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A SPECTRAL SEQUENCE FOR GROUP PRESENTATIONS

WITH APPLICATIONS TO LINKS

BY

SELMA WANNA1

Abstract. A spectral sequence is associated with any presentation of a group G. It

turns out that this spectral sequence is independent of the chosen presentation. In

particular if G is the fundamental group of a link Lin Ä3 the spectral sequence

leads to invariants that compare to the Milnor invariants of L.

0. Introduction. Recently Stallings used the cobar construction of a resolution to

associate to each group G a 2nd quadrant spectral sequence Er_sl which is 0 for

s > t and which satisfies is" = IsG/Is+lG where IG is the fundamental ideal of

G [9]. Here we present a different construction with all the properties mentioned

above but with some advantages. First, it can be read off from any group

presentation. Second, is^, = 0 for t > s + 2. In Stallings' sequence one has no

information on those terms (and they are definitely not zero). Third, and most

important, the Er_ss and Er_s^+X terms are related to the Baer invariants of G [1].

This is better than the results in [5] which do depend upon the presentation while

ours do not.

We describe our sequence in § 1 ; in §2 we show that the sequence is intrinsically

defined by using the results of [4]. In §3 we apply our results to the theory of links

iniî3.

[The referee would like to thank J. Ratcliffe for pointing out to him the existence

of [4]. Thanks to it, the referee was able to improve some results and prove a

conjecture of the author's (the main theorem).]

1. The spectral sequence of a presentation.

(1.0) We shall consider complexes of algebras. A normal short complex is one

3

• • • —» A2 —* Ax —* A0, A

for which An = 0, n > 2, and 8 is a normal monomorphism (see [4, p. 225]). Then

we have an exact sequence

0 -h> AXX A0-^ H0(A) ->0.
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If A0 is a projective (resp. free) algebra, then A is called a projective (resp. free)

presentation of H0(A). We apply this to the case where our algebra is an integral

group ring.

(1.1) Let G be a group; then Gn stands for the nth member of its lower central

series [6, Chapter V, §9]. In particular G2 is the commutator subgroup and

G = G/G2 is the abelianization of G.

The ring ZG is the integral group ring of G with augmentation e: ZG -* Z. Let

IG = ker e; then I"G stands for the nth power of IG.

(1.2) Let now

<*, : 0> (p)
be the presentation [6, p. 205] for G. This means that we have a free group F in the

x¡ and that G = F/R, where R is the smallest normal subgroup of F generated by

{r,} C F. We write R = <r,.y\

Consider the 2-sided ideal N = (tj — 1) of ZF generated by the fj — Í. Then we

have a free presentation

O^N-XZF^ZG^O

of ZG. Since N C IF we may take the short complex [4, §2]

0-*/V-»iF J

(here Jq = 0, q > 2, Jx = N and J0 = IF), which is a free presentation of IG, via

the isomorphism H0(J) = IG, since IF is F-free [6, Chapter VT, Theorem 5-.5J. By-

Lemma 5.2 of [4], IF is a projective algebra.

J can be considered to be the augmentation kernel of the complex

0-^N^ZF C

and the powers Jp of J define a filtration F_pC «■ y on C. Notice that if we-defme

N(0) = N(\) = N   and

N(p) = N(l)Ip-iF + IFN(p - 1) = N(p - l)IF + IFN(p - 1) (1)

then Jp = N(p) 0 I"F.

(1.3) The filtration F induces a spectral sequence in the usual manner [6, Chapter

VIII, §2]. Since our filtration degree is negative, our sequence lies in the 2nd

quadrant and since Cq = 0, q > 2, then E'iss+k = 0 for k > 2, whereas

Er_ss = VF/ (ls+lF + N(s - r + 1) n I'F),       s > 0, (2)

and

Eis,s+i = (N(s) n Is+rF)/ (N(s + 1) n Is+rF),       s > 1. (3)

Definition (1.4) The spectral sequence E is called the spectral sequence of G

(associated to the presentation (P)).

2. The main theorem. Our main goal is to show that E depends only on G.

(2.1) Let then (P) be the presentation in (1.2) and let

<4 : r',} (Q)
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be another presentation. Put F' = (xk: > and R' = (r¡}F'; let £" be the spectral

sequence associated to (Q).

Lemma (2.2) If there exists an epimorphism <f>: F-*F' with <f>(i?) = R' then <j>

induces an isomorphism Q>: E —» E' of spectral sequences.

Main Theorem (2.3) If (P) and (Q) are any two presentations of the group G then

the corresponding spectral sequences are isomorphic.

This allows us to drop the parenthetical remark in Definition (1.4).

The theorem follows from (2.2) for there exists a presentation of G, (S):

(,ya : sß} where L = <_ya: > and S = (sß}L and epimorphisms xp: L -> F and \p':

L->F' with ,\,(S) = R and i(S') = R'.

(2.4) Now we proceed to prove (2.2). Let (7G)(i) be the s-fold tensor product of

IG over G. By [4, Lemma 5.2], (IG)(s) has a structure of G-module. We contend

that

£^//0(G,(7G)w) (4)

and

Els,s+x^Hx(G,(IGfs)). (5)

To show this we employ [4, Theorem 7.1]: J is a normal short complex (cf. [4, §2])

and H0(J) = 7G is a projective presentation of 7G. Notice that J0 = IF and by

formula (6.3) of [4], V'X(J) is defined by (1) and so VSX(J) = N(s). Then by formulae

(6.6) (loc. cit.),

Tor£((7G)w, Z) = VF/ (ls+lF + N(s))

and

Torf((/G)(i), Z) = (ls+lF n N(s))/N(s + 1)

which in view of (2) and (3) prove our claim. Now, if (P) and (Q) are presentations

and <>: F -> F' the epimorphism of the hypothesis, it induces an automorphism <j>'

of G and by [4, Lemma 5.2] an automorphism <i>w of (7G)(,). Then $'_sl: E\sl —»

E'_\t is an isomorphism for all /: for t = s and j+ 1 by (4) and (5) and for

t > s + 2 because both sides are trivial. The induced map is natural by definition

and it commutes with the differentials. By construction E2 = H(El,d') so that

3>: E2 —> E'2 is an isomorphism as well. By induction Er = E'r for all r.    Q.E.D.

(2.5) We proceed to describe the terms E^ and E\2: for Ex_s^ we employ (4)

H0(G, (7G)W) = [7G ®c • • - ®G 7G] ®c Z

= [/G®c- ■ • ®c IG] ®G (IG ®G Z)

where the first brackets enclose an 5-fold product and the second enclose an

(s - l)-fold product. By [6, Chapter VI, Lemma 4.1] IG ®GZ = G which is a
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trivial G-module. Thus

[7G®G--- ®G7G]<8>GG=[7G®G- • • ®G 7G] ®G (7G ®c G )

= [7G ®G • • • ®G 7G] <8>G (iG ®G (Z ®z G))

= [7G®G--- ] ®G ((7G ®G Z) <g>z G )

= [7G®G- • • ]®G(G®ZG).

By succesive applications of this we get

Lemma (2.6) E^ is the s-fold tensor product of G over Z.

Remark. In the notation of [4, §5], E^ = Gw.

Lemma (2.7) ElX2 = 772(G; Z).

Proof. £_!, 2 = 77,(G, 7G) = H2(G; Z) by [6, Chapter VI, Theorem 12.1].

(2.8) In our thesis we worked out an explicit isomorphism E\s¿ —* G(l) as follows:

G is naturally isomorphic to IF/(N + I2F). Consider

y: (IF/ (N + 72F))W -* VF/ (N(s) + Is+lF)

defined by

yO„-i) ® • • • ®(x-o) = n (*j - o + (M*) + /í+in
If q>l,,: (7F/Af + I2F)-*(IF'/N' + I2F') is the isomorphism defined by <f> (and

AT _ \r¡ - 1) C ZF') then

*U.Y - (*1,.,)('V.
Similarly, if A: F -» ZF is a map x h» x — 1 then « induces an isomorphism

(R n F2)/[F, R]^>(N n I2F)/N(2) and the former quotient is the well-known

Hopf formula for 772(G; Z) [6, p. 204]. We omit the proofs.

Proposition (2.9) E'^ = F_°^ = ISG/IS+XG.

Proof. Since ZG s ZF/7V, 7G = IF/N. Consider

0->       N       -*      IF     -4      7G     ->    0

T T Î

0     -4     kern     -»     7*F     -Í*     7*G     -»    0

where /i = /|7*F then ker /i = ker/ n 7T = JV n /*F. Hence

7*(G) =a 7JF/ (A7 n Is) at (N + ISF)/N.

By the Noetherian isomorphism theorem,

js+\F c jsp Es^ m VFj (jsF n N + /*+iF)

_7'F/ (7JF niv) _ 7JF/ (7'F n N)

(rp n /v + 7j+1f)/ (7*f nií)" 7í+1f/ (7*f n n n r+lF)

= _PFAFFnJV)_= +lG
r+lF/(r+lF n n)
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Lemma (2.10) If g is an element of Gn then g — 1 is an element in I"G for all

n > 1.

Theorem (2.11) Let E be the spectral sequence of the group T = G/Gq+X; q is any

integer > 1. Let E be the spectral sequence of G. Then

Er_„ at I'_r,   forl<r<q, (6)

F-* « Ë:s,s   forl<s<r<q. (7)

Proof. Statement (7) follows from (6) because

pr     ^ ^ c-i+l — c-i     —  Fi     — ir>+i —.  . .  — pr

To prove (6) it is enough to show that

IG/Ir+1G at IT/PT T   for r < ?.

The canonical epimorphism G -* G/Gq+X induces the ring epimorphism ZG—>

ZT. Define

<b: IG^IT/Ir+XT   byg - 1-^g'- 1 + 7r+1r,

where g' = gGq+,. Since <HF+ *G) = 7r+ 'r, </> induces the epimorphism

$:7G/7r+1G^7i77r+1r

given by

g-l + F+l(G)-^g'-l + Ir+lT. (8)

But g — 1 + Ir+XG generates IG/Ir+XG. Finally, we define an inverse to 3>. Define

^:IT-*IG/Ir+XG, g' - 1 ̂ g - 1 + 7r+1G,

where g' = gG?+1. The map \p is well defined, for if g' = h', then A = gw, where

w e G9+1, but gw — I = (g — l)(w — 1) + (g — 1) + (w — 1) and by Lemma

(2.10), w - 1 G 79+1G c 7r+1G, since r < q and (g - l)(w - 1) e 7?+2G c

7r+1G. Therefore, .//(«' - 1) = (gw - 1) + 7r+1G = (g - 1) + 7r+1G. Consider

the composite map, 7G —» 7T —» IG/Ir+XG, this is a ring homomorphism, and it

carries Ir+ XG -» Ir+XT -> 0. Therefore ip induces

^: IT/Ir+XT-^IG/Ir+XG.

But if»$=l and $°^= 1 ; hence the result.

Remarks. (1) In the course of the proof of Theorem (2.11) we have shown that

$:IG/InG^>IT/InT

where T = G/ Gn (see (8)).

(2) Let E he the sequence of G associated to the presentation (P) as defined in

(1.4), and let K he an Eilenberg-Mac Lane space of type (G, 1). If APK denotes the

p-fold smash product [9] of K with itself, then the formula Expq = Hq(ApK)

describes a spectral sequence E whose 1-skeleton is described in [5, §1] and [9, §3].

Since F_! is isomorphic to Ex and since F" is isomorphic to F", there is a

natural map Ex —> Ex. This map, however, is not monic because the terms E\pj)+k

(k > 2) are not zero while the corresponding terms in F are. The map, on the other

hand, is onto.
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3. Applications to links. Let 5,<n) be the space consisting of «-disjoint circles

Sx, ■ • • , Sn. Assume that fixed orientations have been chosen for S(n) and 7?3. By

an oriented n-link I in 7?3 is meant a homeomorphic image of S(n) in 7?3. Thus /

can be thought of as an ordered collection (/,, l2, . . . , ln) of homeomorphisms /,-:

S¡ —» 7?3; where the images Lx, L2, . . . , Ln of the /,'s are to be disjoint. Denote

Lx u L2 u • • • U Ln by L, and the fundamental group of the complement of L in

7?3, 77(7?3 — L, x0) by G(L), where x0 G 7?3 — L is a fixed chosen base point. Let

TV,, A^, . . . , Nn he solid tori chosen to be regular, disjoint neighborhoods of

Lx, L2, . . . , Ln respectively. Let p,(r) (0 < r < 1) be a path from the point x0 to a

point on the boundary of N¡. A meridian-longitude pair (a„ /j,-) for L is a pair of

elements of G(L) where:

(i) a, is represented by a closed loop in 7?3 — L described as follows: traverse p„

then traverse a closed loop on the boundary of N¡ — L, which has linking number

+ 1 with /, and finally return to x0 along p,;

(ii) ßi is represented by a closed loop in R3 — L described as follows: traverse p,,

then traverse a simple closed curve on the boundary of N¡ which has linking

number 0 with /, and which is nullhomologous in 7?3 — L¡, and finally return to x0

along p,.

The elements a¡, ßt of G(L) are well defined in G(L) up to the choice of p, and

the orientations chosen for 5(n) and 7?3. Any other ith meridian-longitude pair

(a[, /?/) for L is obtained from (a„ /J(.) by simultaneous conjugation, that is,

a'i = ga,g~x and ß{ = gßtg~x for some g G G(L).

Two links / and /' are said to be isotopic if there exists a continuous family ht:

5(n) —» 7?3 of homeomorphisms, for 0 < t < 1, with A0= / and hx = /'. The funda-

mental group G(L) of the complement of L in R3 is not invariant under isotopy of

the link. In 1952, K. T. Chen proved [2] that G(L)/Gq(L), where Gq(L) is the qth

lower central subgroup of G(L), is invariant under isotopy of the link for any arbitrary

posititive integer q. In 1957, Milnor gave [7] a presentation describing the group

G(L)/Gq(L) and defined the so-called Milnor invariants for a link.

It is known that: if G is the fundamental group of the complement of an n-link I in

R3 then G/G2 is free abelian of rank n.

In Theorem (2.11) we found that if E is the spectral sequence of G/Gs+X, s > 1,

and F is the spectral sequence of G that then Es_ss ̂  Es_sx In the light of the above

stated result of Chen we can conclude:

Theorem (3.1) Let G be the group of a certain n-link I. Let E be the spectral

sequence of G/Gs+X. Then Eiss is an isotopy invariant of the link I.

Let (au : ru} (i = 1, 2, . . . , n; j = 1, . . . , k¡) he a Wirtinger presentation for

G(L) (henceforth we shall write G for G(L)) where to each crossing point Qu of the

projection corresponds a relation rtJ = 1, rtJ = [bip aiJ\aiJa;x+x with htJ = a^(if)p(iJ),

(X(ij), fi(ij)) are given by the segment of L which crosses over at Qu, and e- = ± 1

is the signature of the crossing. Let Oy = [b^, au] and a,x = a,. Define

uiX = 1    and   u0 = vij_xviJ_2 ■ ■ ■ viX    (j = 2, 3, . . . , k¡) (9)
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and

"X = *Ä' • • • K 0°)
Then G may be presented by

<au : V */>    (' " U---. »J/ = 1, 2, . . . , /c,),

An = I.        hij = "y^'        0=2,..., /c,),

*,=[>, w,*]. (11)

Note, w/yt is an ith longitude of L in G. Thus ZG » ZF/N where F is the free

group on the a^s and A' is the ideal of ZF generated by hu — 1, s¡ — 1 (i =

1, . . . , n; j = 2, ... , &,). Since A,7 — 1 = (u,, — a^a^afi^j and a¡Oy is a unit of

ZF, N is generated as an ideal of ZF by

{«y - «^X!> *i - 1}        (/ = 1, . . . , «;   / = 2, . . . , A:,). (12)

Lemma (3.2) Let Nx be the ideal of ZF generated by {utJ — a^af1} (i = 1, . . . , n;

j = 2, . . . , k¡). Then

Nx n IV = Nx(s), (13)

where IF = ker(ZF-> Z),  Nx(l) = Nx, and Nx(s) = IFNx(s - 1) + Nx(s - \)IF

(s > 1).

Proof. The elements {u(j — a^a^1 + ^(2)} generate the Z-module Nx/Nx(2).

Moreover we shall show that {u¡j — a^af1 + Nx(2)} forms a basis for Nx/Nx(2).

Indeed, if for some integers niJy 2 n,Xttt, - a^a,"1) = 0 + Nx(2), where the summa-

tion is over ;' = I, . . . , n and j = 2, . . . , k¡. Then 2 "/,(«,, — OfjOf1) G Nx(2),

hence 2 fy(tty - auajx) G 72F. Thus

(9/8^)2 »ij{% - VT!)0) = °   (cf- [3D- (14)

But uu G F2, (9), hence «/y - 1 G 72, so, (d/easl)(u¡j - 1X1) = 0 and da,j/da„ = 0

if (i,j) =£ (s, t) and dasl/dasl = 1. Therefore,

(9/902«,>K - «,A')0) = (3/^)2 «y(^ - ' - Wt + 0(0

= S -^(3/3aJ()(a/,a,ri)(l)

= 2-*„(0/3«„H0) + <#!) + ̂ O/S^K'U))

Hence nsl = 0 (see (14)).

Thus the sequence of Z-modules

0 -* Nx(2) ^Nx^ Nx/Nx(2) -» 0,

is split exact.  Let M be the Z-submodule of Nx generated by  {u¡j — flMfy-1}

(/= 1, ...,«;/ = 2, ... , k,). Then Nx = M + Nx(2). Since

(3/3a„)(u„ - aija;x)(\) = -1,       utJ - a¡Jarx G 7F,

but not in 72F. So M n 72F = {0}, and

Nx n 72F = Nx(2). (15)
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But

and

Therefore

i-i

Ni(s + 1) = 2  I'FNffll'-'-V
i = i

j-i
nx(s) n is+xf= 2 i'f(nx n iF)r-'-xF.

(=0

i-1

#i0 + 0=2 i'f(nx n i2F)r-'-xF = #,(0 n 7j+1f. (16)
/ = 0

The proof of (13) follows from (15) by induction on s.

Let N2 he the ideal of ZF generated by {s¡, — 1} (/' = 1, . . ., n), then one can

write N = Nx + N2, Nx is the ZF-ideal generated by {utj — a^a^1} (i = 1, . . . , n;

j = 2, . . . , k¡) (see Lemma (3.2)).

Lemma (3.3) If s¡ - 1 is in ISF for i = 1, . . ., n, then

EirJ » F!"2 » • • • * £^ a ®* 7F/ (A/ + 72F).

Proof. By (2) and (3),

Er_ss = 7*F/ (A/(s - r + 1) n 7JF + 7i+1F).

Let t = s - r + I, then 2 < t < 5. Now N(t) = Nx(t) + N2(t), where N2 is the

ideal of ZF generated by s¡ - 1; hence N2 c IV. So, W(/) n /*F = N2(t) + Nx(t)

D ISF. But A^r) - A/, n IV (see (13)). Therefore Nx(t) n 7*F =JV,n 7*F. Since

N2 C IsF, N2(t) c 7i+1F Hence for 1 < r <s - 1, N(s — r + 1) n IV + Is+iF

= JV,n 7'F + 7i+'F = Nx(s) + IS + 1F; the last equality follows from (13). There-

fore

7*F/ (Nx(s) + 7* + 1F) at F!"1 at F!~2 z* - ■ ■ at E^at & IF/ (N + 12F).

Corollary (3.4) If s¡ - 1 is in ISF for (i=\,...,n) then FI„ (I < r < s - I)

is free abelian of rank ns.

Proof. This follows from the fact that G/G2 is free abelian of rank n, Lemma

(3.3) and the isomorphism I/N + I2 oí G/G2.

Next we shall describe a basis for Er_s¡s = IsF/(Nx(s) + Is+lF) (1 < r < s - 1).

Here again we assume that s¡ — 1 € IV, i = 1, . . ., n.

Recall that A', is the ideal of ZF generated by {utJ — a^af1} (i = I, 2, . . . , n;

j = 2,3, ..., kt). Let if,, - a0ar' and j& ■• a, - 1. Then

= (a,. - 1) - (a0. - 1) + («,, - 1) - (a¡J - l)(ar' -1) + (*r> -1).

Let ^ = (U¡J - 1) - (<%, - l)(ar" - 1) + (a, - \)(arl - 1). Then Wu G 72F.

Hence

«,, = 1 + X + Wij + V

«y1 = 1 - x, - ^ - V
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where W¡j = Wu + (au - l)(aul - 1) G 72Fandn,7 G AT,.

Since G at F/R, where Fis the free group on {a^y. i = 1, . . ., n;j = 1, . . ., k¡],

the set {(aixjt - \)(a¡2ji - 1) • • • (au - 1) + Nx(s) + P + lF] (ix, i2, ...,/,-

1, . . . , n and jx,j2, . . . ,js = 1, 2, . . . , k¡) generates IsF/(Nx(s) + Is+lF). Using

the equalities (17) one can write

II (aiJt - 1) + Nx(s) + P+lF = II X, + "M + IS+1F.
t=\ t=i

Thus,

{(ah-l)(ai2-l),...,(ait-l) + Nx(s) + r+V}

(/„ ...,is=l,...,n) (18)

forms a generating set of Is/(Nx(s) + Is+i). But there are ns elements in the set

(18); hence (18) forms a Z-basis for Is/(Nx(s) + Is+i) (see Corollary 3.4).

Consider the F1-1 term of the spectral sequence E,

, d-Tl , dir,1

""* a*-2A—M ~* ^-Ut ^-sj    ~*   r'-2s+\,2s-2 ~* ' '

where all terms of degree ^ 0, 1 of Fi_1 are zero. Therefore we have

""-~J dir i

O^Ei^^EtrJ^O.

Explicitly, we have

_» 0 -h> (N n IV)/ (N(2) n IV) ^ 7JF/ (7i+,F + N(2) n IV) 2 0,

where ds_x2 is induced from the inclusion A^ n 7iF —* IV. But

EU, at H(Ei;J) at ker dí;J/d^(EixJ)

_IV/(N(2) n IV + Is+lF)_

~ {N n 7*F + AT(2) n IV + Is+lF)/ (N(2) n IV + 7i+1F)

_7JF/ (AT(2) n 7*F + 7J+1F)_

~ (N n 7*F + Is+lF)/ (N(2) n 7*F + 7i+1F) '

since N(2) n IV c N n IV.

Theorem (3.5) 7/j, - 1 G IV (i = 1, 2, . . ., n), then

IV/ (Nx(s) + I°+lF)

(19)

'*•*      (N2 + Nx(s) + Is+lF)/ (Nx(s) + Is + lF)

where the set  {(at¡ - l)(a¡2 - 1) • • • (a^ - 1) + Nx(s) + Is + iF]  (ix, i2,

(20)

'- =
i+ij

1, . . . , «), gives a basis for IV/(Nx(s) + 7i+1F), and where the set (s¡ - 1) + Nx(s)

+ Is+i (i = 1, . . . , n), gives a basis for (N2 + Nx(s) + Is+lF)/(Nx(s) + Is+lF).

Proof. Since s, -1G IV, N2 c IV. Hence N n IV - Nx n IV + N2 = Nx(s)

+ N2 (see (13)). Also since N(2) = Nx(2) + N2(2) and AT2(2) C 7i+1F, it follows

that

N(2) n 7JF = AT,(2) n 7*F = Nx n 72F n 7*F = A7, n 7*F = Nx(s).
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Substituing these equalities in (19) we get (20). The rest of Theorem (3.5) is clear.

Since

s¡ - 1 =[a„ wik] - 1 = (a¡wik¡ - wik¡a^arlwrk)

= ((«, - OK - 0 - K - Ote - 0K'<-
Hence N2 may be thought of as being generated by {x,-(w,vt — 0 — (w¡k¡ ~ 0x,:

i - 1,.. ., «}. Thus, as a Z-module, (A/'2 + Ar,(¿) + 7i+1F)/(Ar,(i) + 7i+1F) is

generated by {*(>«. - 1) - (w«. - l)x, + 7V,(j) + 7Î+1F).

A simple computation shows that for any «-link,

*, - i = 2 KuMxn - w) + tfiO) + /3F
7-1

where ¡i(i,j) is the linking number of the z'th andy'th components of L. Hence F222

gives very little information about L.

Next, we give an example where we compute F33 3 for a link whose s,'s belong to

73F. The link is shown in the figure and one has

"\2j-\ = a3 4/-3> °\2j = a3 4/>

^22/-1 = a3 4/-4> ^22/ = a34/-l>

"34/-3 = a12/' ^34/-2 = a22j>

"3 4/-1 = a12/> ^3 4/ = a2 2j + 2

Computing >v, 2m, w22m and w34m we get

W\2m =  «31 ([«34- a24][a38'a26]  -   -   "   [ °3 2m' «22 ] )«31>

W22m =  «3 2m([a33'ar21][a37'ar4]  '   '   "   [ «3~4m> al2m])a3 2m>

and

»^34m = "22{[a22>  «¿]  '   '   '   [«22/'«^]  "  '  '   [«2 2m- «rL])a32-

Hence,

(i) s, = [ax, ail(n7_i{a34/, a227+2])a3],

(ii) j2 = [a2, a32«(n*.iK4,_i, arlD^LL
(iii) s3 = [a3, Ö22(n7_,[a22/., af?,])^]-

Upon making use of the substitutions (17) for the different atj and a/J we obtain

sx - 1 = «if*,, [X2, X3]] + 7V,(3) + 74F,

s2 - 1 = m[X2, [X3,XX]] + 7V,(3) + 74F,

i3 - 1 - m[*3, [*„ X2]] + Nx(3) + IV,

where by [X, Z] we mean the usual Lie bracket, [X, Z] = XZ — ZX. Thus

(AT2 + AT,(3) + I4F)/(NX(3) + 74F) is generated by sx - 1, s2 - 1 and s3 - 1 as in

Theorem (3.5). But [Xx, [X2, X3]] + [X2, [X3, Xx]] + [X3, [Xx, X2]] = 0 so that sx -

1 and s2 - 1 form a basis for (A^2 + Nx(3) + I4F)/(NX(3) + 74F). Therefore

il_3 3 —  Z¿   \D   *   *   *   \D £   \D  ¿m \I7  2m,
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where there are twenty-five copies of Z in the above sum; since

(ivy (7V,0) + 7i+1) ~ z e • • • ez,

there are twenty-seven copies of Z. Thus 3-links of the type shown in the figure

whose w's differ are distinguishable links.

an ^

Finally, we point out how some of the Milnor invariants show up in computing

the Ë*    terms. Here then is a brief account of Milnor's work.

In [7] Milnor showed that the group G/Gs + X, for any nonnegative integer s, may

be presented by <a,, . . . , a„: [a„ u¡], FJ+1> (/' = 1, . . . , n), where a, = aiX = a,

represents an ith meridian of L, w, is a word in a,, . . . , a„ that represents an ith

longitude of L in G/Gs+X and F is the free group on {a¡: i = \, . . . , n).
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The Magnus expansion of w, is obtained by substituting a, = 1 + Xp ajx = 1 —

Xj + X2 — X3 + ■ ■ ■ in the word u¡. Thus w, can be expressed as a formal,

noncommutative power series in the indeterminants A',, . . . , Xn. Namely,

«, = i +    2    f*G'i> i)xh +     2     »»O'lJi. i)XjXh + • • •
y'l = 1.n j¡J2=l,...,n

+                2 tiJuJ» ■ ■ ■ Jr i)XjXj2 ■■■ Xji+  ■•■ .
J\Ji,- ■ -,7,-1."

Thus a coefficient is defined for each sequence jx,j2, . . . ,j„ i (t > 1) of integers

between 1 and n.

Let Ä(/„ . . . ,ir) = g.c.d. n(jx, . . . ,jt), where /,, ...,/, (2 < t < r - 1) is to

range over all sequences obtained by cancelling at least one of the indices /',, . . . ,ir

and permuting the remaining indices cyclically. Then Milnor proved that: the

residue classes

Jl(jx, . . . ,j„ k) = n(jx, . . . ,j„ k)    mod ~K(jx, . . . ,j„ k)

are isotopy invariants of L provided that t < s.

If we restrict ourselves to links whose <o,'s belong to Fs_, for (i = 1, . . . , n), then

KJv ...,/„ 0 = 0   for   1 < t < s - 2.   But   then   ¡l(jx, . . . ,js_x, i) =

M/i» • • • fJs-v ')' and hence p(/„ . . . ,js_x, i) are isotopy invariants for such links.

Let 7F be the kernel of ZF -> Z. Let N he the ideal of ZF generated by

[«,, «,] — 1 (/ = I, . . . , n), and Fs+X — 1. Let F be the spectral sequence associated

with the presentation given by Milnor for the group G/Gs+X. Now

Ës_ss = 7ÍF/ (Ñ n IV+Is+lF).

If <o,. G Fs_ „ then [a,., <o,.] - 1 G ISF (i = 1, . . . , n) and A7 n IV = A7. Hence for

this case,

— -     — - IsF/Is+lF
E^ -IV/(N+I'+V)at lt';" +|_ •

(n +r+lF)/r+lF

Where IV/IS+ 'F is a free Z-module write

[X,Xh- ■■Xit + r+lF:ix,...,is = l,...,n}

as a basis, and where (N + Is+1F)/Is+iF is a free Z-module generated by

{[«„«,.]- 1 + 7s+1F:/= 1, ...,n}.But,

[«,, «,] - 1 = 2 [*„ KJv ■ ■ ■ Js-v i)XjXj2 ■ ■ ■ X¿J + 7—F.
7i.7.-1-1» .••,»

Therefore   we   can   replace   the   set   of   generators   above   of   the   Z-module

(Ñ + Is+1F)/r+iF hy the set

{ 2 [X„ PL/,, . . • ,/,_„ i)XJx ■ ■ ■ XMJ + P+lF: i=l,...,n\.
w'i,—/,-i-l,...»« i

(21)

We already proved Es_s^ c=l Es_ss (see, Theorem (2.11)). We shall describe a

precise isomorphism for the case at hand (see, Theorem (3.5)).
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IV/(Nx(s) + P+lF)
E-s,s = -

(N2 + Nx(s) + Is+lF)/ (Nx(s) + Is+iF)

IV/I*+lF

(N +r+lF)/r+v
= F

-s,s

is an isomorphism. From the Wirtinger presentation of G we have ri} =

M</yV+i- Thus aiJ+x = b^ybr/ = bijbiJ_x ■ ■ ■ biXaiXb;xx ■ ■ ■ b;¡_xb¡}. Let zu =

bijbu-\ ' ' • bn-
Define a sequence of homomorphisms Mk: F—» F as follows, by induction on k:

Mx(aiJ)-an,       Mk+x(aiJ+l) = Mk{zuaiXz;¡),       Mk+x(aiX) = aiX.

Then it can be proved by induction on k that

MMj) = au    mod(FkR),       Mk(au) = Mk+X(au)   mod(Fk).

We claim that Ms+, : 7F -» 7F, where A/J+, is the map induced from Ms+,: F^> F,

induces the required isomorphism. Because

K+Mj) = ^+ite7-i«,iz,7-i) = ^+i(zy-ikiMs+i(zü-i) = <h\ mod^2;

it follows that Ms+X(uu - a^r1) G 72F. Hence Ms+x(Nx(s)) c Is+iF, moreover,

because of Ms+X(w¡k¡) = Ms+X(zik) = wik mod(FS+XR). Since wlVt represents an /th

longitude of G, ATs+iiw,^) represents an /th longitude in G/Gs+X. Let A/J+1:

(IV)/(Nx(s) + Is+lF)^> IV/Is+iF he the canonical homomorphism induced

from Ms+X. Then AfJ+1 is an isomorphism, since IV/(Nx(s) + Is+iF) and

IsF/Is+lF both have rank ns. Also,

ÂW (^2 + ^iW + is+1e)/(nx(s) + r+lF)^>(Ñ+r+1F)/r+1F

is an isomorphism.

So if one can extract a basis from the generating set (21) of the free Z-module

(N + Is+lF)/Is+1F, one can then express Es_ss at Eís¡s as a direct sum of a finite

number of infinite cyclic groups and cyclic groups of finite order; hence obtaining

an explicit demonstration of how the p's appear in E^. For example, for the link

described in the figure we have

Eis,s at S^ atZ®--- ®Z®Zm®Zm,

where m = p(l, 2, 3) = p(3, 2, 1) = p(2, 3, 1).

Here are some properties of the Milnor invariants that we will need (see [7]).

(A) The   p   satisfy    a   cyclic   symmetry,    that   is,   fi(ix, i2, ...,/,)<■

/*('<i(i)' 'a(2)> ■ • ■ » W»0> where a is a cyclic permutation of 1,2, ..., s. By an invariant

p(/,, . . . , ir+s) of type [r, s] will be meant one which involves the index '1' r-times

and the index '2' j-times. Then

(B) (i) All invariants of type [r, 0] and [r, 1] (r > 2) are zero. The invariants of

type [1,1] are the linking numbers and these are not necessarily zero.

(ii) All invariants of type [2m +1,2] are also zero.
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(iii) For the invariants of type [2m, 2] we have

p(l, . . . , 1, 2, 1, 2) = - (2jW)mO, • • • , 1, 1, 2, 2),

p(l, . . . , 1, 2, 1, 1,2) = (2™)p(l,..., 1,1,2,2),

jü(l, . . . , 1, 2, 1, 1, 1, 2) = - (2™)v(h ■ ■ - , 1, 1, 2, 2),   etc.

In view of cyclic symmetry (see (A)) this means that all of the invariants of type

[2m, 2] are completely determined by p(l, . . . , 1, 1, 2, 2).

Let L he a two-link. Then

Ei _I2F/I3F

~2'2    (ñ + i2f)/i3f'

The setJA'2 + 73F, A"22 -I- 73F, XXX2 + I3F, X2XX + I3F) is a basis for 72F/73F;

while (Ñ + I2F)/I3F is generated by

[«„Wl] - l=[A„p(2, l)A-2] +73F,,      [a2,(o2] - 1 = [X2, p(l, 2)*,] + 73F.

But [Xx, p(2, \)X2] = - [X2, p(l, 2)XX\ Therefore (Ñ + I2F)/I3F is a free Z-

module with basis {p(l, 2)(XXX2 - X2XX) + I3F}. But the set {A-,2 + I3F, X[ +

I3F, XXX2 + I3F, XXX2 - X2XX + I3F) may be taken as a basis for I2F/I3F; it

follows that

E_22  C^   E_22 ^^   Z   ®   Z   ®   Z   ®   Z  iy2y

Next assume [a„ «,] - 1 G 73F (/ = 1, 2). Then (Ñ + 13F)/14F generated by

[«,. «i] - 1 -     2     [Xx, PÜ„/2, \)XjXh] + I4F,
j ,Ji -1,2

[a2, to,] - 1 -      2     [X2, H(JVJ2, 2)XflXh] + I4F.
JiJi-1,2

But, all the n(jx,j2, i), i = 1, 2, appearing above are zero, due to properties (B) (i)

and (B) (ii). Hence nothing could be said about such a link by looking at E333. So

we consider the case [a¡, u¡] — 1 G 74F (/' = 1, 2). Then (N + I4F)/I5F is gener-

ated by

[a„ «,] - 1 = p(l, 1, 2, 2)(A-2A-22 + 2Ar2A'1A'2A"1 - 2A'1Ar2A"1A2 - X2XX2) + I5F,

[a2, u2] - 1 = p(l, 1, 2, 2)(A-22A-2 -1- 2A',A'2A",A'2 - 2X2XXX2XX - X2X¡) + I5F.

Hence (N + 74F)/75F is a free Z-module with basis the vector

p(l, 1, 2, 2)(A22A-2 + 2A',A2A'1A2 - 2A2A'1A2A1 - A",2*/) + 75F.

The free Z-module 74F/75F has rank 16. Hence the spectral sequence term

£-4,4 — ¿^t,4 — Z   * WZ   ** ZM(1,1,2,2)'

where there are fifteen copies of Z in the summand.
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Thus, for the special links whose longitudes belong to 7*F the term Es_s¿ sheds

light on the Milnor invariants. Naturally one would like to do this study for more

general links. The calculations are similar to those in [8].
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