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KERNELS FOR THE TANGENTIAL

CAUCHY-RIEMANN EQUATIONS

AL BOGGESS

Abstract. Oa certain codimension one and codimension two submanifolds in C,

we can solve the tangential Cauchy-Riemann equations dbu = / with an explicit

integral formula for the solution.

Let M = d£>, where D is a strictly pseudoconvex domain in C". Let uccMbe

defined by u = {z e M; Re h(z) < 0}, where h is holomorphic near D. Points on

the boundary of u, du, where the tangent space of du becomes complex linear, are

called characteristic points.

Theorem 1. Suppose du is admissible (in particular if du has two characteristic

points). Suppose f G &%?(u), 1 < q < n — 3, is smooth on u and satisfies dMf = 0 on

u; then there exists u e S>Jj¡f~'(u) which is smooth on ü except possibly at the

characteristic points on du and which solves the equation dMu = fon u.

Theorem 2. Suppose f e &$(u), 2 < q <. n — 3, is smooth on u; vanishes near

each characteristic point; and dMf = 0 on u. Then there exists u e &%f~1(u)

satisfying dMu = f on u.

Theorem 3. Suppose f e e¡)^f(u), 2 < q < n — 3, is smooth with compact support

in u, and dMf = 0. Then there exists u e ei)^~l(u) with compact support in u and

which solves dMu = f.

In all three theorems we have an explicit integral formula for the solution.

Now suppose S = du. Let Cs be the set of characteristic points on S. We

construct an explicit operator E: ^-"(S - Cs) -> S§'i_1(S - Cs) with the follow-

ing properties.

Theorem 4. The operator E maps L¿«,mp(S ~ Çs) -+_ ̂  ioc(S - cs) and 'ff e

<B5«(S - Cs), 1< q < n - 3, then f = ds{E(f)} + Etfsfj.

Chapter 1. Introduction

There has been a substantial amount of recent literature on the kernel approach

to solve the Cauchy-Riemann equations on C and the tangential Cauchy-Riemann

equations on a hypersurface in C. For example, Romanov [16] discovered a kernel

(which we call R ) that globally solves the tangential Cauchy-Riemann equations on

a strictly pseudoconvex hypersurface. The purpose of this work is to use kernels to

solve three local theorems concerning the tangential Cauchy-Riemann equations on

a strictly pseudoconvex hypersurface and to solve a global theorem concerning the

tangential Cauchy-Riemann equations on certain codimension two submanifolds in

C.

Specifically, let M = 3D, where D is a strictly pseudoconvex domain in C. Let

u c C M be an open subset defined by w = (z G M; Re h(z) < 0} where h is

holomorphic near D. The points in the boundary of w (9co) where the tangent space
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of du becomes complex linear are called characteristic points. If/is a smooth form

on a? with dMf = 0, then we wish to solve the equation dMu = / on w. We prove

three theorems about this equation. The first theorem assumes that / is smooth on

<5 except possibly at the characteristic points, and gets a solution which is smooth

on w except possibly at the characteristic points. The second theorem assumes that

/ is smooth on w and vanishes near each characteristic point on 9w, and gets a

solution which is smooth on <o. The interesting thing here is that nothing is assumed

about the growth of / near 9« away from the characteristic points. The third

theorem assumes that/has compact support in w and gets a solution with compact

support in w. In all three theorems, certain endpoint bidegrees must be avoided.

The characteristic points on 9co must be avoided because 9w becomes characteristic

to dM at these points. The solution in each of our three theorems can be

represented by a kernel. These kernels were introduced by Henkin and Romanov

(although they were described much differently by them). Our point of view here is

to take principal value limits across the singular sets of these kernels. This point of

view is used by Harvey and Polking [6] to solve the 9 equation on open subsets in

C". In fact, much of our work is motivated by their work on C.

Next, we study the tangential Cauchy-Riemann equations on a class of codimen-

sion two submanifolds. Let S = du. We construct an explicit map E: ÖD£9 -*

&sql which is also continuous in the & norm and such that if / e 6D£'7, then

/ = ds[E(f)] + E(dgf). Again, we must avoid the characteristic points in S. The

operator E is self adjoint up to sign, and is the boundary value jump across S of one

of the kernels used to solve the local dM theorems mentioned above. To construct

the operator E, we make use of the boundary value jump across S of

Ätt,*)AXO- 0-1)/,.'fes

We prove that / = R+f — R~f away from characteristic points, where R */ de-

notes the boundary values of (1.1) on S from either side. A consequence which is of

independent interest is the result that any ds closed form is the boundary value

jump of a dM closed form on M — S. Both local and global results are obtained.

We have organized our work as follows. In Chapter 2, we discuss the kernels we

use and some formal identities which relate them to the dM operator. In Chapter 3,

we review the basic facts we need concerning the global solution to dM (the R

kernel). Chapter 4 contains our result on principal value limits and the three

theorems on the local solution to 9M. In Chapter 5, we construct the global solution

to ds. The technical details in Chapters 4 and 5 are given at the end of each chapter

so as not to interrupt the flow of the basic argument.

Chapter 2. Preliminaries

2.1. Notation. Throughout this work AP,9(C) will denote the bundle of forms in

C of bidegree/j, q. We denote the projection maps by

■n"'q: A"+?(C)^A"'9(C*).

&p-q(C) will be the space of all smooth sections of A™(C) and ^-«(C) will be

the space of those sections of S^^C) with compact support. In the dual setting,



THE TANGENTIAL CAUCHY-RIEMANN EQUATIONS 3

we have currents of bidegree p, q denoted by 6î>'p,q(C") and currents of type p, q

with compact support, denoted by S'P,9(C"). The current pairing in C will be

denoted by (T, h)c„ where T G S'^C) and u G ©"-'•"-«(C). All spaces defined

above will have their usual topologies.

Suppose N is an oriented smooth submanifold of C of real dimension 2n — k

defined locally by N = {x G C; Pi(x) = • • • = pk(x) = 0} where p,,..., pk are

smooth real valued functions with dp (x) /\ • • • /\dp (x) ¥= 0 for x G N. The

current 'integration over AY denoted by [N], is defined by [N](<j>) = ¡N<j> where

$ G 6D2"~*(C"). [N] is a current of degree k and can be written locally as

[N] =gaNdp¡A--- A¿ft

where aN is surface measure on N, and g is a nonzero smooth function. The current

[N] splits into various bidegrees, i.e. [N] = ~2p+q-k[NY'9 where [NY* is the piece

of [N] of bidegree p, q. The most important piece of this splitting is [Nf'k, which

can be written locally as

[N]°'k = goNdPl A • • • A9p*.

We denote the restriction of the bundle AP«(C) to N by Ap-q(C")\N. A section of

Ap'q(C")\N is obtained by restricting the coefficients of an ambient/?, q form to TV.

We let CN be the closed set in A^ such that N — CN is the open set where the

tangent bundle of A' is minimally complex. Locally, we have

CN = {x G N; 9p,(x) A • • • Ahk(x) = 0}.

We call CN the set of characteristic points of N. Over the open set N — CN, we let

A%9 denote the bundle of p, q forms which are complex tangential to N. Locally,

Aft9 consists of those sections in AP'9(C?)\N which are orthogonal (Euclidean

metric) to the ideal in A*(C)\N generated by 9p„ . . . , 9p¿. We let tN:

Ap'9(C)\n_Cn -> A™ be the orthogonal projection onto Aft?. If/ G AP'9(C), then

we often write ft// for lN(f) and we calr/^ the complex tangential piece of/along Af.

U V C N — Cy is an open set, then &^9(V) will denote the space of smooth

sections of Aft* over V, and tyffiV) will be those sections of S^9(V) with compact

support in V. In the dual setting, ^ ,pf{ V) will be the space of currents on V of

bidegree p, q which are complex tangential to A', and S,p?, ( V) will be those

currents in tf) ,pj9( V) with compact support in V. The current pairing on Af will be

denoted by (T, u)N and is defined as follows: If T G Sft?(K) and «G

<%-p'n-9-k(V) are smooth forms, then

(T,u)N=([N]°-kAf,ü)c,=fNfAÜ

where T and ü are ambient extensions of T and u, respectively. This definition

naturally extends to T G ^'^(V) provided we have a good definition of [Nf'k A

T (cf. Harvey and Polking, Remark 7.6). The map tN: «D"-*"-«-*(0 -»

%-p'"-i-k{V) has (current) adjoint t'N: <$'£«(K) -» 6D'^+*(C) where ^^»(C) is

the space of currents on C with support in N. \i T El úD^,(K) is a smooth form,
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then

t'N(T)=[N]0*AT.

This is because

(t'N(T), *)<, = (T, *J   =/rA^ = ([ *f * A T, 4>)a

for<i>G 6D»-""-«-*(C-).

Therefore if T G ^'^(K), then it is natural to define [N]°-k AT= t'N(T).

Suppose S c N is a hypersurface in AT. The current 'integration over S" can be

regarded either as a current on C of degree /c + 1, or as a current on N of degree

one. If we wish to think of S as a current on N, we shall denote it by [S]0'1. If/is a

smooth form on S, then we have

Js

where / is any ambient extension of /

The induced Cauchy-Riemann operator d~N: eft9 -* &pj9+i can now be defined

as follows: Suppose V c N — CN is an open set and suppose/ G &ft9(V). Choose

/ G &P-9(C) with 4 = / Then

V=(9/\gS^+1(K).

It is easy to show the definition of 9^/ is independent of the extension /. Note that

dNf(x) is not defined for x G CN because / (x) is not defined for x G CN. By

taking an extension / which is independent of the normal directions of N, one can

see that the vector fields occurring in dN must be tangential to N.

2.1. Proposition. Suppose V is an open subset of N — CN andf G &ft9(V). Then

dNf = hifandonfyifd{fA[Nf'k) = h A [Nf,k where jand h are smooth forms on

C with l  = f and h,  = h.

Proof. By Stokes' theorem, we have d[N] = 0. Therefore, by type considera-

tions, it is clear that d[Nf* = 0. So, we have d{f A[N]°-k} = 9/ A [Nf*. Since

[Nfk = aNgdpx A ■ ■ ■ Adpk, we see that

dfA[N]°-k = hA[N]°'k

if and only if (9/),   = ht . This occurs if and only if 9^/ = h by definition.    Q.E.D.

Now we specialize to the case where N = M is an oriented smooth hypersurface

in C defined by M = {z G C; p(z) = 0}. We let X be the vector field of type

(0, 1) defined near M which is dual to 9p. This means that

(2.2) Xz J9p(z) = 1 for z near M, and

(2.3) XzJ\¡/(z) = 0 if and only if t^(z) G AP-9(C) is orthogonal to the ideal in

A*(C) generated by 9p(z). In particular XA^\M = 0 if and only if 4>\M G A™.

Suppose/ G Ap-i(C); we define

fTu = Xj(dp A /) 6 A"(C), (2.4)

fNu = (XJf)eAp*-\C"). (2.5)
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Since J is an antiderivation, we have:

/(z)=/rM(z) + 3p(z)AA»    for z near M. (2.6)

It is easy to show that/r \M = /, is the complex tangential piece of/along M (see

Harvey and Polking [6]). We also define

fnM=fNM\M (2-7)

and we call/, the complex normal piece of / along M. Restricting equation (2.6) to

M, we obtain

f(z) = fjz) + 9p(z) A /„»    forzGM. (2.8)

Equation (2.8) provides an orthogonal decomposition of / into its complex tangen-

tial and complex normal pieces. Keep in mind that fT and fN are defined near M,

but/   and/,  are defined only on M.

Now suppose that S c M is an oriented, smooth hypersurface in M defined by

S = {z G M; r(z) = 0} where we assume dp(z) A dr(z) ^ 0 for z G S. The set Cs

has the following characterization, which explains why we call Cs the set of

characteristic points.

2.9. Proposition. Let z0 G 5. The following are equivalent:

(a) z0 G Cs.

(b) The tangent space of S at z0, T2(S), is complex linear.

(c) The symbol of dM at z0 applied to (dr)t , az (dM, (dr), ) vanishes (i.e. S is

characteristic at z0for dM).

Proof. We note that a2JßM, v) = (w01t;),M for v G A] (M). Therefore,

az (dM, (dr)t ) = 0 if and only if (9r), (z0) = 0, i.e. if and only if dr(z0) is a complex

multiple of 9p(z0).    Q.E.D.

2.10. Example. Let M be the unit sphere in C" with defining function p(z) = \z\

— 1. Let S={z6 M; Re z, = 0} be the equator of the unit sphere. Then it is

easy to see that Cs = {(±i,0, . . . , 0)}.

Remark. A result of Wells [19] implies that if S is a compact submanifold in C

with no characteristic points, then the Euler characteristic of S is zero. Thus, if S is

homeomorphic to a In — 2 real dimensional sphere, then the Euler characteristic

of S is two and so Cs will be nonempty.

Away from Cs, we want to describe an explicit way of calculating the orthogonal

projection:

ts:Ap-9(C")\s_Cs^Ap¿".

It is clear from Proposition 2.9 that there is an open set U in C containing S — Cs,

such that dp(x) A dr(x) ¥= 0 for x G U. Hence we can use Gram-Schmidt ortho-

gonalization to choose a smooth form <f> G S01(í/) with the following properties:

(2.11) <<í>(jc), 9p(x)> = 0 for x G U; or equivalently A"J<i> = 0 on U. Here, < , >

denotes the Euclidean inner product on forms in C.

(2.12) |<i>(x)| = 1 for* G U.

(2.13) There are smooth functions y(x) =£ 0 and ô(x) on U such that <f>(x) =

y(x)dp(x) + 8(x)dr(x) for x G U.
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Condition (2.13) implies that the ideal spanned by 9p and 9/- is equal to the ideal

spanned by 9p and <j>. Hence, the definition of Aps-q can be restated as those forms

in AP,9(C")\S_C which are orthogonal to the ideal generated by 9p and <¡>.

Let Y be the vector field which is dual to <p. This means that YA$ = 1 and

YJf = 0 for each/ G AP-9(C) which is orthogonal to the ideal in A*(C) generated

by <b. From the properties of contraction, we see that if / G AM(C)|S_C then

/ G A%9 if and only if XJf\s = 0 and YJf\s = 0.

Suppose/ A&'lt/nj/; we define

/, = YJ(<t> A /) \p'9\
^M \UnM

and

Each section/ G Afa9

\p<i-nSss=YAf

M\unM nas foe orthogonal decomposition

/ = St+ </> A SNs-

(2.14)

(2.15)

(2.16)

2.17. Proposition. Suppose f G Ap/f; then fT \SnU = f, is the complex tangential

piece of S along S and jN \snu defines an element of Ap¿9~1.

Proof. It is easy to see that fT\SnU G AQ9 because XAfT = YJfT = 0 on

S n U. For example, we have

XAfTs = -YJ{XJ(<t> A /)} = -YJ{(XJ<t>) A /- 4> A (*-!/)}•

Since 4\M e &%l and/ G A£?, we have XJ<¡> = 0 and XJf = 0. Therefore XlfTs =

0, as desired.

It is also clear that/r \SnU = f\snu^ and only if/|Snt/ G AQ9. This is because

fT,-f-4>A(Ylf) ana Y J/| s n „ = 0 if and only if / G A§«.
In a similar manner, one can show that/^ \Snu G •^s*1 an<l/v Isnc = ^ ^ an<*

only if / G A§*.    Q.E.D.

Terminology. We let /, = /^ \s and we call /„ the complex normal piece of /

along S. Keep in mind that fTs and fN are defined near S — Cs but that ft and S„s

are defined only on S — Cs.

Restricting equation (2.15) to S — Cs we obtain that each section

has an orthogonal decomposition:

/ = 4 + *A/%
into its complex tangential and complex normal pieces along S.

2.19. Proposition. The following diagram commutes:

/«M(C-)L   c ——C'«+1(C-)|,_CA

"jii ls-cs

(2.18)

lJW

M
í        i&?M|S-Ci-*S^+'(A0

[M

s-cs

S§-«(5 - Cs) -Sg^+1(5-Cs)
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Proof. The only nontrivial part of the diagram is to show (9M/), = 9S(/ ) for

/ G Sjj?. If / is any ambient extension of /, then 9S(/ ) = (9/)r. We note that

if g G S *(C)|s_Cí, then (g)ls = (g,J,s. Therefore, 9S(/J) = ((9/),J,s = (dMS),s as

desired.    Q.E.D.

2.2. Action of kernels. In this section, we briefly discuss kernels on an oriented

smooth hypersurface M in C. We follow the ideas put down in Harvey-Polking [6]

and refer the reader to [6] for details not discussed here.

Suppose U, V are open sets in M. We say that £ is a kernel on U X V if E is a

current on U X V, i.e. £(f, z) G ^^xmÍ^ x *0- We view E as representing an

operator £: <$£(#) -» ^m*(V) as follows: If/ G <$£(!/) and g G ^¿(K), then

wu)M = (£,/®g)WXM= f    f   ¿?a,z)A/(OAg(z).

Symbolically, we write £(/)(z) = {/feA/ £(f, z) A /(£)},   where we only integrate

the piece of type («, n — 1) in f. This makes rigorous sense, for example, if £(f, z)

has integrable coefficients on M in f. £(</>)(z) becomes a smooth form for z G F if

(supp r> X F} n {sing supp £} = 0.

If £ G ^mTmÍU X F),  then  it  is  not hard  to  see  that  E:   %f(U)^>
6ù'iï9~r+1(v).

We define the switching map, s: MxM^MxM by s(f, z) = (z, f). The

transpose of £(f, z), denoted by '£(£, z), is then defined by 'E = s*E. The

transpose of E is obtained by switching f with z in the coefficients of E and by

switching dÇ and dz and dÇ with </z. Up to a sign, '£ is the current adjoint of E on

M. More precisely, suppose E G ^'"^(t/ X F), / G ^(t/), and g G

<$k-""-*+r(F); then

(<£(/), g)M = (- i)0^-'-')'(/, E{g))M.

For our purpose, the sign appearing here is rarely important.

2.20. Definition. Suppose U, V are open sets in M and suppose £ is a kernel on

U X V. We say £ is a regular kernel if £(/) is smooth on V whenever/ G ty^U)

and if E represents a continuous operator £: ^¿(t/)—» &m(V). We say E is

biregular if both £ and '£ are regular kernels.

If £ is a biregular kernel on M X M, then £ naturally extends to operate on

currents on M. Suppose S c M is an oriented hypersurface in M and £ is a

biregular kernel on M X M. If/ G ^¿(S - Cs), then £([5]°'' A /) is defined as a

current on M. Formally, we write

E([S]0-lAS)(z) = {f^sE(Lz)AS(o}i (2.21)

where we only integrate the piece of type (n, n — 2) in f. Regardless of whether or

not £ is a biregular kernel, (2.21) makes sense and defines a smooth form for

z G U, provided that {S X U} n {sing supp £} = 0.

It is clear from the above conventions that if

£ G <ii>S«  and   / G %«(S - Cs),
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then £([5]ai A /) G 6¡l'/p'9~r+2.  In particular,   if  r = 2,  then the operation of

sending/ to £([S]0,1 A S) preserves the bidegree of/.

23. Formal identities. In this section, we describe the kernels we shall use and

establish some formal identities that relate these kernels to the dM operator. We

closely follow the development given in [6].

Let M be a hypersurface in C and let V be an open set in M X M with

coordinates (f, z). Suppose u\Ç, z) = (u{(£, z), ■ ■ • , «¿(f, ¿)) is a smooth mapping

ui: K—> C" for 1 < / < N. We adopt the following notation from [6]:

«U.*)•«■-*)- 2 «¿tt.*)(&-**)>
k = \

»U z) • diS - z) - 2   ufó, z)d{Sk - zk),

(dMu^, z) ■ d(t - z) = 2 (3W)tt, *) A d(Sk - zk),
k = \

where dM is taken in both variables, f and z. We define the following one forms on

V:

Uj = Uj(uJ) =
u\t, z) ■ d(S - z)

1 <j<N.

Each ^ is smooth on V — Aj where >L, = {(f, z) G F; wy(f, z) • (f — z) = 0}. It is

clear that w, is homogeneous of degree zero; that is if hy. F—»C is a smooth

function then

Uj^hjU-') = Uj(uJ)   for each/

2.23. Proposition. For each integer k > 1 we have

(2.22)

^«0 a[3W"0.]* -
n7 • </(£ - z)

"' • a - z)

Proof. The proof is clear after noting that

A
u>'(S-z)

SMuj(uJ) =
9^-rfq-z)

uj • a - z)

(dMuJ-(^-z))A(uJ-d^-z))

(^•a-z))2
Q.E.D.

To state our formal identities, we shall use the following multi-index notation

adopted from [6].

If a = (a,, . . . , aN) is an A^-tuple of nonnegative integers, then we let \a\ = al

+ ■ ■ ■ +aN and (9^)" = (9w<o,r A • • • Ai^O«". If /- {/„ • • •, i,) is a

p-tuple of positive integers then we let u, = u¡ A " " " Au¡ and £/(«'', . . . , u'f) =

0.m)~nu, A^M^n-p^M^T- If the h' are understood then we just write E¡ for

Ej(u'<, . . . , u""). The form E¡ is a smooth form on V — {UJli^y} and it is clear

from (2.22) that E, is homogeneous of degree zero, i.e. we have the following

proposition:
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2.24. Proposition. Suppose hy V ̂ * C, 1 < j < N, are smooth functions. Then

Ejfou1', ..., h^) = E,(u\ ..., u'>).

For 1 < j < p, we set L= {/",,... , L, . . . , ip) where we mean that the element

ij is omitted.

The identity we need is the following:

2.25. Theorem. On the set V — { UJLj -Aj), we have

W-l >   '»XU

where, as before, dM is taken in both f and z.

Proof. In Harvey-Polking [6] the following formula is proved:

7-1

Therefore, Theorem 2.25 follows after applying the map tMxM.   Q.E.D.

In the applications that follow, we will let p = N = 3, / = (1, 2, 3), u\C, z) —

u(X,z), u2(X, z) ='t/(£, z) = u(z, f), and m3(£, z) = t>(f, z) where m and v are

smooth functions to be constructed later. We get the corresponding kernels

£,23, £12, £13, £23* Ex, £2, and £3. We shall let R = £12 and L = £,. Since u\Ç, z)

= '»'(£, z), it is easy to see that £2 ='£, ='L. Using Proposition 2.23, we can write

out these kernels explicitly. For example, we have

«'>-«dte#^)WO^z)

'«•a-z)

/9M-^-z)y/9'»-^-z)\

Theorem 2.25 implies the following identities

dMEm = £i3 _ £23 + R> (2.27)

9MÄ = L - 'L, (2.28)

9M£,3 = £3 - L, (2.29)

9^23 = E3 - 'L. (2.30)

These identities hold off the singular set A = Ax u A2 U ^43. In our applications

we will take t>(f, z) to be holomorphic in f and z. Hence, 9u = 0 and so £3 will

vanish.

In Chapter 4, we will take principal value limits of these kernels across the

singular set A and we will be particularly interested in what happens to equations

(2.27) and (2.28), after we take principal value limits.
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Chapter 3. The global solution to du on

a strictly pseudoconvex hypersurface

On a strictly convex, or more generally a strictly pseudoconvex hypersurface M,

there exists a support function w(f, z) such that the R kernel, defined in (2.26), is a

fundamental solution to dM. This kernel was discovered by Romanov and, indepen-

dently, Skoda. In this chapter we outline the construction of the support function

«(f, z) and review the facts we need about the R kernel.

For simplicity in stating estimates, we shall adopt the following notation:

Suppose C x C is given coordinates (w, z) and /: C X C —* C is a smooth

function. We say that:

f(w,z) = 6(\w\k) (3.1)

if there exist smooth functions aaß(w, z) such that

/(h-, z) =       2       Mw» ')">"**•
1*1+101-*

Note that if Xz is a vector field in z, then

xj(w, z) =    2    -Ww> ̂ V"*' = e(M*).
\a\ + \ß\-k

We say that

|/(w, z)\ > \w\k   for z in a set K (3.2)

if there exists a constant C independent of z G K such that |/(w, z)| > C\w\k for

|w| suitably small.

We say that

S(w, z) « |w|*    for z G A (3.3)

if both/(>v, z) = 0 (|w|*) and |/(h>, z)| > |w|* for z G A" are satisfied.

Now suppose D c C is an open set. We denote the complement of D by Dc.

3.4. Definition. Suppose w(f, z): A/ -» C is a smooth function, where A^ is some

neighborhood of dD X dD in C X C. We say that t/ is a strong support function

for 9£> if

(a) «(?, z) • (f - z) * 0 for (£, z) G AT n {Dc X D) - A.

(b) «(£, z) is holomorphic in z G Z> for each fixed f.

(c) Given any compact set K c 9Z> X 9Z), then Re{u(f, z) • (f - z)} « |f - z|2

for (£, z) G A and |í — z| suitably small.

Note that if m is a strong support function for dD, then 'u(£, z) = u(z, f )

satisfies

(3.5) (a) 'u<S, z) • (J - z) + 0 for (£, z) G AT n {Ö X ~D~C) - A.

(b) 'w(f, z) • (f — z) is holomorphic in £ G Z) for each fixed z.

(c) Given any compact set K c dD X dD, then Re{'«(f, z) • (f - z)} w |f - z|2

for (f, z) G AT with |f — z\ suitably small.

We now want to show that if D is strictly convex or strictly pseudoconvex, then

there exists a support function for M = dD.
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3.6. Definition, (a) M = dD is strictly convex if the defining function for M, p, is

a strictly convex function, i.e. the real hessian of p is positive definite on the

tangent space of M.

(b) M = dD is strictly pseudoconvex if the complex hessian d2p(£)/dÇjdÇk of the

defining function is positive definite on the holomorphic tangent space of M at f.

3.7. Lemma, (a) Suppose M = dD is strictly pseudoconvex; then u(Ç, z) = 9p(f )/9f

= (9p(f)/9f„ . . . , 9p(f )/3f„) is a strong support function for M.

(b) Suppose M = dD is strictly pseudoconvex; then there is a strong support

function w(f, z)for M defined in a neighborhood of dD X dD. In addition

«a z) • (? - z) = Aa, z)u(i, z) • a - *)
/or (f, z) near An {dD X dD} where h(Ç, z) is a smooth nonvanishing function

which is holomorphic in z for each fixed f and

&,($, z) - -|-(0 - \ |   3^-a)afc - zk),        Kj<n.

Proof, (a) Since h(£, z) is independent of z, it is clear that part (b) of Definition

3.4 holds for u(f, z). Part (a) of Definition 3.4 follows from the convexity of M, but

we do not need the full strength of strict convexity (see Harvey-Polking [6,

Proposition 6.2] for more details).

To prove that w(f, z) satisfies part (c) of 3.4, we look at a Taylor series expansion

of p about the point f.

p(z) = ptf ) - 2 Re{«(f, z) • (i - z)} + ¿U *)

where P(Ç, z) is the Taylor remainder of second order. Since p is strictly convex,

the remainder satisfies £(f, z) ss |f - z|2 for (f, z) G AT and |f - z| suitably small.

Therefore, if (f, z) G A/ X M, then:

2 Re{«a, z) • a - z)} =/>(?, z) « |f - z|2

and property (c) is satisfied.

(b) Part (b) is due to Henkin [7]; see also Ramirez de Arellano [15] and Overlid

[14].    Q.E.D.
Suppose M = dD is strictly pseudoconvex and u is a strong support function for

M. For fixed z G C", let:

Az = {£ G C; «a, z) • (i - z) = 0},

'AZ = {Ç GC;'«a,z)-(?-z) = 0}.

Part (a) of 3.4 and (3.5) imply that if z G M, then Az n M ='AZ n M = {z).

Therefore, the singular sets in M X M of Ä(f, z), L(f, z), '£(£, z) are just the

diagonal of M X M, cf. formula (2.26), etc.

Since Re «(f, x)-(f-i)w|f- z|2 for (£, z) G A/ X M and |f - z| suitably

small, it can be shown that the R(Ç, z) kernel is integrable on M in each variable

separately (see §4, also [6, Theorem 9.13]). Therefore, if / G &ß'q is a current on M

with L°° coefficients, then R(f)(z) = fSeM R(Ç, z) A /(£) is a form on M with

continuous coefficients. In addition we have



12 AL BOGGESS

3.8. Theorem. /// G %$ is a smooth form on M, then R(f) G S£?_1 is smooth.

Furthermore R represents a continuous operator R: <3D^'? -» S^/*-1.

We defer the proof until §4.3. Since 'R = R, the R kernel is self adjoint up to

sign and hence the R kernel is a biregular kernel on M X M.

Unfortunately, the kernels L and 'L, given in Chapter 2, are not integrable on

M. However, in view of 3.4(a), it is clear that if / G %g, then L(SKZ) =

/f eA/ L($, z) A /(f) defines a smooth form for z G D. From (3.5)(b), it is also

clear that if / G tyfc9 then lL(f)(z) defines a smooth form for z G Dc. Harvey and

Polking have shown (see [6, Theorem 8.1]) that the smooth boundary values of

L(/) (resp. 'L(f)) from D (resp. Dc) exist on M and define a smooth form on M

which we denote by LM(f) (resp. 'LM(f)). In view of type considerations, it is clear

that LM(f) = 0 unless/ G S£° and 'Lu(f) = 0 unless/ G Sfc""1. Since w(f, z) is

holomorphic in z, it is also clear that dM{LM(f)} = 0 if / G S^°.

3.9. Theorem (Henkin). Suppose g G 6D£?, 0 < q < « - 1; inen

9M{Ä(g)} + R(d„g) = g + (LM- >L„)(g). (3.10)

Proof. See Henkin [10], also [6].

Formula (3.10) breaks down into two cases of interest to us:

(3.11) If g.e <$&M < q < n - 2, then ~dM{R(g)} + R(dMg) = g.

(3.12) If g G ö^"-1 then dM{R(g)} =g- 'LM(g).

Since the R kernel is biregular on M, it is clear that (3.11) holds if g is a current

on M.

Now, suppose S is an oriented smooth hypersurface in M.

3.13. Definition. Suppose / G 6Dg""2(5 - Cs). We say / satisfies condition 0

for S if /ieA//a) A g(?) = 0 for all g G S^'0 with 9sg = 0 near {supp/}.

3.14. Theorem, (a) Suppose f G %j9\s, 0 < q < n - 2; then R([S]0-1 A S)(z) =

{/fes ^(f> z) A /(£)}/   defines a current on M with smooth coefficients on M — S.

(b) Suppose f G ^"(S - Q), 0 < q < « - 3; iAen

^([S]0'1 A /)} - R{[sfx AW) =[S]0-1 A S (3.15)

(c) Suppose f G 6Dg'""2(5' - Cs) and satisfies condition 0 /or 5; /«en

9A/{Ä([5]°'1A/)}=[5f,A/ (3.16)

Proof, (a) Since the singular set in M X M of the R kernel is the diagonal, it is

clear that R([S]0'1 A S)(z) is smooth for z G M - S.

(b) To prove part (b), we apply (3.11) with g = [5]01A/ and note that

dMg = -ISf-1 A dj.
(c) Let Tj, be a sequence of smooth functions such that dMt], —> [S]0'1 as t —»0, in

the sense of currents. We apply (3.12) to g = dMT), A /and obtain

3a, { R^mI, A /)} = ^t,, A / - 'LM(dMVt A /)• (3.17)
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We claim that 'LM(dMi]t A/)-»0as/-»0in the sense of currents. To see this,

let h G &"mp'°. Then

f* A /), h)M = (-l)""**1^* A / LM{h))M

which converges, as t —» 0, to

(- l)-' + ,([ 5]ai A / LM{h))M = (- O""**1/«,*0 A M*Xf).      (3.18)

Since 9W{LM(«)} = 0, (3.18) vanishes because/satisfies condition 0 for S.

Now we may let t —> 0 in equation (3.17) to establish part (c).    Q.E.D.

Chapter 4. The local solution to dM

In Chapter 3, we stated that the R-kernel globally solves 9^, where A/ = dD is

the boundary of a strictly pseudoconvex domain, D c C. In this chapter, we solve

three theorems concerning the local solution to dM. These theorems will be proven

after taking principal value limits across the singular sets of the kernels defined at

the end of Chapter 2.

4.1. Regular generating functions and principal value limits. Let M = dD where D

is a strictly pseudoconvex domain in C. Suppose V is an open subset of M X M

with coordinates (f, z) and let v: V —>Cbe a. smooth mapping.

4.1. Definition. The function v is said to be a regular generating Sanction for V

if:

(a) For each (z0, z0) G V, the matrix

(Vp)(%>

/{Vp(z0)}

Ví{Ret;a,z0)-a-z0)}|í=Zo

Vf{Imüa,z0)-a-z0)}|í_ro

has maximal rank, where J: R2n -» R2" is the linear map induced by multiplication

by /.
(b) For each (f0, z0) G V with ü(f0, z0) • (f0 - z0) = 0, the matrix

'(Vp)tta)

Vf{Re«a,z0)-a-z0)}|f_ro

ví{imüa,z0)-a-z0)}ií_Zo

has maximal rank.

Note that the conditions in Definition 4.1 are open conditions, i.e. if v satisfies

these conditions on a set S c M X M, then they will be satisfied near S in

M X M.

Let t/ be a strong support function for M, and let v be a regular generating

function for V c M X M. We define the following one forms

u(L z) ■ ¿(f - z) 'u(Ç, z) ■ d(£ - z) v($, z) ■ ¿(f - z)

"• " *a,z)-a-z) ' "2   <»($,*).(s-z)' W3   i;a,z)-a-z) '
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and we get the kernels £123, £I3, £23, R, L and 'L as defined in Chapter 2. These

kernels are smooth on V — B, where B = {(f, z) G V; u(f, z) • (f — z) = 0}.

Theorem 2.25 yields

dMEl23 = -£23 + En- R    on V - B, (4.2)

where on the left, 9^ is taken in both variables.

For e > 0, we define

f 1     if \v(S, z) • (f - *)| > e,
[ 0    otherwise.

For each e > 0, the currents XeE\23> Xe^i3» and X^E23 define kernels on V. The

following theorem is our main result concerning the principal value limits of our

kernels.

4.3. Theorem. Suppose v is a regular generating function Sor V c M X M.

(a) 77ie currents £123, £13, and £23 define principal value currents on V by the

formulas

P.V.£123 = lim   Xe^I23.
e—>0

P.V.£13 = lim Xe^i3.
e—»0

P.V.£23 = lim x.^23-
c—»0

Furthermore, the limit S = lin^^c^x,,) A £123 exists and defines a current S G

^ÏÏZm  with supp S c B.
(b) Suppose £/,, U2 are open sets in M with t/, X U2 c F. Suppose g G ^¿(t/,);

iAe« for each e > 0, i/ie /or/ni (XeEn2)(g), (XeE\3)(s)> (XeE23)(s) and

(9aíXí A £i23)(g) are smooth on U2 and they converge (in the topology of ^(U^) as

e^0+ to (P.V.£123)(g), (P.V.£13)(g), (P.V.£23)(g), and S(g), respectively. In

particular, the kernels P.V.£123, P.V.£13, P.V.£23, and S are regular kernels on

Uj   X    U2.

(c) The following current equations hold on V:

9M{P.V.£123} = P.V.£I3 - P.V.£23 - R + S, (4.4)

dM{P.V.Ei3 - P.V.£23 + S) = -[A] + LM - 'LM, (4.5)

where [A] is the current 'integration over the diagonal of V.

Remark. Equation (4.5) implies that the current P.V.£13 - P.V.£23 + S is a

fundamental solution for dM on V in the following sense. Suppose U X U C V

and g G %f(U), 1 < q < n - 2, with dMg = 0. Then

9M{(P.V.£13 - P.V.£23 + 5)(g)} = g   on U.

Proof. We shall prove the easy parts here and prove the more technical parts in

§4.3. Suppose we knew the principal value limits of £123, £13, and £23 exist and

define regular kernels on U1 X U2. Then, the rest of the theorem follows easily. For

example, by (4.2), we have

MXe£m} = Xe(£l3 - E23- R) + dMx, A £123
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which holds on V. Since R(Ç, z) is integrable on M X M (Theorem 3.8), we have

limE_>0 XejR = Ä. Therefore, we may let e —> 0 in the above equation to obtain

dM{P.V.El23) = P.V.£13 - P.V.£23 - R + lim {9^ A £123}-

Since we are assuming that P.V.£123, P.V.£13 and P.V.£23 are well-defined cur-

rents, we conclude that S = lim^^ü^Xe) A £123 defines a current on V and that

(4.4) is valid on V. Equation (4.5) now follows by taking dM of both sides of

equation (4.4) and by using Theorem 3.9 for the R kernel.

Since the R kernel is regular on M X M and since we are assuming the kernels

P.V.£123, P.V.£,3 and P.V.£23 are regular kernels on Í/, X U2, equation (4.4)

implies the kernel S is also regular on Ux X U2.

It is clear that supp S c B because for each e > 0,

supp d~MXe = {(£, z) G V; \v(S, z) ■ (i - z)\ = e}.

So, it suffices to prove that P.V.£123, P.V.£13 and P.V.£23 define regular kernels

on Í/, X U2. This is done in §4.3.    Q.E.D.

Remark. It is clear that on V — B (i.e. away from the singular sets of these

kernels) we have: P.V.£123 = £123, P.V.£13 = £13, and P.V.£23 = £23. So for

simplicity, we shall denote the kernels P.V.£I23, P.V.£13, and P.V.£23 by £123, £13,

and £23, respectively.

4.2. Three theorems on the local solution to dM. In this section we use Theorem

4.3 to solve three theorems concerning the local solution to dM. In this section,

M = dD is the boundary of a strictly pseudoconvex domain D c C" with defining

function p. We let u c C M be an open subset of M defined by w = {z G M;

r(z) = Re h(z) < 0} where A is a holomorphic function on a neighborhood of D.

We also assume that u, = {z G M; r(z) < t] has compact closure for each / near

zero.

We let C = Cdu be the set of characteristic points on du.

4.6. Definition. 9« is said to be an admissible boundary if whenever z G du — C,

then Bzn C = 0 where Bz = {? G M; h(Ç) = h(z)}.

Examples. Let M be the unit sphere in C and let u = {z G M; Re z, > 0} be

the upper hemisphere. Then du = {z G M; Re z, = 0} is the equator and C = C3u

= {(± i, 0, . . . , 0)}. We see that h(z) = -zx and so Bz = {f G M; f, = z,}. In

fact, for z G du, Bz is a sphere of real dimension 2« — 3 with radius

vl — (Im z,)2 and with center at (/' Im z,, 0, . . . , 0). Therefore, it is clear that 9w

is admissible.

The previous example can be generalized to any strictly convex boundary M

oriented so that the plane {z; Re z, = 0} intersects M transversally. Let u = {z G

M; Re z, > 0}. It is clear that 9w is admissible and has two characteristic points.

4.7. Proposition. If M = dD is strictly pseudoconvex, then M has a local

neighborhood basis of open sets u of the type described above, such that du is

admissible and has precisely two characteristic points.
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Proof. In view of the above example, the proof is clear if M is strictly convex. If

M is strictly pseudoconvex, then, locally, there is an ambient biholomorphism

which takes M to a strictly convex hypersurface. Since a biholomorphism takes

characteristic points to characteristic points, the proof is now complete.    Q.E.D.

4.8. Proposition. Suppose u c M is defined as above and suppose du has only two

characteristic points. Then du is admissible.

Proof. The proof will be clear once we establish that z0 G du is a characteristic

point if and only if z0 is a critical point for Im(«)|3u. Suppose p is the defining

function for M. Recall that r = Re(/i) is the defining function for du. Now z0 is a

characteristic point if and only if Vr(z0) = CJVp(z0), where C is a nonzero real

number. Since h is holomorphic, the Cauchy-Riemann equations imply that

V(Im h) = -J(Vr). Therefore, z0 is a characteristic point if and only if V(Im h)(z0)

= C(Vp)(z0). Now if Xz is a tangent vector to du at z0, then Xz is also a tangent

vector to M at z0, and so •( Vp(z0), Xz > = 0. Therefore, z0 is a characteristic point if

and only if <V(Im h)(z0), Xz > = 0 for each tangent vector Xz to 9« at z0.    Q.E.D.

We now construct a regular generating function, u(f, z), near 9w X {du — C).

Using Lemma 2.5 from Henkin [7], there exists a holomorphic mapping: t>(f, z):

D X D -> C which is defined near D X D such that v($, z) ■ (f - z) = /i(f ) -

h(z). If D is actually convex, then this construction is easy, for we have

h(n-h(z)=folj-t{h(t^ + (l-t)z)}dt

and we may let

^^)=i^^ + (\-t)z)dt.

The singular set for the kernels constructed in §4.1 becomes B = {(f, z) G M X

M; «(f) = «(z)}. If z is fixed on M, then the f-singular set for the kernels is the set

Bz = {f G A/; A(f ) = «(z)}.

4.9. Lemma, (a) T/' du is admissible, then there is a neighborhood V = Í/, X U2 in

M X M which contains {du} X {du — C} such that u(f, z) is a regular generating

function for V. Furthermore, if z G u then Bz C C u and if z G uc (but near du) then

BZCC uc.

(b) 77iere exists a neighborhood V = U{ X U2 in M X M which contains {du —

C} X {du}, such that v\v. is a regular generating function for V.

Remark. Note that we are not assuming that 9w is admissible in part (b).

Proof. It suffices to check Definition 4.1 holds for (f, z) G {9w} X {9w — C} if

9w is admissible and for (f, z) G {9w - C} X {9w}. Now, it is clear that

Vr{Re ü(f, z0) • (f - z0)}|f_Zo = (Vr)(z0). The Cauchy-Riemann equations imply

that Vf {Im otf, z0) • (? - zj)\s      = -7(Vr)(z0). If (z0, z0) G {9«} X {9<o - C),
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then z0 is noncharacteristic and the matrix in part (a) of Definition 4.1 has maximal

rank.

Now suppose (f0, z0) G V with f0 G Bz. Since du is admissible, f0 is not a

characteristic point. Therefore, the matrix in part (b) of Definition 4.1 has maximal

rank.

Note that Bz c {f G M; r(f) = r(z)} which is a compact set if z 6 w or if

z G uc near 9w.

The proof of part (b) is identical to the proof of part (a). Since f0 G C by

hypothesis, it is unnecessary to assume 9w is admissible.    Q.E.D.

Ç-space z-space

p.jP» are characteristic points

■K u;-

C-space z-space

From Theorem 4.3 the principal value limits of £123, £13, £23 exist on V = £/,X

i/2 and V = U[ X U2 and define regular kernels. Now, t)(f, z) is holomorphic in

both f and z; t/(f, z) is holomorphic in z; and 'w(f, z) is holomorphic in f.

Therefore, using Proposition 2.23 the £13 and £23 kernels become:

\u-d(i;,z)^
E\Á$> z) = (2^)  ""1 A w3

E23,{$> z) = (2ot')    "w2 A t*

K-a-z)

9, 'M • </(f - z)

In particular, £13(f, z) has degree « — 2 in ¿/f and £23(f, z) has degree zero in dÇ.

Therefore, in view of the current pairing on M, we have the following proposition.

4.10. Proposition.  Suppose g G ^(í/,) or gG.%f(U[);  then £13(g) = 0

unless q = 1 and £23( g) = 0 unless q = « — 1.

We also need to extend these kernels to operate on currents in &'¿¡ ( £/,) which

are smooth outside C. Let £ be any one of the kernels £123, £13, £23 or R-

4.11. Lemma. Let du be admissible. Suppose g G &m9(U1) is smooth on £/, — C;

then E(g) is smooth on U2.
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Proof. Fix z0 G U2. Bz n C = 0 because 9w is admissible. Therefore there

exists tj G ^(í/,) with i) = 1 near C, such that supp tj n 5Z = 0 for each z near

z0. Therefore, £(Tjg)(z) is smooth for z near z0. Since (1 - n)g G 6^q(Ul), Theo-

rem 4.3 implies that £((1 — Tj)g) is smooth on U2 and the lemma follows.   Q.E.D.

The next theorem is the first of three main theorems in this section. It enables us

to solve the 9^ equation smoothly up to the boundary except at characteristic

points.

4.12. Theorem. Suppose M = dD is the boundary of a strictly pseudoconvex

domain. Suppose u c C M is defined by u = {z G M; Re h(z) < 0} where h is

holomorphic near D and suppose du is admissible. Suppose f G &p^(u), 1 < q < « —

3, has a distribution extension f to a neighborhood of ü in M, which is smooth on

53 — C. If dMf s 0 on u, then u = El23(dMf) + R(f) is smooth on ü — C and

satisfies dMu — f on u.

Remark. By Proposition 4.8, Theorem 4.12 holds if 9« has two characteristic

points. Note also that the hypothesis on/is satisfied if/is smooth on w.

Proof. Let/ G &'pm(Ux) be an extension of/which is smooth on Ul — C. We

claim

u(z) = El23(dMf)(z) + R(f)(z)

is smooth on w u U2 (so in particular, u is smooth on ü — C). From Lemma 4.11,

u is smooth on U2. Now, s\i<pp{dMf} c uc because dMf = 0 on u. By Lemma 4.9

part (a), we have that Bz n supp 9^/ = 0 for each z G to. Therefore El23(dMf) is

also smooth on u.

Next, we check that dMu = / on u. Since B n {supp 9^/} X {u} = 0, equation

(4.2) is valid on {supp dMf} X {u}. Thus, we have

dMu = dM{Ex23{dMf)} + ~dM{R(f)}

--(Mm)(V)+/-*(9*/)

= (£23 - £13 + R)(dJ) +f-R(dJ)

on u. We have used Theorem 3.9 for the R kernel and we have used the operator

equation -[dMEi23] = dM° Ei23 - £123 ° dM (see Theorem 2.8 in [6]). Note that

(LM - 'LM)(f) = 0 by type considerations. By Proposition 4.10, El3(dMf) =

E2^mS) = 0 because dMf G S'5i?+1(t/1) and 2 < q + 1 < n - 2. So, we are left

with dMu = / = / on u.    Q.E.D.

Remarks. 1. The only place Theorem 4.3 is used in the proof of Theorem 4.12 is

to prove that u is smooth on w — C. The next main theorem will use Theorem 4.3

in a much stronger way.

2. If / G Ê5/(w), then the solution given in Theorem 4.12 is u = El23(dMf) +

R(f) which is valid for any smooth extension/ G óD^,(w u t/,). It is suggestive to

try a particular nonsmooth extension / = \J. Then dMf = [duf'1 A f and the

solution becomes

«(*) = (    Em(s, z) a m + f   *(f. *) A AS).
J£eda J(S.u
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It is easy to see that u(z) is smooth on u (interior regularity) without the use of

Theorem 4.3. The same calculation in the proof of Theorem 4.12 shows that

dMu = /on w. In the case where M is strictly convex and the defining function « is

complex linear, this solution was discovered by Henkin [10]. In Chapter 5, we shall

prove that the Henkin solution is tangentially smooth up to 9w - C. However, we

know nothing about the continuity of normal derivatives of the Henkin solution at

the boundary of u.

Since v is also a regular generating function for V = U[ X U2, the kernels £123,

£13, £23 and S are defined and regular on V. We may assume that U2 = {z G M;

\r(z)\ < 8} for some 5 > 0 and that U[ c U2.

4.13. Lemma. Suppose g G ë%q(u) with g = 0 near u — U{, and near each

characteristic point on du. Then the S kernel extends to operate on g and S(g) is

smooth on u.

Proof. For t > 0, let tj, G ^(w) with tj, = 1 on {z G u; r(z) < - /}. Since

g = 0 near u - U{, r¡,g G ^q(U[) for each t > 0. Hence S(t),g) is smooth on U2

by Theorem 4.3. If t < s, then S((-q, - Tj^gXz) = 0 for z G U2 with r(z) < - s

because supp S c B c {(S, z) G M X M; r(S) = r(z)}. Therefore, we may define

S(g) = lim^o* S(t],g) on U2. Since g vanishes on {z G u; r(z) < — 8}, it is clear

that we may define S(g) = 0 on u — U2.   Q.E.D.

The next theorem is the second main theorem in this section. It enables us to

solve the equation dMu = /with certain no growth restrictions at the boundary.

4.14. Theorem. Suppose f G S£?(w), 2 < q < « — 3, and suppose f vanishes near

each characteristic point on du. IfdMf = 0 on u, then there exists u G S^?-I(w) with

dMu = / on u.

Proof. Since uc n U[ and u — U[ are disjoint sets which are closed relative to

u u U{, there exists tj G S (u u U[) with tj = 0 near u — U{ and tj = 1 near

uc n U{. We can also require tj(z) = 0 for r(z) < — 8/2. It is clear that tj does not

have a continuous extension at a characteristic point. Consider

u = R((l - t,)/) + S(nf) - £123(9mtj A /)•

We claim that u is smooth on u and solves dMu = f on u. Since / vanishes near

each characteristic point on 9«, tj/ = 0 near u — U[ and near each characteristic

point. Therefore S(rif) is smooth on u by Lemma 4.13. R((l — tj)/) is smooth on M

because (1 — tj)/ is smooth with compact support in u. Since 9^™ A / £

6D&,+'({/,'), £^(9^ A /) is smooth on U2 by Theorem 4.3. El23(dMi} A /) is also

smooth on u — U2 = {z G. u; r(z) < — 8} because dMr¡ A S(z) = 0 for r(z) <

— 8/2. Therefore u is smooth on u.

Using Theorem 3.9 for the R kernel and Theorem 4.3, and the fact that

^mÍ^mV AS} = 0, we have

dMu = (1 - t,)/ + R{dMy) A /) + M«)}

+ (£13 - £23 - R)(dMV A /) + S(dMV A /)•
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Since dMr, A S e ^Pùq+\U[) and 3 < q + 1 < « - 2, (£13 - £23)(9mtj A /) = 0

by Proposition 4.10. So, we have

3> - O - tj)/ + M W)} + S(9mtj A /)   on u u £/¿

Since 9^/ = 0, equation (4.5) of Theorem 4.3 yields:

M W)} + 5(9^ A /) = - (3a/S)(tj/) = tj/   on co.

Note again that the £13, £23, LM and 'LM terms disappear by type considerations.

Therefore, we have dMu = /on to as desired.    Q.E.D.

Remark. Note that we did not assume that 9to is admissible in Theorem 4.14.

The next theorem is the third main theorem in this section and enables us to

solve dMu = / with a compactly supported solution in to, if / has compact support

in to. This theorem does not use Theorem 4.3.

4.15. Theorem. Suppose f G 6ÙPjfq(u) with 2 < q < « - 2, and suppose dMf = 0.

77¡e« there exists u G ^^(to) with dMu = /.

Proof. Assume that supp/ c {z G to; r(z) < -5}, for some 8 > 0. Choose

tj G S (M) with Tj(z) = 0 if r(z) < - 8 and tj(z) = 1 if r(z) > -8/2. Consider

u(z) = R(f)(z) +[~dM(V(z)El23)](f)(z) (4.16)

where dM on the right is taken on the product space, M X M. Since dMS — 0> we

see that u = R(f) — dM{-qEl23(f)}. Note that u is smooth on M because if

z G supp tj, then Bz n supp/ = 0. Clearly, we have dMu = /because dM{R(f)} =

/. It remains to check that u has compact support in u. Expanding (4.16), we have

u = R(f) + (a^T,) A £123(/) + t)(3m£123)(/)

= (1 - tj)ä(/) + (9„tj) A £123(/)-

We have used (4.2) and Proposition 4.10. Since 1 — tj and 9mtj have compact

support in to, clearly u has compact support in to.    Q.E.D.

Remark. Theorem 4.15 is definitely false for q = 1. If it were true, then, together

with the uniqueness theorems for C-R functions proved in [13], one could prove an

extension theorem for C-R functions analogous to the Bochner-Hartogs extension

theorem for holomorphic functions. (See the proof of Theorem 2.3.2 in Hörmander

[12].) Such a theorem does not hold for C-R functions. For example, let M be the

unit sphere in C, to = {z G M; Re z, > 0}, and let Q be the annular region

defined by Q = {z G M; 0 < Re z, <3).Thesetö = {z G C; 0 < Re z, <\} is

a convex set and hence a domain of holomorphy. So there exists a holomorphic

function / which does not extend across any part of the boundary of Q. Hence, /| Q

is a C-R function on C which has no C-R extension to all of to.

43. Technical proofs. We first prove Theorem 3.8 on the regularity for the R

kernel.

Proof of Theorem 3.8. By analyzing the pieces of the R kernel, we need to

show that if/ G ^"-'(A/), then
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(Kf)(z) = f    -áLMn-
^«(«■(f-zjfC«.«-:))'

is smooth in z G M, where p + q = n  and g(f, z) is smooth with g(f, z) =

6(\S — z\). The estimate on g follows because w(z, z) ='u(z, z), and hence

«(£, z) • rf(f - z) A HS, z) ■ d(S -z) = 6(\S- z\).

To prove the R kernel is regular, we must show that for each (f0, z0) G M X M,

there exists an open set Ux X U2 in M X M containing (f0, z0), such that if

/ G 6¡)'hn~l(U1), then (Kf)(z) is smooth for z G t/2. The theorem then follows from

a partition of unity argument.

Since m is a strong support function for M (Definition 3.4), u ■ (f — z) and

'«•(? — z) are nonvanishing for (f, z) G A/ X M and S ¥= z. Therefore, if f0 ^ z0,

then we can choose Ul x U2 such that (/, x t72 n A = 0. So we may assume

So = zo-

From Lemma 3.7 part (b), u ■ (f — z) = hit • (S — z) for (f, z) near A where

U/s,ï)4(o-|j äßr^*"2*}
9S,- 2 fc_, 9^,9^

and « is a nonzero smooth function. Since we will be working near A, we may

replace u by û in the definition of the R kernel.

We must make a change of coordinates given in the next lemma.

4.17. Lemma. 77iere exist a neighborhood U in C" containing z0 and tj > 0 and a

smooth map ♦: U X U —> C with the following properties:

(a) £or //xet/ z (E Ü, *Z(S) = *(f, z): *7'{B(0, tj)} -» 5(0, tj) is a diffeomor-

phism, where B(0, tj) is the ball in C of radius tj.

(b) // we write ¥,(£) = (>,(£, z), . . . , w„(f, z)), i«e« Re *,(£, z) = p(0,

Im w,(f, z) = lm{û(S, z) • (f - z)}, ant/ *z(z) = 0/or z G A/.

(c) ^"'(w) ¿s smooth in both z G Ü and w G £(0, tj).

Proof. We note that

V,{Im OU, z0) • a - zo)}!^ - -i/(Vp)(z0)

where / is the linear mapping induced by muliplication by /. Therefore, the real

Jacobian of the map

r~ÍÍL..,.   J-
\lmû(f,z0)-a

at f = z0 has maximal rank and we can let *>,(£, z) = vv,. • (f — z),/ > 2, for some

suitable choice of vectors vv, G C". The rest of the lemma follows from the implicit

function theorem.    Q.E.D.

From Lemma 4.17, we have *2~'{w G C; Re w, = 0} c M, and *z_1(0) - z =

0 for z G A/ n t/. A Taylor series expansion in w about the origin yields

*f'(w) - z as |w|    for z G ¿7 n Af and |w| < tj and Re wx = 0.     (4.18)
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(Kf)(z) = f

For each z G U n M, we pull back the integral in (Kf)(z) to obtain

gi(w. z)S(w, z) d\(w)

'*sb*— (u,(w, z)^'«^^, z))9

where d\(w) denotes Lebesgue measure in R2n_1 and

fx(w,z)d\(w) = (*;'*{ /})(w),

g,(w, z) = g(*;V)>4

Ml(w, z) = «(*;-V)> ¿) • (*7 V) - z),

'«,(w, z) ='«(^71(w), z) • (*7V) - z).

From the choice of 4% we see that ux(w, z) = Re ux(w, z) + iyx where yx = Im wx.

4.19. Lemma. 77iere exists a neighborhood U2 c M containing z0 and tj > 0 ímc/i

/«ai the following estimates hold uniformly for z G U2 and \w\ < tj w/f« Re w, =0.

(a)g,(>v,z)=0(|H).

(b) ux(w, z) » (|w|2 + l^,!) where yx = Im w„   'ux(w, z) «¿ (|w|2 + 1^,1), ux(w, z)

-'ux(w,z) = e(\w\2).

(c) If Xz is a vector field in z which is tangential to M, then

Xzgx(w,z) = 6(\w\),

Xzux(w,z) = 6(\w\2),

Xz'ux(w,z) = 6(\w\2).

Proof. From the estimate in (4.18), we have

gx(w,z) = g(^-'(w),z) = 0(1*7 V) - z|) = 0(M).

In part (b), the estimate on ux(w, z) will follow if we can show that Re ux(w, z) s»

|w|2 for Re wx = 0 and |w| < tj and z G U2. Since m is a strong support function,

there exists an open set U in M containing z0 such that

Re{â(f, z) • (i - z)} « |£ - z|2    for (f, z) G U X U.

Therefore, the estimate on Re ux will follow if we choose tj > 0 and U2 such that

for each z G U2, *7 1{B(0, tj)} c U. (Here 5(0, tj) is the ball of radius tj in R2"-1.)

Since û(z, z) ='û(z, z)

«a, z) • a - z) - HS, z) ■ (s - z) = ©or - z|2).
Therefore, the estimate on w, - '«, follows from (4.18).

To prove the estimate on 'ux, we need the following estimates

Re 'ux(w, z) > |w|2    for z G Ux, \w\ < tj and Re wx = 0,

|Im 'ux(w, z)\ > \yx\ - \w\2    for z G {/,, |w| < tj and Re wx = 0.     (4.20)

The estimate on Re 'ux follows because u is a strong support function. For Im '«,,

we have

|Im 'u\ = |(Im 'u - Im u) + Im m|

= |ß(IH2) + >',l£l><,|-|Hf.
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Now, from (4.20)

\'u(w, z)\ > max{|Re 'u\, |Im lu\}

>max{\w\2,\yx\-\w\2}>\w\2 + \yx\

where the last inequality follows from the following inequality used in Grauert-

Lieb [5, p. 36]:

If a, ß, y are positive real numbers, then

max{a, ß - y} > (2 + y/a)~\a + ß).

To prove part (c), we first note that if Xz is a vector field in z, and if

h(w, z) = 0(|w|*), then Xzh(w, z) = 0(|w|*). (See the notation at the beginning of

Chapter 3.) Therefore, if Xz is tangential to M, the estimates on Xzgx and Xzux

follow easily, because gx(w, z) = 0(|w|), Re ux(w, z) = 0(|w|2), and Im «, = yx for

z G M.

We also have

Xz'ux = Xz{'ux-ux)+Xz{ux} = 6(\w\2)

because 'ux - ux = 0(|w|2).   Q.E.D.

Remark. We emphasize that the estimates in parts (a) and (b) only hold for

z G M near z0, because (4.18) only holds for z G M. Hence, we only get the

estimates in part (c) for vector fields which are tangential to M.

Choose tj > 0 to satisfy Lemmas 4.19 and 4.17 and choose U2 c M to satisfy

Lemma 4.19. By shrinking U2 if necessary, there exists an open set Ux c M

containing z0 such that *{ Ux X U2} c 5(0, tj). From now on, we shall require/to

have compact support in Ux. Thus, for each z G U2, the tv-support of/,(w, z) is

contained in 5(0, tj).

Let I(w, z) be the integrand appearing in (Kf)(z). From Lemma 4.19, we have

|/(w, z)\ <-LH-<-!-
(H2+b,ir (H2+b,ir1/2

This estimate holds uniformly for |w| < tj with Re wx = 0 and z G U2.

If Xz is a vector field which is tangential to M, then Lemma 4.19 implies

\Xz(ux(w, z))-"\ = \(Xzux(w, z)) ■ (ux(w, z))-°'+1)|

^IH2(IH2 + |yl|)"ù,+,)^(H2 + b.l)"i'-
Similarly, we have |A^('u,)_*| <(|w|2 + |>1|)~'?. Thus, the estimates are no worse

for XzI(w, z) than they are for I(w, z). If Xx ... XN are vector fields in z which

are tangential to M, then it is clear that

\XZi...XZN{I(w,z)}\<(\w\2 + \yx\y/2-".

These estimates are uniform for z G U2 and w G 5(0, tj). Therefore, (Kf)(z) will be

smooth for z G U2 provided that (|h>|2 + |>'i|)I/2—" is locally integrable in R2"~'.

But this is easy to establish by first integrating out yx and then the rest of the

variables.

It is also clear that K: ^¿(t/,) -» S¿(í/2) is a continuous operator.
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This completes the proof that 5 is a regular kernel.

The remainder of the proof of Theorem 4.3. Let

(KJ)(z)=j
g(S, z)f(S)Xe(S, Z)

ÍS«(„. (t - z)r('u- (S - Z)Y(V (S - Z))'

where we assume g(f, z) = 0(|f — z|*), for some positive integer k. To prove the

rest of Theorem 4.3, it suffices to prove the following lemma

4.21. Lemma. Suppose v is a regular generating function for V C M X M. Suppose

UXX U2c Vandf G ^ ~ ' ( [/,). Then for each e > 0, KJ is smooth on U2 and the

sequence converges as e—»0+ in &(U2) (i.e. all derivatives converge uniformly on

compact subsets of U2) to a smooth form Kf, provided the following conditions on

p, q, k, I, and n are satisfied:

(1) Ifn > 3 andp, q > I, then 2p + 2q + I - k < 2« - 1.

(2) If q = 0 then p, I, k can be arbitrary nonnegative integers.

(3)Ifp =0 then q, I, k can be arbitrary nonnegative integers.

To see that Lemma 4.21 implies the theorem, we check each kernel:

£123. This kernel only makes sense when « > 3 and we note that p, q > 1 and

p + q = « — 1 and I = k = 1. The integer k equals one because u(z, z) ='u(z, z)

and so

u(s, z) ■ d(s - z) a '««, z) ■ ¿a - z) = e(\s - z\).
Therefore, we have 2p + 2q + / — k = 2« — 2 < 2« — 1, and so condition (1) is

satisfied.

It is easy to see that condition (2) applies to £13 and condition (3) applies to £23.

To prove Lemma 4.21, we need to show that if (f0, z0) G V, then there exists an

open set Ux X U2 c V containing (f0, z0) such that if / G 6&¡£~X(UX) then KJ is

smooth on U2 for each e > 0 and that KJ-* Kf in &(U¿) as e—»0+. Then the

lemma will follow by a partition of unity argument. We have the following cases to

consider on (f0, z0). Recall that 5 = {(f, z) G V, v(S, z) • (S - z) - 0}.

Case 1. (f0, z0) G V — B andp, q, I, k can be any positive integers.

Case 2. (f0, z0) G 5 - A andp, q, I, k can be arbitrary nonnegative integers.

Case 3. f0 = z0 and « > 3 and 2p + 2q + I — k < 2n — I.

Case 4. f0 = z0 and either p = 0 or q = 0. If q = 0, then p, I, k can be arbitrary

nonnegative integers. If p = 0, then q, I, k can be arbitrary nonnegative integers.

Case 1. Since 5 is closed, just choose Ux X U2 containing (f0, z0) such that

Ux X i/2 n 5 = 0. Then the integrand in (KJ)(z) is smooth.

To handle the remaining cases, we must make the following change of variables:

4.22. Lemma. For each (f0, z0) G V with v • (S0 - z0) = 0, there exist tj > 0 and

an open set 0X X U2 in C" X C" containing (S0, z0) and a smooth map *: Ux X U2

—» C with the following properties :

(a) nSo, zo) = 0.
(b) For each fixed z G Ü2, *Z(S) = *(S, z)- *7'{5(°> tj)} -> 5(0, tj) is a diffeo-

morphism, where 5(0, tj) is the ball in C" of radius tj.
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(c) // we write %($) = (w,(f, z), . . . , w„(f, z)), /«e« Re w,(f, z) = p(f ) a/io"

w2(í, 2) = v(S, z)(S- z).

(d) <&~ '(w) w smooth in both z G U2 and w G 5(0, tj).

(e) If in addition f0 = z0, then we can also choose * so that Im w,(f, z) =

Im{u • (f - z)} a«a" *z(z) = 0/or each (z, z) G £/, X t/2 n A/ X A/.

Proof. The proof follows immediately because v is a regular generating function

for V (Definition 4.1). See also the proof of Lemma 4.17.    Q.E.D.

Case 2. Fix (f0, z0) G 5 — A. We must first require that Ux X U2f\ A = 0 and

that {C/,Xi/2}c{£/,X(/2}nMx M. Then both u ■ (f - z) and '»•(?- z)

are nonvanishing on Ux X U2, because « is a strong support function for M. We

must also require that *{t/, X U2} c 5(0, tj). If / G ^""'(L^i). then the w-sup-

port of f(ty~\w)) will be contained in 5(0, tj) for each z G U2. Pulling back the

integral in (KJ)(z), we obtain

(KJ)(z) = f       ̂ f^- d\(w) (4.23)
■V2|>e        W±

where d\(w) is Lebesgue measure on R2"~ ' and

G(w, z) = *- »* (-^- 1 (w).
\(u-(s-z)y('u-(s-z))"i

Clearly, G is smooth and for each z G U2, the w-support of G(w, z) is contained in

5(0, tj).

Since the domain of integration in (4.23) no longer depends on z, we can

differentiate in z under the integral sign to show (KJ) is smooth on U2, for each

e > 0.

We now have a one complex variable lemma found in Harvey-Polking [6,

Lemma (5.19)].

4.24. Lemma. For each positive integer I, there is a constant M¡ depending only on I

such that

Lc ^'^ ^ - Le v^w2íikr{*iw>)} ^
kíl>« \wJl>e

< «Af,lr*||,-,

for each 4> G ty (C) and where

■/|a|</-l

«■¡ec

and where d\(w2) is Lebesgue measure on C. (D" is a differential operator in w2 of

order \a\.)
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Remark. If we denote the principal value limit of w2 ' by P.V.(w2 '), then

Lemma 4.24 says that

Ä(^r'iw-(-f»-».v.fe-o.
We now use the following notation. For w G C", we let w" = (w3, . . . , wn) G

C"~2 and / = (yx, w") G R2""3 whereyx = Im wx. If we identify R2"-1 with the set

{w G C", Re h>, = 0}, then R2"-1 has coordinates (w2, t). To prove case (2), we

apply Lemma 4.24 to ®(w2, z) = / G(w2, t, z) dX(t) where dX(t) is Lebesgue mea-

sure on R2"-3. Clearly, 3> is smooth and for each z G U2, the w2-support of

$(m>2, z) will be contained in the set {w2 G C; |w2| < tj}. It is also clear that

||4>(w2, z)||,_, < C, where C is a constant independent of z G U2. We have

(KJ)(z) = f        »2-'*(w2, z) dX(w2)
'\w2\:

and Lemma 4.24 implies (KJ)(z) -» (Kf)(z) uniformly for z G U2, where

{Kf){z) "jrwl w>~í ik)' "{i,(W2'z)} dX{W2)-

Note that (Kf)(z) is smooth for z G U2 because 4> is smooth and w2x is locally

integrable on C.

If Df is a differential operator in z of order \ß\, then clearly ||(£>/i>)(w2, -z)||7_ 1

< Cß, where Cß is a constant independent of z G U2. Applying Lemma 4.24 to

Df®(w2, z), we conclude that DzB(KJ)(z) -> Dzß(Kf)(z) uniformly for z G U2. This

completes the proof of Case 2.

Case 3. Fix z0 G Af with (z0, z0) G V. In Cases 3 and 4, we will be working near

the diagonal. Therefore, since u = hû, we may replace u by û in the definition of

KJ.
We shall use the change of variables w = ^Z(S) described in Lemma 4.22, where

we assume that ^fz(S) also satisfies part (e). If we identify R2"~' with {w G C;

Re wx = 0} then ^"'{R2"-1} c M. We also have *r'(0) - z = 0 for each z G M

n U2, and a Taylor series expansion about w = 0 yields

l^r'O) - z|«|w|      for |w| < tj, Re w, = 0 and z G M n t?2. (4.25)

Pulling back the integral in KJ via *z_1> we obtain

(KJ)(z)
Ç giO, z)fi(w, z) dX(w)

where dX(w) is Lebesgue measure on R2"   ' and

g1O,z)0-A(w) = *71*{g}(w),

ux(w, z) = u(^-l(w), z) ■ (*7'0) - z) = Re ux + iyx,

'ux(w, z) ='«071(w), z) • 07'(w) - z),

/1(w,z)=/(*710))-
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For each e > 0, it is clear that (KJ) is smooth on M n U2. As in the proof of the

regularity for the R kernel, we need the following lemma:

4.26. Lemma. For each z0 G M with (z0, z0) G V, there exist tj > 0 and an open

set U2 c M containing zQ, such that the following estimates hold uniformly for

w G R2"'1 with \w\ < tj and for z G U2.

(a)gx(w,z)=6(\w\k).

(b) ux(w, z) « M2 + \y¿ '«,0> z) » |w|2 + \yx\, ux - '«, = 0(|H2)-

(c) IfXj are vector fields tangential to M,for 1 < i < N, then

XK...X^{ux(w,z)} = G(\w\2),

XK...XNi{'ux(w,z)} = e(\w\2),

xXt...xN¡{gx(w,z)} = e(\w\k).

(d) If D£2 is a differential operator in w2 of order \a\, then

< 2,n«    t       \      ÍG(IH2_|a|) '/I«
D"ux(w, z) = {     M   '       ' J '

I 0(1) if\a

n« •   I       \       Í 0(|w|2-W) if\a
D°  ux(w, z) = {     M   '       / J '

I 6(1) if\a

{ 0(|w|*-l«l) if\a
D:2gx(w,z) =

> 2;

<2,

>2;

< k,

> k.

Z>"0(M') =

16(1) í/|«|
Proof. The proof of parts (a) through (c) is identical to the proofs in Lemma

4.19. The proof of part (d) is clear from part (a) and by noting that if / is any

positive integer, then

'e(M,-|B|)   if |«| < /,

0(1) if|«>/.

(See notation at the beginning of Chapter 3.)   Q.E.D.

Choose tj > 0 to satisfy Lemmas 4.26 and 4.22 and choose U2 c M to satisfy

Lemma 4.26. By shrinking U2 if necessary, there exists an open set Í7, c M

containing z0 such that *{(/, X U2} c 5(0, tj).

If we require /(f) to have compact support in £/,, then for each z G U2, the

w-support of fx(w, z) will be contained in 5(0, tj).

Let

,,       .          giO> z)Sx(w, z)
I(w, z) =- .

ux(w, zY('ux(w, z)f

Since ux(w, z) ¥= 0 and 'ux(w, z) ¥= 0 for iv =£ 0,1(w, z) is smooth for w =£ 0. Let

®(w2, z) = [ I(w2, t, z) dX(t) (4.27)
JtER2—3

where we have used the same notation as in Case 2. It is clear that if z G U2, then

the w-support of I(w, z) and hence the w-support of 4>02, z) is contained in

5(0, tj).
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We have (KJ)(z) = fíwt>t ®(w2, z)w2 ' dX(w2) and we define

{m(z)=(T=i)f/("¿yi{Hw2' z)}w2~i dx(w2)-  (4-28)

We wish to show that (Kf) is smooth on U2 and that KJ-> Kf in ^(U^ as e ->0+.

Suppose X, are vector fields tangential to M for 1 < i < A7. We shall estimate

||Xx   ... XN $(w2, z)||/_, uniformly for z G U2 and then apply Lemma 4.24.

First, suppose that Dw is a first order differential operator in w2. Lemma 4.26

implies

| z^g.O, z)\ = e(w*-') ^ (IH2 + b,l)*/2~1/2

and

K{«f'}| = |MA,2",K(/'+1)|

-o(MXM2 + b.l)~°'+,)
^(IH2 + M"(p+1/2)-

Similarly, we have \DW2{('uxyq}\<(\w\2 + \yx\)~(q+1/2). Therefore, we have the

following estimate on Dw {I}:

\D„1{I(W2,t,z)}\<{\w'f + \yx\)-*+', + X/2-k/2\

Repeated use of Lemma 4.24 shows that if D% is a differential operator in w2 of

order |5| < /- 1, then \D^{I(w2, t, z)}\ < (\w"\2 + \yx\)~" where p = p + q +

(I — l)/2 — k/2. Moreover, if we apply the vector field X¡ to /, Lemma 4.26

implies the estimates not to worsen, i.e.

\DfXK . . . XNi{I(w2, t, z)}|< (|w"|2 + b.l)-". (4.29)

These estimates are uniform for z G U2 and for |w| = (|w2|2 + |i|2)1/2 < tj.

In view of (4.27) and (4.29) we must determine which values of p make the

function (|w"|2 + |>'1|)~'1 locally integrable on R2"-3, in order to get estimates on

||A^ . . . XN{$(w2, z)}||/_!. By integrating out_y, first and then w", it is easy to

show that (|w"|2 + lj',1)-'' is locally integrable on R2"-3 if 2p < 2« — 2. Since

H=p + q + (l— l)/2 — k/2, this inequality will be satisfied if 2p + 2q + I — k

< 2« - 1. But this is precisely the condition assumed in Case 3.

To summarize, the condition onp, a, /, k, n assumed in Case 3 implies that there

is a constant C, which is independent of z G U2 such that

¡^...^{^O^z))!^ <C. (4.30)

Since w2~ ' is locally integrable on C and $ has compact w2-support, the estimate in

(4.30) implies that Kf is smooth on U2 (see (4.28)). Now Lemma 4.24 implies that

Xx . . . XN{KJ} -» Jf, ... XN{Kf} uniformly on l/2. This completes the proof of

Case 3.

Case 4. Let us assume q = 0. The case whenp = 0 is similar. In this case

giO. z)Si(w, z)
wx.>-/   g|TT<

J\w2\>e     ux(w, zyw2

dX(w)
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where we have used the same notation as in Case 3. Now ux(w, z) = Re ux(w, z) +

iyx. Let

h(w, z) =
9

9y,
"iO, z) -r— Re u, + i

ay i

It is clear that h(w, z) is smooth because 9 Re ux/dyx + i =£ 0. Note that

p - \    dyx

So we may integrate by parts with 9/9_y, to obtain

Gx(w, z)

WX*)-/      ~^i,^)J\w2\>e   Upx     'w2

where Gx is smooth and for each z G U2, the w-support of G,(w, z) is contained in

5(0, tj). Iterating this procedure p-times, we obtain

(KJ)(z) = f        \og{ux(w, z)}G2(w, z)w2-' dX(w)

where G2 is smooth with w-support contained in 5(0, tj). Strict pseudoconvexity of

M implies that Re{iî(f, z) • (f - z)} > 0 for (f, z) G Af X A/ with 0 < |f - z\ <

tj. Therefore, Re{w,(w, z)} > 0 for 0 < |w| < tj and z G U2. Hence, a branch of

log{w,(w, z)} exists for 0 < |w| < tj and z G t/2.

We can even continue further. Note that

h-r—{ux log«, -  M,}   = log«,.

So, we may integrate by parts again with 9/9^, and obtain

(KJ)(z) = [ [ux(w, z)log ux(w, z) - ux(w, z)]G3w2l dX(w)
•V2|>E

where G3 is smooth. Let Q be a large positive integer to be determined later. If we

iterate this process Q times, we obtain

(KJ)(z) = f       [ UQ(w, z)log ux(w, z) - C(w, z)]G4w2' dX(w),

where C and G4 are smooth and the w-support of G4(w, z) is contained in 5(0, tj).

Uq is some smooth function satisfying Uq = 0(|w,|e).

We let I(w, z) = [UQ log «, - C]G4 and

0(w2, z) = f I(w2, t, z) dX(t)
•'/ER2""3

(4.31)

where  we  have  used  the  notation  in  Cases  2  and  3.   We  have  (KJ)(z) =

/|H>2|>e ̂(w2> z)w2~l dX(w2) and we define

{Kf){z) = Trhji Í ( 9w¡)',{Í>(W2'z))wí'rfX(W2)-     (4-32)

As in Case 3, we need to estimate  \\XX   . . . XN{$(w2, z)}\\,_l  uniformly for

z G U2.
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Let D% be a differential operator in w2 of order \ß\ < / — 1. In view of (4.31),

we must estimate \D$XX  . . . XN {I(w2, t, z)}\. But

d£xk ...xN\uQ(w,z)iogux(w,z)} = 0(|«,|e-"-'+1)-

So, once N and / are fixed, then Q can be chosen so that Q — N — I > 0. With

this choice of Q, we have \D%XX . . . XN {I(w2, t, z)}\ < 1. This estimate holds

uniformly for z G U2. Therefore, there is a constant Cx independent of z G U2,

such that

\\XK . . . XNz{®(w2, z)}^ < Cx.

For each z G U2, the w2-support of ®(w2, z) is contained in 5(0, tj). Thus, from

(4.32), Kf is smooth on U2 and Lemma 4.24 implies that KJ —* Kf in S ( U^.

This completes the proof of Case 4 and of Theorem 4.3.   Q.E.D.

Remarks. 1. We note that to prove Theorem 4.3 for the kernels used in §4.2 to

solve the dM equation, we need only use Lemma 4.21 with / = 1. To prove Lemma

4.21 when / = 1, it is unnecessary to use Lemma 4.24 because w2~l is locally

integrable in the complex plane.

2. Cases 1, 2, and 4 do not use the full strength of part (c) in the definition of a

strong support function u. All that is used is that u(S, z) • (f — z) ^ 0 and

'u(S, z) • (S - z) #0for S *= 0, and in Case 4, we used that Re{w(f, z) ■ (f - z)}

> 0 for f t^ z. These three cases did not use the following estimate:

|Re m • (S - z)\ £ \S - z\2   for \S - z\ small. (4.33)

Since the principal value limits of the kernels £13 and £23 only depend on Cases 1,

2, and 4 of Lemma 4.21, we need not assume that (4.33) holds to prove that P.V.£23

and P.V.£,3 are regular kernels.

However, the regularity proofs for the kernels R and £123 definitely use (4.33),

because both u- (S — z) and 'u ■ (S — z) appear on the denominators of these

kernels.

Chapter 5. The solution to ds in codimension two

Suppose M = 9£> is the boundary of a strictly pseudoconvex domain and

suppose S c M is an oriented hypersurface in M defined by S = {z G M;

Re h(z) = 0} where « is holomorphic near D. In this chapter, we construct an

operator £: ty§*(S - Cs) -> &P,,q~i(S - Cs) which is also a continuous map £:

£p*comp(S - Cs)^t*Xoc(S -Cs), 1 < p < oo, and such that ds{E(f)} + E&J)

= /for/ G ^^(S — Cs). The operator £ will be a boundary value jump across S

of the kernel £123 used in Chapter 4. The hypersurface S is the boundary of the

type of region u considered in Chapter 4. However, we need not assume S is

compact, nor must we assume that S has admissible boundary.

5.1. Boundary value theorems. Let £ denote any one of the kernels £123, £13, £23,

R, L or 'L. If z G A/ is fixed, then recall that the f-singular support of £(f, z) is

contained in the set Bz = {f G M; h(S) = h(z)}. Let r = Re « and S, = {z G M;

r(z) = /}. If r(z) = /, then it is clear that Bz c St. Therefore, if/ G ^(S - Cs),
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then

E{[S]°'1Af)(z) = f      E(S,z)Af(S)
•'fes

defines a smooth form for z G M — S. Our boundary value theorems (Theorems

5.2 and 5.3) examine the smoothness of E([S]0,1 A SKz) as z approaches S.

In general, suppose r is an arbitrary smooth function on M. We let M+ = {z G

M; r(z) > 0} and M~ = {z G A/; r(z) < 0} and 5 = {z G A/; r(z) = 0}. We

need the following local definition.

5.1. Definition. Suppose £ is a smooth form on M — S and let z0 G S. Let s be

a nonnegative integer and let Xx, . . . ,XN be arbitrary vector fields which are

tangential to S. We say that F G CS(M+) (resp. F G CS(M~)) if there exists an

open set U in M containing z0, such that Xx . . . XN{F} is j-times continuously

differentiable on M + ni/ (resp. on M ~ n [/)•

A vector field X is tangential to S ii X{r} =0.

If £ G C'(MZ+) then near z0 we can take continuous boundary values to S from

M + of any number of derivatives of £ which are tangential to S, but we can only

take boundary values of s normal derivatives of £ (normal to S but tangential to

M). _

Notation. Suppose F G CS(MZ±) for each z0 G S — Cs. We denote by F± the

continuous extension to S — Cs of (F)T |w±. Note that F± G ê^'q(S — Cs).

The next two theorems are our principal results concerning the boundary values

of our kernels.

5.2. Theorem. Suppose S is an arbitrary oriented smooth hypersurface in M and

suppose z0 G S — Cs. Suppose f G S§,<7; then

(a) R([S]01 A S)ts e C°(M^) n C°(M¿).

(b) /// G &PS-°(S) and dj = 0 near z0, then

R{[S]°-1 AS) e c*>Cm¿) n c^m^).

(c) -L([S]0'1 A /) 6 c»(Ä/^) n c°°(ä7t;).

5.3. Theorem. Suppose S c AY = 9Z3 ¿s a« oriented hypersurface defined by

S = {z G A/; Re «(z) = 0}

w«ere « ¿s holomorphic near D. Suppose f G 6D£?(.S' — Cs) and z0 G S — Cs. Then

(a) £13([sr A /), £23([^rA S) g C°°(ÂÇ) n C°°(Ä77;).

(b) £,23([5]0'1 A/) e c°(A/x+) n c\m~).

Remarks. 1. Note that S can be any smooth oriented hypersurface in M for

Theorem 5.2. This is because the singular set in M X M for the R kernel is the

diagonal. The additional hypothesis on S in Theorem 5.3 is essential.

2. In Theorem 5.2, we know nothing about the boundary behavior of

ÄQS]0'1 A S)n ■ However, in [2], the author has proved that if M is the unit

sphere in C, then R([S]01 A /) G C"(^) n C°°(AfZo). The proof uses entirely

different techniques and exploits the fact that the R kernel on the sphere satisfies
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We shall postpone the proofs of Theorems 5.2 and 5.3 until §5.4.

Let £ be any one of our kernels discussed above. Theorems 5.2 and 5.3 imply

that if / G ^(S - Cs), then ^[S]0'1 A S)ts\m* nas a smooth extension to

5 - Cs. We denote their extension by £*(/) G &g(S - Cs).

5.2. Plemelj jump formula for the R kernel. In this section, we prove our global

and local theorems for the jump formula for the R kernel. This formula is

analogous to the classical Plemelj jump formulas for the Cauchy kernel on the

complex plane and for the Bochner-Martinelli kernel on C. In this section S will

be an arbitrary smooth oriented hypersurface in M defined by S = {z G M;

r(z) = 0}.

5.4. Theorem. Suppose f G typs>q(S - Cs) with 0 < a < n - 3, or if a = « - 2,

then assume f satisfies condition 0 for S. Then

(a) R +(/)- R -(_/)=/

(b) // in addition dj = 0, then dM{R([Sfx A /)} = 0 on M - S.

Proof, (a) First, we develop some preliminaries. We want to construct a

sequence of smooth forms on M which approximate the 'boundary jump' across S.

To do this let ip,: R —» [0, 1] be a sequence of smooth functions such that \f>,(x) = 1

for |jc| > 2t, and «//,(*) = 0 for \x\ < t. We let tj,: A/->[0, 1] be defined by

tj,(z) = ypt(r(z)). It is clear that tj, -h> 1 (weakly) as t -h> 0 and that tj, = 0 near S, for

each t > 0. If F G C°(M+) n C°(M~) for each z0 G S - Cs, then it is clear that

oM%AF-+[SflA{F+-F-)

weakly as / —> 0.

Since Ä^S]0'1 A /) is a current with locally integrable coefficients on M, we

have Tj,5([5f ' A S) -* R([S]°'X A S) weakly on M, as t --> 0. Taking dM of both

sides, and using Theorem 3.14, we conclude that

9„tj, a R([S]0JAS) + n,R{[sfl AosS)^[S]°-1 AS+ R{[sfl AosS)

as / —* 0. However, since 5([S]0,1 A 9«/) has integrable coefficients on M,

ruR{[S]0-1 Adsf)^ R([Sfl A$sS)

as t->0. Therefore, we have 9mtj, A R([S]01 A /)^"[S]0,1 AS- The orthogonal

decomposition in (2.16) yields

R([S]°"AS) = R([srAS)Ts + <t>AR{[S]°-1AS)Ns

near S — Cs. However, 9^-rj, = (\¡/¡ ° r)(dMr) and (2.13) implies <f> = <i>, = 8dMr.

Therefore, 9wtj, A 4> = 0 and so ^tj, A R([S]01 A /) = d~MV< A R([S]0i A S)ts-

Thus,

9mtj, A R([S]0-1 A S)Ts ASf'1 A /   as / -»0.

Theorem 5.2 implies that R^S]0'1 A S)Ts e C°(M¿) n C°(Äf^). Thus dMr¡, A

R([S]0] A S)Ts -» ['S']0'' A (R "7 - * 7) as < -♦ 0, and we conclude that 57 -

R~f = / as desired.
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(b) Theorem 3.14 implies that if dj = 0, then

9M{5([5f1A/)}=[5]°'1A/

which has support contained in S.    Q.E.D.

We remark that the proof of part (a) of Theorem 5.4 would be much simpler if

R([S]0'1 A S) e C^M/j7) n C°°(Ä/7;) (e.g. if M is the sphere in C).

Theorem 5.4 implies that a 9s-closed form on S is the continuous boundary

value jump across S — Cs of a 9M-closed form on M — S. The next theorem is a

local version of this phenomenon. The type of phenomenon in Theorems 5.4 and

5.5 is discussed in a more general context in [1]. What is new here is that we have

an explicit kernel R representing this jump, just as the Cauchy kernel in the

complex plane represents any smooth function on a smooth curve as the boundary

value jump of a holomorphic function.

5.5. Theorem. Suppose z0 G 5 — Cs, and let U be an open set in S containing z0.

There exists an open set to in M containing z0, with the /o//owi'«g property. If

f G typ;,q(S — Cs), with 9$/ = 0 on U, then there exists F which is smooth on u — S,

such that

(a) dMF = 0 on u — S.

(b) F G C^ÄT/) n C°(My)Sor each z G u n S.

(c)£+ - F~ "S on un S.

Proof. Suppose / G %-q(S - Cs) with 9^ = 0 on U. Theorem 5.4 implies

/ = R 7 - R ~f on S - Cs. The trouble is that R([S]°'X A /) is not dM closed on

M — S near z0. In fact, by Theorem 3.14, we have

M*([S]ai A /)} = *([S]0,1 A 37)   on M - S. (5.6)

Let u be an open set in M containing z0 satisfying the hypothesis of Theorem 4.12

and such that u n S c U. Since 97 = 0 on to n 5 and since the singular set of

the R kernel is the diagonal, 5([5]0,1 A 97) is smooth near tö. Theorem 3.14

implies that dM{R([Sf'1 A 97)} = 0 on to. Therefore, by Theorem 4.12, there

exists u G &Pf£~x(u) which solves the equation dMu = 5([5']0'1 A 97) on w- Let

£ = R([S]01 A /) - «• In view of (5.6), 9M£ = 0 on to - S. Theorem 5.2 implies

part (b) of the theorem. Since u is smooth on to, the boundary value jump of u

across S n to is zero. Thus, £+ - F~ = R +(f) - R "(/) = /    Q.E.D.

Remark. The formula for F in Theorem 5.5 can be made explicit because the

formula in Theorem 4.12 for u is explicit.

53. The homotopy equation for ds. In this section, we shall derive a homotopy

equation, from which the solution to 9S will drop out. Throughout this section, S

will satisfy the hypothesis of Theorem 5.3.

Recall that ^£,23 = £13 — £23 — R which holds off the singular sets of the

kernels involved. If / G ^^(S — Cs), then we can apply the above formula to the
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current [S]0'1 A /and obtain

-oM{Em([Sfl A/)} - En>{[S]0-1 A37)

= (£.3 - **)([$f A /) - *([sf A /)■       (5-7)

This equation holds on M — S, because all the forms involved are smooth on

M - S. As before, we let S, = {z G M; Re h(z) = r(z) = t}. If we apply the

orthogonal projection map Ts to equation (5.7) and then restrict the equation to S,,

1=^0, then we obtain

R{[S]°'1 A S)Ts = (*i3 - M^f A S)Ts

+ 9\{£123([5]0,1 A/)} + Mi5]0'1 A97)rs

which holds on 5,. Note that we have used that if £ is a smooth form on M, then

Ts{dMF} = ds{FT} on St. (See Proposition 2.19.) Now 9S involves derivatives

that are tangential to S, (i.e. vector fields which annihilate r). Therefore, by

Theorems 5.2 and 5.3 we can take boundary values of the above equation from

M + and M ~ (i.e. let t -> 0+ and / -> 0"). We obtain

R *(/) = (Eñ - E£)(f) + MEMS)} + £,13(97). (5.8)

We set

E ~  EY23 - EÛî> Q = (EU   * EÜ) + (-^23   ~E2^)-

Theorem 5.3 implies that E, Q map <>D¿(S - Cs) to &¿(S - Cs). If we use

equation (5.8) and the jump formula for the R kernel given in Theorem 5.4, then

we obtain the following homotopy equation:

S=QS+ dsE(f) + £(97)    on S - Cs. (5.9

Since £I3(f, z) has degree n — 2 in df and £23(f, z) has degree zero in dS, we get

the following cases:

(a) If/ G WS-°(S - Cs), then/ = (Ex+3 - £13)(/) + £(97).

(b) If/ G %«(S - Cs) with 1 < q < « - 3, then/ = 9s{£(/)}_ + £(97).
(c) If/ G ^¿"^(S - Cs) satisfies condition 0 for S, then/= ds{£(/)}.

Note that £23(f, z) is holomorphic in S- Therefore if / G fy%n-2(S - Cs) satis-

fies condition 0 for S, then £23([S]0>1 A /) = 0.

We also have the following tp estimate on the operator £.

5.10. Lemma. Suppose S G M satisfies the hypothesis of Theorem 5.3 and suppose

Kx and K2 are compact sets contained in S — Cs. Then there is a constant CK¡K2

which depends only on the compact sets Kx and K2, such that iff G 6Î)P;,9(KX), then

H^/^le'C^) < Q./rJL/lle'Oc,).

The proof of Lemma 5.10 will be given in §5.4. Lemma 5.10 and the homotopy

equation in (5.9), together, yield the main theorem of this chapter.
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5.11. Theorem. Suppose S c M = 9Z> is a smooth oriented hypersurface in M

defined by S = {z G M; Re h(z) = 0} where « w holomorphic near D. The operator

E:  ¿Ù*-9(S - Cs)^&¿-9-\S - Cs) also maps t/^S - Cs)^t*Xoc(S - Cs)

continuously. Iff G ty¿-q(S - Cs), 1 < q < n - 3, then

/=9s{£(/)} + £(97)   onS-Cs.

Moreover, iff G 6Dps-n~2(S - Cs) satisfies condition 0 for S, then f « ds{E(f)} on

S-Cs.

So, for example, if M is the unit sphere in C" and S = {z G M; Re z, = 0} is

the equator, then we can solve the ds equation on S — {(± i, 0, . . . , 0)}.

5.4. Proofs of boundary value theorems. To prove Theorems 5.2 and 5.3, it will

suffice to prove the following two theorems. Recall that S = {z G M; r(z) = 0}

and A/+ = {z G M; r(z) > 0}; M~ = {z G M; r(z) < 0}. If £ is any one of our

kernels, then we let

E([M±]AS)(z)= f E(S,z)AAS)

where it is understood that we only integrate the piece of E(S, z) A S(S) of type

(n, n - 1) in f.

5.12. Theorem. Suppose S is an arbitrary hypersurface in M and z0 G S — Cs. Let

f G '^(M) be a smooth form on M.

(a) Iff(S) vanishes to order j at S near z0, then R([M *] A 7) G Cy(Afr*).

(b) The forms £A/([A/±] A S) and ,£w([A/±] A S) are in C°°(MZo). °

5.13. Theorem. Suppose S is a hypersurface in M satisfying the hypothesis of

Theorem 5.3, and let z0 G S — Cs. Suppose f G 6D5/(A/) and suppose / = 0 near

Cs- _
(a) £13([M *]/) and E23([M ±]/) G C"(A/¿).

(b) If f vanishes to order j at S near z0, then Ex23([M±]f) G CJ+1(M*).

Proofs of Theorems 5.2 and 5.3 assuming Theorems 5.12 and 5.13. Suppose

/ G 6Ùps'q(S - Cs). Let/ G ^"(M) be any smooth extension of/which vanishes

near Cs. We note that dM{[M "]} = [Sf-\ and so

*{[S]°'iAS)-R{oM{[M-]}AS)

-R{âM{[M-]Af})-R([M-]AoJ)

which holds on M +. Since dMR = LM — 'LM, we have

R(dM{[M-]AS}) = -{dMR){[M-]AS~) - dM{R([M-]AS~)}

= ('LM - LM)([M-]f) - dM{R([M-]f)}.
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Therefore we have

R([S]°'lAf) = ('LM - LM)([M-]f) - dM{R([M-]f)}

-R([M-]dMf)    onM+. (5.14)

Again, we let 5, = {z G M; r(z) = t}. We apply the tangential map Ts to equation

(5.14) and then restrict the equation to 5, with t > 0, we obtain

*([*f A f)Ts = ('LM - LM){[M-]f)Ts - \{R{[M-]AS)Ts}

-R([M-]dMf)Ts    on 5,.

Since ds only involves derivatives which are tangential to S„ we can apply

Theorem 5.12 to conclude that 5([S]ai A f)Ts e C0(A/^), as desired.

(b) Suppose / G ^'"(iS — Cs) with dj = 0 near z0. Then we can choose the

extension / so that dMf vanishes to infinite order at S near z0 (see [2]). From part

(a) of Theorem 5.12, we see that R([M ~]dMf~) G C°°(MZ+). The second term on the

right of (5.14) vanishes because of type considerations. (R(S, z) has degree less than

n - 1 in of.) The first term lies in C00^) by part (b) of Theorem 5.12.

Therefore, 5([5]0,1 A /) £ CX(M^), as desired".

The above proof is the same if the + and — are reversed.

The proof of Theorem 5.3 is analogous to the proof of Theorem 5.2 and it will be

left to the reader.

Remarks. 1. Notice that dM{R([M~]f)} involves derivatives which are normal

to S. Thus, we do not know that this term is continuous up to S from M +. For this

reason, we must apply the projection map Ts to equation (5.14) before taking

boundary values.

2. Proving Theorems 5.12 and 5.13 is easier than proving Theorems 5.2 and 5.3

directly. This is because the domain of integration is one dimension higher in

Theorems 5.12 and 5.13.

Proofs of Theorems 5.12 and 5.13. Suppose/ G 6D^"_1(A/) and vanishes near

Cs. Suppose « is a smooth function on M X M with h(S, z) = 0(|f — z|*) where k

is a positive integer. If/vanishes to ordery at S, then/(f) = Q(r(Çy). By looking

at the pieces of the kernels involved, we must examine

(KS)(z)=f
AS)KS,z)r{sy

^M~  [„. (f - Z)]p['u- (t - Z)]"[V (S -  Z)]'

where p, q, I, j are nonnegative integers. It will be understood that if / is positive,

then S must satisfy the hypothesis of Theorem 5.3. Otherwise, S will be an

arbitrary oriented hypersurface in M. With this understanding it is clear that Kf is

smooth on A/ + . We must examine the behavior of (Kf)(z) as z approaches S from

M +. The case where + and — are reversed is similar.
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5.15. Lemma. Fix z0 G S - Cs. K(f) lies in the space CS(MZ+) provided the

following conditions are satisfied by p, q, l,j, k, s and n. (n is the complex dimension

ofC.)
(5.16) If p and q are positive, then 2(p + q) + I — k — j + s < 2«.

(5.17) If q = 0, then p, I, s,j and k can be arbitrary nonnegative integers. If p = 0,

then q, I, s, j and k can be arbitrary nonnegative integers.

To see that Lemma 5.15 implies Theorems 5.12 and 5.13, we check each kernel.

R kernel. In this case, we havep + q = «, / = 0, k = 1. Condition (5.16) implies

j can be as large as/ but no larger.

£123 kernel. In this case, we have p + q = n — 1, / = 1 and k = \. Condition

(5.16) implies s < j + 1.

Kernels EX3, E23, L or 'L. It is easy to see that condition (5.17) applies to these

kernels.

Proof of Lemma 5.15. It suffices to show that given f0, z0 G S — Cs with

S0 G BZo = {f G M; v(S, z0) • (f — z0) = 0}, there exists an open set UXX U2G

M X M containing (f0, z0) such that if / G 6^/~2(Ux) then Kf has the required

smoothness in i/2 n M+. Then the lemma will follow from a partition of unity

argument. When / = 0, we only have to worry about the case when f0 = z0,

because m is a strong support function for M. So we must consider the following

cases:

Case 1. So = z0 andp, a > 1 ; 2(p + q) + l—k—j + s< 2«.

Case 2. f0 = z0; either p = 0 or q = 0; if a = 0 then p, I, s, j and k can be

arbitrary nonnegative integers. If p = 0, then a, /, s, j and k can be arbitrary

nonnegative integers.

Case 3. f0 =¿= z0; f0 G Bz ; I > 1 andp, a, /,/, 5, k can be arbitrary nonnegative

integers.

In all three cases, we must make a change of variables.

5.18. Lemma. For each (f0, z0) G {S - Cs} X {S - Cs} with v(S0, zQ) - (S0 - z0)

= 0 there exist tj > 0 and an open set Ux X U2 C C" X C containing (S0, z0) and a

map 4': Ux X U2 —> C" with the following properties.

(a) For each z G Ö2, the map *z(f) = ¥(f, z): ¥7 '{5(0, tj)} -> 5(0, tj) is a

diffeomorphism, where 5(0, tj) is the ball of radius tj about the origin. ^~ '(w) is a

smooth map in z G U2 and w G 5(0, tj).

(b) // we write *r(f) = (w,(f, z), . . . , w„(f, z)) i«e« Re w,(f, z) = p(£),

Re w2(f, z) = r(S), Im w2(f, z) = lm{v(S, z) ■ «f - z)}.

(c) // /« addition f0 = z0, we may choose ^ so that ^z(z) = 0/or z G U2 C\ S, and

Im w,(f, z) = Im{i2 ■ (f - z)}.

Proof. The proof is similar to the proof of Lemma 4.22. In fact, since

Rc{v(S-z)}=r(n-r(z),

we have ^ = ^, — (0, r(z), 0") where <irx is the map in Lemma 4.22.    Q.E.D.

It is clear that we may require Im w, = Im{'i2 • (£ — z)} instead of Im w, =

Im{« • (f — z)} if we so desire. Such a diffeomorphism will be used if p = 0.



38 AL BOGGESS

Cases 1 and 2. We assume So = z0 G S — Cs. In Cases 1 and 2, we will be

working near the diagonal, so we may replace u by w in the definition of Kf.

Throughout the rest of the proof of Lemma 5.15, we will use the following

notation:

Xj = Re Wj,        1 < j < n,

yj = Im Wj,        1 < j <n,

W = (w2.wjGC"-1,

w" = (w3, . . . , wj G C"2,

wz = (yv w2 - r(z), w") G R2""1.

R2"-1 will have coordinates (yx, w') (i.e. xx = 0).

For each fixed z G M, ^Z(M~) = {w G C; xx = 0 and x2 < 0}. For

shorthand, we write tyz(M~) = R2"~l which is independent of z.

Since ^y\0, r(z), 0") = z for z G A/, an easy Taylor series argument about the

point w0 = (0, r(z), 0") shows that the estimate

|*7>0)-z|«K| (5.19)

holds uniformly for z G M near z0 and w near 0.

If/(f) has support near z0, we may pull back the integral in Kf(z) via <Sr~\-) to

obtain

K~, m f «!(w, z)xjfx(w, z) ¿Ap)

'^•>2-"-' w,(w, zf 'ux(w, z)"(w2 - r(z))'

where dX(w) is Lebesgue measure on R2"-1 and where

«,(w,z) = «071(w),4

ux(w, z) = «07'(^), z) • 07>O) - ^)

= Re «,(w, z) + <>„

'ux(w, z) =>û(*;\w), z) ■ (*l(w) - z)

and

/1(w,z)t/X=^71*{/}(w).

If / has compact support near z0, then fx(w, z) will have compact w-support near

the origin.

Proof of Case 1. We will first assume / > 1. As we shall see, the proof of Case

1 when / = 0 is similar and actually easier.

5.20. Lemma, (a) |w2 - r(z)| « |w2| + r(z)for z G M+ andx2 < 0.

(b) |wz\2 « | w|2 + r(z)2 for z G ÄP and x2 < 0.

(c)«,(w,z)=0(|wz|*)/orzG M.

Given z0 G S, there exist tj > 0 and an open set U2 in M containing z0 such that the

following estimates hold uniformly for z G U2 and w G R}"~1 with \w\ < tj.

(d) ux(w, z) « |w,|2 + \yx\; 'ux(w, z) « |wj2 + |j,,|, Re ux(w, z) = 0(|wj2);

Re 'ux(w, z) = 0(|wJ2), ux(w, z) - 'ux(w, z) = 0(|wj2).
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(e) If Xz is a vector field in z which is tangential to M, then

Xzux(w, z) = 0(|wz|);    Xz <ux(w, z) = 0(|wz|),

I 6(1) ifk< 1.

(f) If Xz is a vector field in z which is tangential to S, then

Xzux(w, z) = 0(K|2);    Xz >ux(w, z) = 0(|wz|2),

*z«,O,z) = 0(|wz|*).

(g) For 2 <_/<«, we have

~^ux(w,z) - S(K|); A \(w,z) = 0(|wz|),

9   L/       ^       Í 6(1^1*"')     '/*> 1.-r— «,(w, z) = Vl    zl        y

^ 16(i) «y*<i.
Proof, (a) We have \wz - r(z)\ « |jc2 - r(z)| ■+- |>>2|. If x2 < 0 and r(z) > 0,

then |x2 — r(z)| = \x2\ + r(z). This establishes (a).

(b) We have |wz|2 = y\ + (x2 - r(z))2 + y2 + \w"\2. Now (x2 - r(z))2 = x\ -

2x2r(z) + r(z)2. If r(z) > 0 and x2 < 0, then (x2 - r(z))2 > x\ + r(z)2. This estab-

lishes (b).

(c) Since «(f, z) = 0(|f - z|*) by hypothesis, part (c) follows by letting S =

*7 l(w) and using (5.19).

(d) Part (d) is proved exactly as part (b) in Lemma 4.19 is proved except that we

use (5.19) instead of (4.18).

(e) and (f) We have ^{«,0, z)} = ^{Re ux(w, z) + iyx} = Xz{Re ux(w, z)}.

Since Re ux(w, z) = 0(|wz|2), we have that Re ux(w, z) is a polynomial of degree

two in the real components of wz = (yx, w2 — r(z), w") over the ring of smooth

functions in w and z. If Xz is tangential to S, then Xz{r(z)} = 0 and therefore

A;{Re «,(w, z)} = 0(|wz|2). However, if Xz is not tangential to S then Xz{r(z)} ¥*

0 and so *z{Re ux(w, z)} = 0(|wz|).

Similarly, we have Xzhx(w, z) = 0(|wz|*~1) (resp. SflwJ*)) if Xz is not tangential

to S (resp. if Xz is tangential to S). The estimate for Xz{'ux(w, z)} follows from the

estimate on Xz{ux(w, z)} and because 'ux(w, z) — ux(w, z) = 0(|wz|2).

(g) The estimates in (g) follow because 9/9>^ clearly lowers the degree of a

polynomial in the components of wz by one. For example, if/ > 2 then

JU.O, z) = ^{Re ux + iyx} = ^0(kz|2) = 0(|wz|).    Q.E.D.

Remarks. 1. We emphasize that Lemma 5.20 only holds for z G M near z0,

because (5.19) holds only for z G M near z0.

2. Parts (e) and (f) of Lemma 5.20 are the keys to understanding the difference

between the boundary behavior of derivatives of Kf which are tangential to S and

derivatives of Kf which are not tangential to S. If Xz is a vector field which is

tangential to S, then, for example, the estimates on |m,| and \Xzux\ are the same,
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whereas if Xz is not tangential to S, then the estimates on \Xzux\ are worse than the

estimates on \ux\ by a factor of 0(|wz|).

Now, let us return to Kf. Choose tj > 0 according to Lemmas 5.20 and 5.18.

Choose Ux X U2 c M X M n {Ux X U2} containing (f0, z0), such that U2 satis-

fies Lemma 5.20 and such that *{[/, X Û2} c 5(0, tj). If / G ^""'(^i) then

/,(w, z) = /(^"'(w)) is smooth and for each z G U2, the w-support of/,(w, z) will

be contained in 5(0, tj).

We let Kx(w, z) be the integrand occurring in Kf, i.e.

«,p, z)x{fx(w, z)
Kx(w, z) =

up 'uq(P 'n9(w.  - '(*))'

We wish to get a single power of w2 — r(z) in the denominator of Kx(w, z). To

do this, we write

Since /(w, z) has compact w-support, we may integrate by parts with 9/9.y2 to

obtain

(Kf)(z) = f Kx(w, z) dX(w)
•/M>eR2_"-1

he*?-* (I- 1)! V 9v2 /

= f K2(w, z) dX(w)
•/weR2_"-1

/,(w, z)«,(w, z)       x{ dX(w)

JP l,.1
*\ "l

(w2 - r(z))

where K2 is smooth with w-support contained in 5(0, tj). Note, we could not have

integrated by parts with 9/9x2 because we would have got boundary terms at

x2 = 0.

We need to estimate the integrand K2(w, z). From Lemma 5.20, we have

\ux(w,z)-p\<(\w\2 + r(z)2 + \yx\yP,

\'ux(w,z)-q\<{\w\2 + r(z)2 +\yx\yq. (5.21)

We also have

9

9^2
{«i(w,z)-'} = p (^-MlO,z))(Ml(w,z))-^ + 1>

0(|wz|)(|w|2+r(z)2+b1|)-°'+1)

(M2 + K*)2)1/2(M2 + r(zf + b,|)-

{H   + r(z)   + 1^,1)

0> + D

(5-22)

Note that each time we differentiate uxp by d/dy2, the estimate worsens by a

factor of (|w|2 + r(z)2 + |^,|)"1/2. (Compare (5.22) with (5.21).) From these ob-

servations and from the rest of Lemma 5.20, we easily see that
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|*20, z)|< (|w|2 + r(z)2 + b.lP'ÍM2 + ^)T(|w2| + r(z))-1

where p, = p + q + \(l — 1), p^ = \(k + j). Therefore, we have

\K2(w,z)\<(\w\2 + r(z)2 + \yx\y\\w2\ + r(z))~l (5.23)

where v = nx-n2=p + q+2-(l— 1 — k — j). This estimate holds uniformly for

w G R2""' with |w| < tj and z G U2 n M+.

Now suppose Xz is a vector field in z on M. For z G M+ n £/2, we have

X{Kf} = /„e^-i A^p, z) dX(w). If A, is tangential to S then AY/) = 0 and so

X{(w2 — r)~1} = 0. Therefore, Xz must differentiate the rest of A"2 and Lemma

5.20 implies the estimates on \Xz{K2(w, z)}\ and \K2(w, z)\ are the same. For

example,

|A-{«r/'}| = p|(^«,0,z))«r(/,+1)|

= 0(|wz|2)(|w|2 + r(z)2 + b,|)-(i,+ 1)

<.(|Hf + K*)2 + bil)"'
which is the same estimate satisfied by \ux~p\ (compare with (5.21)).

However, if Xz is not tangential to S, then

l*{«r'}|=/>|(A>Io,z))«f<''+,>|

= 0(|wz|)(|w|2 + r(z)2+b1|)-°, + 1)

<(\w\2 + r(z)2+\yx\Y^/2\

So, we see that if X is not tangential to 5, then the estimate on ^{«f^jl is worse

than the estimate on \uxp\ by a factor of (|w|2 + r(z)2 + I^J)-^2.

Also, if Xz is non-5-tangential, then A'{(w2 — r)-1} = (Ar)(w2 — r)~2, which is

nonzero. So, we must integrate by parts as before with the vector field 9/9^2 to get

a single power of (w2 — r(z)) in the denominator. As we saw before, each time we

integrate by parts with 9/9_y2> the estimate on the integrand worsens by a factor of

(Iwp+Kz^+b.l)-'/2.
In summary, suppose Xx,. . . ,XN are vector fields in z on M of which s are not

tangential to S. For z G M + n U2, we have

Xx . . . XN{(Kf)(z)} = ( Xx . . . XN{K2(w, z)} dX(w).

After the appropriate integrations by parts, we have

Xx . . . XN{(Kf)(z)} = ( A:30, z) dX(w)

where K3 is smooth and for each z G U2, the w-support of A^3(w, z) is contained in

5(0, tj). Moreover, we have

|*30,z)|<(|w|2 + r(z)2 + \yx\y'-S/\\w2\ + r(z)yl

S(|wf+ b1|)-"-i/2|w2|-,
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which holds uniformly for z G A/+ n U2 and for w G R2^1-1 with |w| < tj. To

prove that Xx . . . XN{Kf} has a continuous extension to M + n U2, it suffices, by

the dominated convergence theorem, to determine the values of s which make the

function (|w'|2 + |>'i|)_,'"i/2|h'2|~1 locally integrable on R2"-1. So suppose 8X, 82, 83

are fixed positive numbers. Consider

/ = / /      ,   iiS3(\w"\2 + \w2\2 + \y1\y~s/2\^\-ldyxdX(w")dX(w2)

\w2\<S,       Kl<«2

where dX (w") and dX (w2) are Lebesgue measures on R2"-4 and R2, respectively.

To determine /, we shall integrate^, first to obtain

/ = 0(1) + / f 0(|w"|2 + \w2\2)—s/2+l\w2\-* dX(w") dX(w2).
Jw2ec   Jw"eR2"-*

K|<8,       |w"l<*2

Next, we shall integrate w" G R2"-4. To do this, we use a lemma, which is

proved using sophomore calculus.

5.24. Lemma. Suppose 8 is a fixed positive real number and a G R. Let m be an

integer greater than one. Then

J\u\<& (©(loga) ifl=m/2.
a£R"

We shall apply Lemma 5.24 with a = |w2|, / = v + s/2 — 1, and m = 2« — 4, to

obtain

/ = 0(1) + f        0(|w2r(2"-2n+î+3>) dX(w2).

\w2\<S,

Clearly, we see that / < oo if

2v - 2« + 3 + s < 2. (5.25)

Since v = p + q + |(/ - 1 - k - j), (5.25) will be satisfied if 2(p + q) + I - k -

j + s < 2«, which is the condition assumed in Case 1.

To summarize, if the condition in Case 1 on p, q, I, j, k and s is satisfied, then

K3(z, w) is dominated uniformly for z G M + n U2 and w G R2"~ ' with | w| < tj by

a locally integrable function on R2"-'. The dominated convergence theorem then

implies that the function Xx . . . XN{Kf}(z) = }weRin->K3(w, z) dX(w) has a con-

tinuous extension to M+ n U2, as desired. This proves Case 1 if / > 1. If / = 0,

then the same proof applies except that we need not integrate by parts with 9/9.y2.

Note also that S need not satisfy the hypothesis of Theorem 5.3.

Case 2. We will assume that q = 0; the case when p = 0 is similar. We will first

assume / > 1. In this case, we have

(KS)(z)=-——- dX(w)
Jwei&->    up(w2 - r(z))'
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where we have used the same notation as in Case 1. Now suppose Xx, . . ., XN are

vector fields in z on M. For z G M + n U2, we have

Xx . . . XN{Kf(z)} = f Xx . . . xJ    *.K*W.(».*)    ] dX(wl

A typical term of Ar, . . . A^A/} is

= f «2(w, z) oTiQ)

•\,<=R'_<-' Ml(w, z)''(w2 - r(z))h

where «2(w, z) is smooth with w-support contained in 5(0, tj) and r, + t2 < p + I

+ N. Again, we wish to get a single power of (w2 — r(z)) in the denominator. As in

Case 1, we integrate by parts with 9/9>>2 to obtain

(t2- 1)! Jwejs:-\ay2)       \„I0,z)''J"^2 / ^  W,(W, Z)"' J

A typical term of K(z) looks like

*M = / hfW'Zl^ - r(z)Yl dX(w) (5.26)

where w is an integer with m < tx + t2 and «3(w, z) is smooth with w-support

contained in 5(0, tj). Now, we also want to get a single power of ux in the

denominator. Actually, we will reduce the power one at a time by a technique used

in the proof of Theorem 4.3. Let g = (1/(1 — m))[dux/dyx]~l, i.e.

s(^) = t4^(^RWh>,z) + ;)   .

Clearly, g is smooth and gd{u\~m}/dyx = uxm. This holds for z G A/+ n U2 and

w G R2""1 with |w| < tj. Integration by parts with d/dyx yields

Kx(z)=f Mlp,z)1-m^-{«3g}(w2-r(z))-1o'AO)
'wERi"

= f ux(w, z)1   mh4(w2 - r(z))   ' o*X(w)
'weR

where «4 is smooth with w-support contained in 5(0, tj). Iterating this procedure,

we finally obtain for z G M + n U2

Kx(z) = [ ux(w, z)-*«5(w, z)(w2 - r(z))~l dX(w)
JweR2?-'

where «5 is smooth with w-support contained in 5(0, tj). By Lemma 5.20, the

integrand is dominated by (|w|2 + |^i|)_1|w2|_1 uniformly for z G A/+ n U2 and

w G R2""1 with |w| < tj. Since (|w'| + Ij'iI)-1!^!-1 is locally integrable on R2"-1,

the dominated convergence theorem implies that Kx has a smooth extension to

A/+ n U2. Thus, A", . . . XN{Kf} has a continuous extension to A/+ n t/2, as

desired.
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As in Case 1, the proof of Case 2 when / = 0 is easier. The above proof applies

except the integration by parts with 9/9y2 is unnecessary. Again, if / = 0, then we

need not assume that S satisfies the hypothesis of Theorem 5.3.

Case 3. Assume £0 ¥= z0 and v(S0, z0) • (f0 — z0) = 0 and / > 1. Since f0 =£ z0, we

can require that Ux X i/2 n A = 0. Then, the function

(       } f(S)h(S,z)r(ty

u.(s-zn>u-(s-.z)y

is smooth on £/, X U2. If / G ^""'(í/,) then the f-support of g(S, z) is contained

in Ux. Pulling the integral back via ^~\ we obtain

(AT/)(z) = f G(w, z)(w2 - r(z))-' dX(w)

where G(w, z) dX(w) = ^~]*{g}(w) is smooth and has compact w-support in

5(0, tj). If Xx, . . . , XN are vector fields in z which are tangential to M then

Xx...XN{Kf}(z)= f Xx... XN{G(w,z)(w2 - r(z))-'} dX(w)

for z G M + n U2. A typical term of A', . . . XN{Kf} is

Kx(z)=( Gx(w,z)(w2-r(z))-dX(w)
^wERl""1

where Gx is smooth and has compact w-support in 5(0, tj), and t < I + N. Using

the vector field 9/9y2, we can integrate by parts t — 1 times as in Cases 1 and 2, to

obtain

*i(*) = \ G2(w, z)(w2 - r(z))-1 dX(w)

where G2 is smooth, and for each z G U2 n M +, the w-support of G2 is contained

in 5(0, tj).

For w G R}"~x and z G M+ n U2, the integrand in Kx is dominated uniformly

by c|w2|_1. Since |w2|_1 is locally integrable on R2"-1, the dominated convergence

theorem implies that Kx has a continuous extension to M + n U2, as desired. This

proves Case 3, and concludes the proof of Lemma 5.15.    Q.E.D.

Proof of Lemma 5.10. Before we prove Lemma 5.10, we need some pre-

liminaries.

5.27. Lemma. Suppose S is a hypersurface in M satisfying the hypothesis of Theorem

5.3. Letf G ^"(S - Cs)andg G ^-'•"-«-'(S - Cs). Then

(El+2ASlg)s = (-iy + q+1(SE¡2Ág))s-

Proof. Let Se = {z G A/; r(z) = e}. We have

(EnÁS), g)s =  Hm (EU[Ser A /), g)s
c—»U

= elim(£123([5e]°'2A/),[5f2Ag)(.

=  \hn(-lY+9+\[Se]0-2 A S Em([Sf2 A g))^
e-*(T
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where in the last equality, we have used that '£123 = £123. Since e is approaching

zero from negative values, we easily obtain (Ex\3(f), g)s = (— \y+q+x(f, Ex23(g))s

as desired.    Q.E.D.

Lemma 5.27 implies that the operator £ = £123 — £123 is selfadjoint, up to sign.

Thus it will suffice to prove Lemma 5.10 forp = oo. For then duality and Lemma

5.27 imply the result forp = 1, i.e. we have

|(*(A *)*|-|a E(g))s\ < CK\\f\\e(K)\\g\\e„iK)

for/ g G ^¿(K). Then, interpolation theory (see [18, Theorem 1.4.2]) implies

Lemma 5.10 holds for all 1 < p < oo.

Thus, to prove Lemma 5.10, we must show that if Kx, K2 are compact sets

contained in S - Cs, then |£123(/)(z) - £123(/)(z)| < C^JI/He-^, holds for

z G K2 and/ G ^(A-,), where CK K is independent of z G A^2, and/

Let Q(S, z) = [« • (S, zY]['û ■ (S,'z)]q where p + q = n - I, p, q > \. A typical

term of the kernel £123 is g(£, z)/(Q($, z)v ■ (S - z)) where g(f, z) - B(\S - z\).

By localizing the problem, we may assume that g(S, z) has f-support contained

near a fixed point ¿" G Kx, and we will estimate |(£123 — Eñ^)(S)(z)\ for z G K2

near a fixed point z' G K2.

5.28. Lemma. Given z' G S — Cs, there exists an open set U in S containing z' and

there exists a 8 > 0 and a smooth map <j>: U X [ — 8, 8] —» M with (¡>(z, 0) = z,

Im û(z, <j>(z, t)) ■ (z - 4>(z, t)) = 0, and r($(z, t)) = t,for z G U and \t\ <8.

Proof. The desired map is <$>(z, t) = ^z_l(0, 0, /, 0, 0") where ^z() is the diffeo-

morphism constructed in Lemma 5.18.    Q.E.D.

For simplicity, we write z, = <£(z, t). To prove Lemma 5.10, we must examine

g(S, zr)_g(S,z_r)

Q(S,zr)v(S-zr)      Q(t;,z_r)v(S-z_r)  ■

The triangle inequality yields

1_1

v(S-zr)      v(S-z_r)

g(S, zr)       g(S, z_r)

Q(t;,zr)      Q(S,z_r)

= I[ + ¡l

We must show that given (£', z') G A", X A"2, then \\mr_^*{Irx + I2} < CK holds

uniformly for all z G K2 near z' G K2 and where the f-support of g(S, z) is

contained near ¡' G Kx.

Case 1. S' ■* z'. We need to make a change of variables w = ^Z(S) described in

Lemma 5.18. We can do this since z' is noncharacteristic. Note that ^Z(S) = R2"-"

with coordinates (yx,y2, w"), where yj = Im w, and w" = (w3, . . . , w„) G C-2.

Note also that on R2"~2, |ü- (^r\w) ~ z)\ ^ \y2\ + 14 So, if we pull back the

'"/ •'fei

r <
/ îea:

g(S, zr)

Q(S, zr)

/ fei v(S-z_r)
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integral in I[, we obtain

rf < /
»ER2""2

|W|<T)

Si(w> z,)

e,(w, o (^| + ,2)
dX(w)

where dX(w) is Lebesgue measure on R2"-2, gx(w, zr) = g(ty~\w), zr), Qx(w, zr) =

Q(^~ '(w), zr), and tj is a fixed positive real number. Lemma 5.20 implies the

following estimates hold uniformly for z G K2 near z':

|gl(w,zr)|=0(|w| + |r|),

1

ßiO, zr)
<

(|w|2 + r2 + 1*1)"

Since

f , r   , ^2"2tan-0)<g
^K^' + r2 VW

and since (|w"|2 + |^1|)3/2~'' is locally integrable on R2"-3, we easily find that

I{ < Cv uniformly for z G K2 near z', and all r with |r| < tj.

We will show that I2 -> 0 as |r| -» 0. The triangle inequality yields

g(S,zr) - g(S,z_r)\
r2-< f

J£<EK

/

'Si

+
fSAT

QiS, zr)

g(S,z_r)

v(S-z_r)

v(S-z.r) Q(S, zr)      Q(S, z_r)
/ jr   ,    ii jr
12 +     l2.

Pulling back the integral in 'I2 via ^fz ', we have

2iO>^) - gx(w,z_r)
T2 < fwER!'"2 Ö.O, zr) W + M

o"A(w).

Now g,(w, zr) - gx(w, z_r) = 0(|zr - z_,\) = 0(|r|). Since

V\dy2

and since

f (Kf + r> + Ij.,1)'- <A(») - 6(k»W),
•/»ER2,-J

|h>|<7)

we easily see that '/2r < 0 (|r|[log|r|]2). Thus T2 -> 0 as |r| -h> 0.

Pulling back the integral in "I2, we have

"F2 < / »ER2""2

gl(w.^-r)

b2l +

e,(w,zr)- e,(w,z_r)

öi(w, zr)ö,(w, z_r)
<A(w).
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We claim that

e,o,zr)- o,o,z_r)
Qi(",zr)Qx(w,z_r)

6(\ux(w,zr)-ux(w,z_r)\)

U"

|   6(\>ux(w,zr)->ux(w,z_r)\) (529)

where U" is any expression of the form

U"(w, z) =[ux(w, zr)y'[-ux(w, zr)]h[ux(w, z_r)]Jfux(w, z_,)f    (5.30)

with /, + j2 + j3 + j4 = n. To prove (5.28), we induct on => starting with n = 3

(=>p = q = 1). Let ur = ux(w, zr) and Qr = Qx(w, zr). Then, for « = 3

Qr -   Q-r  _   O -  U-r) \ +  U_r('ur - 'u_r)

QrQ-r QrQ-r

_ (ur - u_r)      ('ur - 'u_r)

uru_r 'u_r        ur 'ur 'u_r

This proves the case when « = 3.

To prove the induction step, we write

Qr -   Q-r (K -  »->r ' V +   «-,«"' V -  «'-71  '«*,)

Ô.Ô- ßrß-.

up~x'uq - up_-rx'uq_r

up-x'uqup_-x'uq_r

Since p + q = « - 1, the first term is 0(Mr - u_r)/U". We may apply the induc-

tion hypothesis to the second term, and the claim follows.

5.31. Lemma. The following estimates hold uniformly for z G K2 near z' and

w G R2n~2with \w\ < tj.

(a)|g,(w, z_r)|<|w| + |r|.

(b)|t/"(w,zr)|>(|w|2+r2+|>'1|)-".

(c)

«1O,zf)-«1(w,z_r) = 0((|w| + |r|)|r|),

'MlO,2r)-'«1(w,z_r) = 6((|w|-r|r|)|r|).

Proof. The estimates in parts (a) and (b) follow from Lemma 5.20 and because

r(zr) = r. A Taylor series expansion of p implies that Re û • (S — z) = 0(|f — z|2)

and Re 'û ■ (f - z) = 0(|f - z|2) for (S,z) 6 M X M near the diagonal. There-

fore, by setting £ = ^z_1(w), we easily obtain Re ux(w, zr) - Re ux(w, z_r) =

6((M + M)|r|) and Re \(w, zr) - Re 'ux(w, z_r) = 0((|w| + |r|)|r|).

Since Im û(z, zr) • (z — zr) = 0 (Lemma 5.28), we have Im «,(w, zr) —

Im ux(w, z_r) = 0((|w| + |r|)|r|). This in turn implies

Im 'ux(w, zr) — Im 'ux(w, z_r) =[lm 'ux(w, zr) — Im ux(w, z/j]

- [Im 'ux(w, z_r) - Im ux(w, z_r)]

+ 6((H + |r|)|r|). (5.32)
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Now 'ux(w, z) — ux(w, z) = 0(|wz|2). Therefore, there exist smooth functions

aaß(w, z) such that

Im 'ux(w, zr) - Im ux(w, zr) =      £       aaß(w, zr)w?(wzf.

|«| + |/3| = 2

So from (5.32), we have

Im 'ux(w, zr) - Im 'ux(w, z_r) =      2       aaß(w, zr)wza(wz)

W+IPI-2

-^(V->",(*,/ + 6((M + k|)|r|).

Since |wz| < |vf| + |r|, an easy argument now shows that Im 'ux(w, zr) —

Im 'ux(w, z_r) = 0((|w| + r)|r|). This completes the proof of parts (b) and (c) of

Lemma 5.30.   Q.E.D.

In view of (5.29), (5.30) and the estimates in Lemma 5.31, we have

|SiO> zr)\
Ôi(w,zr)-e,(w,z_r)

QÁ^zr)Qx(w,z_r)

6(H(M + kl)2)
(M2 + r2 + |*D"

6(H)

~(w2 + r2 + \yx\y-r

Since i\y2\<T,dy2/\y2\ + kl = 6(log|r|) and since

/ |r|(|w"|2 + r2 + |*|)'-" dX(w) = 0(|r|log|r|),

|w|<1

we have "/2r < C,|r|[log|r|]2. Thus, " V2 -» 0 as |r| -+ 0, as desired.

Case 2. f ' t^ z' awa* v(S', z') ■ (f — z') = 0. This case is easier. For S ^ z, the

function g(f, z)/ <2(f, z) is smooth. Therefore, if we pull back the integral in I[ via

♦I"1, then

-I
: f IH
'J\yi\<r>y\ + r

O*  < 7T

which holds uniformly for z G A^2 near z' and for r with |r| < fl- For £ and S' and z

near z', clearly, the following estimate holds:

g(S,zr) g(S,z_r)

Therefore

Q(S, zr)       Q{S - z_r)

\r\

= 0(|r|).

12 < S     T-fln;r4'2 = ö(kliogki).
J\y2\<r,\y2\ + kl

Thus I2 —» 0 as kl —» 0, as desired. This completes the proof of Lemma 5.10.

I would like to thank John Polking and Reese Harvey for their help during my

graduate career at Rice University.
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