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ISOTOPY TYPES OF KNOTS OF CODIMENSION TWO*

BY

M. S. FÄRBER

Abstract. In this paper the classification of n-dimensional knots in S"+2, bound-

ing /--connected manifolds, where 3r>n + l>6, in terms of stable homotopy

theory is suggested.

The problem of isotopy classification is the fundamental one of knot theory. It

was solved by A. Haefliger and J. Levine for knots of codimension > 3. The first

step in reduction of a classification of knots of codimension two to a homotopy

problem was made by R. Lashof and J. Shaneson [6]. They showed that in the class

of «-dimensional knots with group Z for n > 5 there are at most two different

knots having homotopy equivalent exteriors. In 1970 J. Levine [10] gave an

algebraic classification of (2q — l)-dimensional knots in S2q+X bounding (q — 1)-

connected manifolds. It turned out that the only invariant determining the isotopy

type of such knots is the Seifert matrix considered to within 5-equivalence. Later

Trotter [16] and C. Kearton [5] obtained a classification of knots, studied by J.

Levine, in terms of Blanchfield pairing. C. Kearton has partially analyzed the more

difficult problem of classification of 2^r-dimensional knots in S2q+2 bounding

(q — l)-connected manifolds.

In the present paper the classification of a wider class of higher-dimensional

knots is obtained. It is the class of «-dimensional knots in S"+2 bounding

r-connected manifolds, where 3r > n + 1 > 6. The main result of this paper is the

construction of a one-to-one correspondence between the set of isotopy types of

such knots and some set described in purely homotopic terms.

The plan of the paper is as follows:

In §1 submanifolds of the sphere of codimension one are considered. Such a

submanifold is assigned some pairing in the sense of the Spanier-Whitehead theory.

This pairing describes the homotopy linking of the submanifold with its copy

translated in the direction of the positive normal field. This pairing induces the

usual Seifert pairing on middle dimensional homology groups and is called the

homotopy Seifert pairing. The main result of § 1 is the construction of a one-to-one

correspondence between the set of isotopy types of such submanifolds and the set

of homotopy pairings.
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§2 deals with a situation in which nonisotopic Seifert manifolds are bounded by

isotopic knots. I call this situation contiguity. In this section there is found a

necessary and sufficient condition for the homotopy Seifert pairings to correspond

to contiguous submanifolds.

In §3 it is proved that two submanifolds of a sphere bound the same knot if and

only if they may be connected by a sequence of contiguities. This result together

with the previous theorems bring us to the classification of knots.

From these general results an algebraic classification of some classes of knots

may be obtained by standard homotopy methods. This is illustrated in §3, where

the case of simple odd-dimensional knots is considered and algebraic classification

in terms of Seifert matrices is obtained. This classification is essentially the same as

J. Levine's [10]; the only difference is that we obtain the equivalence relation

between Seifert matrices in another form. The results on algebraic classification of

other classes of knots will be stated in a separate paper.

The terminology is given in the smooth category although the results of the paper

are true in the piecewise linear category too.

I am grateful to A. V. Cernavskiï for his valuable advice.

1. Classification of imbedding* of Seifert manifolds. An «-dimensional knot is a

pair K = (Sn+2, k"), where Sn + 1 is an oriented sphere and A:" is its oriented

«-dimensional submanifold which is a homotopy sphere. A Seifert manifold of a

knot K is any compact connected oriented (« + l)-dimensional submanifold V c

S"+2 with dV = k. In this section it is proved that the isotopy type of V is

determined by the homotopy type of V and some homotopy pairing. Here also

necessary and sufficient conditions are determined under which the finite complex

with the given homotopy pairing may be realized by the (« + l)-dimensional

submanifold V c S"+2 for which dV is the homotopy sphere.

1.1. Let F be a connected oriented (n 4- l)-dimensional submanifold of the

oriented sphere Sn + 2. Suppose that the boundary 3 F is nonempty. Let Y be the

closure of the complement of a tubular neighborhood of V in Sn+2. Let u:

V A Y —» S" + i be the canonical pairing (see, for example, [15, Chapter 3]) which is

the Spanier-Whitehead duality [13]. Denote by /'+: V ̂ > Y the mapping which is

given by small translation along the field of positive normals to V. By homotopy

Seifert pairing of V we shall call the composition

0: V /\ V ^ VA Y-^Sn+1.

It is clear that 9 is determined by imbedding V c Sn+2 uniquely up to homotopy.

If « = 2<7 — 1, then homotopy pairing 0 defines homology pairing Hq(V) <S>

Hq(V)-> Z by the formula z, ® z2\-> 0¿zx A z¿ £ H2q{S2q) = Z. This homology

pairing coincides with Seifert pairing [9], [12].

1.2. Theorem. Let Vx and V2 be two compact oriented (« + 1)-dimensional

submanifolds of sphere Sn+2 with dVx and dV2 homotopy spheres. Let 0¡: V¡ /\V¡-*

Sn+l, i = 1, 2, be corresponding homotopy Seifert pairings. Suppose that the mani-

folds Vx and V2 are r-connected, where 3r > n + I, n > 5. If there is a homotopy
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equivalence f: Vx —* V2 for which 02 ° (/ A f) is homotopic to 9X, then there exists

isotopy of sphere Sn+2 which transfers Vx on V2 with preservation of orientations.

1.3. Theorem. Let K be a finite r-connected k-dimensional complex and 0:

K A K -» Sn+1 be a continuous map. If 2« > 3A:, 2k < n + r, « > 4, r > 1, then

there exists an (« + 1)-dimensional oriented submanifold V C Sn+2 with irx(dV) = 1

and homotopy equivalence g: V —» K such that 9 ° (g A g)'- V /\ V^> S"+1 is

homotopic to the homotopy Seifert pairing of V.

The proofs of Theorems 1.2 and 1.3 will be given at the end of this section.

When we shall apply Theorem 1.3 it will be important to know under which

conditions the homotopy pairing 9: K/\ K^> Sn+l is realized by submanifold

V"+1 for which dV is the homotopy sphere. The following theorem answers this

question.

1.4. Theorem. Let V be a connected (« + 1)-dimensional oriented submanifold of

sphere Sn+2 with dV ¥= 0, and let 9: V A V-* Sn + l be its homotopy Seifert pairing.

The boundary d V is a homology sphere if and only if the following pairing

9 + (-l)n+10': VA V^Sn+l

is the Spanier- Whitehead duality. Here 9' is the composition of the map T: V A V —*

V A V, which transposes the coordinates, and 9;  the signs plus and minus are

understood as operations in the cohomotopy group 7rn+1(V A V)-

Remark. This cohomotopy group exists since H'(V A V) = 0 for /' > 2«.

Proof of Theorem 1.4. Let Y be a complement of an open tubular neighbor-

hood of V in S"+2 and let i'+: V-> Y and i_: V-* Y be given by translations in

the directions of positive and negative normals to V, respectively.

Let us first prove that 3 V is the homology sphere if and only if the homomor-

phisms

are isomorphisms for k > 0. Consider the isomorphism

*: HkY^> Hk{V, dV),       0<*<H+1,

which is the composition

HkY*X Hk + x{Sn + \ Y)^Hk+x{N, dN)^Hk{V, dV),

where the first homomorphism is reverse to boundary homomorphism, the second

is an isomorphism of excision (here N is the tubular neighborhood of V in Sn+2)

and the third is an isomorphism which exists by virtue of (N, dN) = (V, dV) X

(I, dl).

The composition

Hkv' + '^-*HkYXHk(V,dV)

coincides with the homomorphism induced by inclusion V —*(V, dV). Since ^ is

an isomorphism, then i'+„ — /"_„ is an isomorphism if and only if the inclusion
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V —» ( V, dV) induces an isomorphism of /e-dimensional homologies for 0 < k < «

+ 1. But this is equivalent to 3 V being a homology sphere.

Consider the following diagram:

1A' +

T S        VAV      ->       V AY
|'_ Al 1"

VAV Y AV       -^ 5" + 1

ÏT i(-l)"
IA,->     VAY      A        S"+1

Here u and v are canonical pairings which are Spanier-Whitehead dualities and

(-1)" denotes the map of degree (-1)". This diagram is homotopically commutative.

Therefore 9' = 9 ° T = u ° (1 A »'+) ° T~(-lfu ° (1 A'_)• If s G Hn + ,Sn + 1 is

a generator and z e. HkV, then

[0 + (-iy+l0']*s/z  = 9*s/z + (-l)n+]9'*s/z

= (1 A »'+)* ° »*■*/* - (1 A '_)* ° u*s/z

= «*s/i+*z - u*s/i_^z = u*s/('+* - '-*)*•

Thus [0 + (-1)"+1c?']*j/z = u*s/(i+t - i_t)z. Since « is a Spanier-Whitehead

duality, then it follows from this formula that the map HkV^ Hn+l~kV, 0 < k <

n + 1 given by the formula

zr^[9 + (-l)n+l9']*s/z

is an isomorphism if and only if i+t — /_„, is an isomorphism.

This proves Theorem 1.4.

1.5. For the proofs of Theorems 1.2 and 1.3 some facts of the thickening theory

[17] are needed.

Let Kk be a finite connected CW-complex of dimension k with base point *. Let

Mm be a compact manifold with base point * G 3M and fixed orientation of the

tangent space to M in the point *. Suppose that m > k + 3 and the inclusion /:

3A/ —> M induces an isomorphism irx(dM) —* 7r,(Af). The simple homotopy equiva-

lence <p: (K, *) —> (M, *) is called the «j-dimensional thickening of K. Two w-di-

mensional thickenings <px: (K, *)—» (M,, *) and (p2: (AT, *) —*(M2, *) are called

equivalent if there is a diffeomorphism h: Mx —* M2 preserving the base points and

the orientation in them, and such that

« ° rp, ~ <p2: (K, *) -^ (M2, *).

1.6. Theorem. Let Mm be a manifold, Kk be a finite CW-complex, f: K^> M be

some (2k — m + \)-connected map and k < m — 3. Then there exist a compact

submanifold Nm of Mm with trx(dN) = ttx(N) and a simple homotopy equivalence g:

K —» ./V such that g—-/: K —> M and this homotopy preserves base points.
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1.7. Theorem. Let /,: K^> N? and f2: AT—» N2 be two simple homotopy equiva-

lences where Nx and N2 are submanifolds of manifold Mm with irx(dNx) = ttx(Nx),

<nx(dN2) = ttx(N2) and k = dim K < m — 3, m > 6. If /, and f2 are homotopic in

M rel* and the compositions

K^N^M,        v=\,2,

are (2 k — m + 2)-connected, then there exists an isotopy «,:  M —* M such that

«0 = id, «, = (*) = 1, hx(Nx) = N2 and the diagram

K

/. i/ \fz
«.

TV, -* N2

is homotopy commutative.

Theorem 1.6 is the first part of Wall's Embedding theorem [17, p. 76]. Theorem

1.7 makes precise the second part of the Wall theorem with regard to the results of

[3], [11].
The simple homotopy equivalence g: K—> N which existence is affirmed in

Theorem 1.6 is called the thickening induced by the map/: ÂT-> M. Theorem 1.7

means uniqueness of induced thickening.

For the proofs of Theorems 1.2 and 1.3 we also need to use the next statement.

1.8. Proposition. Let Nn+2 be a compact submanifold of sphere Sn+2 having the

homotopy type of a finite k-dimensional r-connected CW-complex, where r > 1,

« > 4, « > k. Let Y = c\(S" + 2 - N). The inclusions i: dN-* N and j: dN-* Y

determine the map $: 37V -> N X Y, ¡p(x) = (i(x),j(x)). The map i/-#: [L, dN]->

[L, N] X [L, Y] induced by \¡/ is surjective if dim L < n + r — k + I and bijective if

dim L < « + r — k.

Proof. It is enough to show that the spaces A^, Y, dN are simply connected and

the map \p induces isomorphism of homology groups in dimensions < « + r — k

+ 1. A' is simply connected by hypotheses. Since « + 2 > 6, then A^ has a handle

decomposition with handles of index < k. The dual decomposition begins on

dN X [0, 1] and has the handles of index >« + 2-/c>3. Therefore TTx(dN) =

^(^O = 1- It follows now from Van Kampen's theorem that ttx(Y) = 1.

Notice that Y is (« - A:)-connected since HSY = Hn+l~sN = 0, if s < « - k.

Therefore any class z' G HS(N X Y) for s < (n — k + 1) + (r + 1) is uniquely

presented as z' = z, X 1 + 1 X z2, where z, G HSN and z2 G Hs Y. If z G Hs(dN),

then it is clear that i/<%z = itz X 1 + 1 X jtz. It follows from the Mayer-Vietoris

sequence of the pair (N, Y) that we have isomorphism

Hs(dN)"^*HSN 0 HST.

Consequently \p+: Hs(dN)~* HS(N X Y) is an isomorphism f or s<n + r-k +

1.
The proposition is proved.
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1.9. Proof of Theorem 1.2. Denote Nv = Vp X [0, 1], v = \,2. Identify Vr with

V„ X 0 c Nr and denote by /'„ the corresponding inclusion V„ -* Nv, v = 1,2. The

imbedding of Vp in Sn+2 may be extended to imbedding /V„ —» S"+2 such that for

each point x G Vv the curve {(x, t); t G [0, 1]} goes out from x = (x, 0) along the

direction of the negative normal to V„, v = 1, 2.

Manifolds Vv are simply connected and for s > n — r we have HSVV =

Hn+x_s(V„, dVr) = /f„+1.sF, = 0, v = 1,2. Here we have used that 3F„ is a

homotopy sphere. Thus there exists a finite CW-complex if of dimension < « — r

and homotopy equivalence <p, : K —* Vx. Denote the composition cp2 = / ° <p, by <p2:

The maps ix ° <px: K —> Nx and <2 ° <p2: K-» N2 are (n + 2)-dimensional thicken-

ings of complex K. According to Theorem 1.7 (here all conditions of this theorem

are satisfied) there exists isotopy h, of sphere S"+2 such that «0 = id, hx(Nx) = N2

and «, « /', ° rjp, is homotopic to i2 ° <p2 in A^.

I want to prove that manifolds V2 and hx(Vx) are isotopic on dN2. Since V2 is the

thickening induced by the map

a2:K%V2^*dN2,

and hx(Vx) is the thickening induced by the map

Vl h, r-

ax: K^Vx^hx(Vx)^dN2,

then by virtue of Theorem 1.7 it is enough to show that each of the maps a, and a2

are 2(« — r) - (n + 1) + 2-connected and a, ~ a2: AT —> 3A/2. The connectivity

conditions for a, and a2 are obviously satisfied since 3r > « + 1.

Let us show that a, ~ a2. By virtue of Proposition 1.8 it is enough to prove that

(1) i ° ax~ i ° <x2 in A^,

(2)7 ° a, ~ / ° a2 in Y,

where i: dN2 —* N2 and j: dN2 —» Y are inclusions and Y = Sn+2 — int Af2. The

relation (1) can be easily verified:

i ° a2= i2 ° q>2~ hx ° ix ° q>x = i ° a,.

Let us verify the relation (2). Let N be obtained from N2 by removing some collar

of the boundary 37V2. By r: N2 —* dN we denote a natural retraction and by u:

N A Y^>S"+i a canonical pairing which is a Spanier-Whitehead duality. It is
i/\j r/\\ u . .

clear that the composition V2 A V2 —>• N2A Y —* TV A Y—* S" is homotopic to

homotopy Seifert pairing 92 of manifold V2. Analogously the composition

h\/\h\ i/\j /-Al u
VXAVX   ^   hx(V¿Ahx{Vx)-*N2AY^NAY^Sn+x

is homotopic to (?,. Therefore

#2 ° (<P2 A <P2) ~ U ° i*- ° » ° <P2 A 7 ° <P2).

0i ° («Pi A <Pi) ~ « ° (r ° / o «, o <p, A 7 ° hx o <p,).

On the other hand, since (p2 = / ° ml7 then

02 ° (m2 A 92) = 0 ° (/A /) ° («P, A <Pi) ~ 0i • («P, A <Pi)-
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Thus

u ° (r ° i ° <p2 Aj ° 92) — u ° (r ° i ° hx ° tpx A j ° hx ° <px).

We have

/ o qj2 =  i o aj - i o a2 = I o A, o ff,,

j o <p2=j o a2)        j o hloq,l=j o a,.

Consequently

u ° ( ß A j ° ot2) ~ u( ß A j ° <*\), where ß = r ° i ° <p2~ r ° i ° hx ° <px.

It follows from the last relation that 7" ° a2 ~ / ° a,. In fact, since 1/ is a Spanier-

Whitehead duality and /3 is homotopy equivalent, then the map {K, Y] —> {K A

K, S"+1}, which transfers the class of 5-map y: K—* Y into the class of u ° (ß A

y), is isomorphism. It means that y ° a2 is stably homotopic toy" ° a,. On the other

hand [K, Y] = (A', Y) since Y is /--connected and dim K < n — r.

Thus a, is homotopic to a2 on 3/V2 and so the isotopy of 37V2 exists which

translates V2 on hx(Vx) with preservation of orientations. This isotopy may be

extended to the isotopy of sphere S"+2.

The theorem is proved.

1.10. Proof of Theorem 1.3. Let Sn+l be the equator of sphere Sn+2. Since

r > 2 k — n, then by virtue of Theorem 1.6 an (n + l)-dimensional trivial thicken-

ing of complex K exists, i.e. submanifold 7Vq+ 1 C S"+l and homotopy equivalence

<p : ÄT-» 7V0. Fix some orientation on N0. Let us identify manifold 7V0 with JV0XO

C N0 X [0, 1] = TV. Imbed manifold N in Sn+2 so that this imbedding will be the

extension of the imbedding N0 c Sn+l and so that for each point x G 7V0 the curve

{(x, r); t G [0, 1]} goes out from x along the direction of negative normal to 7V0 in
Sn+2.

Let y be a closure of complement to TV in sphere Sn+2 and let Y' be obtained

from Y by removing some small collar of boundary dY. By v: N A Y' —> Sn+1

denote the canonical Spanier-Whitehead duality and by r: Y -» Y' the natural

retraction. The map u: N A Y -> N A Y'^>Sn+l is also a Spanier-Whitehead

duality. By virtue of Spanier-Whitehead theory there exists a unique element

{«} G {K, Y} such that the composition

<x/\h u . ,KAK -» NA Y^>S"+l

is stably homotopic to 0, where a : K —> N is the composition of homotopy

equivalence <p: Ä"—» N0 and imbedding Af0 -» N. Note that y is (n — A:)-connected

and since 3/c < 2«, then {K, Y) = [K, Y]. Besides {K A K, Sn + l) = [K A

K, Sn+i] since k < n. Thus we can regard that «: AT-» y is the mapping and

0 ~ u ° (a A ").

By virtue of Proposition 1.8 there is the map e: K^dN with ^([e]) = ([a], [A]),

where ^: [K, dN] -» [Ä", TV] X [Ä", y]. We want to apply Theorem 1.6 to the

mapping e: Ä"—»3A7. The manifold dN is min{r, « — A:}-connected and since

2k — (n + 1) + 1 < min{r, « — A:}, then in this case Theorem 1.6 is applicable.

Let/: A"-* K"+1 be the thickening induced by the mapping e: ÄT-> 37V. Here V+l

is the submanifold of 37V with -nx(dV) = trx(V) = 1 and/is homotopy equivalent.
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Orient V so that 7V0 and V define the same orientation of 37V.

Let ß: V -» 37V be an inclusion. Homotopy Seifert pairing of V is homotopic to

the composition

ßAß ¡Aj u
VAV -^  37V A 3A7-» N A Y^Sn+\

where /: 37V -» N,j: 37V —»• Y are inclusions. According to the construction

ß ° f — e,       i ° e ~ a,       j ° e ~ h,       u ° (a A A)— 0-

Thus the following diagram

VAV

is homotopy commutative. Since the composition of the horizontal line of this

diagram is homotopic to the homotopy Seifert pairing of V, then the latter is

homotopic to 0 ° (g A g), where g is the homotopy equivalent inverse to/

The theorem is proved.

1.11. By Mrn we denote the set of isotopy classes of /--connected (« + 1)-

dimensional oriented submanifolds of sphere Sn+2 bounding the homotopy

spheres.

Consider also the set of pairs (AT, 0), where K is a finite /--connected complex and

and 0: K A%^> Sn+l is a homotopy pairing for which 0 + (-1)" + 10' is the

Spanier-Whitehead duality. We shall call two such pairs (K¡, 9¡), i = 1, 2, equiva-

lent if there is homotopy equivalence /: Kx -> K2 such that 0, is homotopic to

02 ° (/ A /)• We denote the set of equivalence classes by Zr „.

The next statement follows from Theorems 1.2, 1.3 and 1.4.

1.12. Corollary. If 3r > « + 1 > 6, then the map Mrn -» Zrn which assigns to

the submanifold of codimension one of sphere S"+2 its homotopy Seifert pairing is

bijective.

Actually, by virtue of Theorem 1.2 this map is injective and according to

Theorem 1.4 its values belong to Zrn. Surjectivity of this map follows from

Theorem 1.3 (it is necessary to note that if (K, 9) is some element of Zrn, then

duality K A K ^> S" + l exists and thus K has a homotopy type (« — /-)-connected

complex) and Theorem 1.4.

2. Contiguity. In this section the simplest situation is considered when noniso-

topic (« + l)-dimensional submanifolds of sphere Sn+2 bound isotopic knots, and

relations are found between their homotopy Seifert pairings.

2.1. Proposition. Let TV be a connected (n + 2)-dimensional compact submanifold

of sphere Sn+2 and let Dn+l be a small disk lying on 37V. Denote V = 37V -

int Dn+\ Y - Sn+2 - int TV. Let i: V-> TV andj: V-► Y be inclusions. Then there

exists an S-map /: TV V Y —> V which is stable homotopy equivalent and such that
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l°f°k~lN, ;°/°/~0, jofokto, y»/o/£ly,

where k: TV -» N \J Y and l: Y —»• TV V Y are inclusions; sign ~ means "stably

homotopic".

Proof. Let manifold TV, be obtained from TV by removing some small collar of

the boundary of TV. Analogously, Yx is obtained from Y by removing the small

collar of 3y. By r: TV -» TV, and s: Y —> y,, we denote the natural retractions. Since

TV, and Yx are disjoint subsets of sphere Sn+2, then the canonical pairings

v:Nl A y,-»S" + 1,       u:YxANx^>S" + l

are defined. Since TV, and Yx are complementary to each other, then u and v are

Spanier-Whitehead dualities.

Let w be a simple smooth arc in sphere Sn+2 which does not intersect V u

int TV, (j int Yx and such that its origin lies on 37V, and its end lies on 3y,. Suppose

that co transversally intersects 37V, and 3y,. Obviously, the space Z = TV, u Yx u co

is a deformation retract of complement Sn+2 — V and therefore the canonical

pairing

w: VAZ^>Sn+l

is a Spanier-Whitehead duality. If /',: Nx^> Z and i2: Yx—> Z are inclusions, then

»"(VAO-^^MliV,), (1)

H">(lrAi2)~f •('•f'Aly,). (2)

Let the map M: Z A Z ^> Sn+l be given by the matrix (°u £), i.e.

A/ ° (/, A «',) = 0,       M ° (i, A »2) = 0,

^ ° (»2 A /,) = u,       M ° (¿j A ¿2) = 0- (3)

It is easy to verify that M is a Spanier-Whitehead duality. Since M and vv are the

dualities, then by virtue of Spanier-Whitehead theory there exists an 5-map A:

Z -» V which is stable homotopy equivalent such that

w o (h A lz) ~ M. (4)

Let us prove that

s
r ° / o A o /, ~ 1^, (5)

s
/- » i « A o z'2 ~ 0, (6)

í°7oA°í,~0, (7)

5 »j ° A ° /'2~ly,. (8)
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We have

v ° (/- ° i ° A o z, A 1y )

= 0 ° (/- ° i A ly,) ° (A ° /', A ly,)~ W o (lo A i2) ° (A ° /, A ly,)

= w ° (A A lz) • («i A »a) ~ TV/ ° (z, A i2) = u-
s

Here homotopies (2), (4) and (3) were used. Thus v ° (r ° i » A ° /', A 1 y ) — «• It
s '

follows now that r ° i ° A ° z, — lN since v is a Spanier-Whitehead duality. Thus

(5) is proved.

For the proof of (8) we have

u°(s°j°h°i2A 1N)

= u ° (s °j A I*,) o (A o i2 A \Ni) ~ w « (1„ A 'i) ■ (A ° z2 A U,)

= w o (A A lz) ° (J2 A m) ~ A/ ° (/2 A »i) = "•
s

From this it follows that s ° j ° h ° i2 — 1 y as above. The relations (6) and (7) may

be proved analogously.

Let the map g: Z -» TV, V Yx be as follows, g identically maps TV, and Yx and

maps the arc co in the base point of TV, V Yx. Consider the composition

i-V-s h

/: TV V Y -» TV, V F. -> Z-> V

of the map /- V s> homotopy equivalence, which is inverse to g, and the map A. It

follows from relations (5), (6), (7), (8) that/satisfies all required conditions.

The proposition is proved.

2.2. Corollary. Let TV be a connected (n + 2)-dimensional compact submanifold

of sphere Sn+2 and let Dn+l be a small disk on 37V. Let V = 37V - int Dn + \

Y = Sn+2 — int TV. Suppose that the manifold V is oriented so that the field of

positive normals to V is directed to the exterior of TV. TAe« there exists an S-map /:

TV V Y —> V which is stable homotopy equivalent and such that the map

0 • (/ A /): (TV V Y) A (TV V Y) -> Sn + l

is given by the matrix (£ JJ) (this means that

0 • (/ A /) ° (* A k) ~ 0,       0 o (/ a /) ° (k A O ~ u,

0°(/A/)°(/AAO~O,       0°(/A/)°(/AO~O,

where k: N^> N \J Y and l: Y-+N \J Y are inclusions), where 9: V A V-► Sn+X

is the homotopy Siefert pairing of V and u is a Spanier- Whitehead duality.

Proof. It follows from the definition that the homotopy pairing 0 is homotopic

to the composition

•Aj v ' (rAs)       . .
VAV-+NAY    -*     Sn+\

where the notations are the same as in the proof of Proposition 2.1. Let /:

TV V Y —* V be the stable homotopy equivalence constructed in Proposition 2.1.
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Then

0 • (/ A /) ~ v » (r A s) ° (i A 7) ' (/ A /) = v ° (r A s) ° (i »/A/ •/).

Therefore

* • (/ A /) • (* A *) - © • (r A s) « (i • / o * A j • / • &)

~f°Ms)»(UA0) = 0,

and

0°(/A/)° (kAO~v°(rAs)°(i°f°kAj°f°l)

~ t; ° (/• A í) ° (1N A 1 y) = t; ° (r A i) = w

is a Spanier-Whitehead duality. It may be proved analogously that

0 ° (/ A /) ° (/ A k) ~ 0,       0 o (/ a /) • (/ A 0 ~ 0.

Thus Corollary 2.2 is proved.

This corollary discribes some homotopy Seifert pairings which may have a

Seifert manifold of trivial knot.

2.3. Definition. We shall call two homotopy pairings 0,: K¡ A K¡~* S"+l>

i = 1,2 contiguous if there exist complexes L, and L2, pairings a: AT, A K2 —> S"+i

and u: Lx A L2—> Sn+l from which the latter is a Spanier-Whitehead duality, and

an S-map /: (Kx V K2) —» (L, V L2) which is a stable homotopy equivalence and

such that Tj » (/ A /) is stably homotopic to |, where the homotopy pairings

i):(L,VI2)A(L,V¿2)^S"+l    and

£: (A", V AT2) A (A", V *2) ^ S"+l

are given by the following matrices

(2 o) and (J)lv nrj'

respectively. (The latter means that 17 ° (/, A lj) — %« í ° (k¡ A kj) — by, where

i = 1, 2, /,: L, —> L, V ^-2 an(I ^¿: *"i ̂  AT, V A"2 are inclusions, and a0 and 6„ are

the elements of corresponding matrices.) Here prime denotes "transposition", i.e.

the composition with the map which changes the position of factors.

The following two theorems are main results of this section. They state that the

contiguity relation of homotopy Seifert pairings corresponds to some simple

geometric situation (geometric contiguity) for Seifert manifolds.

2.4. Theorem. Let Nn+2 be a compact submanifold of the sphere Sn+2. Suppose

that 37V =F,"+lui/u V^+i, where U = 2" X [0, 1], F, n U = dVx = 2" X 0,

V2 n U = dV2 = 2" X 1, Vx n V2 = 0 cznc/ 2" is a homotopy sphere (Figure 1).

Let us orient Vx and V2 so that they define different orientations of 37V. Then the

corresponding homotopy Seifert pairings 0,: V¡ A V¡^> Sn+l, i = 1, 2, are contiguous.
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Figure 1

Proof. Let us notice that if 0 is a homotopy Seifert pairing of some oriented

submanifold V+l c Sn+2, then (-1)"0' is the homotopy Seifert pairing of the

same submanifold with opposite orientation. It follows from the diagram in the

proof of Theorem 1.4.

For the proof of Theorem 2.4 consider the small disk Dn+l in int U = 2" X

(0, 1). Let V= dN - int Dn+l. We have conditions as in Corollary 2.2 and

therefore there is an S-map A : TV V Y -> V which is stable homotopy equivalent

and such that the map 0 ° (A A A) is given by the matrix (^ ¡j), where 0 is a

homotopy Seifert pairing of manifold V, u: N A y —» S" + 1 is a Spanier-Whitehead

duality and Y = Sn+2 - int N.

Let co be a simple arc in U — D"+1 such that its ends are situated on dVx and

dV2. Let H = Vx u V2 u co. The inclusion g: 77—» V is homotopy equivalent.

Denote by z, : Vx —> H and i2: V2 —> H the inclusions. Then

0, = 0 • (f • i, A g » »,),       (-1)"02 - 9 " (g • h A g • '2)-

The distinction here is caused by the fact that the orientation of V2 is opposite to

the orientation of V (see the remark at the beginning of the proof)- If by a we

denote 9 ° (g ° ix A g ° '2X men

0°(g°'2Ag°/,)~(-l)V.

It follows from these relations that if the space H is identified with K, V V2 and

if by / we denote the composition of the map g and homotopy equivalence

K-^TV V î' inverse to A, then all conditions of Definition 2.3 will be satisfied.

The theorem is proved.

The following theorem states that under some connectivity assumptions the

contiguity of homotopy Seifert pairings implies "a geometrical contiguity", i.e. the

situation which has been considered in Theorem 2.4.

2.5. Theorem. Let Vx and V2 be r-connected (n + 1)-dimensional compact sub-

manifolds of Sn+2 and 0,: Vi A Vi: —» Sn + i, ii = 1, 2, are corresponding homotopy

Seifert pairings. Suppose that 3r > n + 1 > 6. If dV¡ are homotopy spheres and
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pairings 0, and 92 are contiguous, then there exist isotopies g, and A, of Sn+2 and a

compact submanifold Nn+2 c Sn+1 such that

3TV = g,(K,)u t/U hx(V2),

where

Í7=¿x[0, 1],       g,(K,)n í/=¿xO=3g,(F,),

*,( VÙ O U m 3A,( V2) = 2 X 1,       g,( K,) n A,( F2) = 0

a/zíí íAe orientations of gx(Vx) and A/Fj) define opposite orientations of 37V.

In the proof of this theorem we shall use the following lemma.

2.6. Lemma. Let 2r + 2>k>r> 1 and.X be a finite complex with H¡(X; G) —

0 for i < r or i > k and for any abelian group G. Then there exists a finite

r-connected k-dimensional complex Y such that SX is homotopy equivalent to SY.

This is the standard result (compare [14, Chapter 8, Exercise Dl]).

2.7. Proof of Theorem 2.5. Since the pairings 0,: Vi A K,-* Sn+i are contigu-

ous, then, according to the definition, there exist complexes Lx and L2, pairings a:

V\ A V2^>S"+1 and v. Lx A L2^> s"+l (from which the latter is a Spanier-

Whitehead duality), and an 5-map /: ( Vx V V^) -* (^i V ^2) which is stable

homotopy equivalent and such that 77 ° (f A f) is stably homotopic to £, where the

homotopy pairings

^(^VLMtAVi^^1,    and

£:(^iVF2)A(F,V V2)^Sn+1,

are given by matrices

(X     n)    and    M "     )
VO    0/ \(-l)V    (-l)"9¡)

respectively.

The constructions of the desirable submanifolds TV and isotopies g, and h, are

performed in several steps.

Step 1. This is the construction of the (« + 2)-dimensional compact submanifold

TV c S"+2, which satisfies the following condition. If K" + 1 is obtained from 37V by

removing the interior of some small disk Dn+l c 37V, then there exists a stable

homotopy equivalence d: LX\J L2 -» V for which 9 ° (d A d) is homotopic to tj,

where 0 is the homotopy Seifert pairing of V.

For this, first note that by virtue of Lemma 2.6 and properties of Vx and V2, we

may suppose that L, and L2 are /--connected complexes of dimension < « — r. Let

t: L, -*■ Nn+1 be the trivial thickening of L,. Let V = 37V - int Dn+i and Y =

Sn+2 — int TV. Consider stable homotopy equivalence e: TV V Y —» V which ex-

istence is established in Corollary 2.2. There exists an 5-map a: L2 -» Y for which

u ° (t A o) — v, where u: TV A Y ̂ > S"+l is the pairing considered in Corollary

2.2. Since u and v are Spanier-Whitehead dualities, then a is stable homotopy
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equivalent. By virtue of the suspension theorem and our connectivity assumptions

we may suppose that o is the usual map and u ° (t A o) ~ v. If we take d as the

composition

r\/a e
L, V ¿2 -> ^ V Y^V,

then

0 » (d A d) = 9 o (e A e) ° ((t V a) A (t V a)) = 17.

Step 2. This is the construction of isotopy /, of Sn+2 such that Vx n ^(V^ = 0

and the composition of the map l A(¡i\y)'- Vx A V2^> Vx A hO^ù anc* tne

canonical pairing Vx A l\(Yt) —> S" + 1 is homotopic to a: Vx A V2 -> S"+1.

This may be done in the following way. If Z is the complement of a tubular

neighborhood of Vx in S"+2 and vv: Vx A Z -» Sn+1 is the canonical pairing which

is a Spanier-Whitehead duality, then there is a map t//: V2 -» Z for which vv ° (1 A

i//) ~ «. (Here we do not mention the usual arguments about connectivity condi-

tions and application of the suspension theorem.) Now we may construct the

thickening V2 -» TV2 induced by \p. By the same arguments we have seen used in the

proof of Theorem 1.3 we can construct the map V2 -» 37V2 such that a thickening <p:

V2 —* W2, induced by this map, has the following property: 8 ° (<p A <p) — 02>

where 8: W2 A W2 -^ S"+l is the homotopy Seifert pairing of W2. Also, we shall

have that the composition of the map 1 A <P'- ̂ iA^^^iA^ and the

canonical pairing Vx A V2 -> Sn + 1 is homotopic to a. Now Theorem 1.2 is applica-

ble and we obtain the desirable isotopy /, with ^(fg) = W2. See Figure 2.

Figure 2

Step 3.  Let H be an (n + l)-dimensional disk in 5n+2 with the following

properties:

(1) H n Vx = H n 3K, = dH n K, = Z>,   and  H n /.(Kj) = H n 3/,(F2) =

dH n /[( F2) = Z)2 are two «-dimensional disks in dH.

(2) Orientations of Z>, and D2, defined by that of dVx and dlx(V^ respectively,

determine the opposite orientations of dH (Figure 2).
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Let the manifold W be obtained from Vx u H u /]( V3) by smoothing corners.

Choose the orientation of W according to that of Vx. Then there is a homotopy

equivalence q: Vx V V2 -» W such that for the homotopy Seifert pairing 0: W A

W -» Sn+' of W we shall have that 0 ° (q A q) is given by the matrix

/     0, «     \

\(-l)V    (-1)^/'

i.e. the pairing 9 ° (q Ao) coincides with £. Let F be the composition

W-^VX\J v2Ulx\/ I^^V,

where the first map is homotopy inverse to q. (Here we may regard / as usual but

not as an 5-map by virtue of our connectivity assumptions.) Then F is homotopy

equivalent and 9 ° (F A F) — 0- Applying Theorem 1.2 we get an isotopy m,:

Sn + 2 _^ sn + 2 such that m^W) =   V.

Now we may put

g, = m„       h, = m,° lr

Then gx(Vx) and hx(V2) are disjoint submanifolds of V. Let U = 37V — int gx(Vx) —

int hx(V2). Then it is easy to see that U is the A-cobordism between dgx(Vx) and

3A 1(^2) and the A-cobordism theorem implies the desired result.

2.8. Corollary. Under the assumption of Theorem 2.5 the oriented knots

(S"+2, dV¡), i = I, 2 are equivalent.

The equivalence of these knots is realized by isotopy of sphere 5"+2 which

translates 2" X 0 on 2" X 1 along U.

The next statement will establish the reflexivity of the contiguity relation.

2.9. Proposition. // K is a finite polyhedron and 9: AT A A"-» 5n+1 is the

homotopy pairing for which 9 + (-l)"+i9' is a Spanier-Whitehead duality, then 0 is

contiguous to itself.

Proof. By virtue of Spanier-Whitehead theory there are 5-maps/, g: K -> A" for

which

(0 + (-ir+,0O « (/a i)~0,   (0 + (-ir+l0O ° (g a i)~(-i)"0'.

Since (0 + (-1)"+10') o ((/- g) A 1)~(0 + (-l)n+10'), then/- g~lK. Here 1*

is the identity mapping of K. Let/ V g- K V A" —> K be the S-map determined by/

and g; let e: K V A"-» A" be a map which identifies the summands of the bouquet;

and let ix, i2: K-» A" V A" be a natural inclusion. Determine an 5-map h: K\y K

—* K V A" by the formula A = z, ° (/ V g) + h ° e- Le* us prove that A is a stable

homotopy equivalence. For this it is enough that A induces the surjective map of

integral homology. If z„ z2 G HrK, then

"*('l*Zl  +  '2*Z2) =  >l*(f*Zl  + 8*Z2) +  '2*(Z1  + Zl)-

Any class a G Hr(K V A") may be uniquely presented in the form a = z'ua, +

'2*a2> where ax, a2 G //rA". Denote z, = a, — gta2, z2 = f+a2 — ax. Then it is not
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difficult to verify that h+(iXifzx + i^z^ = iXifax + i2ma2 = a. Therefore A, is an

epimorphism and A is a stable homotopy equivalence.

Let tj: (K V A") A (AT V K) -» 5"1 + 1 be a homotopy pairing given by the follow-

ing matrix:

0     0 + (-l)" + 10'\

0 0 /

We have

r, o (h A A) = Tj » ((/, o (/ y g) + i2 o e) A (/, o (/ V g) + i2 ° e))

= r\ ° (»i ° (/ V g) A », « (/ V *)) + if * (i| • (/ V g) A »a • <0

+ tj ° (z2 ° c? A h ° (/ V g)) + tj o (i2 ° e Ai2° e)

= T? « (/, ° (/ V g) A ¿a ° e) = (0 + (-l)n+,0') o ((/ v g) A e).

From this it follows that

T, o (A A A) o (/, A /,) = (0 + (-1)"+10') » ((/ Vg)Ae)° (/, A /2)

= (0 + (-ir+10')°(/Al)~0.

Analogously one can get

t, » (A A h) ° (z, A /2) ~ «,

T,°(AAA)o(z2A/1)~(-ir0',

T,0(AAA)°(z2A'2)~(-irö',

i.e. the pairing tj ° (A A A) is given by the following matrix:

19 9     \

l(-l)"0'     (-1)"0'/

This proves the proposition (in the notations of Definition 2.3, L, = L2= K,

m = 0 + (-l)"+10', a = 0).

3. The classification of knots.

3.1. Let Krn be the set of isotopy types of «-dimensional knots (5"+2, k") such

that iTi(Sn+2 - k") = 17,(5') for i < r. There is the natural map Mrn -> Krn which

assigns to a submanifold from Mrn its boundary (for the definition of the set Mrn

see 1.11). J. Levine proved that this map is surjective. In Corollary 1.12 the map

Mrn -» Zrn was constructed and it was shown that it is bijective if 3r > « + 1 > 6.

Thus, if 3r > « + 1 > 6, then we have the map $: Zrn —» Krn which is the

composition of the map inverse to the bijection of Corollary 1.12 and the map

Mrn -> Krn defined above.

The map 3> is surjective. For the description of the set Krn we shall find the

equivalence relation which arises on Zrn by virtue of mapping $>.

3.2. Definition. We shall call two pairs (A", 0) and (L, tj), representing two

elements of Zr„, Ä-equivalent if there exists a finite sequence of pairs

(AT,, 0,), . . ., (A"s, 0,), where for 1 < m < s, Km is an r-connected complex and 0m:

Km A Km -> 5"+1 is a pairing for which 9m + (-l)n+10^ is a Spanier-Whitehead

(
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duality, such that (A",, 0,) = (A", 0), (Ks, 9S) = (L, tj), and pairings 0m and 9m+x are

contiguous for all 1 < m < s — 1.

In other words R -equivalence is the equivalence relation on Zrn which is

generated by the contiguity relations. Note that contiguity is reflexive and a

symmetric relation; it is not transitive.

3.3. Theorem. Let Vx and V2 be oriented r-connected (n + 1)-dimensional compact

submanifolds of sphere Sn+2 and 0,: K, A F, —» 5" + 1, /' = 1, 2, are the corresponding

Seifert pairings. If dV¡ are homotopy spheres, 3r > n + 1 > 6 and pairs (V¡, 0,) are

R-equivalent in Zrn, then the oriented knots (Sn+2, dV¡), i = 1, 2, are equivalent.

Proof. Since the pairs (Vx, 0,) and (V2, 92) are Ä-equivalent in Zrn, then

according to the definition the finite sequence of pairs (Wx, tj,) = (Vx, 0,),

(W2, Tj2), . . . , (Ws, Tj,) = (V2, 92) exists, where Wm is a finite /--connected cell

complex and Tjm: Wm A Wm —» 5"+1 is the homotopy pairing, m = 1, s, and all

conditions formulated in Definition 3.2 are fulfilled. By virtue of Theorem 1.3 and

Theorem 1.4 we can assume that Wm is a compact oriented (« + l)-dimensional

submanifold of sphere 5" + 2 for which dWm is a homotopy sphere and Tjm is a

homotopy Seifert pairing of Wm, m =\, s. Since Tjm and Tjm+, are contiguous and

3r > « + 1 > 6, then by virtue of Corollary 2.8, the oriented knots (5"+2, dWm)

and (Sn+2, dWm+x) are equivalent, m =\,s - 1. Therefore the knot (Sn+2, dWx)

= (Sn+2, dVx) is equivalent to the knot (5"+2, dWs) = (5n+2, dVJ.

The theorem is proved.

3.4. Theorem. Let Vx and V2 be oriented r-connected (n + 1)-dimensional compact

submanifolds of sphere 5" + 2 and 0,: V{ A V¡ —> 5" + 1, i = 1, 2, are the corresponding

homotopy Seifert pairings where r > 2, « > 4. If 3 V¡ are homotopy spheres and the

oriented knots (Sn + 2, dV¡), i = 1, 2, are equivalent, then the pairs (V¡, 9¡), i = 1, 2,

are R-equivalent in Zrn.

Remark. The theorem is true without the assumptions that r > 2, n > 4. This

more general statement may be deduced from the given theorem with the help of

G. Bredon's suspension construction which permits us "to increase" r and «. In the

present paper this more general statement will not be used.

The proof of Theorem 3.4 will be based on the following lemmas.

We shall suppose below that « > 2r + 1 otherwise Vx and V2 must be contract-

ible and the theorem becomes trivial.

3.5. Lemma. Under the assumptions of Theorem 3.4 there is an r-connected

(« -I- 2)-dimensional compact submanifold V (with corners) of Sn+2 X [1, 2] such that

V n 5n+2 Xv=VvXv,       v = 1, 2,    and

dV= Vx X 1 u V2 X 2u X,

where X is the trace of isotopy translating 3 Vx on 3 V2.

Proof. The existence of V satisfying all required conditions besides /--connect-

ness was proved by J. Levine [10, p. 186]. In order to construct an r-connected V

one may use the method of modification described in §§4 and 5 of [7]. This method
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does not change dV and gives an r-connected manifold by virtue of analogy of

Lemma 4 of [7] and the fact that iri(Sn+2 X [1, 2] - X) = irf(S ') for /' < r.

Later on we shall identify V„ with V„ X v <z Sn+2 X [1, 2], where v - t, 2.

3.6. Lemma. Tie/ K Ae /Ae iczwe tzs in Lemma 3.5 a«cf /ef Y be the closure of the

complement of the tubular neighborhood of V in Sn+2 X [1, 2]. Denote Yv = Y n

S"+! X c,  v=\,2.  Fix some  orientation  of  V and let  i+,i_:  (V; Vx, K^-»

(y; y,, Y2) be translations along the fields of positive and negative normals to V. If

for some k the homomorphisms

i + „i-*.Tk(V,Vx)->Tk(Y,Yx)

are both monomorphisms, then Tk(V, Vx) = 0= 7^(y, Yx), where Tk denotes the

torsion subgroup of k-dimensional homology. Besides, if Tk(V, Vx) = 0 andHk(V, Vx)

=£ 0, then there exists an indivisible element a G Hk(V, Vx), a ¥= 0 for which /+*(<*)

= 0 or i_+(a) = 0.

Proof. The infinite cyclic covering p: Z—»5"+2x[l,2] — X may be con-

structed from the infinite sequence of copies of the space Y by the same way as the

infinite cyclic covering of a knot may be constructed by cutting a sphere along a

Seifert manifold [9]. Let Z, =p~'((5"+2 X 1) - 3K,). Since X is the trace of

isotopy, it follows that H+(Z, Z,) = 0 and the arguments analogous to that used in

[9, p. 541] prove that there is an isomorphism of A-modules

d: Hk( V, Vx) ® A — Hk( Y, Yx) ® A,

where

d(a ® 1) = i+t(a) ® t - i_.(a) 0 1,       a G Hk(V, Vx).

Here A = Z[t, t~ '] is the group ring of the infinite cyclic group.

Suppose that z'++, /'_„: Tk(V, F,)—> Tk(Y, Yx) are both monomorphisms. Let

b G Tk(Y, y,), b ^ 0. Then there is a unique element q G Hk(V, Vx) ® A for

which d(q) = b ® 1. Write q in the form

q =   ¿ z, ® t>,
i — m

where m < «, z, G //^í K, Vx). We may suppose that z„ ^ 0. Since cf is an isomor-

phism, then z, must belong to Tk( V, Vx).

The two following cases are possible: (1) n > 0, (2) n < 0. If « > 0, then ¿(9)

contains as summand the element i+^(z„) <8> tn+i and does not contain other

elements of degree « + 1. Since A is a free abelian group, then it follows from

equality d(q) = b ® 1 that i+m(z„) = 0. Since i+m is a monomorphism, then z„ = 0

and we have obtained a contradiction. Analogously case (2) may be reduced to a

contradiction by using that i_m is a monomorphism. So Tk(Y, Yx) = 0 and then

Tk(v, r,) = o.
This proves the first statement of the lemma.

In order to prove the second statement let us notice that if Hk( Y, Yx) ¥= 0, then

at least one of the homomorphisms

i + *,i-*-Hk(V,Vx)^Hk(Y,Yx)
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must have nontrivial kernel. This may be deduced similarly to recently described

arguments from the fact that d is an isomorphism. If Tk( V, Vx) = 0, then, as it has

been proved above, the group Hk( Y, Yx) has no torsion. From this follows that if

a G ker z"+„ and a = pc, where p G Z,p =£ 0 and c is indivisible, then c G ker z'+„.

This implies the second statement of the lemma.

It is clear that in this lemma we may replace Vx by V2 and Yx by Y2.

x-

Figure 3

3.7. Let Vn+2 be a manifold, the boundary of which is the union of three

(« + l)-manifolds Vx, V2, X and has the corners along dVx and 3F2 (Figure 3a).

Let/: (/>*, 3D*) X Dn+2~k^>(V, Vx) be a smooth imbedding, where £>* is the

upper semisphere of 5*. Consider the manifold $(V,f) which is obtained from the

union V X [0, I] u Dk+i X Dn+2~k by identification of points (x,y) G Dk+ X

j)n+2-k wjm (f(x,y), 1) (see Figure 3b) and then smoothing corners along X X I,

(f(Dk+ X Sn + l~k), l)and(/(3Z)* X Dn+2~k), 1). Let

TV, = F, X[0, 1] u Dk_ X Dn+2~k,

where Dk is the low semisphere of 5* and the points (x,y)

identified with (f(x,y), 1). Let

dDk_ X D' are

Then

TV2 = V2 X[0, 1].

di>(V,f) = Vu TV, u TV2U W,

where V is identified with F X 0, and W is an (« + 2)-dimensional manifold with

dW = Wx u W2 u X, where W„ = W C\ Nr,v = \, 2.

Thus we have obtained (^(V,f); V, TV,, 7V2, W).

Of course, the manifold ¡p(V,f) is homeomorphic to K x [0, 1], but for us the

given definition is more convenient.
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3.8. Lemma. Let V be the (n + 2)-dimensional r-connected submanifold of Sn+2 X

[1, 2], constructed in Lemma 3.5. Let a G irk(V, F,) be such an element that

i+ifa = 0 G iTk(Y, y,), where Y, Yx, i+ are the same as in Lemma 3.6. Suppose that

k < « — 1,2/c <« + r. Then there exist an imbedding

f: (Dk+, 3D*) X D"+2-k^>(V, F,),

»vAz'cA realizes a, and an imbedding

g:^(F,/)^5"+2x[l,2],

extending the imbedding of V and such that

g(UV,f))nSn+2Xv = Nv,       v=\,2.

Proof. The possibility to realize a by imbedding <p: (Dk+, dDk+) —>(V, Vx)

follows from Corollary 1.1 of Hudson's work [3]. Since i+^(a) = 0, then there

exists a continuous map A: Dk + 1 -* S"+2 X [1, 2] extending <p and such that

h(Dk+l) n Sn+2X 1 = h(Dk_),

h(Dk+l)n 5"+2 X2 = 0,

h(Dk+l) n V= h(Dk+).

By virtue of Theorem 1 of [3], applied to the manifold, which has been obtained

from 5"+2 X [1, 2] by cutting along V and smoothing corners, we may suppose

that h is an imbedding. Now we may obtain the desired imbedding g by thickening

FandA(£>*+1)in5" + 2X [1,2].

This proves the lemma.

It is obvious that the analogy construction and statement are true if z'+ is

replaced by i_ or F, by V2.

This lemma will enable us to prove Theorem 3.4 considering submanifold

g(W) c 5"+2 X [1, 2] instead of V, since 3F, = dg(Wx) and F, and g(Wx) have

contiguous homotopy Seifert pairings (as it follows from Theorem 2.4). The same is

true for homotopy Seifert pairings of V2 and g(W2). We shall say that g(W) is

obtained by killing a.

3.9. Lemma. Let V, f and W be the same as in 3.7 and let a G trk(V, Vx) be the

homotopy class realized by imbedding f. Let ß G trn + x_k(W, W^ be the homotopy

class realized by sphere x0 X S"*1"* c W, where x0 G Dk+l. Then

(a) Ht(W, Wx) « Ht(V, Vx)for i < k;

(b) Hk( W, Wx) «s Hk( V, Vx)/(h(a)), where A denotes the Hurewicz homomorphism

and (h(a)) is the subgroup generated by h(a);

(c) Hj(W, W2) « Hj(V, V2)forj < n + 1 - k;

(d)Hn+x_k(V, K2)~//n+1_*(rF, WJ/Wß));
(e) ifh(a) has a finite order, then h(ß) is an element of infinite order;

(f) if h(a) is an indivisible element, then h(ß) = 0;

(g) if V, Vx, V2 are r-connected and r < k < n + 1 — r, then W, Wx, W2 are also

r-connected.
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Proof. It is easy to see that the pair ( W, Wx) is homeomorphic to

( V - f(Dk+ X int Dn+2-k), ( F, - 0D% X int Dn+2~k) u f(Dk+ X dDn+2~k))).

The inclusion of the last pair in (V, Vx u f(D% X Dn+2~k)) is an excision map

and induces the isomorphism of homology groups. Thus

H£W, Wx) « H.(V, Vx u f(Dk+ X D"+2~k)).

Now (a) and (b) follow from consideration of the corresponding homology se-

quence.

Let us note that (W, W2) is homeomorphic to (V - f(Dk+ X int Dn+2~k), VJ

and now the inclusion of the last pair to (V, V2) gives the homomorphisms

Hj( W, W2) —» Hj( V, V2). From this one may easily deduce (c) and (d).

Let us prove (e). We shall identify (W, W2) with (V - f(Dk+ X int Dn+2~k), VJ

by means of the evident homeomorphism. Then h(ß) will be identified with the

homology class which is realized by/(x0 X 5"+1~*), where x0 G Dk+. Suppose that

h(ß) has finite order p, say. Then there is an (« + 2 — /c)-chain c in V —

f(Dk+ X int D"+2~k) such that

3c = pz0 + u,

where z0 is the fundamental circle of f(x0 X Sn+1~k) and u is some chain in V2.

Denote by y0 the chain in f(x0 X Dn+2~k) for which dy0 = z0. Let c, = py0 — c.

Then c, is a circle module V2 and the intersection number of h(a), and {c,} is

equal to ±p ^= 0. But it is impossible if h(a) has a finite order. This proves (e).

If h(a) is an indivisible element, then Poincaré duality implies that there is a

homology class u G Hn + 2_k(V) such that the intersection number h(a) • u is equal

to 1. We may realize « by a circle of the form a + b, where a is a chain in

f(Dk+ X Dn+1-k) and A is a chain in V - f(D% X int Dn+2~k). It is clear that a

determines the homology class of the pair (f(D% X Dn+2~k), f(D% X Sn+l~k))

which is homologous to y0. Thus there is some (« + 2 — &)-chain e in

f(Dk X Sn + i~k) such that de = z0 - 3a. Consider e + b. It is a chain in V -

f(D% X int Dn+2~k) and its boundary is equal to z0. Therefore z0 is homologous

to zero and soh(ß) = 0. This proves (f).

Assertion (g) is standard and well known.

3.10. Lemma. Suppose we have conditions as in Theorem 3.4. Let q be some integer,

2q < «. 77ie« there is an (n + 2)-dimensional compact submanifold W (with corners)

of 5"+2 X [1, 2], satisfying the following conditions:

(a) dW = Wx u W2 u X, where Wv = W n 5"+2 X v, v = 1, 2, and X is the

trace of isotopy, translating dVx and dV2;

(b) manifolds W, Wx, W2 are r-connected;

(c) from (a). It follows that dWv = dVy, v = 1, 2, and if we orient Wv so that this

equality will be true as for oriented manifolds, then homotopy Seifert pairings of W„

and Vv are R-equivalent in Zrn, v — 1,2;

(d) H¡(W, W„) = 0/or i < q, v = 1, 2.
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Proof. We construct W by induction. First we have the manifold V constructed

in Lemma 3.5. This manifold satisfies all required conditions for q = r.

Consider the group -nr+x(V, Vx) = Hr+x(V, Vx). If this group is nonzero, then by

virtue of Lemma 3.6 there is a G Hr+x(V, Vx), a ^ 0 for which i^^a = 0 or

i_ma = 0. Lemma 3.8 enables us to construct manifold V obtained from V by

killing a. Then V will satisfy the condition (a) (as it follows from the construction)

and (b) (by virtue of 3.9(g)). The condition (c) will also be satisfied (it follows from

Theorem 2.4, see remark after proof of Lemma 3.8). Besides

#,( V, V'x) = 0   for i < r       (see 3.9(a));

Hj(V, V0 = 0   for/ < r       (see 3.9(c));

and the group Hr+x(V, V[) will be a proper factor-group of Hr+x(V, Vx) (by virtue

of 3.9(b)).

Since Hr+x(V, Vx) is a finitely generated abelian group, this procedure may be

iterated a finite number of times after which z'++ and /_, will both be monomor-

phisms. Then, by Lemma 3.6, we shall have V" with H¡(V", F,") = 0 for i < r + 1.

By the same way we may kill group Hr+x(V", V2) without changing groups

H¡(V", Vx) for i < r + 1 because 2(r + 1) < 2q < « (see Lemma 3.9(c)).

This shows that we can proceed by induction on q.

This completes the proof.

3.11. The previous lemma permits us to kill homology groups below the middle

dimension. In order to kill middle dimensional homology groups we must consider

two cases.

Case 1. « is even. Let n = 2q. Then Lemma 3.10 gives a manifold W and we

want to kill groups Hq+x(W, Wx) = -nqJ,x(W, Wx) and Hq+x(W, WJ =

<nq+x(W, W2). Since dW = Wx u W2 u X, where X = 2" X [1, 2], Poincaré dual-

ity and the universal coefficients theorem imply that these groups are isomorphic

and free abelian. If these groups are nonzero, then by virtue of Lemma 3.6 there is

an indivisible element a G Tq+x(W, Wx) with i + tta = 0 or f'_„a = 0. If W is

obtained by killing a, then h(ß) = 0 (see Lemma 3.9(f)) and so Hq(W', W'2) =

Hq(W, W2) = 0 by Lemma 3.9(d). Besides rank of Hq+x(W', W[) is smaller than

rank of Hq+l(W, Wx) and so, by a finite number of steps we shall have W" with

H¡(W", Wx") = 0 for i < q + 1 and Hj(W", W2") = 0 for./ < q. But then Poincaré

duality implies that

H,(W",W;) = 0,       v=\,2.

Case 2. « is odd, « = 2<j + 1. Let W be the manifold constructed in Lemma 3.10.

If group ToTS7Tq+x(W, Wx) is nonzero, then by Lemma 3.6 this group contains

a ¥^ 0 with i+ + a = 0 or z'_,a = 0. Let W' be obtained from W by killing a. Then

W' also satisfies the conditions of Lemma 3.10 and Tors Hq+x(W', W'x) is a proper

factor-group of Tors Hq + x(W, Wx). Thus after a finite number of such operations

we obtain manifold W" with Tors Hq+l(W", Wx) = 0. Now we may kill by the

same way the group Tors Hq+x(W", W¡'). Under this, the group Hq+x(W", Wx)

can increase, but its torsion subgroup will remain zero as it follows from Lemma

3.9(e). So we shall obtain submanifold W'" satisfying all conditions of Lemma 3.10
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and

Tors Hq+x(W'", W[") = Tors Hq+x(W'", W'2") = 0.

After this, indivisible elements of groups Hq+x(W'", W[") and Hq+x(W", W2")

may be killed as in Case 1 (by virtue of Lemmas 3.6 and 3.9(f)). Now Poincaré

duality implies that we have killed all relative homology groups.

Thus in both cases we have proved the following:

3.12. Lemma. Under assumptions of Theorem 3.4 there is an (« + 2)-dimensional

compact submanifold W (with corners) of Sn+2 X [1, 2] vvAz'cA has properties (a), (b),

(c) of Lemma 3.10 and

H*(W, W„) = 0   forv= 1,2.

3.13. Proof of Theorem 3.4. Let W be a submanifold constructed as in Lemma

3.12. Then W is a relative A-cobordism and, by virtue of the A-cobordism theorem,

the pair (W, X) is diffeomorphic to (Wx, dWx) X [1, 2]. So we obtain a concor-

dance between Wx and W2. By theorems of Rourke [11], there is an isotopy of

Sn+2 X [1, 2] carrying W on Wx X [1, 2]. Thus we obtain an isotopy of Sn+2

carrying W2 on Wx with preservation of orientations, specified in Lemma 3.10(c).

So the homotopy Seifert pairings of Wx and W2 are 7?-equivalent in Zrn. Since the

homotopy Seifert pairing of Vv is R -equivalent in Zrn to that of Wy, v « 1, 2 (by

Lemma 3.10(c)), Theorem 3.4 follows.

Theorems 3.3 and 3.4 give the main result of this paper:

3.14. Theorem. Suppose that r > 2, « > 4. There is a mapping

which assigns to a knot the R-equivalence class of the homotopy Seifert pairing of any

r-connected Seifert manifold of this knot. If 3r > « + 1 > 6, then this mapping is

bijective.

The first assertion of this theorem is true without assumptions that r > 2, « > 4

(see remark after the formulation of Theorem 3.4).

3.15. As an example we consider the class of simple odd-dimensional knots

studied by J. Levine and deduce from Theorem 3.14 an algebraic classification of

such knots in terms of Seifert matrices. The result will be essentially the same as

Levine's [10].

For this class of knots n = 2q — \,r = q - \. Suppose that q > 3. Let (A", 0) be

representative of some element from Zq_X2q_x. This means that A" is a finite

(q — l)-connected complex and 0: A~ A AT -» 52* is a homotopy pairing for which

0 + 0' is a Spanier-Whitehead duality. It follows that H'(K; G) is isomorphic to

H2q_¡(K; G) and therefore is equal to zero, for z > q. Thus K has a homotopy type

of bouquet of a-dimensional spheres. For each of these spheres choose a corre-

sponding homology class z, G HqK. Consider the integral square matrix A with

elements a^ = 0,(z, A zf) G H^S2*) = Z. It follows from Hopfs theorem that

two pairs (A",, 0,) and (A"2, 02) represent the same element of Zq_x2q_x if and only
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if the corresponding matrices Ax and A2 are congruent (this means that the integral

unimodular square matrix P exists such that P'AXP = A^. Since 0 + 0' is a

Spanier-Whitehead duality, then A + (-\)qA' is a unimodular matrix, where the

prime means transposition. Thus the set Zq_x2q_x is in one-to-one correspondence

with the set of congruence classes of integral square matrices A for which

det(A + (-\)qA') = ±1.

We shall call two integral square matrices Ax and A2, of sizes r X r and s X s,

respectively, contiguous if r = s mod 2 and an integral rectangular (r X i)-matrix

B exists such that the matrix

/        A B

\(-\)q+1B'     (-\)q+lA'2

is congruent to matrix of the form ($ 0)> where C is a square unimodular matrix of

size (r + s)/2 X (r + s)/2 and 0 means a zero square matrix of the same size

(compare with Definition 2.3).

The equivalent definition may be obtained from the previous one replacing C by

the identity matrix.

We shall call two integral square matrices Ax and A2 /?-equivalent if there exists

a sequence of integral square matrices Dx, D2, . . . , Dk such that D¡ and £>, + , are

contiguous for z = 1, k + 1, matrix D¡ + (-\)qD¡ is unimodular for i = 1, k and

Ax = DX,A2= Dk.

It is clear that the 7?-equivalence relation on Zq_X2q_x in the sense of 3.2

coincides, by means of the above-mentioned one-to-one correspondence, with the

R-equivalence relation just introduced on the set of square matrices.

Now it follows from Theorem 1.14 that the map which assigns to a knot from

Kq_X2q_x the R -equivalence class of any Seifert matrix is a bijection of Kq_X2q_x

on the set of R-equivalence classes of square matrices A with

det(/t + (-\)"A') = ±1.

It is not difficult to show that the 7?-equivalence relation on the set of Seifert

matrices coincides with the 5-equivalence relation. It implicitly follows from the

comparison of the results of the present paper with the work [10].
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