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EXISTENTIALLY COMPLETE ABELIAN

LATTICE-ORDERED GROUPS

BY

A. M. W. GLASS AND KEITH R. PIERCE

Abstract. The theory of abelian totally ordered groups has a model completion.

We show that the theory of abelian lattice-ordered groups has no model compa-

nion. Indeed, the Archimedean property can be captured by a first order V3V

sentence for existentially complete abelian lattice-ordered groups, and distinguishes

between finitely generic abelian lattice-ordered groups and infinitely generic ones.

We then construct (by sheaf techniques) the model companions of certain classes

of discrete abelian lattice-ordered groups.

The class of abelian groups has a model companion [7]. The slightly larger class

of nilpotent class 2 groups, however, is already very misbehaved; there is no model

companion and, indeed, the finitely generic and infinitely generic theories share no

models in common ([17] and [18]). It is natural to wonder, therefore, what happens

if, instead of enlarging the class of groups, we enlarge the language by adding a

binary relation < compatible with the group operation (cf. passing from fields to

ordered fields). A. Robinson has shown the following:

Theorem A [15, p. 36]. The theory of abelian totally ordered groups has a model

completion; viz. the theory of divisible abelian totally ordered groups having at least

two different elements.

When total order is replaced by lattice-order, the conclusion changes radically.

Our main theorem is:

Theorem B. (1) The theory of abelian lattice-ordered groups has no model

companion. Moreover,

(2) the Archimedean property is equivalent to a V3V sentence for existentially

complete abelian lattice-ordered groups, and

(3) finitely generic abelian lattice-ordered groups satisfy the sentence (i.e., are

Archimedean) but infinitely generic ones do not (i.e., are not Archimedean).

Of course, the Archimedean property is not expressible by a first order sentence

in general; it is only when we restrict to existentially complete abelian lattice-

ordered groups that we can capture it by a first order sentence. This expressibility

phenomenon is frequently used to distinguish between finitely generic structures
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and infinitely generic ones (see [10], [13], [17] and [18]). Moreover, a V3V sentence

is the simplest that can ever be used to distinguish between such structures (see,

e.g., [9, Appendix, Proposition 24]).

Let T he a consistent theory. Let RT denote the theory obtained from taking

subdirect products of models of T (i.e., R T is the set of sentences which hold in all

models which are subdirect products of models of 7"). If T has a set of universal

axioms, RT = 7\jH the universal Horn theory obtained from T [20]. William H.

Wheeler [20] has conjectured that if T is a consistent theory having a set of

universal axioms, then 7\jH has a model companion if T does. But if we let T be

the theory of abelian totally ordered groups (in the language with the group and

lattice operations), TVH is the theory of abelian lattice-ordered groups (see the

remarks following the proof of Theorem A). Theorems A and B therefore refute the

Wheeler conjecture:

Corollary C. There is a consistent theory T having a finite set of positive

universal axioms such that T has a model completion but Tutx has no model

companion.

We confess to being baffled as to when the existence of a model companion (for

a universal theory) carries over to the subdirect product theory. Our counterexam-

ple involves order. If order is playing an essential role, one might avoid it by

considering only stable theories. Thus a natural conjecture is: If T is a stable

universally axiomatizable theory, then TUH (= rT) has a model companion if T

does.1

In the last part of this paper we establish model companions for certain classes

% of discrete abelian totally ordered groups and for the corresponding classes R%

of discrete abelian lattice-ordered groups (% = Mod(?T) for some theory ?T). This

indicates that if our conjecture is true, stability, though sufficient, is not necessary

to pass from T to TVH (for existence of model companions).

We have assumed that Theorem B would have a larger audience than other

portions of this paper which are more technical. For this reason we have relegated

the technical results to the end so that the supposed general reader can obtain an

uncluttered self-contained proof of Theorem B by reading only the first half of this

paper. In order to make our results accessible to algebraists and model theorists

alike, there will be portions that each can (and should!) easily skip over.

Recall that if T is a theory and 31 is a submodel of a model of T, then 21 is said to

be existentially complete in T, or T-existentially complete, if any existential sentence

of £(21) (the language Ê augmented by constants naming the elements of 2Í) which

is true in a model of T including 31, is already true in 21. If instead of considering

all existential sentences of £(21), we restrict to those obtained by existentially

quantifying over conjunctions of atomic sentences, we call the corresponding

structures algebraically closed in T. In the presence of the group axioms, algebrai-

cally closed corresponds to having a solution to vv0(x, a) = 0, . . . , >vn_,(x, a) = 0

'However, Mary Anne Evans' beautifully expressed warning should also be heeded: "But this power

of generalising which gives men so much the superiority in mistake over the dumb animals, ..." [8].
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in 21 whenever there is a solution in some group 93 D 21, and existentially complete

allows also wn(x, a) ¥= 0, . . ., wm(x, a) ¥= 0 (a G 2Í). For the theory of fields, the

concepts coincide (w ¥= 0 can be replaced by solving wy — 1 = 0) and yield the

standard algebraically closed fields. For abelian torsion-free groups, the concepts

coincide and yield the class of divisible torsion-free abelian groups (except that {0}

is algebraically closed but not existentially complete).

A theory T has a model companion theory Tc if and only if:

(1) every model of T is contained in a model of Tc and conversely, and

(2) Tc is model-complete; i.e., every model of Tc is existentially complete in Tc.

If it exists, the model companion is unique. It is easy to see that every (infinite)

model of T is contained in a T-existentially complete model (of the same cardinal-

ity, if £ is countable). Consequently, if the T-existentially complete structures form

an elementary class (i.e., there is a set of sentences S whose models are precisely

the T-existentially complete structures), then this class yields the model compa-

nion; if it is not an elementary class, the model companion does not exist. In the

presence of the amalgamation property, the model companion is the model comple-

tion, in which the relationship between T and Tc is even stronger.

Note that, since existential quantifiers distribute over disjunctions, in any proof

of model-completeness it suffices to consider only primitive formulas (i.e., existen-

tial formulas whose quantifier-free part is a conjunction of atomic and negated

atomic formulas).

Special cases of existentially complete structures are the finitely generic and

infinitely generic ones. The infinitely generic ones are large in the sense that if 21 is

a model of T, there is an infinitely generic structure 93 containing 21 as a submodel.

If T enjoys the joint embedding property (the theory of abelian lattice-ordered

groups does since the direct sum of two abelian lattice-ordered groups is an abelian

lattice-ordered group), any two infinitely generic structures satisfy the same first

order sentences. This is all we will need about them. The finitely generic structures

on the other hand are small in the sense that if 21 Ç 93, 21 is existentially complete

in T and 93 is finitely generic, then 21 is finitely generic. This is why we might

expect "Archimedean" (if we could capture it first order for existentially complete

abelian lattice-ordered groups) to hold in finitely generic abelian lattice-ordered

groups but fail in the infinitely generic ones. Since our language is countable and

our theory enjoys the joint embedding property, we have that the finitely generic

structures are among the 7,-existentially complete structures that satisfy the com-

plete theory Tf. (Ts is the set of sentences <j> of £ such that 011—i -></>. Let C be a

countable set of constants not occurring in £. A finite set p of basic sentences

(atomic or negated atomic) of £(C) is called a condition if T (j p is consistent. If p

is a condition and r> is a sentence of £(C),p lh <f>. (p forces </>) is defined inductively:

for <b atomic, if <f> e p; for &, or, 3 do the obvious; but pi h -¡\(/ if no condition

q D p forces \p.)

A final comment on notation: we shall use the same symbol to denote an

elementary class and the first order theory of that class.

If this review has been inadequate, see the appendix (The Lazy Algebraist's

Guide to Model-theoretic Forcing) to our article [9], G. Cherlin's book [2], or J.
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Hirschfeld and W. H. Wheeler's book [10]. This last is very complete and thorough.

1. Proof of Theorem B. Let G be an abelian group and < a partial order on G. G

is a.partially ordered group (with respect to <) if G satisfies:

VjcVy Vz(jc < y —> x + z < y + z).

If G is a partially ordered group and < is a lattice (total) order, then G is said to be

a lattice-ordered group (totally ordered group) or l-group (o-group). The monotonic-

ity of the group operation implies that it distributes over the lattice operations:

(xyy) + z = (x + z)v(y + *)

and dually. If G is an /-group, the lattice is distributive.

We will use V and A for the supremum and infimum (lattice) operations and

reserve or, W and &, /y\ for disjunctions and conjunctions respectively. The

following facts are part of the folklore of the subject (Lemmas 1 and 2 do not need

the abelian hypothesis).

Lemma I. If G is an abelian l-group, then G is torsion-free.

Proof. A straightforward induction shows

n(gVO) = ng\y(n- l)g V •

Hence ng = 0 implies

«UV0) = (#i- l)g V • • V0 = (/i

Thus g V 0 = 0. Similarly, gA0 = 0sog = 0.

Lemma 2. // G is an abelian l-group and g /\ f = 0, then g /\ nf = 0 for all

positive integers n.

Proof. By induction on n. If x = g /\ (n + 1)/, then x > 0 and x - f < g, nf so

x — f < 0. Hence x < /, g so x < 0.

Lemma 3. If G is an abelian l-group (o-group), then there is a unique way to extend

the order on G to G, the divisible closure of G. With this inherited order, G is an

l-group (o-group).

Proof. For each x G G, there is a positive integer n such that nx E. G. Define

x > 0 in G if and only if nx > 0 in G, and x > y in G if and only if x — y > 0 (in

G). It is easily verified that this order fulfills the promises of the lemma.

For the sake of completeness, and because of its simplicity, we include a sketch

of the proof of Theorem A. Since the two theories are model consistent and since

the theory of abelian totally ordered groups has the amalgamation property [14], it

suffices to prove model completeness of the theory of divisible abelian totally

ordered groups. Since all abelian lattice-ordered groups are torsion-free, then this

theory can be transformed into a universal theory by adjoining to the language

unary functions, one for each rational number q, whose actions are multiplication

by these rationals. The expert model theorist knows that, in a universal theory, the

proof of model completeness can be reduced to the consideration of existential

formulae of one quantified variable. Therefore it suffices to prove: If A and B are

vo.

1)(«V0).
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divisible abelian totally ordered groups, A Q B, a G A, and 3x<j>(x, a) is a primi-

tive formula satisfiable in B, then it is satisfiable in A.

Observe that, in totally ordered groups, lattice operations are trivial, so nothing

changes if we express <i> in terms of equations and inequalities. Using the usual laws

for inequalities, we can assume that <i> is a conjunction of disjunctions of equations

and inequalities of one of the forms x < a, a < x, x < a, a <x, x = a (note that

the new unary functions allow operations like replacing 2x < a by x < a/2) and

therefore the set of all solutions, in B, of <|>(x, a) is simply an interval with

endpoints in A. Since A is divisible, it is dense, and therefore, the nonemptiness of

this solution set in B implies its nonemptiness in A. Therefore <>(x, a) is satisfiable

in A. This completes the sketch of the proof of Theorem A.

If G, H are abelian /-groups, G © H will always get the order: (gx, hx) > (g2, h2)

if and only if gx > g2 (in G) and hx > h2 (in H), unless otherwise stated. G © H is

then an abelian /-group. We order 2,e/G, similarly, even when / is infinite. If each

G¡ is an abelian /-group, so is 2I(E/G,, the V and /\ operations being pointwise.

Let G be an abelian lattice-ordered group. A subgroup M of G which is also a

sublattice is called an l-subgroup. M is convex if a < x < b and a, b G M imply

x G M. The convex /-subgroups of G (called solid subgroups by Bigard et al. [1])

are precisely the kernels of homomorphisms from G.

A convex /-subgroup F of G is said to he prime if G/ P is a totally ordered group

(in the inherited order). Prime subgroups abound. One way to obtain them is as

follows: Let 0 ^ g G G. Then any convex /-subgroup which is maximal with

respect to not containing g (existence by Zorn's lemma) is a prime subgroup. If we

choose one such prime subgroup, P , for each 0 ¥= g G G, we obtain a map of G

into n{G/Pg: 0 ¥= g G G}. Each G/Pg is an abelian totally ordered group and

since g G P , this map is an embedding. Hence G is realized as a subdirect product

of abelian totally ordered groups. The proof of Corollary C now follows once we

have proved Theorem B. If G is an /-subgroup of an abelian lattice-ordered group

H, then G n Q is a prime subgroup of G whenever Q is a prime subgroup of H;

moreover, all prime subgroups of G are obtained in this way. For details, and for

other basic facts about lattice-ordered groups, see [1].

Let 6E be the class of abelian /-groups.

Proposition 4. If G G éE is a direct sum of divisible abelian o-groups, then G is

algebraically closed in &, but not existentially complete in &.

Proof. Let G = 2,e/G, with each G, a divisible o-group. Let Pj = 2,^G,.

Clearly Pj is prime (G/Pj — G-). Let <i>(x, g) be a conjunction of atomic formulae in

£(G), with g G G and let G Q H G & so that H N r>(h, g). By the introductory

remarks, there are prime subgroups Qj of H such that Pj, = G n Qr But G/Pj is

canonically embedded in H/Qj via the second isomorphism theorem (G/Pj =

G/Qj n G = <G, Qj}/Qj Q H/Qj) and by Theorem A is existentially complete in

H/Qj. Thus G/Pj 1= 3x<p(x, g + Pf). Let f, be a solution in Gp chosen to be 0 if

g G Pj. Hence f = (tj)jel G G and G ^<f>(f, g)- Thus G is algebraically closed.

Existential completeness fails as follows: Let H = G © G. If G is embedded in H
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via x h> (x, x) then G Ç H. If / = (g, g) for 0 < g G G, then H t= 3x3y(x A y =

0&x+y=/f&0<x&0<>') but this sentence is not satisfied in G.

In particular, 2. (the rationals) is algebraically closed but not existentially

complete.

A positive element g of an abelian /-group G is said to be basic if {h G G|

0 < h < g) is totally ordered. Since every abelian lattice-ordered group is a

subdirect product of totally ordered groups (namely G < U{G/P\P a prime

subgroup}) then the proof of Proposition 4 shows the first part of the next

corollary. The second part follows from the embedding G ^ G.

Corollary 5. If G is an existentially complete abelian lattice-ordered group, then

G has no basic elements and is divisible. Consequently G is existentially complete in

the class of torsion-free abelian groups.

Let G G & and 0 < h G G. The convex /-subgroup of G generated by h is

denoted by G(h). G(h) = {/ G G: -nh < / < nh for some positive integer «}. We

now seek a first order sentence which is equivalent to / G G(h) when interpreted in

any existentially complete member of &. Let 0<g,A G G G ft,g splits over h if

3x03xx(x0 + xx = g & x0 A xx = 0 & x0 t^ 0 & xx ^ 0 & x0 A h = 0),

i.e., g can be written as the sum of two strictly positive disjoint elements one of

which is disjoint from h.

Lemma 6. Let 0 < g, h G G G &. Then g G G(h) if and only if there is H G &

such that G C H and g splits over h in H.

Proof. If g G G(h), choose a convex /-subgroup P of G maximal with respect to

containing G(h) but not g. Then P is a prime subgroup of G and H = G © G/P

G &. /-embed G in H via/(-»(/,/ + P). g splits over h in H (take jc0 = (g, P) and

x, = (0, g + P) ¥= 0 since g $ P).

Conversely, if g G G(h) and g splits over h, let f0, /, > 0 be such that /0 A h = 0

= /0A/i and /0 + /, = g. Now g < nh for some positive integer «. Hence 0 </0

= /o A g < /o A "A = 0 by Lemma 2. This contradiction completes the proof of

Lemma 6.

Corollary 7. Let 0 < g, /i G G G 6B. If G is existentially complete in &, then

g G G(h) if and only if g fails to split over h in G.

Proof of Theorem B, Part 1. Let G be existentially complete in S, % be a

nonprincipal ultrafilter on w and H = YIG/6^. To show 62 has no model compa-

nion, it is enough to prove that H is not existentially complete in &. Let

0 < g G G, and let /~ h~ G H be defined by f~ = (g, 2g, 3g, . . . )~, h~ =

(g> g> g> ■ ■ ■)■ f~ faus to split over A~ since it fails to do so at every coordinate,

but /~ G H(h~) since % is nonprincipal. Hence, by Corollary 7, H is not

existentially complete. So 6£ has no model companion.

Proof of Theorem B, Parts 2 and 3. Recall that G G 6E is Archimedean if

VxoVjc,! A\ (h*o < *i) -> *o < °)-
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This is equivalent to Vx0Vx,(x0 > 0 -* (3x2)(x2 G G(x0) & x2 ^ x,)) Replacing

x2 G G(x0) by "x2 fails to split over x0," we obtain a first order sentence <}> which,

by Corollary 7, is V3V and is equivalent, in existentially complete structures, to the

Archimedean property. Specifically, <j> is

Vx0Vxt3x2Vx3Vx4(x0 ^> 0 or [x2 ^ xx & (0 <f x3 or 0 <£ x4 or

*3 A -«4 ̂  0 or x3 + x4 =£ x2 or x3 /\ x0 ¥= Ö)]).

The proof of part 3 requires finding an Archimedean, existentially complete

abelian /-group, which we now proceed to do.

Let X be a topological space which is Hausdorff, not compact, perfect (no

isolated points) and has a basis of compact clopen sets (e.g., AT is a disjoint union of

a countable number of Cantor sets). Endow R with the discrete topology and

consider C(X, R), the collection of continuous real valued functions from X into R

having compact support. C(X, R) is an abelian lattice-ordered group under addi-

tion of functions and the pointwise order (/ < g if and only if f(x) < g(x) for all

x G X).

Note that C(X, R) is Archimedean.

Theorem 8. C(X, R) is existentially complete in 62.

Proof. Let / G C = C(X, R) and S(f) = {x G X: f(x) j- 0}. Then S(f) is

compact and equals U^er/'W- Hence S(f) = UjLi/^Oi) f°r some

rx, . . . , rn G R so/has finite range.

If P is a prime subgroup of C and P ^ C, let T he a finite subset of C+\p =

{/ G C\P:f > 0}. Then A^ > 0. (If /\T = 0 G P, then min{P + t: t G T) =

P; i.e., some t G T belongs to P.) Hence r\geTS(g) ^ 0. So r\gec*^ps(g) ^ &■

If x G n ge=c+N/"S(g), then clearly ^Ç? where Px = {/ G C:/(x) = 0}._But ¿^

is a maximal prime subgroup of C (see [1]) so the only prime subgroups of C are C

and Px (x G X).

Now let g G C, // G 62 and C Ç // N 3u<|>(u, g), a primitive formula. <b(u, g) is

equivalent to /Y\Í-¿w<<«, g) = 0 & AA'-^u, g) * 0. Let i|/(u, g) be

A\ -:>,(u, g) = 0 and 0,.(u, g) be ^(u, g) & w,(u, g) *= 0 (s < i < t). Note that

\p(u, g) is a positive formula.

(I) Let V be any compact open set on which g is constant. Then there is r G R

such that R t= \p(r, g(x)) for all x G V.

(II) For s < i < /, there is a nonempty compact open set A', and r'(/) G R such

that g is constant on X¡ and R N 0,(r'(/), g(x)) for all x G X¡.

To prove (I), let x G V and £? be prime in H such that Q n C = Px. Then

R = C/Px = C/C nö=(ö, C>/ß C H/Q Y 3u^(u, g(x)) where g + Q is

identified with g(x) in the indicated way. By Theorem A, there is an r G R such

that R N \¡/(r, g(x)). Since g is constant on V, this choice of r G R will work

throughout V.

To prove (II), let h G H be such that H 1= 9¡(h, g). Let Cjbea convex /-subgroup

of H maximal with respect to not containing >v,(h, g). Then Q is prime, so

Q n C = Px for some xGXor(2nC=C. Note ///ß N 0,(b + Q, g + Ô). In
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the first case, the proof continues the same as (I), since R s C/Px Q H/Q h

3u0,(u, g(x)); X¡ is any compact open set containing x on which g is constant. In

the second case, Q D C so H/Q N 0,.(h + Q, Q). Now R © H/Q N 3u0,(u, 0) and

again we have by Theorem A that R t= 3u#,(u, 0) (see two paragraphs hence for the

definition of ffi). Pick X¡ any nonempty compact open set disjoint from 5(g) =

(x G X: g(x) =£ 0} (S(g) is a finite union of compact sets S(g) so is compact,

whereas X is not; hence X¡ exists). Then R1= 0,(r'(')> g(x)) for some r'(i) G R (all

x G X¡). This proves (II).

Now for s < i < t, let X¡, r'(i) he given by (II). By the perfectness of X, we may

assume X, n X}, = 0 if i =^y. Let F = 5(g) and let Vx, . . . , Vk he a partition of

F\ U ,'=i-ï, into compact open sets on each of which g is constant. By (I),

R 1= ip(r(i), g(x)) on V¡ for some r(i) G R (1 < / < k). Let

f-ír(«)cKi+¿r'(0^   where cK(x)={¿    j|* | £

Then f G C and C b <f>(f, g), so C is existentially complete in 62. This completes the

proof of Theorem 8.

Proof of Theorem B, Part 3. Here <> stands for the sentence constructed in the

proof of part 2. Consider the group Z © Z (Z the group of integers) ordered by:

(a, b) < (c, d) if and only if a < c or (a = c & b < d), the lexicographic ordering.

Denote this o-group by Z ©Z. «(0, 1) < (1, 0) for all positive integers n, yet

(0, 1) > 0. Hence if G is existentially complete in 62 and G D Z ©Z, G b -i<í>. In

particular, choose such a G infinitely generic. Since 62 clearly satisfies the joint

embedding property (A ® B El 62 if A, B G 62), all infinitely generic models satisfy
-,$.

To complete the proof of the theorem, we must show 011= —■ —■ <#>_ Throughout this

paragraph, recall that -i<f> was an attempt to capture (3x0 > 0)(3x, > 0)(Vx2)

(x2 G G(x0)-»x2 < x,). If 0 does not force -1 -,<j>, there are c0, c, G C and a

condition p D {c0 > 0, c,>0} such that

pit (Vx2)[x2 < c, or (3x3 > 0)(3x4 > 0)(x3 + x4 = x2 & x3 A xA = 0

&x3 A c0 = 0)].

Let 9 = 3x AA P(x) where p(x) is obtained from p by replacing each constant by

a corresponding variable. Note that 9 is existential. Since p is consistent, K t= 9 for

some A' G 62. Hence AT © ¿X*, R) N 9. By Theorem 8, JXX, R) N 0. Since CCA", R)

is Archimedean, there is a positive integer « such that C(X, R) N 3x(A\p(x) & nx0

4 *i)- Hence p u {«c0 ^ c,} is consistent. Let c2 be a constant not occurring in p.

Then q = p u {«c0 ^ c,, c2 = nc0} is a condition extending p, so there is a

condition r D 9 such that rib c2 < c, or (3x3 > 0)(3x4 > 0)(x3 /\ x4 = 0 & x3 +

x4 = c2& x3 /\c0 = 0). Thus r D {«c0 ^ c,, c2 = «c0, c2 < c,} or r D {nc0 «f c„

c2 = nc0, c3 > 0, c4 > 0, c3 /\c4= 0, c3 + c4 = c2, c3 A c0 = 0} for some c3,

c4 G C. The first is clearly impossible since r is consistent and the second yields

c3Ac0 = 0 and 0 < c3 = c3 /\ c2 = c3 /\ «c0, contradicting Lemma 2. Hence, if G

is finitely generic, G N «J> and G is accordingly Archimedean.
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G G 62 is said to be hyperarchimedean if every /-homomorphic image of G is

Archimedean. It is a stronger condition than Archimedean (the full Cartesian

product of an infinite number of copies of R is Archimedean but not hyperarchi-

medean since the quotient by the direct sum is not Archimedean). It is equivalent

to each of (i) For every 0</,g£ G £ ft, there is a positive integer n such that

nf A g = (n + 1)/A g; (Ü) For every 0 </, g G G G 62, there are g0, g, G G

such that g = go + g\, go e G(f) and g, A / = 0 (see [1]). Using these facts and

the fact that C(X, R) is hyperarchimedean, it is straightforward to prove that any

finitely generic abelian lattice-ordered group is hyperarchimedean (use (ii) and

Corollary 7 to get a sentence 9 which when interpreted in existentially complete

models says hyperarchimedean). The details are included in [9].

We know of no example of an 62-existentially complete model that is Archi-

medean but not hyperarchimedean. Also we would like to distinguish the finitely

generic models among the hyperarchimedean existentially complete models of 62.

See [19] for a parallel in nilpotent class 2 groups.

We conclude this portion of the paper with the following fact:

Proposition 9. There are 2"° countable pairwise nonisomorphic existentially com-

plete abelian lattice-ordered groups.

Proof. Let A he any set of 2"° mutually algebraically independent irrational

numbers, and consider, for each a G A, Z © Za ordered as a subgroup of R. We

claim that these subgroups are mutually nonisomorphic. Suppose Z ® Za s Z 6

Zo via the isomorphism 9. It is well known that any isomorphism between ordered

subgroups of R is realized by multiplication by some positive r£R. Thus 19 = 1 r

= m + nb and p + qb = a9 = ar = a(m + nb) for some m, n,p, q G Z. But this

implies algebraic dependence of a and b. Thus there are 2"° pairwise nonisomor-

phic 2-generator abelian lattice-ordered groups. Hence any countable abelian

lattice-ordered group can accomodate only countably many of these groups. Since

every countable abelian lattice-ordered group is contained in a countable existen-

tially complete abelian lattice-ordered group, the proposition follows.

It is interesting to note that one can display 2*° such groups. Let J be a

countable disjoint union of Cantor sets. X has a countable Boolean algebra <& of

clopen sets. For each a G A let Ga be the /-subgroup of C(X, S © Q,a) consisting

of those/for which/"'(/•) G 'S for all r. It is easy to show that Ga » Gb if and only

if 2 © Sa s S © So (as ordered subgroups of R) and a repetition of the proof of

Theorem 8 shows that Ga is e.c.

2. Discrete /-groups. We now turn to some companionable theories. The theories

under consideration all involve a distinguished "unit" 1, named by a new constant

adjoined to the language of abelian lattice-ordered groups. Consequently any

homomorphism must preserve this unit.

An abelian o-groups is discrete if it has a smallest positive element-equivalently,

if it has a smallest convex subgroup isomorphic to Z. We shall identify this convex

subgroup with Z. Let ty denote the theory of discrete abelian o-groups: we need
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only adjoin to the theory of abelian o-groups the axiom stating that 1 is the smallest

positive element. We call 1 the unit of the group.

A discrete abelian o-group is said to be regularly discrete if | G/pG | = p for every

prime number p. The class 6D* of regularly discrete abelian o-groups is elementary

(say that, for each prime p, every element is congruent modulo p to one of

0, 1, . . . ,p — 1). Robinson and Zakon [16] showed that 6D* is complete and

model-complete, and Conrad [4] observed that G is regularly discrete if and only if

G/Z is divisible (G abelian).

Theorem 10. 6D* is the model companion, but not the model completion, of ty.

The proof follows from the next two lemmas.

Lemma 11. Every discrete abelian o-group is embeddable in a regularly discrete

abelian o-group.

Proof. It suffices to prove the following: If G b ty, g G G and p is a prime

number, then G is embeddable in some H b ^D in which g is congruent modulo p to

one of 0, 1, 2, ... ,p — 1. For each i, 0 < i <p, let H¡ he the subgroup of the

divisible hull of G generated by G together with (g — i)/p. It will suffice to show

that 1 remains the smallest positive element of some H¡. If not, each H¡ contains an

element strictly between 0 and 1. But there are only p — 1 such elements in the

divisible hull of G; hence two of them are equal. Thus there are integers /,/, n¡, nj

such that 0 < «, < p, 0 < n, < p, 0 < i <j <p and there are g,, gj, G G such that

g¡ + "¿g - i)/P = gj + nj(g -j)/p,

whence, in G,

("j - n¡)g + n¡' - nj = 0   (modp).

Now n¡ and n, are necessarily distinct, so n¡ — n^ is relatively prime to p. By

elementary number theory, this implies that, in G,

g = /•(«,/- nj)    (modp)

for some integer r and hence g = i0 (modp) for some 0 < z'0 <p. Thus we simply

set G = H.

Lemma 12. ty does not have the amalgamation property.

Proof. Let G be the subgroup of 2 © 2 generated by {(k/pk, \/pk): pk is the

A:th prime number). G is discrete with smallest positive element 1 = (0, 1) =

3(2/3, 1/3) - 2(1/2, 1/2) [5, p. 4.9]. Let a = (1/2, 1/2), and let H and K be the
subgroups of 2 © 2 generated by adjoining to G respectively a/2 and (a — l)/2.

H and K are discrete with smallest positive element 1; if, for example, this were

false for H then (0, 1/2) G H, since 2H C G. This implies that

(0, 1/2) = ma/2 + 2 mk(k/pk, \/pk)
k

for some finite collection of integers m, mx, m2, .... Setting second components

equal results in the equation
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(2 - m) UP* = 4^] mk II P,
k k i#*

whence m is even. But this puts (0, 1 /2) G G, a contradiction.

Therefore the inclusion maps G —» //, G —» AT are embeddings, but this amalgam

cannot be completed in ^. For if it were, then, in the amalgamating group, both a

and a — 1 would be divisible by 2, which is impossible.

Our next example exploits the extremely strong parallels between the class of

subdirect products of discrete o-groups and the class of semiprime commutative

rings with identity. Indeed, these results were inspired by reading the ring-theoretic

results of Lipshitz and Saracino [11], and later Macintyre [12] and Dauns-Hoff-

mann [6]. We present a generalization of Macintyre's result and show how it can be

applied to the above class of lattice-ordered groups. See Remark 5 in §3 for

comments on the relation between these results and the existing literature; also the

footnote to Theorem 21.

Let ty £ be the class of subdirect products of discrete abelian o-groups. Such

groups are /-groups under pointwise order, so we consider ty £ within the language

of /-groups with new constant 1 (call such abelian /-groups discrete). It is well

known that ty £ is an elementary class, being axiomatized by the set of all

universal Horn consequences of ty. But here an explicit axiom set can be dis-

played. First some preliminaries from the theory of /-groups, all of which can be

found in [1].

Let G be an abelian /-group. An element m G G is a weak order-unit if u /\ x = 0

only when x = 0, and s G G is singular if 0 < 5 and 0 < x < s always implies

x A (s - x) • 0.

Lemma 13. (1) A weak order-unit is a member of no minimal prime subgroup.

(2) Every prime subgroup P not containing a given singular element s is minimal; in

this case G/P is a discrete ordered group with unit s + P.

Proof. Proposition 3.4.13 of [1] states that if u is a member of a prime subgroup

P then x A " = 0 for some x G P, hence u cannot be a weak order unit. Part 2

follows from Proposition 11.2.8 and Corollary 11.2.11 of [1].

It is important to observe that, in a subdirect product of discrete ordered groups,

singular elements are precisely the functions taking only 0 or 1 as values.

Proposition 14. ty £ is axiomatized by the axioms for abelian l-groups, together

with the formula stating that 1 is a singular, weak order-unit.

Proof. If G G ty £ then the interpretation of 1 in G must be singular and a

weak order-unit. Conversely, Lemma 13 shows that the representation G <

U{G/P: P a minimal prime subgroup} puts G G ty £.

Let ty £* be the theory got by adjoining to ty £ the axioms:

(1) There are no minimal singular elements;

(2) For each prime number p, G is divisible byp modulo the singular elements of

G; more precisely, every element is congruent modp to a sum of at mostp singular

elements;
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(3) For every positive g and singular s there are x, y such that g = x + y,

x/\y = 0, x/\s = 0, andy /\(l — s) = 0. (Terminology: g splits over s.)

Axiom (2) implies that models of ty £ * are subdirect products of regularly

discrete abelian o-groups. From this viewpoint, axiom (3) says that for every

positive g and singular s there is some_y equal to g on those factors where s it I,

and equal to 0 elsewhere.

Theorem 15. ty £* is the model companion but not the model completion of ty£.

The latter is a consequence of Lemma 12, which also shows that ty £ does not

have the amalgamation property.

Model consistency follows from the easily proven fact that C(X, D)t tyft*,

where C(X, D) is the /-group of continuous functions from a compact, totally

disconnected, Hausdorff space X without isolated points to a regularly discrete

abelian o-group D (where D is furnished with the discrete topology). If G b ty £,

G < T1G/P where P ranges over all minimal prime subgroups of G. For each P

embed G/P in a regularly discrete ordered group Dp. We have then G < HG/P

< H Dp < HC(X, Dp) for X as above. Since ty£* is evidently preserved under

products, model-consistency is proven.

Model-completeness can be proved either by the Lipshitz-Saracino method as

given by Cherlin [2] or by Macintyre's sheaf-theoretic attack [12]. We employ the

latter and now give the relevant definitions.2

Let £ be a first-order language. To simplify the definition, we assume that £ has

no relation symbols. A sheaf of £ -structures is a triple (S,ir, X} where

(i) 5 and X are topological spaces;

(ii) w maps 5 onto X so that each point in 5 has a neighborhood which is

mapped homeomorphically onto an open set in X;

(iii) each "stalk" Sx = w~'(x) is an £-structure on which the operations of £ are

continuous relative to the topology of 5;

(iv) for each constant a of £ the function â assigning to each x the interpretation

of a in Sx is continuous.

A section of a sheaf is any continuous /: X -h> S for which it ° f is the identity on

X. The set of all sections is an £-structure, under the obvious pointwise operations,

and is denoted by T(X, 5).

2Since submitting this paper, it has come to our attention that the model-completeness of ^ ß * can be

deduced directly from our Lemma 20 and results appearing in the existing literature. Specifically, if

\x\-xV (-*) and x(x,y) - \x - y\ A 1, then r(x,y, z, w) = l\w - z\ A (1 - x(x,y))] V l\*> - *| A

X(*>>0] = 0 is a discriminator formula for discrete o-groups so Th(<2) is model-complete (where S is the

class of all sections T(X, S) as X ranges over compact, totally disconnected Hausdorff spaces without

isolated points and S ranges over sheaves of members of fy *. (See §10 of Stanley Burns and Heinrich

Werner, Sheaf constructions and their elementary properties, Trans. Amer. Math. Soc. 248 (1979),

269-309, for the relevant definition and proof.)) Alternatively, a proof that Th(6) is model-complete can

be given along the same lines as V. Weispfenning, Model theory of lattice products, Habilitationschrift,

Universität Heidelberg, 1978 (§§7.11-7.13) by replacing divisible ordered abelian groups as a stalk

theory by regular discrete abelian o-groups and letting the weak projector of a be a ~= 1 - (|a| A !)• We

are most grateful to the authors for pointing this out to us and have retained our original approach only

for those who wish for a more mundane one.
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Call Th(r(5, A')) the section theory and Th({5jx G *}) the stalk theory of the

sheaf.

Macintyre gave an answer to the question: If the stalk theory is model-complete,

under what conditions is the section theory model-complete? His conditions

involve the theory of rings. Comer [3] provided more general conditions; but

neither of these fits our situation. However, a careful reading of the proof of

Macintyre's Theorem 2 [12] shows it to be true in a much more general context,

displayed below.

A theory is positively model-complete if it is model-complete and every existential

formula is equivalent to a positive existential formula.

Let (5,m, X) he a sheaf of £-structures. For a formula <b(v) and f G T(X, 5)

define

^(f) = {xGX|5xb<i>(f(x))}.

Consider the following conditions:

(A) J is a compact, totally disconnected Hausdorff space without isolated

points;

(B) The stalk theory is positively model-complete;

(C) There is a 1-1 correspondence d )-* Qd between some A Ç T(X, 5) and the set

of all clopen subsets of X;

(D) There is an existential formula A(t>) defining A in T(X, 5).

(E) There are existential 0„(t>o, . . ., vn), ty(v), and 4>(m, v, w) such that in the

section theory for all d, d G A and all /, g G IX*, S), 9„(d), ty(d), and 4>(/, g, d)

hold respectively if and only if X = <Sd<¡ u • • • UÖ^,  ®d ¥= 0, and / \ <Sd =

«re,/.

Theorem 16. If the stalk theory is model-complete and (A)-(E) hold, then the

section theory is model-complete.

The proof is the appropriate modification of the proof of Macintyre's Theorem 3

and is obvious. Macintyre's Theorem 2 can also be adapted to this situation:

Theorem 17. Suppose £ has relation symbols. If the stalk theory is complete and

model-complete and (A)-(E) hold, provided that ty is quantifier-free, then the section

theory is model-complete.

Macintyre's Theorems 4 and 5 also generalize. We state the one we will use, his

Theorem 5, which follows immediately from Theorem 16.

Theorem 18. Let T be a positively model-complete theory. Let Q be the class of all

T(X, S) where S is a sheaf of models of T, and X is a compact, totally disconnected

Hausdorff space without isolated points. If there are existential A, 9n, ty, and 0

satisfying (D) and (E) for all T(X, 5) G 6, then Th(6) is model-complete.

Corollary 19. // T is the theory of regularly discrete abelian o-groups (in the

language with 0,1, + , V» A) then Th(6) is model-complete.
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Proof. First, T is positively model-complete since, modulo T, a ¥= b is equiva-

lent to \a — b\ A 1 = 1 (where |x| = x V -*)• For (C) let A be the set of all

singular elements of T(X, S), the correspondence being given by s i-> (x|j(x) = 1}.

For (D) let A(ü) be v A (1 - v) = 0, and for (E) let @n(v0, . . . , v„) he 1 = V"_0Ü,>

let ty(v) be v ^ 0, and let <&(m, v, w) be \u - v\ A w = 0.

The proof of Theorem 15 is finished once we show that ty £* = Th((3). Clearly,

Th(6) <Z ty £* so it remains to prove

Lemma 20. Every G G ty £ * is isomorphic to the lattice-ordered group of sections

of some sheaf <5, tt, X ) of regularly discrete abelian o-groups for X as above.

The proof is the analogue of Dauns and Hoffmann [6], outlined as follows:

M(G), the set of all minimal prime subgroups of G, when endowed with the

hull-kernel topology (i.e., the basic open sets are 0g = {P G M(G): g G P})

becomes a compact totally disconnected Hausdorff space without isolated points;

in fact every 6g is clopen. We define S(G) to be the union of all G/P, P G M(G)

and define tt: 5(G) —» M(G) in the obvious way. Let g r^> g denote the canonical

map G -» U{G/P\P G M(G)}. Then the set {g(U): U clopen in X) is a basis for

a topology on S(G) making <5, it, Xs) into a sheaf of the desired kind, in which

g h» g is an isomorphism of G into T(X, 5). Furthermore, the clopen subsets of X

are in 1-1 correspondence with the singular elements, these being precisely the

characteristic functions of clopen sets. For any section / there are gx, . . . , g„ G G

and disjoint clopen Wx, . . . ,Wn covering X so that /| W¡ = g¡\ W¡. By the splitting

property (axiom 3 of ty £ *), we can assume g, is zero off W¡, whence / = g,

+ • • • + g„, and so G is all of T(X, S), as desired.

Inspecting the proof of Lemma 12, we observe that the failure of ty and ty £ to

have the amalgamation property follows from the failure of certain groups to be

divisible modulo their singular elements (i.e., axiom 2 fails). In fact, the reverse is

also true in a sense. Define <>D £' to be the theory ty £ with axiom 2 adjoined.

Theorem 21. ty * and Rty' have the amalgamation property, and therefore tyt* is

the model completion of tyft'.

Proof. Since models of R^' are subdirect products of regularly discrete o-

groups and conversely, it suffices to show that ty * has the amalgamation property.

Suppose G, H, K b ty * and G < H, G < K. Evidently G/Z < H/Z and G/Z <

K/Z. Since the theory of abelian o-groups has the amalgamation property [14],

there is an abelian o-group L and embeddings (forgetting about 1 temporarily) r/,:

H/Z-^L and r/2: A/Z-» L agreeing on G/Z. By Hahn's embedding theorem

there are embeddings H -* H/Z © 2 and K -» K/Z © 2 where one can assume

1 h>(0, 1). Let these embeddings be represented by h h»(h + Z, hox), /cH(t +

Z, ko2). Since G is a pure subgroup of H by model-completeness, H/G is

torsion-free and so can be totally ordered. Let M = L ffi H/ G © 2 and embed H

and Kin M via

Ah((/¡ + Z)r),, h + G, hox),        k h+((k + Z)tj2, 0, ko2).

One routinely verifies that these embeddings agree on G and that the subgroup of
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M generated by the images of H and K is discrete with unit (0, 0, 1), and hence the

amalgamation has taken place in ty. Since ty and ty* are mutually model

consistent, this finishes the proof.3

Corollary 22. ty £* is complete and decidable.

Proof. Since Z G ty £' and is canonically contained in every member of ty £*,

the amalgamation property for ty £' together with the mutual model consistency of

ty £' and ty £* imply that ty £* enjoys the joint embedding property. Since ty £*

is model-complete, this ensures that it is complete. It now follows that it is

decidable (since it is recursively axiomatizable).

Theorem 23. Neither ty* nor tylt* has elimination of quantifiers.

Proof. It is well known [13, Lemma 12] that this follows from ty* and ty£*

being model companions, but not model completions, of universal theories.

3. Remarks and conjectures. (1) Is every finitely generic abelian lattice-ordered

group a group of all real-valued functions with finite range? (Every hyperarchi-

medean /-group is a group of real-valued functions with finite range [1, Proposition

14.1.7].)

(2) Concerning the revised Wheeler conjecture: Theorem 15 shows that stability

is not necessary (which was known-see [13]).

(3) We want this conjecture to read: If T is companionable and . . . then TUH is

companionable. In light of Theorems 16-18 we wonder if there are syntactical

formulations of these sheaf-theoretic results which will make the conjecture true.

(4) In the class of existentially complete abelian lattice-ordered groups, is the

property "x G (7), the cyclic subgroup generated by.y" first-order-definable? We

have proven this true in the class of existentially complete (non-abelian) lattice-

ordered groups [9].

(5) § 10 of Burris and Werner (op. cit.) may well provide the correct framework to

answer (3) and (4). Theorems 15 and 21 are very similar to the results obtained by

Weispfenning (op. cit. or The model-completion of a class of lattice-ordered abelian

groups, Notices Amer. Math. Soc. 23 (1976), p. A-349, Abstract #76T-A75).
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