4.5 we have that KF = GG, GG, GG or GG. But F is a terminal

block of GG; thus KF ^ GG or GG. Furthermore KF =£ GG, for otherwise the

reducible block GGGis an initial block of K- [B*(0\)\ contrary to K- [B*(0l)] E

9)1. Similarly KF =t GG, for otherwise K ■ \B*(0\)\ = GGGGGGG which is reduci-

ble, again contrary to K- [B*(0\)] G 911. Therefore there is no such K E 9IL.

Hence by Lemma 4.5, B* G 911*, thus proving the claim.

If bf = a*, then

B*(0\) = ¿>*C*(01) = af(FGG) = FGGGGGG.

Hence C = FGG and Z) = GG. Thus for E = H, EC = H ■ FGG = GGGG = .DZ).

If 6* = af, let / be the greatest integer such that bf =£ af. By (1), / > 1. By the

inductive hypothesis, (« - 1) — t cannot be odd, for then F would be a nonempty

terminal block of G contrary to our supposition on F. Thus (« — 1) — / is even,

and so « — t is odd. Furhermore

B*(0l) = ¿>*C*(01) = af(FGG) = FGGGG.

Hence C = F and D = GG. Thus for E = H, EC = H ■ F = GG = D.

Therefore the lemma is valid for Case 2.

Case 3. If F is a nonempty terminal block of G, the proof is similar to that of

Case 2.    □

Lemma 4.10. Let B* E 911*. Then

(i)a*B* EGJt*and

(ii) afB* E 911*.

Proof. Use Lemma 4.9.   □

Theorem 4.11. Let B* G 9> *. Then B* E 9IL* if and only if 9>* E 9* and no

pathological block appears in B*.



binary sequences which contain no BBb 133

Proof. (=*) Use Lemma 4.8 and the fact that 91L Q 9.

(<=) Let B* G 9 * and suppose no pathological block appears in B*. We prove

that B* E 911* by induction on l(B*).

It is readily verified that

5* G 91t*    if/(Ä*)=l. (1)

Suppose that « > 2, that B* = bf . . . bf and that if C* G 9* such that l(C*) <
« and no pathological block appears in C*, then C* G 911*.

Since no pathological block appears in B*, none appears in bf_x . . . bf. Further-

more bf_x . . . bf G 9*. Therefore by the inductive hypothesis bf_x . . . bf E 9IL*.

Thus if bf = af or af, then by Lemma 4.10, B* E 911*.
So suppose bf = af. Since no pathological block appears in B*, bf_, ^ af ox a*,

that is bf_, = af.

By Remark 2.4, if bf_x . . . bf = af . . . af, then B*(0l) = of(0"-I(Ol)) =
0"-1K(Ol)]. However by (1), of(01) G 911, thus by Lemma 4.1, 0n-'[of(Ol)] G

911. Hence B* G 911*.

If bf_, . . . bf ^ af . . . af, let / be the greatest integer such that bf ^ af. Thus

bf . . . bf = afaf . . . afaf or afaf L._. afa*.
(n-f-l)-times (n-f-l)-times

Since no pathological block appears in B*, n — t — I is odd. Let CDD be the

canonical decomposition of bf_x . . . bf(0\). By Lemma 4.9 there is a block

E E 911 such that EC = D. Thus

DDE[B*(0l)] = DDE  [af(CDD)]

= DDE- CDDDDD = DDD DDDDD g911.

Therefore B* E 911*.    □

Corollary 4.12. Let x* E S*. Then x* E M* if and only if no inadmissible or

pathological block appears in x*.

Since . . . afafaf G P* (see Remark 3.16), but . . . afaf of G M*, we have that

M* § P*. We are now able to conclude the following.

Remark 4.13. M + is a proper subset of P +.

Finally, observe that algorithm sequences give an effective method for generating

all elements in the one-sided Morse minimal set. The only other known way of

doing this is to use Kakutani's procedure to generate bisequences in M (see

12.47-49 of [2]), and then discard their "negative halves".

5. Comparison of P + and M +. Although we know that M + =£ P +, we have yet

to compare them. In this final section we investigate the size of the set P + — M +

and some dynamical differences between the symbolic flows (P+, o) and (M+, o).

It is a simple exercise to establish how the shift transformation of a binary
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sequence x = x*(01) affects the algorithm sequence x*. If we were to do this, we

would notice that, with the exception of the constantly-af algorithm sequence, the

shift affects only finitely many algorithms. (This is due to the fact that if of or af

appears in B*, and if CDD is the canonical decomposition of B*(0l), then C is not

the empty block.)

Observe that in the sequence

x = . . . afafof(Ol) = AqAxA2A3 . . . ,

the pathological block of of appears arbitrarily far to the left. Thus no matter how

many times we shift, we will still have pathological blocks remaining. Therefore not

only is x £ M +, but 0 (x) n M+ = 0. The following theorem shows the abun-

dance of such x G P +.

Theorem 5.1. There are uncountably many x E P+ such that 0(x) n M+ = 0.

Proof. Since 0(x) n M+ = 0 provided o "x G M + for all «, it suffices to find

uncountably many algorithm sequences in P* each of which has pathological

blocks arbitrarily far to the left.

Let E* = { . . . Bfafaf Bfafaf: Bf = afaf ox af afaf}.
Clearly E* is uncountable. Furthermore, since none of the blocks afaf, afaf or

afaf appear in any z* E E*, by Remark 3.16, E* ç P*. However the pathological

block afaf appears arbitrarily far to the left in each z G E*. Thus for each

z* E E*, 0(z*(Ol))n M+ =0.    □

We now turn to some dynamical aspects of (P+, o) and (M + , a).

Lemma 5.2. Let B = 01, 10, 001 or 110 and let x = x*(B). Then for each n> 0

there exists an integer k such that ok(x) an infinite concatenation of An's and An's.

Proof. Let CDD be the canonical decomposition of x* . . . xf(B). It is readily

verified by induction on « that D = An or A„. Let d be the initial symbol of D, thus

D = 0"(d). Now

x*(B) = ... xf+2xf+x(CDD) = C • [ . . . xf+2xf+x(DD )}

= C\ . . . xf+2xf+x(9"(dd))] = C- 0"[ . . . xf+2xf+x(dd)].

Let k = 1(C), and the desired conclusion follows.    □

Let x G S+. The u-limit set of x is the set to(x) = {y E S + : o^x -^y for some

sequence «,, -» + oo}. Note thaty G w(x) if and only if every block which appears

in y also appears arbitrarily far to the right in x. Furthermore note that for any

positive integer k, co(x) = io(okx). Since S + is compact, we also have that (<o(x), a)

is a subflow of (S +, o).

Theorem 5.3. Let x E P + . Then  w(x) = M + .

Proof. By Lemma 5.2, for each « > 0, An appears arbitrarily far to the right in

x. Since every block which appears in M + must appear in some An, it follows that

M+ Ç w(x).
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To prove <o(x) Ç M +, we show that if y £ M + then y G w(x). Suppose y £

A/ + . Then there exists a block B of y such that 5 appears in no An. Let m be such

that 1(B) < 2m. By Lemma 5.2 there exists an integer k such that ok(x) is an

infinite concatenation of Am's and ^4OT's. By our choice of m, if B appears in ok(x),

then B appears in AmAm, AmAm, AmAm or AmAm. But all four of these appear in

Am+3 = AmAmAmAmAmAmAmAm- Thus B does not appear in a*(x). Hence y G

w(ct*(x)) = «(*)•    □

Corollary 5.4. (M +, o) is the unique minimal subflow of (P+, o).

Let (X, o) be a subflow of (S +, o). A point x G A" is nonwandering provided that

for every open neighborhood U of x G X, {« > 0: 0n(<7) n Í/ =/= 0} is infinite.

Equivalently, we have that x is nonwandering if and only if for each initial block B

of x and for each positive integer N, there exists y E X and an integer « > N such

that B is an initial block of bothy and o"y.

Let S2(A") denote the set of nonwandering points of X. We remark that (ß(x), a)

is a subflow of (A, o).

Theorem 5.5. ß(P+) = A/ + .

Proof. Use Lemma 5.2 and Corollary 5.4.   □

Corollary 5.6. (i) The topological entropy of(P+, o) is zero.

(ii) (P+,o) is uniquely ergodic.

Proof. Invariant measures and topological entropy are concentrated on the

nonwandering set (see pp. 35 and 138 of [1]). Klein has shown in [5] that the

topological entropy of (M+, o) is zero and that (M+, o) is uniquely ergodic. The

result now follows from Theorem 5.5.    □

We see from 5.3-5.6 that the "dynamically interesting" part of P+ is M + .

Theorem 5.5 shows that P+ — M + is in some sense "small". Our final result shows

that it is in some sense "large".

Theorem 5.7. There is no countable set E such that P+ = UxS£Cl 0(x).

Proof. By Theorem 5.3, for each x G P+, w(x) = M + . Thus for each x G

P+,C1 0(x) = 0(x) u co(x)= 0(x) u M+.

LetP+ = U xe£C10(x).ThenP+ = [Uxe£ 0(x)] u A/ + .

By Theorem 5.1 there is an uncountable subset F of P+ such that F n M+ =

0. Therefore F ç U x£E 0(x). Since 0(x) is countable for each x G E, E must

be uncountable.    □
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