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THE ESSENTIAL NORM OF AN OPERATOR AND rTS ADJOINT

BY

SHELDON AXLER, NICHOLAS JEWELL AND ALLEN SHIELDS1

Abstract. We consider the relationship between the essential norm of an operator

T on a Banach space X and the essential norm of its adjoint T*. We show that

these two quantities are not necessarily equal but that they are equivalent if X* has

the bounded approximation property. For an operator into the sequence space Cg,

we give a formula for the distance to the compact operators and show that this

distance is attained. We introduce a property of a Banach space which is useful in

showing that operators have closest compact approximants and investigate which

Banach spaces have this property.

Let A denote a Banach space, let £(A) denote the set of all operators (bounded

linear transformations) on A, and let %(X) denote the set of all compact operators

on X (recall that an operator is said to be compact if the image of the unit ball has

compact closure). The essential norm \\T\\e of an operator Tis the distance to the

compact operators:

\\T]\e = inf{\\T-K\\:KE%(X)}.

In §1 we show that if A is any Banach space and F G £(A), then ||F*||e =

||F**||e. We show that for many Banach spaces one has ||F||e = ||F*||e, but we

also give an example where || T\\e = 1 and || T*\\e = -. We prove that if A"* has the

metric approximation property then ||F*||e > 5||F||e for all T E £(A") (see Theo-

rem 3). We have recently been informed that A. M. Davie has proved that

dist(F*, <5(X*)) > }dist(F, 3/A")) for any Banach space A, where <5(X) denotes

the finite rank operators on X.

In Proposition 4 we consider operators from an arbitrary Banach space into the

sequence space c0. We give a formula for the distance of such an operator from the

compact operators. Furthermore we show that this distance is always attained.

In §2 we introduce a property of a Banach space which is useful in showing that

operators have closest compact approximants. We investigate which Banach spaces

have this property and we discuss the relationship to A/-ideals.

The strong operator topology (SOT) will be useful in both sections of the paper.

Recall that a net {Ta} c £(A") is said to converge to F G £(A") in the strong

operator topology (written Ta-*T (SOT)) if ||Fax - Fx|| ->0 for each vector

x G A.
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I. The essential norm of an adjoint operator. For F G £(A") we have ||F|| =

|| T*\\. Since an operator is compact if and only if its adjoint is compact, it is easy to

see that

In this section we study the relationship between || F||£ and || T*\\e.

We regard A as being a subspace of A** under the canonical embedding. If X is

reflexive, then ||F||e = ||F*||e, as is seen by applying (1) to F*. More generally,

suppose there is a projection P of norm one of A** onto A". If F G £(A) and

K E %(X**), then

\\T** - K\\>\\P(T** - K)\X\\=\\T- (P/qA-)||>||F||e

and therefore || F**||£ > ||F||e, which by (1) implies that ||F||e = ||F*||e.

It is well known (and easy to see) that if Y is any Banach space, then there is a

projection of norm one of Y*** onto Y. Thus the above comments imply that if A

is the dual of some Banach space, then || F||e = || F*||e for every F G £(A"). If u is

a positive a-finite measure, then there is a norm-one projection of Lx(u)** onto

Lx(u) [4, Chapter III, Theorem 8, pp. 163-164]. Thus ||F||e = ||F*||e for every

F G t(Lx(u)). These results might lead one to believe that ||F||e always equals

|| F*||e; however we now give a counterexample.

Example 1. There exists a Banach space X and an operator F G £(A) such that

\\T\\e*\\T*\\e.

Let A = /' © c0 with the norm ||(x,.y)ll = IWIi + II.VIL- Thus A"* = /°° © /'
with norm \\(a, b)\\ = max(\\a\\x, \\b\\x). Define T E £(A) by T(x,y) = (0, x).

Then ||F|| = 1 and T* E £(A*) is given by T*(a, b) = (b, 0). We now show that

||F||e = 1. Let en denote the vector that is zero except for a one in the «th place.

Let K be any compact operator on A. Then

||r - Xj|-|r* - K*\\ > \\(T* - K*)(0, OH > \\(en, 0)11 -||**(0, en)\\.     (2)
Since (0, en) -» (0, 0) weak-* in A"* and K* is weak-* continuous, K*(0, en) —> (0, 0)

weak-* in A*. Since K* is compact this implies that ||Ä"*(0, en)\\ —>0. Thus (2)

shows that || F||e > 1, as asserted.

We now show that ||F*||e < \. Let d = (1, 1, 1, . . . ) G l°°. Define / G £(A"*)

by

L(a,b) = ^(^bn)d,0J.

Since L has a one-dimensional range, it is compact. Also

T*-L)(a, ¿)||=||(é-^(2Mrf'°)

= j IK6i - b2 - hi-» - bt + *i - h - *4

<\^\K\<\\\{a,b)\\.

Therefore ||F*||e < ||F* - L|| <\ completing the example.
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Note that the remarks preceding the example show that if F G £(/'), then

1121, = ||F*||£. Also, if F G £(c0), then ||F||e = ||F*||e. (Proposition 4(iii) gives a

formula for ||F||e. Properties of /' can then be used to verify that ||F||e = ||F*||C;

we omit the details.) Example 1 thus shows that the direct sum of two spaces for

which equality holds may fail to have this property.

Example 1 raises the question of whether for each Banach space A there is a

constant c > 0 such that ||F||e > ||F*||e > c\\T\\e for all F G £(A"). The example

presented shows that it may be necessary to choose c < \. In fact for the above

example it can be shown that ||F*||e =^||F||e. Theorem 3 will show that the

constant c —\ will work for almost all the common Banach spaces (see the Remark

following Theorem 3). First we require a lemma.

Recall that a Banach space A is said to have the X-metric approximation

property if there is a net { Ta) of finite rank operators on A such that || FJ| < A for

all a, and || Tax - x|| -» 0 for each x G X; i.e., Ta -* 1 (SOT).

The following lemma shows that the operators on X* that arise in the definition

of the X-metric approximation property for X* can actually be taken to be adjoints

of operators on A. This result has been independently obtained in the separable

case by M. Feder [6, Proposition 4]. Lemma 2 will also be used in §2.

Lemma 2. Suppose that X* has the X-metric approximation property. Then there is a

net {SJ c £(A) such that Sf has finite rank, \\Sf\\ « A and Sf -* 1 (SOT).

Proof. Let {Ta} c £(A*) be a net of finite rank operators that satisfies the

conditions of the definition of the X-metric approximation property. Let {ea} be

a bounded net of positive numbers such that ea —» 0 (for example, take ea =

1/(1 + dimFaA*)). By a result based on the principle of local reflexivity (see [9,

Corollary 3.2]), for each a there exists a finite-dimensional operator Aa E £(A)

such that ^*|FaA* = Ta\TaX* and \\AJ < \\TJ(l + ea).

Now for any 9 E X* and any a we have

Af9 = Af(9 - Ta9) + Af(Ta9) = Af(9 - Ta9) + Ta(Ta9)

= Af(9 - Ta9) + Ta(Ta9 -9)+ Ta9.

Since {11^1*11} and {||Fa||} are bounded and Ta9 -* 9, the above equation shows

that Af9 -» 9. Let Sa = Aa/(\ + ej. Then the net {Sf} satisfies all the conditions

necessary for the A-metric approximation property for X*.    Q.E.D.

Theorem 3. Let X be a Banach space such that X* has the \-metric approximation

property. Then

\\T\\e>\\T*\\e>(\/(\+\))\\T\\e

for every T G £(A).

Proof. Let F G £(A). Let {Sa} c £(A) be the net of operators whose existence

is guaranteed by the lemma. Let Ra = 1 - Sa. Then ||Äa|| < 1 + \ and Rf -»0

(SOT). We have F = TRa + TSa. Since TSa is compact we have ||F||e

<lim\\TRJ.
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Let K E %(X*). Then

(1 + X)||F* - K\\ > \\Rf(T* - K)\\ > (\\RfT*\\ - \\RfK\\).

Since Rf -> 0 (SOT) and {||/?*||} is bounded and K is compact, we have \\RfK\\ ->

0. Hence

(1 + X)||F*||£ > TmT||Ä*F*|| > hm \\TRa\\ > \\T\\e.

This completes the proof.

Remark. Many common Banach spaces have the 1-metric approximation prop-

erty, which is usually called the metric approximation property. To see that /°° has

the metric approximation property, let a = Ax u A2 u • • • \jAn denote a parti-

tion of the positive integers into disjoint sets Ax, . . ., An. Define Ta: l°° —> l°° by

(Tax)(j) = x(m), where m is the smallest integer such that m E Ak and where k is

such that y G Ak. We say that a > a' if the partition corresponding to a is finer

than the partition corresponding to a'. It is now easy to verify that the net { Ta) has

the properties required by the definition of the metric approximation property.

Finally, the space X* = /°° ffi /' occurring in Example 1 has the metric approxima-

tion property because it is the (sup-norm) direct sum of two spaces with this

property.

We conclude this section with some results concerning operators from an

arbitrary Banach space X into c0. Recall that the dual of c0 can be identified with

/'. Let {en} (n = 1, 2, . . . ) denote the usual coordinate vectors in /'. Let %(X, c¿)

denote the space of all compact operators from X into c0.

Proposition 4. Let X be a Banach space and let T E £(A, c0). Then

(i)||F|| = ||F*||=sup||F*eJ|.

(ii) F is compact if and only if \\ T*en\\ —»0.

(iii) dist(F, %(X, c0)) =ïïmï| 7X11.

(iv) There exists a closest compact operator to T.

Proof, (i) This is easy.

(ii) One easily shows that if ||F*eJ| ^0, then F* is compact. Conversely,

suppose that T* is compact, but that ||F*e„|| > e > 0 for infinitely many values of

«. Choose a subsequence (still denoted {en}) for which T*en is norm convergent.

Since en -h>0 weak-* and F* is weak-* continuous, T*en -» 0 weak-*. Hence T*en

converges to zero in norm, which is a contradiction.

(iii) and (iv) We may assume that F is not compact and thus lim|| T*en\\ > 0. Let

K: X -» c0 be compact. Then

\\T- K\\ = ||F* - K*\\ > TmT||(F* - K*)en\\ > ïmT\\T*e„\\. (3)

To complete the proof we must show that there is a compact operator K whose

distance to F is equal to the right-hand side of (3). Let

r*-maT-fr*ir\\-j"



THE ESSENTIAL NORM OF AN OPERATOR 163

Thus rk -» 0 as k —» oo. Define K: X —> c0 by

Kx = (rx(Tx, ex), r2(Tx, e2), . . .).

Since Tx G c0 we see that Kx E c0 and # is a bounded linear transformation from

A" into c0. One verifies that K*ek = rkT*ek; thus ||AT*eA:|| —*0 and therefore .AT is

compact by (ii). Finally, by (i)

\\T- K\\ = suplKF* - K*)en\\ = lirn~||F*e„||.

This completes the proof of Proposition 4.

2. The Basic Inequality. Part (iv) of Proposition 4 shows that every operator into

c0 has a closest compact approximant. In this section we will study a general

property which ensures the existence of closest compact operators.

Definition. A Banach space X is said to satisfy the Basic Inequality if for each

F G £(A) and each bounded net {Aa} c £(A") such that Aa^0 (SOT) and

/I* —»0 (SOT) the following is true. For each e > 0 there exists an index ß such

that

||F + ^||<e + max(||F||,||71|e+K||).

The Basic Inequality was originally defined in [2] where, however, sequences

were used instead of nets. Theorem 2 of that paper states that lp (1 <p < oo)

satisfies the Basic Inequality. This theorem remains true with the new definition of

the Basic Inequality and with the same proof (but replacing sequences by nets). It

was stated in [2] (see the end of §2) that /' satisfies the Basic Inequality; however

we will see in Theorem 7 that with the new definition this is no longer true. We

now restate Theorem 1 of [2] using nets rather than sequences.

Theorem. Let X be a Banach space that satisfies the Basic Inequality and let

T G £(A") ~ %(X). Let {Ta} c %(X) be a bounded net of compact operators such

that Ta-+ T (SOT) and Tf —> T* (SOT). Then there exists a sequence of indices

{a(k)} and a sequence of nonnegative real numbers {ak} such that 2a¿ = 1 and

\\T- K\\ = \\T\\e, where K=^akTa(k).

The proof is the same as the proof of Theorem 1 of [2], changing sequences to

nets where appropriate. With the new definition of the Basic Inequality, the

Corollary to Theorem 1 [2] which showed the nonuniqueness of K is still valid (with

the same proof).

Theorem 5 gives conditions on a Banach space which ensure that every operator

has a closest compact operator. It is an improvement of the second corollary

following Theorem 2 of [2]. A Banach space is said to have the bounded approxi-

mation property if it has the X-metric approximation property (which was defined

in the previous section) for some X.

Theorem. 5. If X is a Banach space that satisfies the Basic Inequality, and if X*

has the bounded approximation property, then each operator on X has a closest

compact approximant.
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Proof. By hypothesis, A* has the X-metric approximation property for some X.

Thus by Lemma 2 there exists a net {Sa} c £(A") such that Sf has finite rank,

|| 5*|| < X and Sf -» 1 (SOT). It follows that Sa has finite rank and Sa ~* 1 (WOT);

here WOT denotes the weak operator topology. We now use the net {Sa} to

construct a new net of finite rank operators, bounded by X, converging to 1 (SOT)

and such that the adjoints also converge to 1 (SOT).

For each fixed index ß,

1 G { Sa:a> ß }WOT c conv{S„:a >/S}W°T = convia >/?}S°T

Here conv denotes the convex hull and the bar denotes closure in the indicated

topology; the last equality follows from Corollary VI. 1.5, p. 477 of [4]. Thus for

each ß and each SOT-open subset 0 of £(A) containing 1, there exists Vß e G 0

D conv{5a: a > ß). Note that Vß e has finite rank and \\Vßt6\\ < X. The SOT-

open subsets of £(A) containing 1 are directed by reverse inclusion and the pairs

(/?, 0) axe directed by the usual product ordering. It immediately follows that

Vß e -> 1 (SOT). We now show that Vf e -* 1 (SOT) also. Indeed, let p be an

SOT-open convex subset of £(A"*) containing 1. For ß sufficiently large, Sf E p

for all a > ß. Thus F|_ e G p for all such ß. Thus Vf_ e -» 1 (SOT) as claimed.

Let F G £(A). To show that F has a closest compact approximant, let Tß e =

TVß e. Then {Tß e} is a uniformly bounded net of finite rank operators such that

Tß,e^T (SOT) and Tf e -» T* (SOT). As noted above, Theorem 1 of [2] applies in

these circumstances, and thus F has a closest compact approximant.    Q.E.D.

We note that the proof of Theorem 5 shows that if X* has the X-metric

approximation property, then A" also has the X-metric approximation property (see

[12, p. 34]). Our proof further shows that there is a net of operators in £(A") (Vß e

in the proof) such that these operators and their adjoints both satisfy the conditions

required for the X-metric approximation property (on X and A"*, respectively).

Theorem 5 raises the question of which Banach spaces satisfy the Basic Inequal-

ity. For example, consider the question of whether every operator on Lp[0, 1] has a

closest compact approximant. For/? = 2 the answer is yes and for/? = 1 the answer

is no [5]; the question is open for other values of p. Since Lp[0, 1] has the bounded

approximation property, Theorem 5 would give an affirmative answer to this

question if Lp[0, 1] satisfied the Basic Inequality. Unfortunately, the following

theorem shows that this is not the case. It will be convenient to let V denote the

usual Lebesgue space on the unit circle with normalized Lebesgue measure.

Theorem 6, Let 1 < p < oo,p ¥= 2. Then Lp does not satisfy the Basic Inequality.

Proof. For / G Lp, let fin) denote the «th Fourier coefficient of /. Define F:

Lp -> V by Tf = f(0). Since F is a rank one operator, ||F||e = 0. Define An:

Lp _> Lp by AJ = f(ri)zn. Then Aff = /(-n)z~". By the Riemann-Lebesgue

Lemma, An -> 0 (SOT) and Af -» 0 (SOT).
The operator Un: Lp -» Lp defined by (UJ)(z) = fiz") is an isometry on Lp.
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Thus for/ G L",

\\(T+Ax)f\\p=\\Un(T+Ax)f\\p =\\(T+An)(UJ)\\p

<\\T + M IIvJWp =\\T + AÂ\\f\\p-
Thus || F + Ax\\ < || F + An\\. By Theorem 1 of [14] and the comment immediately

following it, we see that || F + ^,|| > 1 (foxp ¥= 2).

Clearly max{||F||, ||F||e + \\An\\) = 1. Since \\T + AH\\ > 1 + (||F+ Ax\\ - 1),

we see that the Basic Inequality fails when e = (\\T + Ax\\ — l)/2.     Q.E.D.

The above proof does not work for p = oo because it is not true that Af —>0

(SOT) when p = oo.

In [2] it was shown that if 1 <p < oo, then lp satisfies the Basic Inequality. We

now show that this is false forp = 1 and/? = oo.

Theorem 7. The spaces /' and l°° do not satisfy the Basic Inequality.

Proof. Let {xa} be a net of vectors in /' such that ||xj|, = 1, xa(l) (which is the

first component of xa) is zero and xa —> 0 weakly. It is possible to choose such a net

because 0 is always in the weak closure of the unit sphere of an infinite dimen-

sional Banach space (see [3, Chapter 15, p. 331, Problem I]). Similarly, let {q>ß} be a

net of vectors in /°° such that \\<Pß\\ = 1 and <p -*0 weakly (in particular, tpß —»0

weak-*).

Define Aa ß: lx -* /' by Aaßy = (xa <8> <pß)(y) = (y, <pß)xa. Clearly \\Aaß\\ = 1.

The pairs <a, /?) are ordered by the usual product ordering. <a,, /?,) < <(a2, ß2} if

and only if a, < a2 and ßx < ß2.

For eachj' G /',

IK^11 = |Cv, M INI = |(^^)|->o
since q>ß -» 0 weak-*. Thus Aa ß -^ 0 (SOT). Similarly, since xa -» 0 weakly, we see

that Af 0-^O (SOT). Finally, since tpß -* 0 weakly, we see that A f*ß -+ 0 (SOT).

Let {en} denote the standard basis vectors in /'; so en(k) = 8nk. Define F:

/' -^ lx by Tx = (2x(n))ex. Thus ||F|| = 1. Since Fhas rank one, ||F||e = 0.

For any operator S: /' —> /', it is easy to see that ||5|| = sup||Se„||,. Now

\\(T+ Aa,ß)en\\x   =||el   +Aa.ßen\\X  =||el||l   + IK,/^J,

where the last equality holds because e, and Aa ßen = (en,<pß)xa have disjoint

supports (since xa(l) = 0). Thus

IIT+ Aa,ß\\= sup ||( F + Aaß)e„\\   = 1 + sup IK^II, =2.
n n

However, max{||F||, ||F||e + ||^a «||} = 1. Thus the Basic Inequality fails for /'.

Since ||F* + <^|| = ||F+^^||=2 while max{||F*||, ||F*||£ + \\Afß\\} = 1

(and recalling that Af*ß —> 0 (SOT)), we see that the Basic Inequality also fails for

/".    Q.E.D.
Theorem 5 gives one method for showing that each operator on A has a closest

compact operator. We would now like to discuss certain similarities with another

method, namely, the method of A/-ideals. Let F be a closed subspace of a Banach
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space E; the annihilator of F in E* will be denoted by Fx. Then F is called an

Af-ideal if E* has a direct sum decomposition E* = Fx © G (for some closed

subspace G c E*) such that ||^ + <p|| = \\xb\\ + \\<p\\ for all \p E Fx, <p E G.

Alfsen and Effros proved that if F is an Ai-ideal in E, then each element of E

has a closest element in F (see [1, Corollary 5.6]). For example, %(lp) is an A/-ideal

in t(lp) for 1 <p < oo (see [7]), and thus each operator on lp has a closest

compact approximant. This result also follows from our Theorem 5 (since /'

satisfies the Basic Inequality; see [2, Theorem 2]). On the other hand it is known

that %(X) is not an A/-ideal in £(A") if A = /' or A = /°° (see [10], [15]). Note the

similarity to our Theorem 7; neither of these spaces satisfies the Basic Inequality.

We turn now to Lp. Here Lima has shown [11] that if 1 < p < oo, p ^ 2, then

%(Lp) is not an A/-ideal in £(.£/). Our Theorem 6 shows that for these values of/?,

Lp does not satisfy the Basic Inequality.

The above discussion raises the question of the relation between Af-ideals and

the Basic Inequality. For example, consider the following two properties that a

Banach space X might have: (1) %(X) is an Af-ideal in £(A"); (2) X saisines the

Basic Inequality. Does either of these properties imply the other?

As another piece of evidence for a possible relation between these two concepts

we note that in both cases the closest compact approximant to a noncompact

operator is never unique (see [8] and [2, Corollary to Theorem 1]).

We give a final example where the Basic Inequality and M-ideals have been used

to prove the same result. In [2, Theorem 4] it was shown using the Basic Inequality

that each function in L°° has a closest approximant in H°° + C. D. Luecking [13]

has recently given a proof of this fact using A/-ideals.
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