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HARDY SPACES AND REARRANGEMENTS

BY

BURGESS DAVIS1

Abstract. Let / be an integrable valued function on the unit circle in the complex

plane, and let g be the rearrangement of/ satisfying g(e") > g(eiv) if 0 < 0 < <p <

lit.
Define

G(0) = (' tie") dq,.
J-B

It is shown that some rearrangement of / is in Re H ', that is, the distribution off is

the distribution of a function in Re Hl, if and only if J" ¡¡|G(0)/0| d$ < cc, and

that, if any rearrangement of / is in Re H ', then g is. The existence and form of

rearrangements minimizing the H ' norm are investigated. It is proved that / is in

Re H ' if and only if some rotation of / is in the space dyadic H ' of martingales.

These results are extended to other Hp spaces.

1. Introduction. Let T be the unit circle in the complex plane C, let the measure

m on T be given by dm = d9/2ir, and if A is a function on T let ||A|| =

(fT\h\p dmy/p. Functions on T which are equal a.e. (m) are identified. Let /be an

integrable real valued function on T, denote the conjugate function of/by/, and if

p > 0 define \\f\\H, = ||/ + z/|| . The first part of this paper is concerned pri-

marily with the space Re H ', which consists of those/ such that \\f\\H> < oo. For a

discussion of conjugate functions and Hardy spaces see [12], and for a survey of

recent developments in this area and the spaces Re Hp, see [6].

A real valued function g on T is said to have the same distribution as /, or to be

a rearrangement of f, if m{f < X} = m{ g < X) for each real number X, and in this

case we write/« g. Let/¿ be the rearrangement of/ satisfying fd(e'9) > fd(e"p) if

0 < 0 < <p < 2ir, and let M/0) = M(0) = /%/>;-"O dq>. The following theorem

characterizes the distributions of functions in Re H1.

Theorem 1.1. There is a rearrangement of fin Re Hi if and only if fô\M(9)/9\ dB

< oo, and in this case fd G Re H '. There are absolute positive constants C and c such

that

CII/IU. > f\M(9)/e\ d9 > c\\fd\\„, - y/11,. (1.1)

The quantity f^\M(9)/9\ d9 depends only on the distribution of/ and is 0 if

—fivf. A theorem of Zygmund [12, Vol. 1, p. 254] states that if / > 0, then
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/ G Re Hl if and only if / G L Log L, i.e. fT\f\lof¡[ma.\(l, |/|)] dm < oo. It is not

hard to show directly that if/ > 0, then/ G L log L if and only if /J |Af(0)/0| ¿0

< oo, which is also implied by the truth of Theorem 1.1 and Zygmund's result. Of

course L log L is rearrangement invariant, while it is well known that Re H ' is not.

Similar results hold on the real line R. Denote the Hubert transform of an

integrable real valued function A on R by A, let hs be the rearrangement of A which

is not positive and not increasing on (— oo, 0), and not negative and not increasing

on (0, oo). Let M(x) = fx_x hs(t) dt. Then there are absolute positive constants A

and a such that

/OO w /• oo

\h(x) + zA(jc)| dx > \    \M(x)/x\ dx
-oo J0

> a f °° |As(x) + ihs(x)\ dx - f °° |A(x)| dx.   (1.2)
•'-oo •'-oo

The condition j™\M(x)/x\ dx < oo, interpreted as a condition on the distribution

of a function, also characterizes the distributions of functions in H\R"), m > 2.

Versions of inequalities (1.1) and (1.2) are also proved for Hp spaces for some other

exponents p.

This paper is closely related to recent work of Albert Baernstein II in [2]. Let fs

be the rearrangement of / satisfying/(e'8) = fs(e~'9) and/(e/,p) < /(<?'*) if 0 < 0

< rp < 77. Baernstein proves that/ is an extremal rearrangement of/with regard to

a number of Hp and conjugate Lp norms for the exponents 0 <p < 2, and Essen

and Shea noticed that his arguments extend to the exponents p > 2 as well. The

full result is given by the series of equations

H/,11, > II/«,.        1<P<2,

ll/,ll, < ll/ll,.       2 <p<ao,

Hftv > U/H*»     o<p<2,

iMv < u/ti«*.   2</><co.

The first or third of these inequalities forp = 1 implies that all rearrangements off

are in Re H' if and only if/ G Re Hx. Essen and Shea have recently shown, in [8],

that/ G Re Hl if and only if/ G L log L.

In §5 examples are given to show that, if 0 <p < 1, there are functions/, =/

such that \\fs\\p is smaller than ||/||p, answering a question raised in [3].

We investigate rearrangements of / which are extremal in a manner opposite to

the way / is extremal. Let 91 be the collection of all rearrangements of / A

rearrangement A off will be called reverse extremal if

11% =  inf II#11,,       1<P<2, (1.3)
«sa

11% = sup ||¿H,,       2<p<oo, (1.4)
ge*

11*11*,=   inf ||g|U„       0<p<2, (1.5)

||AH*, = sup \\g\\H„       2 <p < oo. (1.6)
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The following theorem is proved.

Theorem 1.2. Suppose there are « > 2 distinct real numbers ax, a2, . . . , an such

that 2"_, m{f = a¡) = 1 and m{f = a,} > 0/or each i. Let a = 2"_, a¡m{f = a¡).

If none of the a¡ equals a, there is a reverse extremal rearrangement off. Ifa¡ = a for

some i, there is no rearrangement A of f such that any of (1.3), (1.4), (1.5), or (1.6)

hold for any p in the specified intervals.

Even when they exist, the reverse extremal rearrangements of Theorem 1.2 are

chaotic if n > 2, being the real part of the boundary values of a universal covering

map of a multiply connected region. For other, less discrete, distributions of /,

reverse extremal distributions exist which are quite regular. The arrangement fd is

never, except in trivial cases, reverse extremal.

If « is a nonnegative integer, and k is an integer satisfying 1 < k < 2", let

A(k, n) = {<?'*: 2tr(k - 1)2"" < 0 < 2trk2~"} so that the arcs A(k, n) partition T

into 2" arcs of equal length. Let si)n be the «th dyadic a-field, the one generated by

{A(k, «), 1 < k < 2"}, and, if / is a real valued integrable function on T, let

/, = E(f\6íln) be the function which is constant on each A(k, «) and which satisfies

f        fdm = [       fndm,        1 < k < 2".
•'A(k,n) •'A(k,n)

The sequence/),/,, ... is a martingale, and/is said to be in the space Hx (dyadic)

if fT supj/„| dm < oo. These spaces have been extensively studied (see [9]). It is

known that H ' (dyadic) is contained in Re H ' but that there are functions in

Re //' which are not in H' (dyadic). In §3 is shown that if /is in Re //' then

f(e*9+,p)) = g(9) is in H' (dyadic) for almost every <p G [0, 2-n).

The proofs of the results described use probability theory. A probabilistic

characterization of Hp due to Burkholder, Gundy, and Silverstein is used in the

proof of Theorem 1.1, and optimal stopping, together with ideas developed by

Baernstein in [2], is used to prove Theorem 1.2.

The author benefited from discussions with John L. Lewis. While this paper was

being refereed Lewis, Baernstein, and P. Jones found a nonprobabilistic proof of

Theorem 1.1. Their proof of the left-hand inequality in (1.1) is based on duality and

the new result of Coifman and Rochberg that if / > 0 is integrable then the

logarithm of the Hardy-Littlewood maximal function is BMO.

2. Distributions of Hp functions. If/is an integrable function on T we define the

analytic function F in the unit disc D by

F(z) = f \(ei9 + z)f(ei9)l (ei9 - z)] dm,       zG D,

and extend F to T by defining F(ei9) = f(ei9) + if(e'9). We write F(z) = uf(z) +

iv^(z) = u(z) + iv(z), \z\ < 1, the superscript being omitted when the reference

function is clear from context. Note that f(ei9) = u(ei9) and f(ei9) = v(eiB). The

function u(z) is defined to be 0 if |z| > 1. In this section the inequalities (1.1) and

(1.2) will be proved together with versions for some other Hp norms. The symbols

cp, k , etc. are absolute positive constants depending only on p and may stand for
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different numbers from line to line. Versions of the inequalities to be proved hold

for exponents p > 1, but are either trivial or easy consequences of the M. Riesz

inequalities ||/||p < Cp\\f\\ , p > 1, [12, Vol. 1, p. 253], so usually only the expo-

nents 0 < p < 1 are considered.

Let/, and M be as in the introduction, let bn = it2~", and if p > 0 define

Ap(f)=  1 2"<"-»|M(An)|*.

Lemma 2.1. If fis an integrable function on T andO <p < 1 then

cpAp(f) - Cp\\f\\p < fJ\M(9)/9\» d9 < Kp(Ap(f) + \\f\\p).

Proof. Let A(0) = \fd(ei9)\ + \fd(e~i9)\. Now

fb" 9-"\M(9)\p d9 > [K b-p\M(9)\" dff

> \K  b-p\M(b„)\" d9

- ["'  b~'      max     | \M(b„)\p - \M(<p)\p\ dff
Jb„+, b„+i«f<bn

> 2-lbii-p)M(b„Y - fb"  b„-p     max     \M(bn) - M(<p)\" d9
Jb„+I b„+,<f<b„

>2-^-p^M(bnf-2(bn  h(bn+xfd9.
•A

Jbn+i

Summing these inequalities for « = 0, 1, 2, . . . we get

C 9-p\M(9)\" d9 > (2^~lYlAp(f) - 2 I    f"  h(bn+xf
J0 n=0   Jb„+I

d9

>(2^-»)-'4(/)-4|    p*' A(An+iy dff

dff>(2^-1>)-1^(/)-4f \Ue»)\

= (2^-1))-1^(/)-4||/||p,

proving the left-hand inequality of Lemma 2.1. The proof of the right-hand side is

similar.

Now the left-hand side of (1.1) will be proved. An expository treatment of the

probability theory used may be found in [7]. The proof is based on a probabilistic

characterization of Hp given by Burkholder, Gundy, and Silverstein in [4]. The

process Z, = X, + iY„ t > 0, will denote standard two dimensional Brownian

motion, and Pz and Ez will stand for probability and expectation associated with Z,

started at z, with P0 and E0 shortened to P and E. If 7? is a region in C, the

stopping time tr is defined by tr = inf{/ > 0: Z, G R). If g is a function on D,

the closure of D, and Z0 G D, we define g* = sup0<,<T |g(Z,)|. It is proved in [4]
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that

cpE(u*f < U/H*, < CpE(u*f,       0 <p < oo. (2.1)

If r is a real number let r+ = max(r, 0) and r_ = max(— r, 0). Then (2.1) implies/

is in Hp if and only if both E(u*+ y and E(u*_Y are finite.

Since / is integrable, limr_>T u(Zt) = u(ZT ), by a theorem of Doob (see [7]).

Until further mention it will be assumed that fTf dm = 0. Define, for each positive

real number A, the stopping time tx by tx = inf{/ > 0: u(Z,) = X], and letpx be the

density with respect to m of ZT I(tx < td), meaning that if A is an arc of T,

f Px(eie) dm = P(ZTo G A and tx < rD).
JA

Note {tx < td} = {«* > X). Clearly,

Px = 1    on {/ > A}, (2.2)

while, since ZT is uniformly distributed under P on 7\

0 < Px < 1. (2.3)

Now E2f(ZT¡)) = u(z), z G D, so that, using the strong Markov property, and the

fact that «(Z,At ), / > 0, is a martingale, we have

fTÄe")Px(em) dm = Ef(Zjl(tx < rD)

= EEzJ{ZTD)l(tx < rD) - £«(Zj/(/A < tJ

= 7iA/(/x < td) = XP(tx < td).

Since P(tx < Tfl) = Pi«*  > X) = fTpx(e'9) dm, this implies

À f Px(ei9) dm = [ f(ei9)Px(e'9) dm. (2.4)

It is not hard to show that among all functions A which satisfy (2.2), (2.3), and

(2.4) with A in place of px, fT A dm is minimized when A = 1(H), where H is of the

form H = {f > X} u {f < a} u G, where G c {/ = a), and a and G are chosen

so that 1(H) satisfies (2.4) with 1(H) in place of px.

Let 9X = sup{0 > 0: fd(e'9) > X). Note 0A < 2w since we are assuming jTf dm

= 0. Let <px be the unique number in ( — 2-rr, 0] such that

(ekfd(ei9)dm = X(9x-<px)/2-n.

For positive X define i|/x = (0X - <px)/2ir, and take \[/0 = 1. Then if A > 0, ^x =

m(H), where // is the set described in the previous paragraph, which can be seen

by observing that, if / = fd, one choice for H is {e'9: <px < 9 < 9X). Thus,

^A = m(H) < f px(ei9) dm = P(u% > A),
JT

so that, if p > 0,

E«Y =p(C° Xp~iP(u*+ >X)dm>pf°° Xp~lxpx dX.
Jo Jo
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Now let

a»"(2"jj £(•*>*•) •

If a„ > 0, ^ > 2-(n + 1>. This is clear if 0^ > bn, while when 0 < 0^ < b„,fd(eiB) <

a„ if 0 G (0^, A„) so that

f°- />*) dm = f*" /rf(e") dm - f V„(**) ̂

> 2-«,,-«„(*>„ ^J^)"'

= «„(0^-(-AJ)/2^,

implying^ < -bn.

Now let y, = 1, lety2 be the first i > 1, if it exists, such that a, > 2a„ and in

general, if aj¡ exists let/+, be the first k >j¡, if it exists, such that ak > 2a,. If {/:

i G A] denotes the collection of integers obtained in this manner, for each integer

p > 0 we have

oo

2   2-(n+1)ap < (1 + 2p) 2   2~<"+'><*/. (2.5)
n=0 ieA

This, and the fact that \px is nonincreasing, give

E(u*+Y>Pr ^xX»-'dX

>7>2    P ^"-ldX>cp^   «,f2-^')
ieA      "j./2 i£A

>cPï <2-o+i> = Cp f 2^-»(p /-(#*) ¿j'.
n = 0 n = 0 \y-*„ ' +

Replacing/by -/in this inequality gives

E(u*_Y > cp 2   2^-»( f " fd(e«) dm)" .
„=o v-7-*. I-

The two inequalities above, together with (2.1), give

\\f\\'H, > cpE(u*Y > cp max(/J(M* y, E(u*_Y) > cpAp(f),       0 <p < oo.    (2.6)

This inequality was proved under the assumption that fTf dm = 0. Now we

drop this assumption and extend (2.6) to arbitrary integrable/ Let e = fTfdm,

and let g = / - e. Then since zzg(0) = 0, 2(uf)* > (ug)*. Also

Ap(f) < Cp(Ap(g) + \e\") < CpAp(g) + CpE((uf)*Y.

Since, by (2.6)

Ap(g) < CpE((u*)*Y,

we have

APU) < CpAp(g) + CpE{(uJ)*Y < CpE((uf)*Y < CJI/H*,.
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Together with Lemma 2.1 and the fact that ||/||*, > \\f\\p this gives

Theorem 2.1. Iffis an integrable function on T then

f'\M(0)/9\> d9 < Cp\\f\\»H„       0 <p < 1.
•'o

Now the right side of (1.1) will be proved and generalized. Let « be a positive

integer, and, if k is an integer satisfying 1 < k < 2", let A(k, n) be the arc {e'9:

2-n(k - l)/2" < 0 < 2<nk/2"). Define B(n) = A(l, n) u A(2n, n). Let f, be the

trivial a-field {<j>, T), and if « > 1, let 9„ be the a-field generated by the collection

of 2" — 1 intervals consisting of B(n) together with A(k, n), 2 < k < 2" — 1. None

of the intervals generating <3„+x is less than one quarter of the length of the

smallest interval in ®sn containing it. This property makes ^n, n > 1, a so-called

regular family of a-fields, and it makes the martingales introduced regular

martingales.

If g is an integrable function on T define

gn = E(g\(Sn),   g* =   max |gj,    and   g% = sup |g„|.
\<k<n n>l

It is easily shown that g = limn^00 gk. The function g is said to be in the space

Hr(W„, « > 1) if g£, G Lp. It is well known that a theory exists for these spaces

which has many parallels to classical Hp theory. An account of this may be found

in [9].

Let A be an arc of T, and let A be a function on T satisfying {A ¥= 0} c A,

fThdm = 0, and |A| < m(A)~\ Then A is an atom, using the terminology of

Coifman (see [6]), and

IIÄir*, < C,||A||;,        1/2 <p < oo. (2.7)

The following lemma is essentially known. For p = 1 it could be proved with

duality arguments. Its proof is similar to arguments employed by C. Herz in [10].

Lemma 2.2. Let g be an integrable function on T. Then

\\g\\PH'<Cpf(g*J'dm,        \/2<p<\.
JT

Proof. Let xp = (E(g^0Y)l/p> and assume xp < oo. Let t0 = 1, and if k > 1 let

Tk = inf{z: «z(g*+1 > 2*^1^,) > 0), rk = oo if no such i exists. Let gx = g. Then

|gT | < 2kxp, while m(rk < oo) < 4«z(g£, > 2kxp), due to the regularity of <3:n,

« > 1. Let G, = (gT¡ - gT/_,)/(?•,_, < oo), wheregT/ = g on (t, = oo}. Then

00 fg = 2   G¡ + i  g dm.
/«] jt

We can write G¡ = 2y(EÄ GiI(AJ), where the A, are disjoint arcs in &r     such that

2,ez. m(Aj) = «{*z-i < °°)- Since E(Gi\%.) = °- Sa G¡ dm = 0 for anyy G B.

Since |G,| < 2i+lxp, (2.7) gives
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SO

P oo

I A f g dm   + C„ 2 2*'+1>j#h(tí_1 < oo)

; |g,|' + Cp f   2^+1>x/4m(g^ > 2'-\)
i = i

< I Ail' + ^/(g^y am < (C, + l)/(g^r <An,

proving the lemma.

Now on each of the arcs A(k, «), 2 < k < 2"~ ',

^ai^) < max{|/rf(e'tf)|: e" G A(k, «)}

< max{|/,,0"/2)|, |/>-*/2)|} = ß(e").

Since

Ud)%   < ßi*°) + s*p\E(fä\V„)I(Bn)\
«>i

00

Jd\
n=l

\E(fd\$n)I(Bn)\

00

= ¿(O + 2 2"
n=l

/    /„<*«

we have, since 1/2 <p < 1,

fT[(fM" dm < fT\ß(ei9)\p dm + Ap(f)

< 4 [ \fd(e'9)\p dm + Ap(f).

Together with Lemma 2.2 this gives

ll/JV < c,(ll/ll£ + Mf)),      1/2 <P < 1,

and this with Lemma 2.1 proves the following theorem.

Theorem 2.2. Let f be an integrable function on T. Then

ll/JIV < Cp(\\f\\p + fJ\M(9)/9\» dff),        1/2 <p < 1. (2.8)

The analog of (2.8) does not hold if 0 <p < 1/2, since, if the distribution of/is

given by m{f = 1} = /«{/= -1} = a, m{f = 0} = 1 - 2a, then fZ\M(ff)/0\p dff
= 0, and it can be shown that ||/,||*,/||/||£ approaches infinity as a decreases to 0,

for anyp G (0, 1/2). Even so, we conjecture that, for these exponents, inf||g||^, <

Cpdl/Hp + Ap(f)), where the infimum is taken over all rearrangements of/ In any

event, the inequalities we have proved do not apply immediately to all the

functions in Hp, 0 <p < 1. The spaces Re Hp are not even function spaces if

0 <p < 1. See [6]. It follows from the proofs of Theorems 2.1 and 2.2 that the

necessary and sufficient condition given for a distribution to be the distribution of

a function in Re H ' is also a necessary and sufficient condition for a distribution
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to be the distribution of lim,_00 mt for some continuous time, continuous path

martingale m„ 0 < t < oo, satisfying E swo\m\ < oo.

Now versions of the results just given will be proved for functions defined on

Euclidean n space R". Since the proofs are usually just variations of preceding

arguments, we will be brief. Denote Lebesgue measure on R" by /". Let R++l =

{(xx, x2, . . . , xn,y): y > 0}, and write (xx, x2, . . . , x„,y) = (x,y). The Poisson

kernel for R++ ' will be written Pn = P. The formula for this kernel is given by

P(x, y) =-—-,        (x, y) G R"++ ',

(y2 + \x\2f+i)/2

where a„ = 7r_(n+1)/2r[(« + l)/2]. The function f(xx, x2, . . . , xn) will always be an

integrable real valued function on R", and the harmonic function Uj = u is defined

onR"++1by

u(x,y)= [ f(x-t)P(t,y)dl"(t).

The cone in R++ ' with vertex at (x, 0) and with unit thickness is denoted by

T(x), so that

T(x) = {(s,y): 0 <y < oo and \x — s\ <y).

The nontangential maximal function of/is defined by

Nj(x) = N(x)=      sup     \u(s,y)\.

Burkholder, Gundy, and Silverstein have shown in [4] that, if / is an integrable

function on the real line,

<jll/lr$P < C  N(xY dx < Cp\\f\\p„r,       0 <p < oo, (2.9)
^ — 00

where \\f\\"H, = /üj/(x) + if(x)\" dx, f being the Hubert transform of / It is

generally accepted to say that if/is defined on R", n > 1, then/ G HP(R") if and

only if /„- N(xY dl"(x) is finite and this is the definition of HP(R") used here.

Let fs(x), — oo < x < oo, be the function defined on the real line which is

nonnegative and not increasing on (0, oo), not positive and not increasing on

(—oo, 0), and which has the same distribution as/ that is

l"{x GR":/(x) G A) = /'{x GR':/S(x) G A)    for all Borel sets A.

If « = 1, we call/¿ a rearrangement of/ but if « > 1 we do not, reserving this term

for functions defined on the same space, R", that / is defined on. Define M(x) =

I*_xfs(t)dt, and

Mf) =    2     2"<1-">A/(2"),        0 <p < oo.
/I — -00

The following theorem will be proved.
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Theorem 2.3. Let f be an integrable real valued function on the real line. Then

[°°\M(x)/x\p dx < Cp\\f\\pH„       0 <p < 1, (2.10)
•'o

and

M\\"b> < C,(MWp + Ç\M(x)/x\p dx),        1/2 <p < 1. (2.11)

The following theorem extends this to higher dimensions.

Theorem 2.4. Let f be an integrable real valued function on R", n > 1. Then

C\M(x)/x\p dx <C„„[   NÁxY dl"(x),       0 <p < 1. (2.12)

If n/(n + 1) <p < 1, there is some rearrangement g of f satisfying

j   Ng(xY dl"(x) < Cp,n(\\f\\p + Ç\M(x)/x\p dx).

Note that (2.12) in case « = 1, together with (2.9), implies (2.10).

The proof of the following lemma is similar to the proof of Lemma 2.1 and is

omitted.

Lemma 2.3. If fis an integrable function on R" íAen

cpAp(f) - Cp\\f\\pp < jfV(x)/*| dx < K„{Ap(f) + U/H;).

Now (2.12) will be proved. Let X(t) = (Xx(t), ..., Xn(t), Xn+X(t)) be standard

« + 1 dimensional Brownian motion. Let Ty = inf{i > 0: Xn + X(t) = y) and short-

en T0 to T. If (jc, y) G Rn + 1 let the subscripts on P^y) and E^xy) denote starting

position for X(t), as before. Extend us to (x, 0) G R" by defining u\x, 0) = /(jc),

and define u* = sup0</<7- u(X(t)). Burkholder and Gundy show in [5] that

cpA   N(xY dl"(x)< sup f   E(x^(u*Y dl"(x)
•V" >.>o-'r"

<Cp¡nf   N(xYdr(x). (2.13)•V

Now
(s"/an)P(x, s) ? 1    asi^ooifxeR". (2.14)

Since X(t) eventually hits each set of the form {(x,y): x ER"), the strong Markov

property can be used to show /„» £( )(«*y dl"(x) is not decreasing as.y increases,

proving the first inequality in the expression

sup   f   E(x¡y)(u*Y dl"(x) = hm   f   E(x^(u*Y dl\x)

= \im(s»/an)E(0,s)(u*Y. (2.15)

To prove the second equality, note that, since/is integrable, supxeir|w(.x,.y)| —>0

ils y —» oo. Thus E(Qsy(u*Y is just about equal to E(psysupT <l<T\u(X(t))\p if j is

large, and since X( T^~s ) has density P(x, s — Vs ) at the point (x, Vs ) under

P(o,s)> (2-14) and the strong Markov property give the result.
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Let ax = (supr>0: fs(r) > A}, and let ßx be the unique negative number such

that rÁf(x) dx = X(ax - ßx).
Then, using (2.14), the argument of the first section can be adapted to these

circumstances to yield

\im(sn/an)P^s)(ul >X)>ax- ßx,

so that

hm OVOWO* >p P«x - Mx"~l dX

00     / rl" \P

>cp   2      /     M*)**)   .
n = -ao\J -2" ' +

for 0 <p < 00. The analogous inequality for u*_, together with (2.13), (2.15), and

Lemma 2.3, gives (2.10).

Now (2.11) will be proved. Let

gA =(2AylfA fs(x)dx,
J-A

and let

hA(x) = (/,(*) - gA)I(~A <x<A).

Let m be the smallest integer such that 2m > A. For « > 0, let %„ be the a-algebra

of sets in [-2m, 2m) generated by the interval [-2m~n, 2m~"), together with the

intervals [k2*~m, (k + l)2m""), -2" < k < 2" - 1, k ¥= -1 or 0. Then, with respect

to the probability measure dx/2m + l on \-2m,2m), E(hA\%„), « > 1, is a

martingale. A proof very similar to the proof of Theorem 2.2 yields

IIMV < Cf{\\hA\\> + Ap(hA)),       1/2 <p < 1. (2.16)

We remark that

/2"
A^(x) dx = 0   if n > m.

— 2"

Next, (2.11) will be derived from (2.16) via a limiting argument. Since

lim^«, hA(x) = f8(x),

Hm \\hA\\PH> > IIÄ.       0 <p < 00. (2.17)
A—»co

Since clearly Ap(f) = 00 if 1/2 <p < 1 and /"«,/(*) dx ^ 0, to prove (2.11) it is

sufficient to show

11/8,.   if 11/11, < »    and

0,       1/2 <p < 1, (2.18)

Ap(f),   if 11/11, < 00    and

0,        1/2 <p < 1. (2.19)

lim HAJI   =
A—»oo

a nP

and

C f(x) dx =
J — ftn

lim   ^(AJ =

f°° f(x)dx =
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Now 11/11, < °° implies \f$(x)\ = o(|x| l/p) as |x| -» oo. If in addition we have

/»„/(*) dx = /"„./,(*) dx = 0, then

fA fs(x) dx\ < [~A\fs(x)\ dx + r\fs(x)\ dx
J-A I        •'-oo JA

= o(A(p-l)/p)    &sA^ao,0<p < 1,

and, using this estimate, (2.18) and (2.19) can be proved for the exponents

1/2 <p < 1. Forp = 1, the estimate fA_A fs(x) dx —* 0 suffices.

Finally, we verify the last sentence in the statement of Theorem 2.4. For « = 1 it

is implied by (2.11) and (2.9). Let « be a fixed integer exceeding 1, and if a > 0 let

Qa be the cube in R" with center 0, edges parallel and perpendicular to the

coordinate axes, and edge length a, and let Sa be the surface of Qa. If / is an

integrable function on R", let /, be the rearrangement of / which is constant and

not negative on each set of the form R+ n Sa, constant and not positive on

(R" — R+) n Sa, and such that the values of/, on R+ n Sa are not increasing as a

increases from 0 to oo, and the values of/, on (R„ — R*) n Sa are not decreasing

as a increases from 0 to oo. Let, for each A > 0, <pA = A ""/g, fa(x) dl"(x), and let

Y/íO) = (fa(x) ~ <Pa)I(x g Qa)- Let m De tne smallest integer such that 2m > A.

Let ©0 c $i C 9>2 C be a sequence of o-fields of sets contained in Q^, with the

properties

(i) 9>¡ is generated by a finite disjoint collection C, of "rectangles", that is, sets of

the form Ix X I2 X • • • X In, where each of the 7, are intervals,

(Ü) Ö2(«.-*)/. G Qk,
(iii) the maximum diameter of all the rectangles in ß, goes to 0 as i goes to

infinity,

(iv) each of the rectangles in C,+, is contained in a rectangle in (3, of no more

than i) times its measure, where n is a positive number depending on n but not on i

or m, and

(v) the ratio of the length of the maximum side to the length of the minimum

side of the rectangles in ß, is bounded by a constant depending on n but not on z

or iw.

Then, with this setup, a proof that

XN¿xY dl"(x) < Cp¡n(\\f\\p + Ap(f)) (2.20)
R"

for the exponents «/(« + 1) <p < 1 can be made in a manner very similar to the

proof of (2.11) for 1/2 < p < 1. The reason thatp may only go down to «/(« + 1)

is that atoms, if we define them like we did before (2.7), may not be in Hp for

p < n/(n + 1), but must be if p > n/(n + 1). See [6]. Note that

\p

Ap(f)=   2    2*»-»
*--oo

f fa(x) dl"(x)

3. Rotations of functions. Let SoCI^C^Cbea sequence of a-fields of the

Borel sets of T such that 6^ = {<i>, T), each @,¡ is generated by a collection Q, of

disjoint arcs, and each set in (£,+, is contained in a set in 6E, of no more than 8 its
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measure, where o is a fixed positive number not depending on z. Such a sequence of

a-fields will be called 5-regular arc generated. The dyadic a-fields are 2-regular arc

generated, and the a-fields <%n of the last section are 4-regular arc generated. An

integrable function / on T is said to be in Hp(ân, n > 0) if and only if

E sup„\E(f\ân)\p < oo. It is known that if (£„, n > 0, is 5-regular arc generated and

that if a(&n, n > 0) contains all the Borel subsets of T, then if a function is in

Hl((&n, n > 0) it is in Re 77 \ as was shown for a special case in the last section.

The converse is not true, but a weaker related result is. Let/(e*) = f(e*9~r)) be

the rotation of / through the angle r. The following theorem is proved

Theorem 3.1. Let &n, n > 1, be a S-regular arc generated sequence of o-fields of

Borel sets of T. Let f be an integrable function on T. Then

ffif sup\E(f9\ân)\" dm) dff < C„>s||/||'*„        1/2 <P < 1.        (3.1)

Thus iff G H ' almost every rotation of /is in H\&n, « > 0).

Proof of Theorem 3.1. If / G Re H' a theorem of C. Fefferman (forp = 1) and

of Coifman (see [6]) permits us to write / = 2A,a„ where the A, are real numbers,

the a¡ are functions supported on an arc of length e, satisfying |a,.| < e,-1 and

fT a¡ = 0, and

2(vrT«<<c,ii/iiv.    1/2<p< i.
This decomposition is perhaps different if thep are different. Thus, to prove (3.1)

when 1/2 <p < 1, it suffices to prove it only for functions having the form of the

a,. This will now be done.

Let e > 0, and let T be an arc such that m(Y) = e. Let g be a function supported

on T which satisfies fT g dm = 0 and | g| < e~'. To complete the proof of Theorem

3.1 it will be shown that

Jf2^ Jt sup\E(ge\®n)\» dm) dff < Cp^-p,       1/2 <p < 1. (3.2)

For the rest of this section p will be a number in (1/2, 1]. If / is one of the arcs

generating 6E„,

\E(g9\&n)\I(J) = »»(/)   ' f ggdmI(J) = h(J, 9).

Let <D\i = U " o ß/ De tne collection of all the arcs generating all the £,. Then

sup |is(g9|<£„)|=  sup   A(y,0). (3.3)
" ye<9R,

Divide 91L = S u Ê, where Ê is all those arcs J in 911 such that m(J) > e and S

is all those such that m(J) < e. Let T9 be the arc T rotated through the angle 0.

Then g9 is supported by T9. Let T9 be the arc with the same center as T9 and length

6ire. Then

sup h(J, 9) <£-1/(fs),
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since conditional expectation decreases the L°° norm, and any arc in S  which

intersects T9 is contained in T9. Thus

[* | f   sup \h(J, 0)1* dm) d9 < f^O-' ' 3e) dff = owe1-'. (3.4)
•'0    \JT /eS / J0

Now, for any arc J, fj g9 dm = 0 unless 0 is within we of one of the endpoints of

J,   a   set   of  0   of   length   4tte,   and   in   any   event   \fJg9dm\ < 1,   implying

¡T\h(J, 0)\" dm < mO/)1-' so that

f2"(( \h(J, 0)|' dm) dff < 4?re/n(/)1"/'. (3.5)

Now each point of T is contained in at most one arc J of 9H satisfying

x(l — o) < «i(.7) < x, for any positive number x, so that there are at most

[x(l — o)]_1 arcs in 911 with measure falling in this range. Let TV be the integer

satisfying (1 - 8)N+ ' < e < (1 - 8)N, and let 911, be those arcs / in 91L such that

(1 - ô),+1 < m(J) < (1 - o)'. Then e ç U £.<> %> and if l%l is the number of

arcs in 91L,,

f2,r( f   sup \h(J, 9)\" dm) dff <  2    f 2,r( f |A(-/. 0)K dm) dff
J0    \JT jet I jet J0    \JT )

<il 2 ri/lAi/.tf)!'^)*)
í=o\Je9R, •'o   V-'r 7      /

< 2 I%|4to(1 - o)'(1_p)
<-0

< 2 (1 - á)-(, + 1)47T6(l - «f1"" = CpJte 2 (i - «)_,>
1=0 i-O

=   ̂ 6(1  - «)"*'  < Cp^-p,

using inequality (3.5) to derive the third inequality above. This, together with (3.3)

and (3.4), establishes (3.2).

4. The extremal rearrangements. This section is primarily devoted to the proof of

Theorem 1.2. First a related question concerning stopping times for Brownian

motion is answered. The way Green functions are used was suggested by Baern-

stein's nonprobabilistic treatment of the symmetric decreasing rearrangement, in

[2]. Notation remains as before. The area of a set A c C is written a(A), and if R is

a connected region in C let G(R, z, w) stand for the Green function of R and

define rR = inf{/ > 0: Z, G R }■ G. Hunt shows in [11] that if A is a measurable

subset of R and wGfi then

Ew C" I(Z, &A)dt= [ G(R, z, w) da(z). (4.1)
•'0 JA

A nonnegative random variable T will be called a Markov time for Z, if

ZT+I — ZT, t > 0, is a standard Brownian motion independent of Z,, 0 < / < T.

This is a generalization of stopping times to a class of random variables for which
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the strong Markov property still holds. Let a < 0 < b be fixed real numbers and let

S be the strip {x + iy: a < x < b). Let t < ts be a Markov time for Zr Then, by

(4.1) and the strong Markov property, if A is a measurable set contained in S,

E C I(Z, &A)dt = E CS I(Zt (EA)dt - E (** I(Z, G A) dt
Jq j0 jt

= f G(S, z, 0) da(z) - EE? C* I(Z, G A) dt
ja Jo

= f G(S, z, 0) da(z) - /   / G(S, z, ZT) da(z)

= f f G(S, z,0)-f G(S, z, ZT) dP(ZT)   do(z).

dP(ZT)

The quantity in brackets in the last expression will be denoted GT(z), so that

E C 1(Z, G A) dt = [ GT(z) da(z). (4.2)
■'0 •'yf

Considered as a function of z, G(S, z, w) is harmonic in S except for a pole at w, so

G is subharmonic in 5 — {0} and is harmonic in any region R c S satisfying

P(ZT G 7?) = 0. We extend GT continuously to C - S by defining it to be zero

there, and remark that if a region R is formed by removing line segments from S,

then (4.1), and elementary properties of Green functions, imply that GTr(z) = 0 on

S - R.

Now let í > 0, and define

hAz) = hÂx + y) = K(x>y) = (x - sf/2s   if 1*1 < J>

A,(*,.X) - |*| - 0/2)   if|x|>i.

Let / be any of the functions |z|*, p > 0, l^^, p > 1, or hs(x ~ Y + iy), - oo < y

< oo, s > 0. Let V2 be the Laplacian and define

oo.M, = f(Z,) - \ JT ' V2/(ZJ A,       0 < í <

Then Ito's lemma implies that M„ 0 < / < oo, is a martingale. It is not difficult to

show that, under P, sup,>0 £M^n(, T> < oo, so that if t is a Markov time not

exceeding ts, EMt = MQ = /(0), implying

/f/(zT) = i/oTv2/(zJ)ifc+/(o).

This and the extension of (4.2) from indicator functions to V2/ gives

Ef(ZT) = I JsV2/(z)GT(z) *0) + /(0). (4.3)

For / = hs(x — y + iy), (4.3) becomes

Ehs(Xr - y + iYT) - J-/" íz> f+ î GT(x + z» rfx + A,(-Y),
^•5 •/ — oo        •'y — s
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and letting s decrease to 0 in this expression yields

E\XT -y\=r  GT(y + iy) ds + \y\. (4.4)
•'-oo

The Green functions G(S, z, w) are readily calculated. Considered as a function

of z, with w fixed, they have a logarithmic pole at w, and G(S, x + iy, w) =

o(e~"\yi) as |.y| —> oo, for a constant a depending on a and b. Let S+ = S f) {y >

0}, and define, for each point z = x + zj>GS+,

AT(z) = f °° GT(x + ir,)dq+ [   y GT(x + ir,) dq.
Jy ■'-oo

Now GT(z) < G(S, z, 0), implying/4T(z) is bounded in S+, and it is not difficult to

show that if A^z), w, z G S, is defined by

Aw(z) = hw(x + z» = f    G(S, x + zs, w) z&

then the family of functions hw(z), w G S, is equicontinuous in 5, and this, together

with the definition of GT, shows that AT is continuous in S +.

Since GT is subharmonic in 5, GT is no larger at a point of 5 than its average over

a disc contained in S which is centered at that point. Thus if B(z) is defined for

z = x + iy G S by

5(z)= f" GT(x + h,) dq,
Jy

and if x + z> is a point in S1 at least a distance r > 0 from the boundary,

B(z) = f°° GT(x + /(>> + t,)) dq

> /°°[(^2)~7_r ^/_tS Gt((x "J) + Ky+^ "0) *] ^

= (^r2)"1 /' dsj^IL (J00 GT((x - ,) + z(7 - / + 7,)) dr,) dt

= (irr2)"1 C ds  (^^   B(x- s + i(y - /)) <*.
■'-, J-V?^s1

Thus, 5 itself is subaveraging and so is subharmonic. If G is harmonic on U v>y {z-

\z — (x + r»))| < r) then the inequality in the above expression is an equality, and

B is harmonic at x + iy. Thus AT is subharmonic in S+, and perhaps harmonic at

some points of S +.

Now let a = sx < s2 < • • • < sn = b be « nonzero real numbers and let p,,

1 < i < », be n positive numbers such that 2?_iP, = 2p, = 1 and 2p,i, = 0. Let

R(s, p) be the region

n-l

5 -  (J  {x + iy: x = *,., \y\ < y,},
i = 2

where y¡, 2 < z < n — 1, are the unique positive numbers such that
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To prove that there is a unique set of numbers y, satisfying these requirements, we

first note that it is not hard to show that there is a set of numbers c„ 2 < z < « — 1,

such that if t = inf{/: Y, £ S - {x + iy: x = s„ |.y| < c,}}, then 2?~21|7>(ArT = s¡)

— p¡\ is as small as possible for stopping times of this form, and then it can be

argued that, if this sum is not zero, one of the c, could be increased or decreased a

very small amount to make the sum smaller. Thus P(XT = s¡) = p¡, 2 < i < « — 1,

and, since EXT = 0, we must also have P(XT = s¡) = p„ z = 1, «. We take the

numbers c, for our y¡. To show they are unique, note that if

T = minOs, inf{i: X, = s,, \y¡\ < o, for some z, 2 < i < n — 1}),

and if A = {/: 5, > y,} and 73 = {z: o, < y,}, then clearly

2   P(XT = st) > 2   P(*r = *,)    and
ieA ieA

2 p(xt = s¡) < 2 p(xt = *,.).
ieB ieB

Now let the numbers s¡ be as above and let q¡, 1 < z" < n, be « positive numbers

such that 0 < 2ft < 1 and 2ftJ, = 0. Let T(s, q) be the randomized Markov time

constructed in the following way. Flip a coin with probability 2ft of heads. If the

coin is tails, T(s, q) = 0, and if the coin is heads, T(s, q) = tä(j p), where p, =

ft/2ft. Let ?T(s, ft) = 9" be the collection of all Markov times t < t, satisfying

P(*T = 0) = 1 - 2 ft and 7>(a; = i,) = ft,        1 < i < n.

Then r(j, ft) G ?T, and is in some ways extremal, as the following theorem shows.

Theorem 4.1. Let t G 5(s, q). Then

1 < p < 2, (4.5)

2 < p < oo, (4.6)

0 < p < 2, (4.7)

2 < p < oo. (4.8)

Proof. We shorten T(s, q) to T. The function AT is continuous in R(s,p) ,

harmonic in R(s,p)+, and vanishes at infinity. Also,

AT(a + iy) = AT(b + iy) = 0

for each_y > 0, and, by (4.4),

Ar(y) = E\XT - y| - |y| = 2/>,k- - y| - |y|, -oo < y < oo.

Since GT vanishes on (j, + iy: 0 < |.y| < y,}, this equality implies

n

AT(s¡ + iy) = 2 Pj\sj - s,\ - \s,\,       0 < y < y,.,
y-i

completing the description of the boundary values of AT. Now AT is subharmonic

in R(s,p)+, and has the same boundary values, with the possible exception of the

boundary points Sj< + iy, 0 <y < y-, 2 < j < « — 1. Since GT does not necessarily

E\YnsJ" < E\YT\",

E\YnsJ" > E\YT\",

E\ZnsJ" < E\ZT\",

E\ZnsJ" > E\ZT\",
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vanish on {sj + it, 0 < t < y,}, AT(sj + iy) may be smaller than A^Sj + iy). Thus

Ar — AT is bounded and subharmonic in R(s,p)+, and has nonpositive boundary

values, implying it is nonpositive everywhere, so that

Ar(z) < AT(z),       z G R(s,p)+ . (4.9)

By (4.3), for g(z) = \y\p,p > 1, or g(z) = Iz^p > 0, we have

Eg(ZT) = ^[bdx C V2g(x + iy)GT(x + iy) dy
¿ J a •' — oo

= -\S" dx Jo°°V2g(x + iy)-^ Ar(x + iy) dy, (4.10)

with the corresponding formula when T replaces t. Note that V2^^ is decreasing

as y increases for 1 <p < 2 and increasing if p > 2, and V2|x + iy\p is, if x is

fixed, decreasing as \y\ increases for 0 <p < 2, and increasing if p > 2. This, (4.9),

(4.10), and the facts that AT(x) = AT(x), a < x < b, and that both AT and AT go to

zero as y —» oo, can be used together with integration by parts to prove all of

Theorem 4.1 except (4.5) for the exponent p = 1. This case follows from the truth

of (4.5) when p > 1, via a limiting argument.

It can be shown that the times T(s, q) are the unique times in ^(s, q) which are

extremal in the sense of Theorem 4.1, although of course the randomization

procedure is arbitrary. For our purposes the following weaker substitute is suffi-

cient.

Theorem 4.2. Let 0 < 2ft < 1. Let v be a time in 9"(i, q) such that P(v > 0) =

1. Then strict inequality holds in (4.5), (4.6), (4.7), and (4.8) for t = v.

Proof. The first part of the proof involves carefully going through the proof of

Theorem 4.1, showing strict inequality holds at each step for v = t. Since P(Z, = 0

for some z > 0) = 0,

P(XV = Q, im>o) = i-2ft-

From this, the definition of GT(z), and the fact that G(S, z, w) is superharmonic but

not harmonic at w, it can be shown that Gv(z) is strictly subharmonic in the region

{x + iy: — e < x < e) — {0}, and it follows that A„(z) is strictly subharmonic in

R(s,p)+, for it can be shown that if P(X„ = 0, | Y,\ > e) > 0 then AT(ie) is strictly

smaller than its average in any disc around ie. Thus g(z) = Ar(z) — Aj^ y(z) is

strictly subharmonic and bounded in R(s, p)+, and it has already been shown that

the boundary values of this function are not positive. Therefore the g(z) < 0 at

some point z G R(s,p)+, and g(z) < 0 at all points of R(s,p)+. This implies

g(z) < 0 at all points of R(s,p)+, since g is subharmonic and R(s,p)+ is con-

nected, for if g(z) — 0 at some z G R(s,p)+ then, by the subaveraging property, g

would have to be 0 at almost all points in any disc around z contained in R(s, p)+,

from which it follows that g would have to be 0 at almost all points of R(s,p)*, so

that, using the semicontinuity of g, g would be identically zero. Thus

A„(z) < Ans¡q)(z),       z G R(s,p)+ ,
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and now the integration by parts argument that concluded the proof of Theorem

4.1 gives strict inequality in (4.5)-(4.8) with v in place of t, with the exception of

(4.5) in the case p = 1 which, the reader will recall, was derived by a limiting

argument. This case is treated next.

To complete the proof of Theorem 4.2 we show

E\YnsJ < E\Y„\. (4.11)

First we note that if a random variable V satisfies P( V > X) = P( V < -A) for

each A > 0 and is unbounded and integrable then

E\V+ x| - |x| <E\V\    ifx>0. (4.12)

Define the time tj by 17 = v on {Xv =£ 0} and

tj = inf{/ >v:Z,- Z„ G R(s,p)}    on {X9 = 0).

Letp, = ft/2ft. Then both 17 and tä(jj)) are in ^J(s,p), and T(s,p) = tR(sj>) since

2p, = 1. Thus, by Theorem 4.1, we have

E\YT,    \ <E\Y± (4.13)

Under P, YT is unbounded and symmetrically distributed, so that (4.12) gives

the strict inequality in the expression

E\YV\ - E\Y„\ = E(\YV\ - |Yj)/(i, > p)

= E{EZ}YV\ - \Yr\)l(r, > ,) = E{E\YTRi!p) + Yv\ - \Y,\)l(r, > v)

<*iUn!.^-iiU|-W
Since E\ YT(sJ = (2ft)£| YTr(J, we have

E\YrMJ-E\YnsJ>E\Yv\-E\Y,,\,

and this, together with (4.13), establishes (4.11). A similar approach could have

been used to show strict inequality holds in (4.5) and (4.6) for v = t, but not, or at

least not as easily, in (4.7) and (4.8).

Let /, /, and F be as in §2. A theorem of P. Levy says that if Z, starts at 0 then

F(Zt), 0 < t < rD, is itself Brownian motion, perhaps moving with variable speed,

up to some Markov time. More precisely, there is a standard Brownian motion

W{ = W, = S, + iVt, 0 < / < 00, such that W0 = F(0), and a strictly increasing

continuous random function Xj(t) = X(t), 0 < / < td, such that F(Z,) = Wxw,

0 < / < td. The time A(t0) is a Markov time for Wt, and will be shortened to

yj = y. See [7] for more detail about Levy's theorem. Since ZT is uniformly

distributed under P, for any real number a we have

/«{/>«}= P(f(Zro) > a) = P(Sy > a).

The corresponding result holds for /, and, more generally, if A is any Borel subset

ofC,

m{ew: F(ei9) G A) = P(Wy G A).

These equations imply ||/||£ = E\Vy\p and ||/||^, = E\ Wy\p. Now let*,., 1 < i < n,

and p¡,  1 < z < «, be as before. If g is a real valued function on T such that
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mi g = ■*.-} = Pi-, then G(0) = 0, and

m(S*-s,)-pt,

so that, by Theorem 4.1, with Wf in place of Zt, if

r,g = inf{r: Wf & R(s,p)},

we have

E\Vtf<E\Vfjr = \\g\\'p,        Kp<2. (4.5)'

Now £ | F* |p does not depend on g. Since Wf is standard Brownian motion started

atO,

E\Vg\" = E\Y      |p.

Thus, if a rearrangement A of g could be found such that nA = yh, we would have

11% < II¿lip.        1<P<2,

so A would be extremal in the sense of (1.4).

There is such a rearrangement. If 77(z) is a universal covering map of D onto

R(s,p) (see [1] for a discussion of such maps), then /(D) c R(s,p) and it is

impossible that lim H(z) = z0 G R(s, p) if z G Z) moves continuously to 7\ This,

and the fact that limit,^ H(Zt) exists (see [7]) implies that td = inf{f > 0:

77(Z,) G R(s,p)}, so that yh = tja. This completes the proof of the existence part of

Theorem 1.2 for the conjugate Lp norms, 1 < p < 2, in the case fTfdm=0,a

restriction easily removed.

Next the nonexistence part of Theorem 1.1 for the conjugate Lp norms for these

same exponents will be proved. Let ft, 1 < z < «, and s¡, 1 < i < n, be as before

and assume 0 < 2ft < 1. Let the function k on T satisfy m{k = s¡} = ft, 1 < i <

«, and m{k = 0} = 1 — 2ft. Just as in the proof of (4.5)', Theorem 4.1 implies

E\YnsJp < \\k\\p,       Kp<2.

It cannot happen that P(yk = 0) > 0, for this would imply

P(K(Z,) = K(0) = 0, 0 < / < rD) > 0,

so that K would vanish on a continuous (Brownian) path from 0 to T and thus

vanish everywhere. Thus Theorem 4.2 implies

E\YnsJ» < \\k~\\p,        \<p<2, (4.14)

and of course (4.14) holds if k is replaced by any rearrangement of k, so that the

argument showing nonexistence of a rearrangement of k minimizing the conjugate

Lp norm can be completed by showing there are rearrangements y of k with ||/||j|

arbitrarily close to E \ YT(sq)\p.

Let e > 0 and let R(s,p, e) be the region R(s,p) — {iy: 8 < y < e}, where o > 0

is chosen so that P(XT = 0) = 1 — 2ft. Such a choice of 8 is always possible

since T^Z, G {iy: 0 <y < e} for some t < s) = 1 for each s > 0. Now
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due to the continuity of the harmonic function Ez \ YT/¡ _ \p. Thus, if 1 < p < 2,

E\Yr«,JP^ E\Yn*JP   ■»■-*«■ (4-15)

Similarly

p(xr«„,> = *) "> p(xns.<,) = *) = ft   as e -> 0. (4.16)

Let Nt(z) be the universal covering map of D onto R(s,p, e) which takes 0 to 0.

Then y^ = inf{z: W£ G R(s,p, e)}, so that (4.15) and (4.16) imply

m{ne = s¡} -^ m{k = s¡)    as e -> 0,    and

l«-+£|>W   ase^O.

Even though «t does not have exactly the distribution of k, it is not hard to use

these to establish the existence of functions me, slight alterations of «e, such that mt

and k have the same distribution and ||wie||£ —* E\YT^sq^p.

There is no question that, in the cases where Theorem 1.1 guarantees an extremal

rearrangement exists, these rearrangements do not have a regular form, whenever

« > 2. They probably become very chaotic when m{f = ax} is large for some a¡

close to Srfdm. Some less discrete functions have an extremal rearrangement

which is very regular, and which will now be described. If g is a function on T such

that m{g = 0} = 0, let ge be the rearrangement of g which satisfies ge(e'9) =

ge(e~'9), is positive on {e'9: — a < 0 < a), negative on {e'e: a < 9 < 2ir — a), is

not decreasing as 0 increases from 0 to a and not decreasing as 0 increases from a

to m. Here a is m{g > 0}ir. Now if F is a univalent map from D to a simply

connected region R which has a complement that can be written as a union of

vertical line segments centered on the real axis (as R(s, p) has), which is contained

in some strip {x + iy: — m < x < m) for a finite number m (as R(s,p) is), and

which maps 0 onto 0, then it can be shown by a slight alteration of the proof of the

existence part of Theorem 1.1 that/ is an extremal rearrangement of itself in all the

senses of (1.4), (1.5), (1.6), and (1.7). Furthermore if F has a continuous extension

from D to R, except for two boundary points where Re F(e'9) changes from

positive to negative, and if 7^(1) is real and positive, it is not hard to show that

/ = fe. There are many examples of such functions. We cannot characterize those

distributions for / for which fe is extremal, without recourse to analytic functions.

Note that it is quite easy to show that/ is in Re 77' if and only if fd in Re 77',

since the two jumps of / resemble the one jump of fd. This fact could be used to

prove much of what was proved in §2, in the special case that/ is extremal.

5. An example. In this section it will be shown that if p is a real number in (0, 1)

there is a bounded real valued function fp = fon T such that

11/11, > 11/11,-
The exponent p G (0, 1) is to be considered as fixed, and let T be the strip (x + iy:

— 1 < x < 1}. For x = ± 1 and — oo <y < oo, let y(x + iy) = <p(y) be harmonic

density with respect to the region T and the point 0, meaning

/OO y.00

A(l + iy)cp(y) dy+ {    A(-1 + iy)<p(y) dy,
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whenever A is harmonic and bounded on T and continuous on T. It is not hard to

calculate <p, but for our purposes it is enough to know that <p is symmetric about 0,

and that tp(y) < Ke~aM for all.y and some positive constants AT and a. Define

/oo
\s\p<p(t - s)ds,        -oo <t < oo.

-oo

The term subtracted in this expression is the canonical harmonic function with

boundary values \y\p, evaluated at the point it. Since /i00<p(>') dy = 1, and since <p

is symmetric about 0, we have

8(t) = 2 T (\t\p - \s\p)<p(t - s) ds
■'-oo

= 2j'[2|zï" - |/ - s\p - \t + s\p]<p(s) ds

+ 2Í (\t\p - \s\")q>(t - s) ds
J{s:\t- s\>t)

= 2J'\j'+Sp(p - l)|x|'-2¿x <p(s)ds

+ 2Í (\t\p - \s\»)<p(t - s) ds
J{\t-s\>t)

= A(t) + 73(0-

Since <p(y) < Ke~"M, it is easy to show that 73(f) = 0(e~ßW), as |i| —» oo, for some

positive constant ß, and, since p(p — 1) is negative, there exist positive numbers 17

and v such that

A(t) < -r¡\t\p-2    if\t\ >v.

Thus 8(t) is negative for all large enough t, and since both A(t) and 73(f) approach

0 as |z| -» 00, we have 8(f) -h> 0 as |r| —> 00. Let

m = min{ô(f): — 00 < t < 00},

and let i\ satisfy 8(r¡) = m.

Let Z, be as in the last section. If t is any stopping time for Z, such that t < rr

and P(XT = 0) + P(XT = 1) + P(Xr = -1) = 1, we have

E\ YT\» = E\YTt\p - E(\ 7*| - I yT|*)7(T < rr)

= 7i|yT/ - EEzX\YTt\» - \YT\P)I(XT = 0)

= E I YTr\p + E8(YT)I(XT = 0). (5.1)

Now for 0 < e < 1, let R(e) = T — {iy: 17 — a < y <r¡ + a) and

5(e) = r-{z>:|y| > b],

where a = a(e) and b = b(e) are the unique positive numbers such that

P(XrKM = °) = e    and    ^(^, = °)=e-

Since b(e) -» 0 as e -» 0, (5.1) implies

^0^[E\YrJP-E\YTr\p]=-m>0,
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and, since o vanishes at infinity, and a(e) -» oo as e -* 0,

Thus there is a positive number, which will be denoted A, such that

E\YrxJ" > E\YTJp. (5.2)

Now Baernstein has shown in [2] that, if A = hs, and m{h = 1} = «z{A = -1} =

(1 — A)/2 and m{h = 0} = A, then Hs maps D univalently onto S(8) and maps 0

onto 0, and arguments like those of the last section give

E\YrJP = UK\\PP- (5-3)

If G is a universal covering map of D onto 7?(A) which takes 0 onto 0, then again

arguing as in the last section, we have

«z{g= 1} =m{g = -l} =(l-A)/2,    m{g=0} = A,

and

E\Y,RJ = \\g\\pP- (5.4)

Since g and A have the same distribution, gs = hs. Thus (5.2), (5.3), and (5.4) imply

\\g\\Pp>\\gs\\Pp-
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