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UNIFORM APPROXIMATION ON UNBOUNDED SETS

BY HARMONIC FUNCTIONS

WITH LOGARITHMIC SINGULARITIES*

BY

P. M. GAUTHIER, M. GOLDSTEIN AND W. H. OW

Abstract. This paper deals with the qualitative theory of uniform approximation

by harmonic functions. The theorems of Brelot and Deny on Runge- and Walsh-

type approximation on compact sets are extended to unbounded closed sets.

1. Introduction. Suppose h is harmonic in a deleted neighborhood of a finite

point a G R2. We say that h has a logarithmic singularity at a if there is a function

u harmonic at a, and a constant a such that in a neighborhood of a, h — u is of the

form

a ln|z — a\.

Since this notion is conformally invariant, it also makes sense on a Riemann

surface R. An essentially harmonic function on R is a function which is harmonic

except possibly for logarithmic singularities. It follows from Lemma 4 below that

an essentially harmonic function can be written as the difference of subharmonic

functions.

Without loss of generality we may and shall assume that every Riemann surface

R is connected. Following Scheinberg [12] we say that a subset is bounded in R if its

closure in R is compact. A Riemann surface R ' is said to be an extension of R if R

is (conformally equivalent to) an open subset of R'. If furthermore R ¥= R', R' is

an essential extension of R. We shall say that a closed subset of R is essentially of

finite genus if F has a covering by a family of pairwise disjoint open sets, each of

finite genus. We may assume that such a cover is locally finite.

Throughout this paper, R denotes an open Riemann surface and R* its one point

compactification. Unless otherwise specified, all topological notions refer to R.

Thus, if F is a subset of R, F~ denotes the Ä-closure of F, dF is the Ä-boundary,

etc.

In this paper we establish the following results:

Theorem 1. Let F be closed and essentially of finite genus in an open Riemann

surface R. Then, each function essentially harmonic on F is the uniform limit of

functions essentially harmonic on R.
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Let us call the approximation in Theorem 1 a Runge-type approximation by

essentially harmonie functions. A Runge-type approximation by harmonie func-

tions is defined analogously by replacing essentially harmonic functions by

harmonic functions. Denote by F the union of F and all bounded components of

R\F.

Theorem 2. Let F be closed in an open Riemann surface R. The following

conditions are necessary in order for a Runge-type approximation by harmonic

functions to be possible on F.

(I) R*\F is locally connected.

(II) For each bounded open set V such that dV c F, either V C F or V n F = 0.

(III) For each compact set K in R, there is a compact set K' in R which contains

every bounded component of R\(F u K) whose closure meets K.

Theorem 3. Let F be closed in an open Riemann surface R. Consider the condition:

(IV) R*\F is connected and locally connected.

If F is essentially of finite genus in R, then (IV) is sufficient for Runge-type harmonic

approximation on F.

Let G be an open set in R. We say that (G, R) is a Runge pair for approximation

on closed sets if for each h harmonic on G, each subset F of G which is Ä-closed,

and each e > 0, there exists a u harmonic on R such that \h — u\ < e on F.

Theorem 4. Let R be an open Riemann surface. In order for (G, R) to be a Runge

pair for harmonic approximation on closed sets, it is necessary that /?*\(7 be

connected. If G is essentially of finite genus, this condition is also sufficient.

Let F be closed in an open Riemann surface R. We say that Walsh-type

approximation by (essentially) harmonic functions is possible for the pair (F, R) if

every function continuous on F and harmonic on F° can be approximated

uniformly on F by functions (essentially) harmonic on R. Of course, the necessary

conditions for Runge approximation are all the more necessary for Walsh ap-

proximation.

Theorem 5. Let F be closed and essentially of finite genus in an open Riemann

surface R. Suppose F = F°~ and dF is analytic. Then F is a set of Walsh approxima-

tion by essentially harmonic functions. If, moreover, R*\F is connected, then F is a

set of Walsh approximation by harmonic functions.

We remark that conditions (I) to (IV) are not independent of each other. More

will be said on this later. For the present we feel it is better to retain all of these

conditions, despite the redundancy, in order to grasp more easily the geometric

relationship between F and R.

In case F is compact, our results are implicit in the work of Brelot [2] and Deny

[3], at least when R is a planar domain. Hence the thrust of our work is that we can

now approximate on unbounded sets. Of course, from the compact theorems it

follows that one can approximate uniformly on compact subsets of closed sets. But

we are doing much more. For example, from Theorem 1 it follows that if R is a
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plane domain, F is /?-closed, h is harmonic on F, and e is positive, then there is a m

essentially harmonic on R such that \h — u\ < e everywhere on F. Hence, the

approximation is uniform simultaneously on all of F, not just on compact subsets.

It should also be pointed out that we make no assumption about the behavior

near "infinity" of the function to be approximated. It could oscillate wildly.

Such theorems are already known for holomorphic or meromorphic approxima-

tion and have borne rich fruits (see for example [3]). If R is simply connected the

sufficiency in Theorem 3, for instance, is a trivial consequence of the holomorphic

analogue obtained by passing to the holomorphic completion of a harmonic

function. However, if R is not simply connected, we see no way of deducing the

harmonic results from the holomorphic analogues.

The only paper we are aware of which deals with the subject of this paper is the

work by Saginjan [11]. In that paper Saginjan works in R", but restricts his

investigation to closed subsets F with no interior. Thus, he is approximating

continuous functions by harmonic functions.

We do not know whether our own results extend to R", and to arbitrary open

Riemann surfaces. However, the proofs would need to be modified in the case of

R" as we make use of conformai mappings. Moreover, we note that the holomor-

phic analogues fail on arbitrary open Riemann surfaces [5] and in (C", n > 1.

Added in proof. We have recently extended some of our results to R", n > 2.

2. Preliminaries. Let K be a compact set in an open Riemann surface R, and let/

be in C(dK), the class of continuous (real-valued) functons on dK. We may extend

/continuously to a neighborhood of K. Let {fi„} be a sequence of neighborhoods

of K nesting down on K and such that each fi„ is regular for the Dirichlet problem.

Denote by //"(/) the solution of the Dirichlet problem on fî„ with boundary

function/|3S2n. Recall that a point x G dK is called stable for K if H"(f)(x) -^>f{x)

for each / G C(dK). It is well known that x is stable for K if and only if anK is

not thin at x [2]. Denote by S(K) the points of dK which are stable for K.

Lemma 1. Let K be compact andf G C(K). Then

Hn{f) ^f

uniformly on compact subsets of S(K).

Since / can be uniformly approximated by a difference of continuous sub-

harmonic functions [6, p. 196], we may assume that/itself is subharmonic as well

as continuous. Thus, H"(f) decreases to/ on S(K). The lemma now follows from

Dini's theorem [6, p. 35].

Let A be a subset of an open Riemann surface R and denote by A the envelope

of A. That is, A is the union of A and all bounded components of R\A. The set A

is called full {plein in French) in R if it is equal to its envelope. If A is closed,

compact, or open, then A is closed, compact, or open, respectively. If ^4 c B, then

A c B. For references to proofs and to the historical development of this notion,

see [9].

Lemma 2. A is full iff R*\A is connected.
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Proof. Suppose first that A is full, and let F be a component of R*\A. It

suffices to show that the ideal point oo is in V. Suppose oo Ö V. Thus, F is a

component of R\A. V is not compact (since A is full), and so V is contained in no

compact set. Hence, oo is in the 7?*-closure of V. Since V is a component of R*\A,

it follows that oo G V, which is the desired contradiction.

Conversely, suppose R*\A is connected, and let V be a component of R\A. It is

enough to show that V is not bounded. Now V is open and closed in R\A. Thus, V

is open in R*\A. If V were bounded, then V would also be closed in R*\A. Since

R*^A is connected, V would have to be all of R*\A which is not possible since

00$ K. This proves the lemma.

Note that the properties we have discussed for A hold for more general spaces R

than we are considering.

Let F be full in an open Riemann surface R. We shall say that an exhaustion
00

R - U Rj
/-l

of R is compatible with F if F u Rj is full in R for each j.

Lemma 3. If R*\F is connected and locally connected, then there is an exhaustion

of R compatible with F.

Proof. Let {G,} be a nested exhaustion of R by bounded full open sets. Since F

is full, there is a G,(1) such that

(Gj U F)' c G,(1) u F.

Similarly, there is a GJ(2) such that

(GJ(l) u Ff c G„2) u F.

We choose inductively a subsequence Gy(A), j(k) <j(k + 1), k = 1, 2, . . . , such

that

(g;wu F)' c G,(*+1)u F.

Now set

Rk = (G/W U Fy° n G,(* + 1),

for Ac = 1, 2, ... . Then {Rk} is an exhaustion by full bounded open sets and

F u Rk is full. Hence, the exhaustion { Rk} is compatible with F.

The following Cousin-type lemma shows that in order to approximate essentially

harmonic functions, it is enough to know how to approximate harmonic functions.

Lemma 4 (Pfluger [8, p. 194]). Let [Rj] be an open cover of an open Riemann

surface R. If Pj are essentially harmonic on Rj andpj — pk are harmonic on Rj n Rk

for all j and k, one can find p essentially harmonic on R so that p — pj is harmonic on

Rj for every j.

For the next lemma, we shall say that a function h is essentially a C2-function on

Äif

h=p + <p, (1)
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where p is essentially harmonic and <p is a C2-function.

Lemma 5 (Green formula). Suppose D is a bounded domain with Cx-boundary in

an open Riemann surface R. If h is essentially a C'-function on D, then we can write

h{z) = r(z) - ¿ // g(?, z)A<pU) di dq (2)

where r is essentially harmonic on D, g is the Green function for D, <p is given by (1),

? = £ + if], and A<p(f )¿/£í/tj is invariantly defined.

Proof. (2) is an immediate consequence of (1) and the well-known Green

representation formula for C2-functions:

<p(z) = u{z) - ±- ffg($, z)A<p(f ) di dq
LTT     D

where u is harmonic.

The compact version of our Runge-type Theorem 1 was proved for plane

domains by Brelot [2] and Deny [3]. We need the analogous theorem on open

Riemann surfaces.

Lemma 6 (Runge-type). Let K be a compact subset of an open Riemann surface R.

Then each function h essentially harmonic on K is the uniform limit of functions

essentially harmonic on R. If K is full in R and h is harmonic on K, we may take the

approximating function to be harmonic on R.

Proof. The case where K is full is due to Pfluger [8, p. 192] (see also [7, p. 347]).

Let h be essentially harmonic on K and e > 0. Then by the Cousin-type Lemma 4,

there is a function /i, essentially harmonic on R with /i, — h harmonic on K. Let G

be a neighborhood of K which is full in R and bounded by analytic Jordan curves.

An argument of Pfluger [8, p. 194] shows that hi — h can be approximated within

e/2 on K by a function u0 essentially harmonic on G. Now by Pfluger's Runge-type

theorem [8, p. 192], t>0 can be approximated within e/2 on K by a function t>,

harmonic on R. Set v = A, — vv Then v is essentially harmonic on R and

approximates h within e. This completes the proof.

3. Fusion lemma. Alice Roth [10] first proved a fusion lemma for rational

approximation. In this section we shall develop a harmonic analogue.

Lemma 7. Suppose 8 and x0 are positive. Then, there is a positive constant

a = a(S, x0) such that if h is harmonic and \h\ < e for \x0 — x\ < 8, then there is a

C2-function v such that

v = 0,   for x < 0,

|u| < ae,   for 0 < x < x0,

v = h,   for x0 < x < x0 + 8,

|Ad | < ae,    whenever v is defined.

Proof. We shall construct v of the form

5

v(x,y) = 2 a¡{y)x',       0 < x < x0.
i = 0
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The boundary conditions are

v(o,y) = vx(o,y) = vxx(o,y) = o, (i)

v(x0,y) = h(xo,y),

vx(xo>y) = K(*<»y)> (2)

vXx(*o>y) = KÁx»y)\

From (1) we have a0 = a, = a2 = 0.

From (2) we have

*oa3(y) + *oaÁy) + xfa5(y) = A(x0, y),

3xfc3(y) + 4x%a4(y) + 5x%a5(y) = hx(xo,y),

6x0a3(y) + \2xlaA(y) + 20x¿a5(.y) = h^x^y).

This system has a solution a3, a4, a5. Each a} is a linear combination of h(x0,y),

K(xo> y)>and hxAxo> y)-

Fix a value y0. In the disc D(y0) of center (x0,y0) and radius 8/2, the functions

A, hx, and A^ have integral representations obtained by differentiating the Poisson

formula for A. Since A is bounded by e in |x0 — x\ < 8, there is a constant A

independent of y0 such that h(x0,yQ), hx(x0,y0), hxx(x0,y0) are bounded by Ae.

Hence the a, are also bounded by a constant times e and the same is true for v on

0 < x < x0. Since the a, are bounded by a constant times e, it also follows that the

same holds for Au.

There only remains to verify that v is a C2-function, and this need only be

checked on the lines x = 0 and x = x0. Along these lines the partial derivatives are

continuous from the left and continuous from the right and therefore continuous.

Lemma 8. Let x0 > 0 and suppose U is a neighborhood of the segment x = x0,

0 < y < y0. Then there is a positive constant a = a(U) such that if A is harmonic

and bounded by e on U, then there is a v as in the previous lemma, but now v is only

defined on

(x < 0) u (0 < x < x0, 0 < y < >>0) u (U n (x > x0)).

The proof is identical to that of the previous lemma.

Lemma 9.Suppose 8 > 0 and p > 1. Then there is a positive constant a = a(8) such

that if h is harmonic and \h\ < e for \\z\ — p\ < 8, then there is a C2-function v such

that

v = 0,   for \z\ < 1,

\v\ < ae,   for 1 < |z| < p,

v = A,   for p < \z\,

|Ar| < ae,    where v is defined.

Proof. The mapping z = e? transports A(z) to a function A(£) which satisfies the

hypotheses of Lemma 7. Since A is periodic, the proof of Lemma 7 furnishes a

function v which is also periodic. Thus £!(£) pulls back to a function v(z) which

solves our problem. We note that \Av\ < |At3|. This lemma could also have been
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proved directly by passing to polar coordinates and solving an appropriate

boundary value problem.

Lemma 10. Let Kt and K2 be compact subsets of a Riemann surface R and let Ul

and U2 be neighborhoods of Kx and K2 respectively. Then there are neighborhoods

Kj c Gj c Uj,      j = 1, 2,

and a positive constant a such that if A is essentially harmonic on U2 and bounded by e

on U{ n U2, then h\G2 has an extension A to G, u G2 such that A is C2 on G, and

satisfies

\h\ < ae,        |AA~| < ae,       z G G,.

Proof. For 7" = 1, 2, let G, be a neighborhood of Kj in Uj which is bounded by

finitely many disjoint analytic Jordan curves in U,. We may assume that 3G, and

3G2 are transversal to each other in the sense that they have no points of tangency

and the angles of intersection must be positive. Let G2 be a "swelled" neighbor-

hood of G2 obtained by moving each boundary curve of G2 slightly away from G2.

We may assume 3G2 is analytic. Each component of G2\G2 is called a collar and

we may assume that each collar is homeomorphic to an annulus. We may

construct G2 so close to G2 that if C is any collar, then the components of C n G,

are either all of C or else disjoint quadrilaterals with one side of the quadrilateral

on 9G2, the opposite side on 3G2, and the other two on 9G[. The components of

C n G, are called transition domains. We may assume that G2 is so close to G2 that

each transition domain is in t/, n U2.

We set A = A on G2 and A = 0 on G^G^ Thus, we have only to define A on the

transition domains.

Let D be a transition domain. Then D is conformally equivalent to either an

annulus or a rectangle. Suppose first that D is equivalent to an annulus (1 — 8 <

\z\ < p + 8). Let / be the conformai map. By Lemma 9 there is a constant a,

independent of A and a C2-function A, satisfying

A, = 0,    for \z\ < 1,

|A,| < a,e,    for 1 < \z\ < p,

A, = A ° /,    for p < |¿|,

|AA,| < a,e,   where A, is defined.

Now set A = A, ° /"' on D. Then A has the necessary properties and AA =

AA,/|/'|2 is appropriately bounded since/' is bounded away from zero on 1 < \z\

< p. The bound a(D) which we obtain depends only on D and not on A. Thus, A

has been defined on D in case D is homeomorphic to an annulus.

If D is not an annulus then D is a "quadrilateral" with one side a, on 9G2 and

the opposite side a,, on 9G2. There are positive constants x0 and y0 and 5 and a

conformai map / of the rectangle (-8 < x < x0 + 8, 0 < y < y0) onto D such that

the left and right boundaries correspond to ot0 and a, respectively. As in the

annular case, but using Lemma 8 instead, there is a function A, satisfying
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A, = 0,    for X < 0,

|A,| < ale,    for 0 < x < x0, 0 <y <y0,

A, = A ° /,    for x0 < x, 0 <>> <y0,

|AA,| < a,e,    where A, is defined.

Again, set A = A, ° / ' on Z). To see that

AA = AA,/|/'|2

is appropriately bounded, we have only to look at/' on

Q = (0 < x < x0, 0 < y < y0),

for AA, is zero elsewhere. Thus, it is of no consequence that/' may approach zero.

We need only the fact that/' is bounded away from zero on Q for by the symmetry

principle /extends conformally across the boundaries

(-8 < x < x0 + 8,y = 0)    and    (-8 < x < x0 + 8,y = y0).

Hence we have extended A to each transition domain and we have found an

associated constant. Let a equal the maximum of these constants as we vary over

the finitely many transition domains. This completes the proof.

Lemma 11. Let R be an open Riemann surface and let Kv K2, Uv U2 be as in the

previous lemma. Then there is a positive constant a such that if A is essentially

harmonic on U2 and bounded by e on (/, n U2, then there is a function r essentially

harmonic on R satisfying

\r\ < ae,    on Kt,

\r — h\ < ae,   on K2.

Proof. Let a, be the constant of the previous lemma. If h is as in the previous

lemma then by the Green formula, we may write

h = r(z) - ¿   //   gtf, z)AA~(0 di dq
Z7r  G,uG2

where g is the Green function for G, u G2 and r is essentially harmonic on

G, u G2. We set

a = a, +    sup    a,   //   g(f, z) </£ dq.
K\ <JK2        G, u G2

Then a and r have the required properties, except that r is only essentially

harmonic on G, u G2. However, r has only finitely many singularities and so by

the Runge-type lemma, we may assume that r is essentially harmonic on all of R.

This proves the lemma.

At last we may state the

Fusion Lemma 12. Let Kx and K2 be compact sets in an open Riemann surface R

and let V be an open neighborhood of Kx n K2. There is a positive constant a such

that if qx and q2 are essentially harmonic functions on R satisfying for some e > 0,

ki _ <l2\v <E>



UNIFORM APPROXIMATION BY HARMONIC FUNCTIONS 177

then there is a function r, essentially harmonic on R, such that for j =1,2,

V - %\k, <ae-

Remark 1. Clearly, if Kx u K2 is full in R and if qx and q2 are harmonic on

Kx u K2, we may assume that r is actually harmonic on R.

Proof. Let Ux and U2 be open neighborhoods of AT, and K2 respectively such

that Ux n U2 = V. Set q = qx — q2. Then q satisfies the hypotheses of the previous

lemma, and so there exists a function 5 essentially harmonic on R and satisfying

\s\ < ae,    z G Kx;        \s — q\ < ae,    z G K2.

Set r = qx - s. Then r has the required properties and the proof is complete.

4. Necessity. Before proving our theorems, we shall discuss the interdependence

of some of our conditions.

Remark 1. Conditions (II) and (III) together imply dF = dF.

Proof. We observe that dF c 9F and that dF^dF = dF n (F)°. We show that

dF = dF. For suppose, to obtain a contradiction, that p G (F)° n dF. Since p G

(F)° we may choose a closed bounded ball B with p G B°, B c F. Let a,,

j = 1, 2, ... , be the (at most countably many) components of 9¿?\F. For each/

let Uj be the component of Ä\F containing a-. Since/? G (F)0, we may assume that

B is so small that each U- is bounded. We now set

00

V = 5° U   U  ty

From condition (III) it follows that V is bounded and clearly dV c F. Thus K

violates condition (II), which is the desired contradiction. We have shown that

dF = dF.

Remark 2. (Ill) -> (I).

From the previous remarks, we have only to show the necessity of (III) and (II)

for Theorem 2.

Proof of necessity of (II). Suppose V is a bounded open set such that 9 V c F,

xx G V n F and x0 G F\F. We may assume that V is connected. The sufficiency

proofs to come (which generalize Brelot-Deny and which are independent of

necessity proofs) show there is a harmonic/on fi\(x0) which is less than 0 on dV

and more than 2 at xx. Suppose / can be approximated within 1 on F by A

harmonic on R. Then A violates the maximum principle in V. This proves the

necessity of (II).

To complete the necessity in Theorem 2, we have only to show condition (HI) is

necessary. Suppose then that approximation is possible, and to obtain a contradic-

tion, we suppose that condition (III) fails. Then for some compact K c R,

F\(F u K) has bounded components which reach arbitrarily far out. To be more

precise, we may exhaust R by full domains G„ in such a way that for n =

1, 2, ... ,

Gn C G„+1,
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and (Ä\F)\G, has components Dn, with

A,nG2^0,      A,cG5„,      z>„ ¡z G5„_,.

For n = 3, 4, . . ., choose

a„ G Z>„ n 9G2,       b„ G Dn n 9G5„_,.

We may assume that an converges to some point a G 9G2. Of course bn tends to the

ideal boundary.

Let Un be the component of Dn\G5n_4 which contains bn. Also, let w„ be the

harmonic measure for Dn at an, considered as a measure on dDn. We shall construct

a sequence/, with the following properties:

/„ is harmonic on R^b„, (1)

\fn(P)\ < 2~",        p G G5„_5,

1*1-1

2 fj{p) >2\n +
7-1

2/,
7=1

«„(3t/„\G5n_,r\

(2)

(3)

for/j G £„, where £„ is some subset of dUn\G5„_x whose «„-measure exceeds

^(3t/n\G5n_,)/2.

Up) >o,     pe dñn. (4)

Suppose for the moment that such a sequence fn has been constructed. Then by

(2), 2/, converges to some / harmonic on F. Suppose, to obtain a contradiction,

that there is a g harmonic on R with ||/ — g\\F < 1. Then

f(<0 - (   gd"n = [   (g-f)dun+f   fdu„
JäD„ JdD„ JdD„

> [   fd<on- 1 = f fdo>n + f fdco„- 1
JdD„ JE„ JdD„\E„

> f   tfj **n + /    I fj *>» +   f 2fj d*n - 1
JEn   1 JE„„+lJ J3D„\E„   1

VnidU^G^y^idU^Gs^)^
D.j

+ [        fn d"n - i - 1 > n - 2.
Jan \ c- ¿

> 2| n +

2"

n-\

2 4i
n-l

2/,
ß -/3D„\£„

We have seen that g(an) > n — 2, and since a„ converges to a, this contradicts

the harmonicity of g at a. Hence, the proof is complete, modulo the construction of

the sequence {/„}.

Set/, = 0, and suppose/ have been constructed for y = 1, 2, . . ., n — I. Let An

be the envelope of G5„_4 u dUn with respect to R\{bn}. Now set

K = G5n-4 U dÂn = G5„_4 U a„,
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where a„ is part of dU„\G5n_4. We define <p = <p„ on Kn as follows

n-l

k(a„\G5„_,)-' +<p = 2 « +
n-\

2/,i 2/y
1

+ 2, (5)
D.

on a„\G 5n-l-

v~2-<"+1>,    ontf„n G5„_2. (6)

(7) m is extended continuously to the rest of a„ (and hence to Kn) without

changing its upper and lower bounds.

The function «p is continuous on K„ and harmonic on K°.

We claim that dKn is stable. Indeed, we have only to verify that the complement

of Kn is not thin at any boundary point of Kn. This follows from [6, p. 216] and

since Kn is full in R\{bn).

Since dKn is stable, we may approximate <p by a function harmonic on Kn

(Lemma 1), and since Kn is full in R~^{b„}, we may even, according to the

Pfluger-Runge theorem (Lemma 6), approximate by a function /„ harmonic on

R\{bn}. We may approximate so well that/, satisfies (1), (2), (3), and (4), and the

proof of necessity is complete for Theorem 2.

To prove the necessity in Theorem 4, suppose R*\G is not connected. Then

there is a compact curve y bounding an open set V which contains a point of G

and a point of R^G. Then the proof of necessity of (II) now applies.

5. Sufficiency. We shall prove simultaneously Theorem 1 and the sufficiency in

Theorem 3.

For any of our theorems we introduce the special case of that theorem. By the

special case of Theorem n we mean Theorem n restricted to pairs (F, R) such that

R has an essential extension in which F is bounded. We shall now show that in

order to prove Theorem 1 and the sufficiency in Theorem 3, it is sufficient to do so

for the special cases.

Suppose, then, that the special cases of Theorem 1 and the sufficiency in

Theorem 3 have already been established and let A be essentially harmonic on F.

Let {Mj} be a locally finite cover of F by disjoint open sets of finite genus. We may

assume A is defined on each A/,. Let {R„} be an exhaustion of R with the property

that

RjDMk=0,       k>j.

If R*\F is connected and locally connected, we may further assume that the

exhaustion is compatible with F.

Let A be essentially harmonic on F. Since Rx u Mx has finite genus, it has a

compact extension by a theorem of Bochner [1]. Thus, if e > 0, then by the special

case of Theorem 1, there is a ux essentially harmonic on Rx u Mx such that

l"i - ¿IfnAf-, <«/2.

Moreover, if R*\F is connected and locally connected and if A is harmonic on F,

then by the special case of Theorem 3, we may take w, to be harmonic on Rx u Mx.

Set R0 = 0. Again by the special case of Theorem 1, there is a u2 essentially
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harmonie on

2

R2 U  U Mj
7=1

such that

\u2 - ux\ < e/22,    on R0 u (F n M,),

and

\u2 — A| < e/22,    on F n M2.

We proceed inductively to construct un, n = 2, 3, . . . , essentially harmonic on

n

K u U M/s
7=1

such that

K - "„-.I < e/2",    on F„_2 u     F n  \J ht\t

and

|w„ - A| < e/2",    onFnM,.

Note that un converges to a function u essentially harmonic on R, and that

\u - A| <e/2"-\    onFnM,.

Thus, our approximation is actually somewhat better than uniform. In the context

of Theorem 3, we may assume that each un is harmonic so that u is also. This

completes the proof of Theorem 1 and the sufficiency in Theorem 3 modulo the

special cases.

Before proving the special cases, we note that we may assume A is actually

harmonic on F, for by the Cousin-type theorem, there is a function A,, essentially

harmonic on R, such that A, — A is harmonic on F. Suppose we can find «,

essentially harmonic on R such that ux approximates A — A, on F. Then ux + A,

approximates A.

To prove the special cases, suppose R has an essential extension R ' in which F is

bounded. Let A be harmonic on F and fix e > 0. We may assume that A is

harmonic on a (possibly infinite) polygonal neighborhood U of F. We may assume

that if R*\F is connected and locally connected, the same holds for R*\U (see

[4, p. 152]). Let {R„} be an exhaustion of R. If R*\(J is connected and locally

connected, we may assume that {/?„} is compatible with U. For each n, set

Un = U n R„. Let F be the R '-closure of F and let R be an open Riemann surface

with R u F c R C R'. We apply the Fusion Lemma to the Riemann surface R,

replacing Kx, K2, V respectively by Rn, F\Rn, Un+X. We may choose the {an} so

that 1 < an < an+,. We select the positive numbers e„ e2, . . . , so that

00

<Wi <e„    and     2 «„ < e/2.
n=\
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By Lemma 6, there exist essentially harmonic functions qn on R such that

\an - h\ < eJ2an,    on Un+X, (1)

and therefore,

Ift + i - ftl < %/an,   on Un+X, n = 1, 2,-

Moreover, if R*\U is connected and locally connected, the same is true of R*\U

and we may choose each qn to be harmonic. By the Fusion Lemma, for each

n = 1,2,...,  there exists an essentially harmonic function rn on R such that

k - ftl < e„-    on Rn, (2)

k - ft+il <e«.    onF\Ä„. (3)

Moreover, if R*\U is connected and locally connected, we may assume that each

rn is harmonic. The inequalities (2) yield

OO 00

2k-ftl<2«,>    onÄ„.

Therefore,

00

« = 9i + 2 O; - ft)
1

is essentially harmonic onÄ = U T-i^n-

Set Fn = F n /?„. From (1) and (2), there follows on F,,

00 f oo

|u - A| '< \qx - h\ + 2k - ftl < ̂ T + 2 *, < «•
1 -"M 1

From (3), (1), and (2), we also have

n — \ oo

I«■■—■*! < 2 k - ft+il + Ift - Al + 2 k» - ftl
i «

n — 1 g oo

<  2 e, + 57" + 2 e, < C
1 z"n n

onF„\F„_„/j = 2, 3,-

Thus, m can be approximated uniformly on F by functions essentially harmonic

on R, and by harmonic functions in case R*\F is connected and locally connected.

This completes the proof of Theorem 1 and the proof of sufficiency in Theorem 3.

Let us now prove the sufficiency in Theorem 4. Actually this is a corollary of the

sufficiency in Theorem 3. Indeed, suppose G is open in the open Riemann surface

R, that G is essentially of finite genus, and that R*\G is connected. Let A be

harmonic on G; let F be a closed subset of R contained in G; and let e > 0. We

may construct a locally finite, closed, polygonal neighborhood F of F in G with

R*\P connected. Since dP is locally finite, it is clear that R*\P is also locally

connected. From Theorem 3, there is a function u harmonic on R such that

\u — A| < e on P. This completes the proof of sufficiency in Theorem 4.
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We shall now prove the sufficiency in Theorem 5. Let A be continuous on F and

harmonic on F°. Let {/?„} be chosen, one from each component of R — F. Since

9F is analytic, {/>„} is closed. Set R = /?\ U"_i{,p„}. Then 9F satisfies the

hypotheses of Saginjan's theorem [11] in R. We note that Saginjan's theorem holds

also on open Riemann surfaces. Thus, there is a harmonic function v on R such

that

|u - A| < e/2    on 9F,

where e is a prescribed positive number. Let Hv_h denote the Perron-Wiener-Brelot

solution of the Dirichlet problem for F° with boundary values u — h. Then, on F,

-e/2 < Hv-„ < e/2. Let u = v — A — Hv_h. Then u = 0 on 9F. Assuming that 9F

is analytic, u extends to a harmonic function on F which we shall continue to

denote by u. Hence, we are back in the Runge case and therefore there exists an

essentially harmonic function r on R such that

\u — r\ < e/4   on F.

If R*\F is connected, we may take r to be harmonic on R. Thus, on F we have

\(v - r) - A| - \{(v -u)-h}+(u- r)\

< |(t> - u) - A| + \u - r\ = \Hv_h\ + \u- r\

< e/2 + e/4 = 3e/4.

If R*\F is connected, v — r is the required harmonic function on R which

approximates A. If R*\F is not connected, we may, by Theorem 1, approximate t>

within e/4 on F by a function vx essentially harmonic on R. In this case, vx — r

yields the required approximation.

This paper has been concerned mostly with Runge-type approximation. We

included Theorem 5 on Walsh-type approximation because it is easily derived from

the Runge-type theorem. The assumptions in Theorem 5 can be somewhat relaxed,

but this will be discussed in a subsequent paper dealing directly with Walsh-type

approximation.
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