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CRITICAL POINTS OF HARMONIC FUNCTIONS

ON DOMAINS IN/?3

by

robert shelton

Abstract. It is shown that the critical point relations of Morse theory, together

with the maximum principle, comprise a complete set of critical point relations for

harmonic functions of three variables. The proof proceeds by first constructing a

simplified example and then developing techniques to modify this example to

realize all admissible possibilities. Techniques used differ substantially from those

used by Morse in his solution of the analogous two-variable problem.

Introduction. Critical point theory is a subject which has been of pure and

applied interest for many years. Morse resolved the problem associated with the

study of critical points of nondegenerate functions of several variables in the late

1920's. A. Sard, a student of Morse, is credited with the discovery of a method to

perturb a function with a degenerate critical point and to split or bifurcate it into

several nondegenerate critical points. R. Thorn has done famous recent work on

applications of bifurcation theory to many difficult problems in biology as well as

other areas not usually associated with differential topology.

This paper deals with an aspect of the following classical problem. A certain

collection of functions is fixed and we seek a full description of the critical points

theory of the functions considered as a class. If the functions are merely C°°, then

the best available description of their critical point theory is contained in the Morse

inequalities [3]. These inequalities relate the numbers and the kinds of critical

points of a function with the Betti numbers of the domain. In his book, Topological

methods in the study of functions of a complex variable [1], Morse, did a complete

treatment of the critical points theory of functions of two variables which resemble

harmonic functions topologically. In doing this, he proved all the standard theo-

rems relating zeros, poles, and branch points of his class of pseudoharmonic and

pseudomeromorphic functions, the latter of which he called inner transformations.

It would seem that the critical point behavior of harmonic functions of two

variables should then be determined solely by topological considerations. In this

vein, Morse proved a completeness result which can be summarized as follows.

Given integers which satisfy the Morse inequalities for a harmonic function on a

topological disc (including the condition that no interior point can be an ex-

tremum), there exists a region ö in Ä2, ñ homeomorphic to a two-cell, and a

function U such that the given integers describe the critical points of U on ß and

its boundary. Roughly speaking, it means that the theory of critical points of
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138 ROBERT SHELTON

harmonic functions of two variables is as general as the theory for the differentia-

ble functions which obey the maximum principle. If it were not known directly, this

result would imply the accessibility of the theorems of complex analysis by

topological methods.

The present work is a direct generalization of [2] to harmonic functions of three

variables. It is a negative result which may be summarized as follows. Any

extension of the critical point theory of harmonic functions in the plane to

harmonic functions of three variables must describe behavior permitted by the

maximum principle and the topological considerations which apply to the class of

differentiable functions. These constraints are so weak as to essentially preclude

any meaningful extensions of the theorems in [1].

As in [2], harmonic functions are constructed with critical points prescribed in

advance. Morse called such functions, together with their domains, harmonic

realizations of type numbers (type numbers are integer solutions of the Morse

inequalities). We have retained this terminology. The constructive techniques of

this work differ radically from those used in [2]. The functions in Morse's

two-dimensional examples are essentially homogeneous harmonic polynomials,

whereas the functions used in this paper are the potentials of charge distributions.

These distributions are composed of finite unions of smooth, compact subsets of

R3, each having codimension two or more. The geometric character of these sets is

closely related to the type numbers which are to be realized.

We assert that it is also possible to construct harmonic realizations in the plane

using the techniques of this paper. The functions in such a construction are finite

sums of logarithmic singularities. For example, let \„ X2, . . . , \M¡ be points in the

open right half-plane. Define

ue(z) = Re(z) + ^  elnz-(l + e"'/')-^
, = i IM

\z\ < 1. Then, for e sufficiently small and positive, the function ut(z) on the unit

disc is a harmonic realization of the basic set of type numbers ju^, = Af, + 1,

fix = 0. To realize any set of type numbers, we need only modify the boundary of

the domain as in Theorem 4.2 of [2]. To verify these assertions it is necessary to use

arguments similar to those of Theorems 3 and 4.

An intriguing but far more difficult problem is the following. Is it possible to

construct harmonic realizations in three dimensions using polynomials as in [2]?

The examples of this paper indicate that there are no analytical obstructions to

doing this. Moreover, a careful study of these examples is a natural starting point

in the search for the more natural polynomial examples.

1.0. Preliminaries. Let m be a function of class C2 defined in some neighborhood

of the origin in R". The function, u, will be called nondegenerate or n.d. if gradient

of u at the point X equals zero, written grad(«(A")) = 0, implies matrix of second

derivatives of u at X, written Hu(X), is nonsingular. If P is a critical point of u, i.e.

gx&d(u(P)) = 0, and u is n.d. at P, then the index of the critical point, P, is defined

to be the number of eigenvalues of Hu(P) which are less than 0.
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If m is a function defined in a neighborhood of B, fl a bounded open subset of

R" whose boundary 2 is an « — 1 manifold of class C2, u is n.d. on ß and grad(w)

does not vanish on 2, then u has finitely many critical points on ñ. For /' = 0,

1, . . . , «, the interior type numbers Mi of « on ß are defined by M¡ = number of

critical points of « on Ö of index i.

Let N be the normal to 2 directed out of ñ. Points of 2 are termed entrant if

grad(w) • N < 0 and emergent if grad(w) • N > 0. Let 2"= the entrant points of 2,

an open submanifold of 2. Suppose the restriction of u to 2 is n.d. Then the

restriction of u to 2" has finitely many critical points, and the boundary type

numbers of u on ß, n¡, i = 0, 1, . . ., n — 1, are defined as follows: u, = the

number of critical points of the restriction of u to 2~ which are of index /.

Suppose ß is a bounded open subset of R3 with a boundary, 2, a 2-manifold of

class C2. If u is a harmonic function defined in a neighborhood of fl, n.d. on ß, has

no critical points on 2, and restriction of u to 2 is n.d., then the betti numbers of ß,

R¡, i = 0, 1, 2, and the type numbers of u, (/«,, MX i = 0, 1, 2,j = 0, 1, 2, 3, satisfy

the following relations.

(1)

a. M0= M3 = 0.

b. fi,, > R0.

c. Hq — nx < R0 — Rx + Mx.

d. Hq — /X] + [i2 = R0 — Rx + R2 + Mx — M2.

(1) follows from Theorem 1.2 of [2]. We term a set of numbers, (/?„/*,, A/,),

/ = 0, 1, 2, / = 1, 2, which satisfy (1), b, c, d, condition numbers.

If (R„ jit,, Mj) axe condition numbers and are the betti numbers of a domain ß in

R3, and the boundary and interior type numbers of a harmonic function u on ß,

where u and ß satisfy the hypothesis of Theorem 1.2 of [2], then the numbers are

said to be harmonically realizable and the domain, ß, and function, u, are said to

be a harmonic realization of these numbers.

In this paper, examples will be constructed to prove that all condition numbers

are harmonically realizable. The harmonic functions of these examples will be

essentially the electrostatic potentials of charged arcs. Theorem 1 is a statement of

classical analysis which describes the local behavior of such potentials. Although

Theorem 1 is proved in a more general setting, we shall only need the special case

when the Source (o) of the potential is an arc.

1.1. Notation for Theorem 1. Unless otherwise specified, capital letters will denote

points in R" (n > 3) or a vector-valued function. Let a be a compact, d-dimen-

sional, C°° submanifold of R", possibly with a boundary. For a an «-tuple of

nonnegative integers, ctx, ot2, . . ., a„ and / a suitably differentiable function of «

variables, let/a be dmf/dxxa'dxf* • • • dxf" where m = 2£_, ak. Define the function

g from R" - {0} to R+ by g(X) = |A|2"". For each X E R" - o, define the

function uaa by uaa(X) = /„ ga(X - Z) dZ.

Let a, = interior of a and o0 be any compact subset of a,. For each <5 > 0, let
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Ts = {A|A G R", dist(AT, o0) < 5} and Tf = Ts - o. Let Z* = {Z\Z Eo,\Z -

X\ is minimum}. Select 80 > 0 so that for A" G Ts , all the sets {Zx} are singletons,

and the function defined by Z(X) = Zx is a C°° mapping of Fs into a,. For

Z E ox, let Pz denote the tangent plane to a, at Z. Let F: Fs —» R",y: Ts —»• R be

functions defined by F(A") = A" - Z(A") and.y(A") = | F(A)|°= distance from A to

ox.

Suppose k = « — d > 2. Define the function voa :  Tf —* R by the following

equations

n

Vo«(X) = Í     ga(* -X)dX,    for k + m > 3, m = 2   «* (2)

and

vaa(X) = -«„_, ln^A"),    for k + m = 2, m = ¿   a* (3)
fc-i

where «¿_, is the area of Sd~x, the unit sphere in Rd. We take to0 = 2. Let </>:

R" - {0} -+ R be the function defined by <KA") = Q*|A"|2_* for k > 2 and

<i>(A) = -wd_x \n\X\ for k = 2, where CrfJt = wd_,/5/2 sin^-1 Ö cos*-3 9 d9. Fix a

point A"0 in /?". Define the transformation yoW = ^(^o) + Yx0 ' (x ~ xo) where

Y'x is the Jacobian matrix of Y at A0 and • indicates matrix multiplication. Then

vajXo) = (t>(\Yo(X)\))a (4)

where the derivatives on the right-hand side of (4) are with respect to X and are

evaluated at X = A"0. Since the transformations F(A") and F0(-^0 differ by

0(| A - A"0|2), we have

„   m . Í («XI Y(X)\))a + 0{\ y(A)|3-*-),       m + k - 3 > 0,
l(<K|F(A)|))a+0iln|F(A)|),       m + Â:-3 = 0.

Theorem 1. For every e > 0, there exists a S > 0 such that for all X in Tf,

[.y(A-)]* + m-2k,a(A) - vaJX)\ <e,       k + m > 3, (6a)

and

lln^A^'ltUA-) - tU*)l <«.       k = 2,m = 0. (6b)

Proof. We prove the two cases separately.

Case 1 (m + k > 3). For X E R", Z E ox, X ¥= Z, define the functions F, V

and 9 as follows. F(A", Z) = t, where t is the point in Pz closest to X, V(X, Z) =

Z - T(X, Z) and 9(X, Z) = \V(X, Z)\/\X - Z\. The situation is illustrated in

Figure 1 for « = 3 and a a plane curve. Note that the functions F, V and 9 are C°°.

Since a, is a smooth submanifold, lim 9(X, Z) = 1 as A" approaches o, through Ts ,

Z in ox, |A - Z\ —»0 and vy(X) < \X — Z\. Since o0 is compact, we can find

positive numbers 8X, px such that for X in Ts, Z in a, and Vy(X) < |A" — Z| <

p„ 0(A\ Z) > 5. For A G TSo andy(A") <r < p„ let 5rA- = {Z|Z G a, \X - Z\ =

r}.  Note that for r and .y(A") sufficiently small the set SrX  approximates a
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Figure 1

(d — l)-sphere of radius approximately equal to yr2 — y2(X) . Let s(r, X) =

fs o*f. Since a is a smooth submanifold in R", lim[ud_ xrd~x]~xs(r, X) = 1 as

A"-»a, through Ts , r—>0+, and \y(X) < r. Again by compactness of o0, we

find positive numbers S2, p2 with 82 < 5, and p2 < p„ such that X E Ts and

Vy(X) < r < 82 implies s(r, X) < 2u>d_xrd~x. We also insist that 82, p2 be so

small that whenever X E Ts and 0 < r < p2, SrX does not intersect the boundary

of a. To save notation, let t>(A) *> vaa(X). Define the function u from Tf to R by

the equation

<X) = f ga(X - Z) dZ. (7)
J\Z-X\<p2

ZEH

Note that u(X) differs from uaa(X) on Tf by a bounded function. At this point, we

note that the assertions (6a) and (6b) remain valid if u(X) is replaced by a function

which differs from it by a bounded function. Therefore, we may prove Theorem 1

for u(X) in place of uaa(X). For X E F£, Vy(X) < r < p2, define

g(r)=   max |g„(A - Z)|. (8)

For X G Tf2, let

«,(*)-/",_ ga(A-Z)¿Z

Zea

= f2/_ /        [ga(X-n/0(X,n]d^dr.

Using the estimate for 0(A, Z) with A" G F5 and the definition of g, we have

kWI < P  ._4»d_xrd-xg(r)dr.
•>r=Vy(X)

Moreover, from the homogeneity of g(X) we have g(r) < Cnmr2~"~m with C„ m >

0. Combining these two estimates, we have

|M,(A)| < 4Cn,mœd_x[y(X)f — '" + ̂ 2 = 4Cn^d_x[y(X)f-k-m)/1.    (9)

Therefore, lim[.y(A)]m+A:~2Ml(A') = 0 as X->ox through T^. Thus we may prove
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Theorem 1 for w2(A") = u(X) - ux(X). For A G Ts¡, let BrX = {Z\ZE a„ |A" -

Z\ < /•}. We may equally well define u2(X) by m2(A") = JB_ ga(X — Z) dZ. For

X E Tf2, define W(X) = Y(X)/y(X). For Z G a„ let Qz - Pz - Z (that is,

translate Pz to the origin) be the tangent space to a, at the point Z. Let

Df = {<y(X), Z(X), W(X)}\X ETf,0<8< 82).

Df is an «-dimensional subset of R x a, x S("_1). Note that W(X) is perpendicu-

lar to ôz(x)- Therefore, the vector W(X) is bound by the above relation and thus

has k — 1 degrees of freedom. The transformation (y, Z, W} of X E Tf into Df

defined by.y = y(X), Z = Z(A"), W = W(X) is a diffeomorphism.

Define the functions u*, v* from Df into /? by u*(y, Z, W) = yk+m~2.

u2(X(y, Z, W)) and v*(y, Z, W) = yk+m~iv(X(y, Z, IF)). By the homogeneity of

the kernel ga (order 2 — « — m), we have

v*(y,Z, W)=yk + -2j     ga(X-X)d\=y-'f     g(^±) d\

= y~dí    ga[h(x - z) - (\ - z)]) d\ = [    ga[w-v]dn.
pz(X) \y i        Qz(x)

(10)

Note that v* only depends on Z, W. We shall, therefore, write v*(y, Z, W) as

v*(Z, W).

For 0 < 8 < 82, let Z>ä = Df. For A" G F£, define

ox = (5v3<xy x - Z(X))/y(X) = {U\U=V/y,VE BVyJxJi x - Z(X)},

where BrX - Z(A") is the translation of BrX by -Z(A"). Let {y¡, Z„ ^}°1, be a

sequence with the property

lim yt = 0,  lim Z, = Z0, lim   »F, = W0.
I—*00 /—+00 /—»oo

We shall prove that lim,.^ h*(.v,., Z,., fF,) = o*(Z0, W0).

u*(y,Z,W)=yk+">-2f ga(X-\)dX=y-df g(^zA\dX
BVy(X), x Byy{x), jr     \      y       I

= y_dj        ux-zj-fx-zn^j   [w_

By definition, the surface oX(y z w^ approaches Qz in C°° as i -^ oo. Furthermore,

FF0 is normal to ßz anc* JFn *s °f umt length, so that

\ga(w0-v)\<2(\ + \z0-v\2f-'-m)/2

which is an integrable function over Qz . Therefore, by the dominated convergence

theorem, lim,.,^, u*(y¡, Z„ W¡) = v*(Z0, W0). We may now extend u* to Ds as a

continuous function. Since Ds is compact, u* is uniformly continuous on Ds . This

proves the theorem for m + k > 3.

Case 2(k = 2,m = 0). Fix a positive 83, 83 < 82, so that for X E Tf} we have

|grad u^a(X) + ud_xW/y\ < e/2y(X).
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Define o* = {A|A G R", dist(A", o) = <S3} and b = max^g„.|w0>a(A") + «¿..In <S3|.

Clearly b exists since o* is compact. Let 84 = min(<53, exp(-2è/e)). Define the

function A from Fs* to o* by A(X) = Z(A) + 83W(X). For A" G F£,

Kai*) + ^-.ln.yíJOl < |uaM(A(X)) + o>d_x\n83\

fX   (grad «„.„(i,) + w</_, -^ ) • J
-//i(X)V y(v) )

<b+ f*3 Ytdt<h~\ ln?(x) < ~£lny(x)-
Jy(X) It 2

This completes the proof of Theorem 1.

2.1. Elementary condition numbers. It is difficult to provide a direct construction

of a harmonic realization of every set of condition numbers. We shall first realize

condition numbers which satisfy stronger conditions than the inequalities of (1). In

addition, we shall always assume, with no loss of generality, that the domains in

question are connected, i.e., /?0 = 1. We term nonnegative integers 1, Rx, R2, u„, u„

ju2, Mx, M2, elementary condition numbers if they satisfy the following equation.

Mo- 1,       R2 = 0,       u,</*,. (11)

Theorem 2. Suppose 1, Rx, R2, Hq, u„ \¡^, Mx, M2 is a set of elementary condition

numbers. Then there exists a function, u, and a domain, ß, which comprise a harmonic

realization of the numbers 1, Rx, R2, /íq, ¡xx, j^, Mx, M2.

The proof of Theorem 2 is entirely constructive. The function, u, will be

essentially the electrostatic potential of a charged arc, y. The geometric form of y

will depend upon the integer A/,.

We shall construct ß by determining its boundary. The tools used to do this are

essentially analytic, but underlying the analysis are choices which depend on the

elementary condition numbers which are to be realized.

2.2. Standard approximation. Lemma 1 and its corollaries assert that the char-

acter of a n.d. critical point remains unchanged under small perturbations.

Lemma 1. Suppose ß is a bounded open subset of R" and u is a real-valued function

in the class C2(ß). Moreover, assume that u has exactly one critical point, P, in ß; P

is contained in ß and is n.d. of index k. If ux, u2, . . . is a sequence of real-valued

functions in C2(ß) which converges to u in C2 uniformly on ß, then there exists a

number, N, such that for each i > N, w, has exactly one critical point, P¡; P¡ is n.d. of

index k and lim,^^ P, = P.

Proof. First use the inverse function theorem to solve the equation grad(u¡(P¡))

= 0 near P. This is always possible for /' sufficiently large because P is a n.d.

critical point of u and the convergence of the functions u¡ is in C2. Moreover, this

solution, P„ is unique within some fixed neighborhood V of P. Since ß — V is

compact and convergence of u¡ is uniform in C2, for i is sufficiently large the

functions, u¡, cannot have critical points in ß — V. This completes the proof.



144 ROBERT SHELTON

Corollary 1. Suppose 2 is a compact n-manifold, perhaps with a boundary. Let u

be a n.d. function on 2 with critical points Px, . . ., PM; P- does not belong to the

boundary of 2, j = 1, . . . , M. Suppose kj = index of Pj for j = I, . . . , M. If ux,

u2, . . . is a sequence of functions with u¡ in class C2 on 2 which converges uniformly

to u in C2, then there exists a number, N, such that i > N implies m, has exactly M

critical points, Pj; Pj is n.d. with index kj and lim,^^ Pj = Pj,j = 1, . . . , M. This

corollary follows by applying Lemma 1 in local coordinates neighboring each critical

point Pj.

Corollary 2. Suppose 2 is as prescribed in Corollary 1. Let \¡/ be an imbedding of

2 into Rq; \p is of class C2. Let 2' = ^(2). Suppose u is a function of class C2 defined

in a q-dimensional neighborhood of 2'. Suppose the restriction of u to 2' is n.d. with

critical points, Px, . . . , PM with index of Pj = kj. Moreover, suppose \p~x(Pj) does not

belong to the boundary of 2, j = \, . . . , M. Let \px, ^2, . . . be a sequence of C2

imbeddings of'S, into Rq which converges to \¡/ uniformly in C2. Let 2, = ^,(2). Then

there exists a number N such that for i > N the restriction of u to 2, has exactly M

critical points, Pj. Each Pj is n.d. with index kj, and the lim,^^, Pj = P,, j =

1, . . . ,M.

Define a Ck family of functions tJ to be any collection of functions indexed by a

real parameter such that each function ft is of class Ck and each derivative of ft of

order k  or less is  a jointly  continuous  function of the « + 1   variables, x,,

X2, .  . .  , Xn, c.

Corollary 3. Suppose % is a C2 family of functions indexed by e, 0 < e < 1.

Assume each ue is defined in a neighborhood of the origin in R" and that the origin is

an ordinary point of u0. Let S be any compact submanifold of R" of class C2. Define

L a real-valued linear function on R" by L(X) = ((grad u0)(0)) ■ X. Let Se = the set

eS for e a positive number. If L is n.d. on S with type numbers J0, . . . , Jk, then there

exists a positive number e0 such that for each e, 0 < e < e0, the restriction of ue to St

is n.d. and has type numbers J0, . . . , Jk.

Proof. Define the C2 family of functions 5" with Í. defined in a neighborhood of

the origin in R" for positive e by/E(A") = (l/e)(we(eA) - ue(0)). It is clear that/e

tends to L in C2 uniformly on compact subsets of R" as e—*0+. In particular,

/e -» L in C2(S) uniformly. Therefore, by Corollary 1 of Lemma 1, there exists an

e0 such that for all positive e, e < e0, the type numbers of /£ on S are identical to

those of L on S. On the other hand, for any fixed e, the function ft differs from ue

by a dilation, subtraction of a constant and multiplication by another constant.

Therefore, the type numbers of we on the set eS must be identical to those of ft on

S. This proves the corollary.

23. Construction of u for M, ^ 0. A harmonic function u, defined on an open

subset of R3, will be found which has 2Mx critical points, half having index 1 and

the remainder having index 2. An arc is a one-dimensional C°° submanifold of R3

with boundary, which is the homeomorphic image of a closed interval. We often

shall use the same symbol to denote the arc, the point set and its parametric
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representation. We parametrize an arc y by y(r) = (yx(t), y2(t), y3(t)), t G [-a, a].

Fix the arc y and let uy(X) be the function defined by

uy(X) = - [g(X - Z) dZ,       XER3-{y).

We require that the arc y satisfy the following conditions.

(12)

(a) y3 = 0 and y(0) = 0

(b) yx is even and y2 is odd

(c) Yi(0 > 0 for 0 < / < a

(d) there are real numbers a,, a* with 0 < a, < qf < qi+x < yx(a),

/ = 1,  2, . . . , A/„   such  that  u\q„ 0, 0) < -2  and

«Y(a*,0,0)>-1.

It is clear that an arc y may be found such that the conditions (a), (b), and (c) of

(12) are satisfied. Theorem 1 implies that uy ->-oo as A -> Z, Z G y where y is the

interior of y. Therefore, condition (d) of (12) may be satisfied by an arc like the one

shown in Figure 2. Note that y2 =f= 0 for / ¥= 0. It should be pointed out that the

conditions (a) and (b) are designed to avoid unnecessary complications, whereas (c)

and (d) are essential. Violation of (c) introduces critical points that are extraneous.

The function uy has the following symmetry property.

uy(xx, x2, x3) = uy(xx, -x2, x3) = uy(xx, x2, -x3).

By (12c), a function fy can be defined on [0, y,(a)] by

/t(y,(>» - y2(0,     re [o,fl]. (13)

Figure 2

Figure 3

By Theorem 1, it is possible to choose a positive number 8X < o, such that for

X = (xx, x2, x3), 0 < x, < 8X, \x2\ <fy(xx) and x3 = 0,

|grad(u*(A))| > 1. (14)
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Let ax be a number such that qM +, < a, < y,(a). Let D and D* be the sets defined

by

(15)

(a) D = {X\X E R3, 8X < x, < a„ |x2| </Y(x,), x3 = 0},

(b) D* = {X\X G /?3, 0 < x, < a„ |x2| </r(x,)}

and « be the restriction of uy to the set {A"|A" G Ä3, 5, < x, < a„ x2 = 0 = x3}.

By Lemma 6.2 of [3], it is possible to choose a real number ß such that

(16)

(a) |/?|<Kl/(! + «,)) and

(b) « + ßxx is n.d.

Let/;, <p2< ■ ■■ <pK be the critical points of the function « + /?x,. By (12d)

and (16a), K > 2A/,. Decrease a,, if necessary, so that the function « + ßxx has

exactly 2Af, critical points in (8X, ax) and a, is not a critical point. By Theorem \,px

is a maximum of « + ¿8x,. Therefore

p¡ is a maximum if /' is odd and a minimum if i is even. (17)

Let

P, = (/>„ 0, 0) (18)

and

b =  sup {(aV/dx2)(A)}. (19)
xez>

Then b exists since (5) and (12c) imply that

(a 2u V ox2) (A" ) -» - oo    as X -h> y through D. (20)

Define the function ^ by i|/(A) = (1 + |6|)(x2 - x2)/2 and let

u(X) = uy(X) + ßxx + ^(X). (21)

The function u(X) has the following properties.

(22) (a) u is defined and harmonic on D*.

(b) The asymptotic representation which Theorem  1  asserts for uy and its

derivatives is valid for u.

(c) u has the symmetry properties of uy.

(d) (i) (d2u/dx2)(X) < -1, A G D,

(ii) (d2u/dx2)(X) > a2 > 0, X E D* and x3 = 0.

(e) (i) sgn(3«/3x2)(A) = -sgn(X2), X E D,

(ii) sgn(aM/3-x3)(A-) = sgn(x3), X E D*.

(f) The only critical points of u in D* are the/?, and eachp, is n.d. with index 2 or

1 according as / is odd or even, respectively.

It should be noted that (c) and (d) can be used to verify (e). Moreover, (e) implies

(0-

2.4. Construction of ß for M, =£ 0. We adopt the notation of the preceding

section with the following exception. The symbols P,, p¡ are no longer defined for

i > 2MX.
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In this section a simple plane closed curve, v, of the topological type of the circle

will be constructed. The curve v will lie in W = {X\X E £>*, x3 = 0}. In addition,

the curve v will satisfy the following, (i) v is of class C°°, (ii) v surrounds the points

P„ i = l,2,...,2Mx, (iii) the function u restricted to v has exactly two critical

points, P0 and P2M +,, (iv) of these two points, only P0 is entrant in the appropriate

sense. The asymptotic estimates of u near the curve y, obtained in Theorem 1, will

be used to accomplish this construction. The nontrivial part of the curve v will, in

fact, be the solution of a certain initial value problem which, for notational

convenience, is set in the complex plane. Therefore, let W be identified with a

region in the complex plane with £ = x, + ix2.

Define the function 9X, mapping W — \j]-{ Pj into the unit circle Sx, as follows.

9X(0 = grad(M(£))/|grad(«(£))| (23)

where grad(w) is taken to mean 3w/3x, + z'(3w/3x2). Define the function

9(e, t, t0, £) mapping R2 X (£|| G W, |grad(n(£))| > 1} into S' by the following:

9(e, t, t0, 0 = e-'sin"[2'/«1 + '2)2lgrad("(i»l)1   for |r| < t0. (24)

For the time being it will be assumed that t0 is infinite and therefore the function

9(e, t, t0, ¿) will be independent of t0 and e. Define the function vs as follows.

(d/dt)(vs) = i9x(vs)9(e, t, oo, vs),       vs(0) = 8. (25)

Obviously the path vs is parameterized by arc length. It is a straightforward matter

to compute the following.

(d/dt)u(vs(t)) = Ke{&*d(u)(d/dt)vs) = -Ke(i9x9xW))- |grad(M(|))|

= 2r/(l + r2)2. (26)

Therefore

u(vs(t)) = u(8) + ['    2sds     = u(8) + 1 - —l—. (27)

Jo (i + gtf 1 + t2

It is useful to observe that vs is a level curve of a function which differs from « by a

bounded quantity. By Theorem 1, u(X) —» -oo and grad(w)—>2y/y2 as X ap-

proaches y. Therefore, the tangent vectors to vs, at A, and y, at Z(A"), are

essentially parallel. Let T* = inf{t > 0\vs(t) G W). It is clear from the preceding

remarks that, for 8 sufficiently small, F* exists and that vs approaches y in C1

uniformly for 0 < t < T* as 8 —> 0+. Therefore, it is possible to find small positive

numbers 8X,82 such that the following conditions are satisfied.

(28) (a) Ke(v&2(t)) is 1-1 for 8X < t < T*.

(b) lm(vg2(t)) is positive for 0 < t < T*.

(c)82<p\.

(d) 8X depends on 82 and, due to C ' convergence of vs to y, 5, —* 0+ as 82 —> 0+.

Now define /0 > 0 by Re^ (r0)) = p2M. That r0 is well defined follows from (28a)

and (28d). We now extend the definition of 9(e, t, t0, £) for / > t0. For t0 < t < t0

+ e, let 9(e, t, t0, |) satisfy

(29) (a) lm[0(e, /, t0,1)0,(1)] < 0 with equality at t = r0 + e,
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(b) Im 9(e, t, t0, |) < 0.

Moreover we require that for t > t0 + e, 9(e, t, t0, £) = -0,(£). By further restricting

82, if necessary, it is possible to find a function 9(e) which satisfies (24), (29) and is

of class C°°, for every e > 0. Let

e =î[min(a, - p2M¡, lm(¡>O2(t0))/2)]

and tx = t0 + 2e. Define v for 0 < t < /, by

(d/di)v(t) = i ■ 9x(v) ■ 9(e, t, t0, v),       v(0) = 82. (30)

Extend v for |/| < r, by v(-t) =v\f). By (29) and (22e(i)), u(v(t)) increases for

0 < t < /,. Therefore this section of v is an arc. By symmetry, v\-tx, 0] is an arc. By

the choice of 82 and tx, these two branches of v intersect at only one point,

v(0) = 82 = p0. Therefore, {P([-tx, r,])} is a continuous arc, and by (25) is in fact of

class C°°. Extend v as shown in Figure 4 to be a C°° closed curve of the topological

type of the circle. Call this curve v. Let p2M +, = v n {£ C R\£ >P0}-

(31) By (29) and (22e(i)), the only critical points of the restriction of u to v are/?0,

the minimum, and p2M +1, the maximum. At both points the gradient of u lies on

the positive, real axis.

Figure 4.   Drawn forM, = 3

In the succeeding discussion the complex notation is dropped, but A is still

constrained to lie in the x, — x2 plane. Define W' to be the closed bounded subset

of the plane whose boundary is the closed curve v. Select it, distinct points A'; X'

belongs to W' - { UjPj}, / = 1, . . . , ju,,,7 = 1, . . . , 2MX. For positive numbers 5,

define v0 to be circles of radius 8¡, centered at the points A', i = 1, ..., u,. Define

ù = u restricted to W. For positive numbers 8j, let vs, = the circle of radius 8j

centered at the point P27_,, 7 = 1, . . ., /?, — /x,. Let v* = [y ij, Vg, uy v6')> ' =

1, . . . , tt,,7 = 1, . . . , Rx — it,. Let W* = the closed bounded connected region of

the plane whose boundary is f*. We term critical points of û restricted to v* to be

entrant or emergent with respect to the region W*.

Since X', i = 1, 2, . . . , it,, are not critical points, according to Corollary 3 of

Lemma 1, it is possible to choose the numbers, 8¡, 8j, so small that « restricted to vs¡

is n.d. and has precisely one entrant critical point, P,1, with index of P,1 = 1; vs, is

emergent, i = 1, . . . , \ix,j = 1, . . . , Rx - u,. It is clear from (31) that the restric-

tion of û to v is n.d. and has precisely one entrant critical point, namely P0 =

</>0, 0, 0>, with index of P0 = 0.

We now return to a 3-dimensional setting, and define 2 = {X belongs to

/?3|<x,, x2, 0> belongs to v*}. Define ß* = {A belongs to R3\(xx, x2, 0> belongs

to W*}. We now term critical points of the restriction of « to 2 to be entrant or

emergent with respect to the region ß*.



CRITICAL POINTS OF HARMONIC FUNCTIONS 149

It is clear from (22e(i)) that every critical point of the restriction of u to 2 lies on

the curve v*, and from (22d(ii)), together with the preceding discussion, that the

restriction of « to 2 is n.d. Moreover, the entrant critical points of the restriction of

u to 2 correspond in position and index to the entrant critical points of the

restriction of tí to j»*.

Define 2, = (A belongs to 2|x3 < 1}. Let/, be a real-valued function defined

on W* subject to the following conditions.

(32) (a) The function/, is continuous on W*.

(b)/, s 1 on v*.

(c) For/ = Rx - it, + 1, • • • , Ri - Mi + thJÁPy-i) < 0-

(d)For7= \,...,Mx,fx(P2j)>0.

(e) Foxj = Rx - it, + M + 1, . . . , Mx,fx(P2J_x) > 0.

(f) 2, u {graph of /,} is a C°° surface with boundary and it is homeomorphic to

W*.

Let gx be a real-valued function defined on W* subject to the following conditions.

(33) (a) The function g, is continuous on W*.

(b)g, = -1 on v*.

(c)g|<min(0,/,).

(d) The graph of/, u the graph of g, (j 2, is a C°° manifold of dimension 2 of

the topological type of the connected sum of /?, tori.

Define/ = e/,, ge = eg,, for e any positive number. Let D be a compact subset

of W* which contains every critical point of u which is contained in W*. We may

also suppose that D is a 2-cell with smooth boundary. Define \pe, a class C2

imbedding of D into R3, as follows.

*l>e«xx, x2» = <x„ x2, e/,«x„ x2»>.

By Lemma 1, Corollary 2, for every positive e < e0, the restriction of u to {4>e(D)}

has a finite critical set, Pj, i = 2(RX — it,) + 1, . . . , 2MX, or /' = 2j,j = 1, . . . , Rx

— it,. Moreover the index(P/) = index(P() and lim£_0 Pj = P¡.

We adopt the following notational convention. If F is a vector quantity equal to

<c„ v2, ©3>,(F), = V¡, i = 1, 2, 3. By (32a), sgn((P;)3) - sgn(/,«(P,)„ (P,)2>)). Let

ße = {A G ß*|eg,«x„ x2» < x3 < e/,«x„ x2»}.

Let 2e = boundary of ß£. Let 2^ = the graph of the function e/, over the region

W*. Let 2g = the graph of the function eg, over the region W* and 2e, = {X E

2,| |x3| < e}. By (22e(ii)) and the definitions of 2^ and 2£, it follows that for

X E 2^ u 2^, if A is a critical point of the restriction of u to 2C,

sgn(grad(w) • N(X)) = sgn(x3).

It then follows that only the points P2J_x,j = Rx — u, + 1, . . . , Rx — u, + /i2, P0

and Pj, i = 1, . . . , /x,, are entrant critical points of the restriction of u to 2£.

Moreover, the points, P2j-X,j = Ä, - it, + 1, . . . , /?, - u, + /x2, each have index

= 2. It then follows that u and ße comprise a harmonic realization of the

elementary condition numbers, 1, Rx, R2, /Aq, it,, ttj, A/,, M2.
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2.5. Harmonic realization for Mx = 0. Suppose M, = 0; then (1) and (11) give

,i2 = M2 = Rx- nx= 0. (34)

Figure 5

Let u be defined by u(X) = x2. Let W* = the unit disc in the x, — x2 plane —

{Ufii {A belongs to R2\x2x + (x2 - (\/i + I))2 < (i + l)-6}}. Define a function/

on W*, subject to the following conditions.

(35) (a)/is continuous on W*.

(b) /(boundary of W*) = 0.

(c)f(W*)>0.
(d) graph of / u graph of -/ is a C °° manifold homeomorphic to the connected

sum of Rx tori.

Let ß be {A G Ä3|<x,, x2> belongs to W* and |x3| </«x„ x2»}. The pair u, ß

provides a harmonic realization of all sets of elementary condition numbers where

A/, = 0.

The function u and domain ß constructed in §§2.3 and 2.4 realize any set of

elementary condition numbers where A/, is greater than 0. The special case of

providing the harmonic realization of elementary condition numbers with Mx equal

to 0 has just been given in §2.5. This completes the proof of Theorem 2.

3.0. In this section techniques will be developed which make it possible to modify

the limited examples constructed in §2.1. These techniques will suffice to show that

any set of condition numbers may be realized by an appropriate modification of

the harmonic realization of a certain set of elementary condition numbers. More-

over, the necessary modifications are local in nature in that they consist of local

changes to the boundary of ß or to the function u.

3.1.

Theorem 3. Let il be a bounded open subset of R3 which contains the origin. Let ^

be a C2 family of functions defined for |e| < 1 and X contained in a neighborhood of

ß. Define the C2 family of functions % by ut(X) =_ e/\X\ for e > 0 and X E R3,

\X\ ¥= 0. Suppose that |grad(/0)| > 0 for all X in ß where f0 is the member of ^
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corresponding to e = 0. Define the C2 family of functions "V by t>e(A) = fe(X) +

ue(X), for X and e, simultaneously satisfying the conditions imposed in the definitions

of % and %'. Then there exists a positive number e0 such that for every e, 0 < e < e0,

the following conditions hold.

1. The function ve has exactly one critical point P£ in ß minus the origin.

2. The point Pt is a nondegenerate critical point of ve with index(Pe) = 2.

3. lim_0+ Pj(e)x/2 = grad(/o(0))/|grad(/o(0))|3/2.

Proof. In the following paragraph definitions will be made for the subscript

i = 0, 1. Define sj = {A G R3\ \X\ = e(3_,)/5}. Let A' be the closed bounded

subset of R3 with boundary U, */. Points of s' shall be termed entrant or emergent

with respect to the region A '.

By the hypotheses, it is possible to find positive numbers a and A such that for

|e| < A and A G ß, |grad(/)| > a. On the other hand,

grad(u£) = -eA/|A-|3. (36)

It follows therefore that for |A| > e2/5,

|grad(«£)| < e'/5. (37)

Define the positive number A, according to

A, = min{A, (a/2)5}. (38)

Combining the preceding three equations, it follows that if |A"| > e2/5 and 0 < e <

A,, then

|grad(t>e)| > a/2. (39)

Define the constant M as follows:

M = sup{|grad(/£)|| X E ß and |e| < A,}. (40)

On the other hand, by (36), it follows that if 0 < |A| < e3/5 then

|grad(«£)| > e"'/5. (41)

Choose A2 as follows:

A2 = min{A„ (2A/)-5}. (42)

It follows then from (40), (41), (42), that if 0 < e < A2 and |A"| < e3/5, then

|grad(o£)| > M. (43)

(39) and (43) imply that for 0 < e < A2, the critical points of the function vt lie

exclusively in the set Ae.

In the following paragraph, the index i may take on the values 0 and 1. By the

definition of the family %, for every fixed e > 0, the function «£ is constant on any

sphere centered at the origin, and in particular on the spheres sj. Therefore ve\sj

will possess exactly the same set of type numbers as will fe\sf. It follows from

Corollary 3 of Lemma 1 that for every sufficiently small positive e, the type

numbers of ft\sj = { nj\j = 0, 1, 2} are given by

rí = pS = 1,       uf = 0. (44)
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In the succeeding paragraph, let the index j assume the values 0, 1,2. Define the

integers vj to be the boundary type numbers of vt on s£ and yj to be the boundary

type numbers of ve on sx. It follows from (43) that for 0 < e < A2, the function ve is

emergent on all of the boundary s¿; therefore, vj = 0. On the other hand, (37)

guarantees that for each sufficiently small positive e, any emergent or entrant

critical point of ft\sx remains respectively an entrant or emergent critical point of

ve\sx. From this and Corollary 3 of Lemma 1, it follows that y,e = y2 = 0, y¿ = 1.

On the other hand, sihce vj = 0, the boundary type numbers of ve on A' are

{yj\j = 0, 1, 2,}.
The region A' is homotopy equivalent to a 2-sphere. Therefore if mj are the

interior type numbers of ve on Ae, then for all sufficiently small positive e,

3

2 (-lfm/ = 1. (45)
7 = 0

It will now be shown that for sufficiently small positive e, the only interior type

number of ve which can be positive is m2. First compute Hve = H(fe + uj) =

eW(X)/\X\3 + Hft = (e/|A|3)(W(A) + \X\3HfJe) where W(X) is the 3 X 3 ma-

trix (wu(X)), i,/-1,2,3 with entries wtJ(X) = 3x,.x,/|A"|2 - fiy. Clearly

index(//ü£) = index.(W(X) + \X\3HfJe). By the definition of the region A', if X

belongs to Ac then |A|3/e < e1/5. A simple computation shows the eigenvalues of

the matrix W(X) axe -1, -1, +2, independent of A. Since f is a C2 family of

functions, it is clear that Hft is bounded in norm. It must then be true that for all

sufficiently small positive e, index(//t;£) = index( W(X)) = 2, for all A G A '. This

combined with (45) proves parts 1 and 2 of the theorem. Part 3 follows from an

easy calculation.

Theorem 4. Suppose ß is a bounded open subset of R3 which contains the origin.

Let ß' = ß minus positive x3-axis and d = {X G ß|x3 = 0}. Let f be a function of

class C2 on a neighborhood of ß. Define the C2 family of functions % on ß' by

ue(X) = e/(x2 + x2 + (x3 — e)2)X/'2 for e > 0. Suppose the restriction of f to d has

no critical points, and 3//3x3 < 0 at the origin. Define the family "V = % + f. Then

there exists a positive number, e0, such that for 0 < e < e0, the function ve restricted to

d has exactly two critical points, P¿, P,e, and the following relations are satisfied for

j = 0, 1.
1. Pj is a nondegenerate critical point with index(Pj) = 2 — j.

2. (3ü£/3x3)(P,) < 0 and (3u£/3x3)(P0£) > 0.

3. lim_0 P//e'/2 =y((grad/|J)(0))/|(grad/|ar)(0)|3/2.

Proof. Let de= (A/e|A G d). Define the transformation ^ which maps d

onto ¿'by <% - <$(**) - (x,/e, x2/e, 0). Define s¿ = {A G d\ \X\ = e3/2}, s\ =

{A" G d\ \X\ = e3/5} and i2e = {A G d\ \X\ = e2/5}. Define s0,_sx, s2 by s, =

ty (sj), i = 0, 1, 2. Define A^ to be the closed bounded subset of d with boundary

Sq, Ax the closed bounded subset of d with boundary i0' u îf, A2 the closed

bounded subset of d with boundary sx U s2, A\ = d — (A£ u Ax u A2). Define
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A¡ = ^(Aj). Note that the transformation <?), the regions s¡, Ap i = 0, 1, 2,j =

0, 1, 2, 3, depend on the parameter e. However, the assertions of the theorem are

only claimed to be true for each sufficiently small fixed positive e.

Now compute ue(X)\d in terms of the new coordinate ^

ut(X) = e/ (eYx + eY2 + e2)'/2 = 1/ (y2 + y\ + l)1/2

= 1/(1 + |^|2)1/2. (46)

(46) demonstrates that ut(X), when expressed in the ty coordinates, is independent

of the parameter e. For convenience, define the function u on de by

„(<$)= 1/(1 + |^|2)1/2. (47)

Define the operators grad   and H as follows. Suppose \p is a function of class C 2
y

on a16; then grad^) = (3^/3y,, 9i^/6y2). Hyip is the 2 X 2 matrix (t|/,y), /,/ = 1, 2

such that \pjj = d^/oyfiyj. Define the operators grad2 and H2 on a function xp of

class C2 on ß by grad2 \p = (d\p/dxx, d\p/dx2) and //2i/> = (^u), i,j = 1, 2, with

tk, = Sfy/Sx^x,-. Clearly the following operator identities hold from the definition

of grad2, grady, H2 and Hy.

gxady = e grad2. (48)

Hy = e2H2. (49)

Define the C2 family <$ by fe(<%) = fie6!)). Define the C2 family ?T of functions

by /,(*?) ) = /(^ ) + «(<?) ) = «„(c^ ). Since for any fixed positive e, the functions ve

and r£ differ only by a dilation, any information about the critical points of te on dc

may be interpreted as information concerning the critical points of vt on d.

Let W(<%) be a matrix-valued function on d' defined by WCty) = (wtJ), i,j =

1, 2, where wtJ = 3y¿y,/|0?J |2 provided |<?J | ¥= 0, and w,7(0) = 0. Let / equal the

2X2 identity matrix. Define 9(^) = |^|2 + (1 + |<3i |2) = 1 - (1/(1 + |^|2)).

From (48) and (49) it follows that

grad/«) = -^/(l + |^|2)3/2. (50)

Hyu = (Ö(^)IF(^) - /)/ (1 + |^|2)3/2. (51)

By hypothesis there exist numbers 0 < a < A such that if A" G a1 then

a<|grad2(/)|<A (52)

(48), (50), and (52) clearly demonstrate that for sufficiently small positive e,

gradan) dominates grad,//) on the boundary of A0. Therefore by (50), grader,,) •

^ /|^ | < 0 for each sufficiently small positive e and ty G s0. In other words, all of

the boundary of A 0 is entrant for the function r£ for sufficiently small positive e. Let

11?, /' = 0, 1 be the boundary type numbers of te on A0. Since u is constant on s0, it

follows that ti?, / = 0, 1 are the type numbers of the restriction of / to s0 and are

identical to the type numbers of/|í¿. We may compute the type numbers of/|só for

sufficiently small positive e using Corollary 3 of Lemma 1 and obtain

Ho° - I»? - 1- (53)
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If te is nondegenerate on A0, then let m/0) equal the interior type numbers of rt on

A0 for t: = 0, 1, 2. Then for sufficiently small positive e we have

mo°> + m2°> - m\°> = 1. (54)

It follows from the definition that norm2( W) < 3, where norm2 is the customary

2-norm of the matrix. Clearly the function 9 -» 0 uniformly on A0 as e -» 0. In

addition, Hyfe -> 0 uniformly on de as e -> 0. Therefore by (51), for each sufficiently

small positive e,

index(/y£) = 2   if.y G A0. (55)

Therefore from (54) and (55) we have that for each sufficiently small positive e, the

function tt has a unique critical pointer] on A0 and index(/?r5) = 2, i-e.

mf) =1,        ^0) = w^o) _ 0 (56)

If <?) E Ax, then the following inequality follows from the definition of the

region^,.

Ve < ¡^ | < e"2'5. (57)

It follows then from (48) and (50) that

|grad»|>2-e4/5. (58)

(48) and (52) imply

|grad,(/)| < A ■ e    for all y E T'. (59)

Therefore, for sufficiently small positive e, the function te has no critical points on

Ax.
By similar reasoning it follows from (48), (50) and (52) that for each % which

belongs to A3,

|grad,(/£)| > |grad,(/£)| - |grad»| > ea - e6/5 > 0 (60)

for sufficiently small positive e. It is therefore apparent that for each sufficiently

small positive e, the functions tt can have no critical points on the region A3.

Let A€ = Aó U A{ U A\ and let B = (^ (A)|A G A'}. Let m0, mx, m2 equal the

interior type numbers of /£ on B and let iiq, ii, equal the boundary type numbers of

tt on B. Then by previous arguments, for a fixed positive e, m0, mx, m2 axe the

interior type numbers of ve on A£ and Hq, ii, are the boundary type numbers of ve

on Ae. On the other hand, the function ut is constant on s2. Therefore the type

numbers of vt\s2 equal the type numbers/|i2. (60) assures that for each ^ in A3, in

particular for each ^ in the boundary of A3, and sufficiently small positive e,

gxady(fe) dominates gxady(u). Certainly by (48) the same statement holds replacing

gxady(fe) with giad2(f) and grad^u) with grad2(w£). Therefore, for each sufficiently

small positive e, an entrant critical point of ve on j| corresponds to an entrant

critical point of /on s2 and an emergent critical point of ve on s2 corresponds to an

emergent critical point of / on s2. It then follows from Corollary 3 of Lemma 1

that, for each sufficiently small positive e, the functions / and vc have exactly one

entrant critical point on s2 and this critical point is a minimum, i.e.
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ft» - 1.       f*i - 0. (61)

In the following paragraph let the index i assume the values 0, 1, 2. Let «i/2)

equal the interior type numbers of i£ on A2. Since it has been shown that for

sufficiently small positive e, r£ has no critical points on Ax, then we have, for

sufficiently small positive e,

m¡ = m<°> + «P. (62)

From (56) and the fact that B is a disk, it follows that for sufficiently small positive

e,

2 (-1)'*P = -I- (63)
1-0

It will now be shown that for each sufficiently small positive e and ^ in A2,

index(Hytj) = 1. The definition of te, (49) and (41) imply

Hyte = Hy(u + /) = Hyu + Hyft

= (9(GH)W(6a) - I)/ (1 + \% |2)3/2 + e2H2f. (64)

The definition of the region A2 implies that if ^ G A2,

e"2'5 < \% <e~3/5. (65)

From (65), it follows immediately for e < 1,

x2e9'5 < (1 + |<Ü I2)"372 < e6/5. (66)

Also from the definition of the function 9 and (65), it follows that for % E A2,

lim   9(<%) = 1. (67)
e->0+

From the definition of W it is apparent that for (^ | ¥> 0, the eigenvalues of the

matrix WC^) — I axe 2 and -1, independent of ^. It now follows from (64), (65),

and (67) that for <% E A2,

lim (1 + |«3> \2f/2Ht = W - I. (68)

Therefore, from the fact that the index of a matrix is invariant under scalar

multiplication, indeii(Hytj) = index(IF - /) = 1.

Therefore from (63) and (68), it follows that for sufficiently small positive e,

«£> = «,22> = 0,       m{2> = 1. (69)

In other words, for sufficiently small positive e, the function r£ has a unique critical

pointp\ on the region A2; p\ is nondegenerate and index(/>£) = 1. This means that

for each sufficiently small positive e, the function ve\d has exactly two critical

points, P0£ and Pf, defined by P^ = ^"'(p¿), P,e = ^'x(p\) and P¿ G A¿, Pf G /i2e.

This proves assertion 1.

Assertion 2 is clear in light of the following equations.

lim   3we(A)/3x3 = 0,       A" G A\. (70)
£—»0+

lim   3t/e(A")/3x3 = +00,       X G A¿. (71)
e—*0+
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The proof of assertion 3, from assertions 1, 2 and the definition of the terms

involved, is a routine calculation. This completes the proof.

Theorem 5. Suppose the condition numbers /1q, it,, ii2, Mx, M2, 1, Rx, R2 are

harmonically realizable. Then the following sets of condition numbers are also harmon-

ically realizable.

a. fio + 1, ii, + 1, ii0, A/„ M2, 1, Rx, R2.

b. ti0, it, + 1, u2 + 1, A/,, Af2, 1, Rx, R2.

c. iifj, ii, + 1, ti2, A/,, A/2 + 1, 1, Rx, R2.

d. it0 + 1, tt„ it2, A/, + 1, A/2, 1, Rx, R2.

e. it0, it,, it2 + 1, A/„ M2, 1, /?„ /?2 + 1.

f. it0, it,, it2, Mx, M2 + 1, 1, Rx, R2 + 1.

Proof. Parts a and b of Theorem 5 appear as Lemma 5.2 of [2].

Assume that u and ß is a harmonic realization of the type numbers iiq, u„ ii^, A/„

A/2, 1, /?,, /?2. Define 2, 2 + , 2" from the pair u and ß as in the preliminaries. To

prove c, let P be any point in 2" such that grad(t/|2)(P) ^ 0. Now modify ß such

that there exists a neighborhood of P, U, in 2" which is contained in a 2-dimen-

sional linear manifold. It is clear that such a modification can be accomplished

leaving 2 in class C2 and the condition numbers iig, u,, it^, A/,, Af2, 1, /?,, R2,

unaltered. By perhaps a rotation and translation, it is possible to assume that

P = origin and N(P) = <0, 0, 1>. Define the C2 family of functions % as in

Theorem 4. Let T = % + w.

Obviously for any fixed positive e, t>£ is harmonic in a neighborhood of ß.

Theorem 4 implies the existence of a positive number e0 such that for 0 < e < e0,

ve\U has exactly one entrant critical point; P£ is n.d. and the index of Pe is one.

Lemma 1 and the fact that ue and all its derivatives tend to 0 as e tends to 0

uniformly on any subset of R 3 which excludes a fixed neighborhood of the origin

assure that outside any fixed neighborhood of the origin, and for sufficiently small

positive e, the critical points of vt and u£|2~ correspond to the critical points of u

and w|2  respectively as to number and index.

In addition, Theorem 3 asserts that for each sufficiently small positive e, the

function ve has a critical point, Qt = <a, ,q2,q3 ), Qe has index 2 and Qe tends to

0 as e -* 0. Moreover, since 0 is an ordinary point of u, there exists a fixed

neighborhood H of 0 in R3 such that for each sufficiently small positive e, Qe is the

only critical point of ue on //. By the fact that grad(«(0)) • N(0) < 0, and assertion

3 of Theorem 3, it follows that q3 < e - const e1/2 < 0 for all sufficiently small

positive e. Therefore, for sufficiently small positive e, Qe is contained in ß. From its

definition, it follows that w£ and all its derivatives tend to 0 uniformly on R3 — //.

Therefore the addition of w£ to the function u adds one more critical point, Qe, to

the critical set of u on ß. This statement combined with the proven values of the

indices of Pe and Qe complete the proof of part c.

To prove part d, choose P to be a point in 2+ and t>£ = u — ut. The proof now

proceeds in a manner completely analogous to the proof of part c.
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To prove part e, pick a point P in ß such that grad(w(P)) ¥= 0. Let ß£ = {ß —

(ball of radius e centered at P)}. Clearly, for sufficiently small positive e, the

second betti number of ß£ = R2 + 1. By Corollary 3 of Lemma 2, for sufficiently

small positive e, the second boundary type number of u on ß£ = ii2 + 1. This

proves part e.

To prove part f, define ß£ as above. Define u't on ß£ by w£(A") = e/|P — X\ + u,

a harmonic function for each fixed e.

grad(4) = grad(u) + e • (P - X)/\P - X\3. (72)

Clearly, from (72), for sufficiently small positive e, the function u£ is emergent on

the portion of boundary of ß£ which consists of (sphere of radius e centered at P}.

Therefore, for sufficiently small positive e, the boundary type numbers of u't on ß£

are identical to those of u on ß. By Theorem 3, the function u't has exactly one

more critical point on ß£ than did u on ß, and this critical point is n.d. with index

2. Lemma 1 assures that the critical points of u'e outside any fixed neighborhood of

P correspond in number and in index to the critical points of u on ß for sufficiently

small positive e. This completes the proof of part f.

Theorem 6. Suppose the condition numbers iiq, /x,, t^, A/,, A/2, 1, /?,, R2 are

nonnegative and satisfy (1). Then this set of integers is harmonically realizable.

Proof. The strategy of this proof is to reduce the given set of condition numbers,

by applying Theorem 5, to a set of elementary condition numbers which have been

proved harmonically realizable.

I. By iterated use of parts e and f of Theorem 5, it is possible to reduce the given

set of type numbers to one of the following two forms.

a. /i0, n\, n'2, M{, M2, 1, R[, 0.

b. iiQ, it'„ 0, M[, 0, 1, R[, R¡.

The inequalities of (1) guarantee form a may always be achieved.

II. By iterated use of parts a and d of Theorem 5, it is possible to reduce

numbers of the form la to numbers of one of the following two forms.

a. 1, ii',, it2, M'x, M2, 1, R[, 0.

b. it0, 0, ii2, 0, M2, \,R{, 0.

The inequalities of (1) guarantee form a may always be achieved.

III. By iterated use of parts b and c of Theorem 5, it is possible to reduce

numbers of the form Ha to one of the following two forms.

a. 1, ii'„ ii2, M[, M2, 1, R[, 0, for ii', < R[.

b. 1, u'„ 0, M[, 0, 1, R'x, 0.
The inequalities of (1) guarantee form a may always be achieved.

Ilia is a set of elementary condition numbers which are harmonically realizable

by Theorem 2. By reversing the reduction process, it is possible to augment the

numbers of Ilia to the original set of condition numbers which must then also be

harmonically realizable by Theorem 5. This completes the proof of Theorem 6.
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