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TRANSFORMS OF MEASURES ON QUOTIENTS

AND SPLINE FUNCTIONS

BY

ALAN MACLEAN

Abstract. Let G be a LCA group with closed subgroup H and let v e M(G/H).

A general procedure is established for constructing a large family of measures in

M(G) whose Fourier transforms interpolate v. This method is used to extend a

theorem of Shepp and Goldberg by showing that if v G M([0, 2ir)), then each even

order cardinal spline function which interpolates the sequence (*("))?--x 's ^e

Fourier transform of a bounded Borel measure on R.

The purpose of this article is to investigate certain relationships between the

Fourier transforms of measures defined on the quotient G/ H of an LCA group G

and the Fourier transforms of measures defined on G itself. Given a measure v on

G/H we shall develop procedures by which the Fourier transform v may be

extended so that it becomes the transform p of a measure on G The existence of

such extensions is, of course, well known [7, 2.7.2], [1, p. 99], viz., the Fourier

transforms of measures on G/H are exactly the restrictions of the Fourier trans-

forms of measures on G. The emphasis here, however, is not on existence, but

rather on the various ways that v may be extended. We shall develop a method by

which a large family of extensions of v may be constructed in such a way that

analytic properties of v (absolute continuity, singularity, etc.) carry over to these

extensions.

Our motivation stems from the following theorem, attributed to L. A. Shepp by

Feller [3, p. 609], and proved independently and in detail by R. R. Goldberg [4] (an

extension to R" is contained in [5]).

Theorem [Shepp-Goldberg]. Let (an)^_x be the sequence of Fourier-Stieltjes

coefficients of a bounded Borel measure on [0, 2<n). Then the function whose graph

consists of the line segments successively joining the points (n, an) is the Fourier-

Stieltjes transform of a bounded Borel measure on (— oo, oo).

Thus, the linear extension of the sequence (a„)^_a0 is the transform of a

bounded measure on R. The question arises whether there is a class of higher

degree polynomial extensions of (a„)™__00 which are also transforms of bounded

measures on R. Such extensions cannot behave too wildly off of the integers and

this leads one  to consider those extensions which satisfy certain smoothness
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conditions He polynomial extensions ihat we ¿ave in mind are the even order

cardinal spline functions of Schoenberg [8], {ill If m is an even integer > 2, then a

cardinal spline function of order m is, loosely speaking, a function obtained by

joining together polynomials of degree m — 1 at the integers in such a way that the

resulting function is in Cm~\R) (definitions will be given later). 1t is known [10]

that for each bounded sequence (xn)™= _x, and each even integer m > 2, that there

is a unique bounded spline S of order m which interpolates (*„)"_ _ x, i.e., which

has the property that S(n) = xn for each integer n. In particular, the unique

bounded 2nd order spline which interpolates (xn)^_x is the linear extension of

(•O"-- » to ^" Thus, the theorem above states that the bounded 2nd order spline

which interpolates the Fourier-Stieltjes coefficients (an)™_ _ œ is the Fourier-Stieltjes

transform of a bounded measure on R. We shall extend the Shepp-Goldberg

theorem by showing that for each even integer m > 2, the bounded «ith order

Spline function interpolating («„)"__ œ is also the Fourier-Stieltjes transform of a

bounded measure w„ on Ä.

The measures com arise as special instances of a general construction applicable

to all LCA groups, and we shall carry out the construction in this setting. In this

sense, one might regard the transforms ù of the measures to be constructed as

generalized cardinal spline functions. As might be anticipated, the techniques of [4]

are no longer available in the present context. It is perhaps of interest to compare

the two situations briefly. Given a bounded Borel measure v on G/77 we wish to

produce a bounded Borel measure w on G which satisfies certain properties and for

which w(y) = v(y) for all y in the annihilator of H. In [4] one has G = R and

77 = 27rZ, while the quotient R/2mZ and the annihilator of 2mZ are identified with

[0, 2tr) and Z, respectively. The construction in [4] produces, for each measure v on

[0, 2m), a measure w on R such that ù is the linear extension to 7? of v(ri) = an. The

measure w is defined to be the periodic extension of v to 7? multiplied by an

appropriate weight function, and the proof that w is indeed the linear extension of v

is based on the fact that the (C, 1) means of the Fourier series of v converge

weak-* to v. In our more general setting we lose both the compactness of the

quotient G/77 and the use of (C, 1) summability. The lack of compactness is

compensated for by initially restricting attention to measures v with compact

support in G/H. The supports are used to produce auxiliary weight functions for

which the Poisson summation formula holds, and these, in turn, give rise to

measures w whose transforms are the analogues of the linear extensions above.

Thus, the arguments involving (C, 1) summability are circumvented, in effect, by

appealing to the Poisson summation formula.

The author wishes to thank Professor A. Elcrat for valuable conversations

regarding spline functions.

Throughout G will denote a locally compact abelian (LCA) group with a fixed

Haar measure dx. We denote the dual group of G by T. For a closed subgroup 77

of G we let it: G —» G/77 be the natural quotient map and denote the elements of

G/77 by x. Thus, it(x) = x. We identify the dual of G/H, as usual, with the

annihilator 77-1- = {y G Y: y (h) = 1, A G Tí} of 77. To emphasize that Hx is
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being regarded as the dual of G/77 we shall, unless otherwise specified, denote the

elements of 77 x by y and the elements of Y by x- In particular, dy and d\ denote

Haar measures on H ^ and Y respectively. C(G) is the space of bounded continu-

ous complex functions on G. C0(G) and Cqq(G) are the subspaces of C(G)

consisting of functions which vanish at infinity and functions with compact support

respectively. M(G) is the space of all bounded complex Borel measures on G.

Let 77 be a closed subgroup of G with fixed Haar measure d.h. The linear

mapping T: C^G) —> C^G/H) defined by

Tf(x) = f f(x + h) dh (1)

maps CqqÍG) onto C^(G/H), and there is a Haar measure dx on G/77 such that

the "Weil formula"

ff(x) dx = [      Tf(x) dx = [      f f(x + h) dh dx (2)
JG JG/H •'G/H-'H

holds for all / G C^G). We assume throughout that dx has been chosen in this

manner. The map T extends to a norm decreasing algebra homomorphism of

LX(G) onto Ll(G/H) such that (2) holds, where now Tf is defined almost

everywhere on G/77 by (1) [6, p. 74].

The Fourier(-Stieltjes) transform of p G M (G) is defined on Y by

ß(x) = f X(x) d¡x(x).
JG

We identify/ G Ll(G) with the absolutely continuous measure f(x) dx G M(G).

The Fourier transform of / is then f(x) = jc f(x)x(x) dx. The inverse Fourier

transform / of / G L\G) is defined by f(x) = /( —x)- ll will De convenient to

regard the Fourier algebraA(G) to be defined as/1(G) = {g: g G Ll(Y)}.

In the construction to follow we shall utilize certain auxiliary functions. The

existence of such functions is established in the following lemma.

Lemma. Let H be a closed subgroup of G and let K be a compact subset of G/ 77.

Then there exist continuous functions 8 on G such that 6 G L\_(G), ô G C^(Y), and

TS is continuous on G/H with T6(x) > 0 for all x G K.

Proof. We note first that if C is any compact subset of Y, then there exists an

/ G L\(G) n C0(G) such that/ > 0 on C and/ G C^(Y). For we may choose an

h G F'(G) n 7_2(G) such that h = 1 on C u {0} and h G C^(Y). We may assume

that h G C0(G) by the inversion theorem. Then/ = \h\2 is easily seen to satisfy the

required conditions.

Now, let F be a compact subset of G such that tt(F) = K. By the previous

paragraph there is an/ 6 L^(G) n C0(G) such that/(0) > 0 and/ G C^,(Y), and

there is a g G Ll+(Y) n C0(r) such that g > 0 on F and g £ C,J(C). Then

/* g G L\(G) n C0(G) and (/ * g)'= fg G C¿(Y). For each x G G, we have

fj*g(x + h)dh<\\f\\x\\T\g\\\x.
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Thus, T(f * g) is defined everywhere on G/77 and it follows that T(f * g) =

Tf * Tg everywhere on G/77. Since Tg G C^G/H), T(f * g) is continuous on

G/77. If x G F, then since /(0) > 0 we have f(0)g(x) = g(-*)/r/(x) ¿x > 0.

Hence, / * g(x) = fG f(y)g(x - y) dy > 0 for all x G F. Then 7YJ * g)(*) =

/#/* g(* + h)dh> 0 for all x G K.

Let p be a fixed measure in M(G/H). We wish to construct a certain family of

measures w G M (G) with the property that the Fourier transform of each such u

interpolates v, i.e., such that ¿>(y) = v(y) for all y G 77 x. We proceed as follows.

Use the regularity of v to select inductively disjoint compact subsets Kx, K2, . . .

of G/77 such that

4 û 4)< 1/» (3)

for all n > 1. Let »>„ be the measure in M(G/H) obtained by restricting v to Kn.

Then since the A"n's are disjoint we have by (3) that

H-2KU Wi
(cf. [1, p. 99]).

For each n > 1, let Sn be a continuous function on G such that

S„ G 7J+(G)» 5„ G Cor/r) and F5n is continuous

on G/77 with TS„ > 0 on K„.

Such functions exist by the lemma. We have, in fact, that T8„ G A +(G/H). For

¿JH1^ G L\H^) and since, as is well known, (T8„)~= 8n\H ^ it follows from the

inversion theorem and the continuity of T8n that T8n = (8n\Hx)~. Then since

T8n > 0 on the compact set 7<„ we may apply the Wiener-Levy theorem to obtain a

function ßn G A(G/H) such that

ßnT8n=\    onKn. (6)

Since F5„ > 0 on G/77 we may assume that ßn > 0. Finally, define $„: G -» C by

*."■«.• (&•*)• (7)

Theorem 1. Let v G M(G/H) and let vn and \pn be as defined above. Then there

exists a measure u G M(G) such that

(i) ¿>|77x = v and ¿>(X) = 2? fa* *.(yWw(X - V) dy for all X G T.

(ii) 7/ / G L\\v\), then f » -n G /-'(M) am7 /G/° tt du = fG/Hfdv and

fcf" ^d\u\ = fG/Hfd\v\.
(iii) For each Borel set E C G/H, v(E) = u(tr~l(E)) and \v\(E) = |w|(w-1(F)).

In particular, \\v\\ = ||w||.

(iv) Le/ 1 < p < oo. If f G L'(M), i/ien /° <r G L'(M) am/ ||/||¿,(W) =

\\f°*\\L<>(\v\y
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Proof. Since 8n is continuous and in L + (G) and ßn ° m G C+(G) we have that

$„ is continuous and in L\.(G). We have

Mx) = [ 8n(x)ß„(x)'xJx) dx = f      f /L.(y)<5„(x) (X - y)(x) dx dy
JG JH±  JG

-/    &(y)S„(x - Y) dy. (8)

We assert that the extended "Poisson Formula" holds for \f/n, i.e., that

f ^„(x + h) x(x + h) dh= f   Ûx + y)y(x) dy (9)

for all x G G, x e T- This is seen as follows. First, (9) holds for 8n since

8n G L\G) is continuous and 8„ G C^r) [6, p. 122]. Fix x£T. Then T(j&n) G

L1(G/H) and, moreover, T(x^„) is continuous on G/77;

7tx»U(*) = f *.(* + A) x(* + *) ¿A = ß„(x) f 8„(x + h)X(x + h) dh
JH JH

= £,(*)/"   8n(x + y)y(x) dy (10)

where /3„ and x ^ f H± 8n(x + y)y(x) dy are continuous on G/77. Further,

F(x^„)-GF1(77±)sinceby(8)

f    | T{xtn)~(y)\ dy = (    |4(X + Y)| ¿Y <  f      f    |/3»¿„(x + Y - o)\ da dy
JH±< JH^ ' JH± JH±>

-lAli'C*^)/    |Ô„(X + Y)| ̂ Y < cc. (11)

Thus, by inversion FOô^Xx) = [ ̂ ÖÖWTC*) for all x G G/77, which is formula

(9). We note further that by setting x = 0 in (10) we obtain

W.(J*J = A,i» f 5„(x + A) ¿A « /in(x)F5n(x).

In particular, it follows from (6) that

7^-1    on7i„. (12)

Now, define <o„ on G by setting

ffdo>n = f      T(fip„) dvn = \       f f(x + h)Ux + h) dh dvn        (13)
JG JG/H JG/H JH

for all/ G Coo(G). Then by (12)

ffda„ < /      \T(Un)\d\vn\<\\f\\xf      m*)d\r„\ =\\J\\«M
JG JG/H JG/H

for each / G Cm(G), and it follows that un G M(G) with ||w„|| < ||j>,,||. If / is

nonnegative and lower semicontinuous on G, then by a standard argument (cf. [6,

p. 60]) T(fipn) is nonnegative and lower semicontinuous on G/H and

(fdH\ < f       [Äx + h)4,„(x + h) dh d\vm\. (14)
JG JG/H JH
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Similarly, by decomposing vn into a sum of positive measures and first considering

nonnegative lower semicontinuous functions one sees that (13) holds for bounded

continuous functions on G. In particular, for y G 77 ± we obtain again using (12)

that

¿>„(y) = [        f y(x + A) h(x + A) dh dvn
JG/H JH

= f      'yJx~)TUx)dvn = vn(y). (15)
JG/H

Hence, ûn\H ^ = vn. For general x^Twe apply (9) to obtain

«n(x)=f       f X(x + A) ̂ (x + A) dh dvn = [       f    ~yjx) ̂ n(x - y) dy dvn
JG/H JH JG/H JHi-

= (      f       y(x) 4>„(x - Y) dvn dy = f    Pn(y)4>„(x - y) dy (16)
JH±  JG/H JH±

where the use of Fubini's theorem is justified by (11).

We have ||«„|| < \\t>n\\ for all n > 1 and since, by (4), ||i>|| = SflkJI il follows

that (2" <^,)^°=i is Cauchy in M(G). Thus, there is a measure u> G M(G) such that

co = 2;°<o„. If y G 77 x, then it follows from (3) and (15) that

00 CO

w(y) = 2«»(y) = 2 K(y) = KyY
i i

Hence, û\H->- = v. If x 6 I\ then (16) shows that

«(x) = 2 I   KiyHnix - y) dy.
1   JH±

Thus, (i) holds.

To establish (ii) we argue as follows. In view of (15) we have that

j p °it du„= f     p dv„ (17)
JG JG/H

for each trigonometric polynomialp on G/77 and n > 1. Let/ G L'^l). Fix n and

choose trigonometric polynomialspm such that \\pm — f\\Li^v g -» 0. By passing to a

subsequence we may suppose that pm(x) —* f(x) for all x G F where F is a Borel

subset of G/77 such that \v„\(E) = 0. We have from (12) and (14) that

\\Pm"*-Pk0 'iz.'flo, I) <   ( [  \Pm°*-Pk° "\(X +  hHn(x +  h) dh d\v„\
JG/H JH

=   ( \Pm(x)   - Pk(x)\ TxPn(x) d\Pn\ = ||pm   - Pk\\0av .j.
JG/H

Thus, (pm o „■)»_, is Cauchy in L'flwJ). Let pm ° it ^> g in L\\un\). Again by

passing to a subsequence we may assume that pm ° ir(x) —» g(x) for all x G A

where A is a Borel subset of G such that |w„(/4)| = 0. Suppose for the moment that

|wn|(7r_1(F)) = 0. Then for each x £ A u tr~l(E) we have

g(x) =   lim   pm o tt(x) =   lim   pm(x) = f(x) = / ° •n-(x).
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Hence, g = f ° it, |w„|-a.e. Consequently,/ ° w G L'OwJ) and by (17) we have

// •»**.- Ä //« •»<**- JK. /c//« *« = SG/Jdv»-
We also have that || \pm\ - \f\ ^.„-»O and || |pj • » - |/| - vr||L,(K|)^0. It

follows from (12) and (14) once again that

/6l/| » . ¿K| = Jim   ljpm\ . * d\o>„\ < Jim   J^jRj rf|r,| = /^J/| d\v„\.

Thus, we have shown that if / G L!(|*|X then/ ° m G L'flwJ) for all n > 1 and
oo oo

S /i/| °wki< 2/    l/|¿hl = /   |/|¿M<°°- (is)
1   JG 1   -'g/// ■/C///

Since to = 2j* w„ in M(G) it now follows from the dominated convergence theorem

that/° ir G L'(|to|)and

(f o * rfu -f if «"rd^-2 f     /*„=/"     /*• (19)
•'G 1   •'G 1   •'G/// •'G///

Thus, the first part of (ii) will be established provided we verify that \un\(Tr~l(E))

= 0 if |p„|(F) = 0. Let e > 0 and choose an open set V G G/H such that

|vn\(V) < e. Then since £v ° it is nonnegative and lower semicontinuous on G we

have

K|(7T-'(F))<    /V,(K)(X)¿|<0„|<    ( Ív  * V{X) d\i*„\JG JG

<(     tv(x)TUx)d\vn\=\vn\(V)<e.
JG/H

Hence, |to„|(w_1(F)) = 0.

Now, if F is a Borel set in G/77, then (19) shows that v(E) = u(it~\E)). Then

^1\v(Ej)\ = 1nM-n-\Ej))\, if F = U *Ej and F, n Ek = 0, and so

|*|(£) - supj | |K£,)|: £ = U Ej, Ej n Ek = 0J

<wpl 2 |«(^)|: »-»(£)- U BJ,BJnBk = 0\ =H(W-'(F)).

But by (18)

m(*-'(F)) - f iÄ ». ¿(„i < | rÉ£ o w ¿|W|i| < r  Í£ rf|„| -|,|(£).
JG 1   •'G •'G///

Thus, in fact, |j»|(F) = \ui\(it~x(E)) for all Borel sets F c G/H. In particular,

U»»!! = ||w||. Approximation by simple functions now shows that }Gf° ir d\u\ =

Íg/hJd\f\ for all/ G ¿'(H). Thus, (ii) and (iii) hold and the remaining assertions

follow easily.
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Theorem 2. Let v and w be as in Theorem 1.

(i) If v is absolutely continuous with Radon-Nikodym derivative f G LX(G/H),

then u> is absolutely continuous and the Radon-Nikodym derivative of w is locally

almost everywhere equal to 2,° »/'„[(/l/r ) ° ""]•

(ii) If v is continuous, then w is continuous.

(iii) If v is singular, then w is singular.

Proof. If v is continuous, then the continuity of w follows from Theorem l(iii).

Next assume that v is singular. To show that w is singular we apply a theorem of

Doss [2, Theorem 1]. Let e > 0 and let Tí be compact in Y. Then K n 77 x is

compact in H± and since v is singular there is by [2] a trigonometric polynomial

p = 2, Cjyj on G/77 with y, G 77x n 7CC and ||/>||w < 1 such that |2, c,P(y,)| >

||i»|| — e. In view of our identification of 77 x and the dual of G/77 we may regard

p as a trigonometric polynomial on G. Then still HpH«, < 1 and y, G Kc. Since

|2ï Cjû(yj)\ = |2í Cjv(yj)\ > \\v\\ — e = \\u>\\ — e by Theorem 1, a second applica-

tion of [2] shows that u> is singular.

Finally, assume that v is absolutely continuous, say v = f(x) dx where / G

L1(G/H). Then vn = /|^ dx; notation as in Theorem 1. Choose gm G C^G/H)

such that || gm — f\\L<(-G/H) -» 0. We may suppose that gm(x) —»/(x) for all x £ F

where F is a Borel set in G/77 such that mG/H(E) = 0 (mG,H = <7x). We have

by (12) so that (U(gm^) • *Dm-i is Cauchy in 7J(G). Let ^n[(gm^) • *] - F in

¿'(G). We may suppose that «r/„[(gm|/r ) ° ^K-f) —» F(x) for all x £ ,4 where A is a

Borel set in G with mG(A) = 0. For x (£. A \J ir~\E) we have

*X*) = Jim, *„(*)' (gmtx, ° *)(*)

= Jm  ^„(x)gm(x)^(x) = «|„(x)(/^) o »(*).

Now, 7T_1(F) is locally null in G [6, p. 66] so F = *l>„[(f£K) ° it] l.a.e. on G. We

have for x G T

F(x) = Jirn^ ]>„(*) • (gm^) o 77(x)x(x) dx

= JinL Í    It+*(ftAi)0*-x](*)^*
tn—»oo   J f- t u     L. ti j

O/i

&*(*)£/£„(*) dx=  lim    f        f i¿„(x - y) y(x) </y
m-»oo   JC/H[JH

- f        f   4(X - Y) y(x)/(x)^(x) rfv ¿x

= f   4(x - y)(/^)"(y)^y = f   ?,(y)4(x - yWy = £>„(x)
'H1- JH

where we have used the fact that [ 7\xWT(*) = iH^niX ~ y)y(^) ^Y is bounded

and continuous on G/H. It follows that w„ is absolutely continuous. Then

o) = 25° w„ is also. The Radon-Nikodym derivative of w„ equals «/'„[(/•îj^) ° it] l.a.e.
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and it follows that the Radon-Nikodym derivative of w is locally almost everywhere

equal to 2J° ^„[(fè/cj ° ""] and the proof is complete.

Thus, if v G M(G/H), then each sequence {Kn} of compact subsets of G/77

which satisfies (3), each sequence of functions (<5„) which satisfies (5), and each

sequence (/?„) satisfying (6), determines a measure w G M (G) such that £> is an

extension of v: H ^ ^> C to Y. A special case which is of interest in what follows

occurs when K is a fixed compact subset of G/77. Let M(K) denote the subspace

of M(G/H) consisting of all v G M(G/H) such that supp|j-| C K. Choose 8 G

L\(G) and ß G A+(G/H) which satisfy (5) and (6) with Kn replaced by K. Let

yp = 8 • ( ß » it) as before. We may then apply the above construction to each

v G M(K) with \p fixed to obtain a measure v^ G M (G) which possesses the

properties described in Theorems 1 and 2. In particular, for each v G M(K) we

have v^\H*- = v and v^(x) = /H¿HyWÍX ~ Y) dy for all x e F, and it follows

easily that the map A: M(K) —» M(G) defined by A(v) = r¿ is linear. It is also an

isometry by Theorem l(iii). These considerations apply to each v G M(G/H) in

case G/H itself is compact. We record this special case as a corollary.

Corollary. Assume that G/H is compact. Let 8 G Ll+(G) n C(G) be such that

8 G Coc/r), T8 G C(G/H) and T8 > 0 on G/H. Let ß GA+(G/H) satisfy

ß ■ T8 = I on G/H. Define \p on G by \p = 8 • (ß ° tt). Then for each v G M(G/H)

there exists a measure v. G M (G) such that

(i) v^H1- = v and v^(x) = 2YeWx P(y)*P(x ~ Y)M all x G Y.

(ii) If f G L'(M), then f » tt G L'(l^l), JG f ° tt dv^ = ¡C/Hfdv, and

fGf°ird\v^\ = /G////</M.
(iii) For each Borel set E Q G/H, v(E) = v^tt'XE)) and \v\(E) = |^|(w_I(F)).

In particular, \\v\\ = ¡r^||.

The map v —* v^, is a linear isometry of M(G/H) into M(G).

As an application of the foregoing, and in particular of the corollary, we next

prove the extension of the Shepp-Goldberg Theorem to spline functions discussed

earlier.

A function S defined on R is called a cardinal spline function of degree m — 1,

where m is an even natural number > 2, if S G Cm~2(R) and S is a polynomial of

degree not exceeding m — 1 on each interval (n, n + 1). It is known [10] that if

(*„X¡°- -oo 'sa bounded sequence, then there exists for each even m > 2 a unique

bounded cardinal spline Sm which interpolates (x„)"__00, i.e., such that Sm(n) = x„

for all n G Z.

Theorem 3. Let v G A/([0, 27r)). Then for each even integer m > 2, the bounded

cardinal spline function of degree m — 1 which interpolates the sequence (»'(«))^0__oo

¿I the Fourier transform of a measure «m G M(R ).

Proof. We apply the corollary with G = R = Y, H = 2mZ, Hx = Z and make

the usual identification R/2ttZ = [0, 27r). Let m be an even integer > 2. Following

[10] we set M = £{_x/2 X/2X and let 8m = M * M * - • • * M (w-fold convolution).

Then [10, p. 408], [9, p.  175] 8m G C^R) with supp 8m Q [- m/2, m/2], and
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8m = ([2 sin(x/2)]/x)m G Ll+(R). Also T8m(x) = 2„ 8m(x + 2mn) > 0 on [0, 2tt)

[9, Lemma 6]. Now, v//m = 8m • ( ßm ° tt) and by (12) T^m = 1 on [0, 2tt). Thus,

¿ (n) = (Tú Yin) = i1    if " -°>

and we see that ^(x) = 2„ ßm(n)8m(x - n) is precisely the function Lm(x) of [10,

(3.4), p. 414]. Hence, by [10, Theorem 3]

ûm(x) = 2 f(n)4>m(x - «) - 2 Kn)Em(x - n)
n n

is the unique bounded cardinal spline of degree m — 1 which interpolates the

sequence (£(«))*«-«,-

Added in proof. A general treatment of Theorem 1 in the case when G/77 is

compact, due to L. Pigno and S. Saeki, has recently appeared. For an account of

their version see C. C. Graham and O. C. McGehee, Essays in commutative

harmonic analysis, Springer-Verlag, New York, 1979, p. 421.
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