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ON A 4-MANIFOLD HOMOLOGY EQUIVALENT TO

A BOUQUET OF SURFACES1

BY

AKIO KAWAUCHI

Abstract. This paper gives some algebraic invariants for a piecewise linear

imbedding of a surface into some 4-manifold inducing a Z or Q-homology

isomorphism. Several examples are obtained by using these invariants.

Let F be a closed (possibly disconnected) oriented surface and let W be a

compact connected oriented piecewise linear 4-manifold with an isomorphism <pq:

Hq(F; R)œ Hq(W; R) for all q > 0, where R = Z or Q, and such that the

intersection number of any two elements of H2(W; Z)/(torsions) is 0. The purpose

of this paper is to give some algebraic invariants which are necessary to find a

piecewise linear imbedding F ^> W inducing this isomorphism cpq for all a > 0.

Such invariants come from some developed arguments of quadratic forms of

3-manifolds defined by the author in [9]. By using these invariants, we shall have

some examples.

Example 2.5. For each g > 1 there are compact connected orientable 4-manifolds

W such that W is homotopy equivalent to a closed connected orientable surface Fg of

genus g, but there is no (possibly nonlocally flat) piecewise linear imbedding from Fg

to W inducing any homology isomorphism.

For g = 1 this gives an elementary proof of a spineless 4-manifold announced by

Y. Matsumoto [15]. In the higher even dimensional case, S. E. Cappell and J. L.

Shaneson [1] and Y. Matsumoto [16] have constructed spineless manifolds Wn+2

for each even n > 4 whose statements are weaker than the above.

Example 2.6. For each g > 0 there are infinitely many relatively nonhomology

cobordant compact connected orientable 4-manifolds W such that there is a homotopy

equivalent piecewise linear imbedding Fg —> W, but there is no locally flat piecewise

linear imbedding from Fg to W inducing any homology isomorphism.

Let L be a link of í components with linking numbers 0 (i.e. any two compo-

nents of L have the linking number 0) and let WL be a 4-manifold obtained from a

4-cell D4 by attaching 5 2-handles along the link L in S3 = dD* with null-homolo-

gous framings. Clearly, WL is homotopy equivalent to a bouquet S2 V S2

\/ • ■ ■ \/S2 of s  2-spheres  and any two elements  of H2(WL;  Z) have  the
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intersection number 0 and every element of H2(WL; Z) is represented by a

piecewise linearly imbedded 2-sphere.

Example 2.7. For each s > 2 there is a boundary link L of s components such that

a basis of H2(WL; Z) coming from the components of L cannot be represented by

mutually disjoint piecewise linearly imbedded 2-spheres. In particular, for each s > 2

there is a boundary link of s components which is not cobordant to a completely

split table link.

In the higher odd-dimensional case, such a boundary link also exists. (See [6].)

Example 2.10. For each s > 2 there is a link L of s components (with linking

numbers 0) such that any s elements of H2(WL; Z) forming a basis of H2(WL; Q)

cannot be represented by mutually disjoint piecewise linearly imbedded 2-spheres.

In fact, we shall show this for the links Q0 and E0 of 2-components in Figure 3

considered by H. Lambert [13]. So, neither Q0 nor E0 bounds two 2-cells mutually-

disjointly and piecewise linearly imbedded in D4. This answers a question of H.

Lambert [13]. Note that this assertion for Q0 and EQ is not derived from the

arguments of the Robertello-Arf invariants of links. Cf. [13], [17].

Example 2.12. For each s > 1 there are compact 4-manifolds W homotopy

equivalent to a bouquet of s 2-spheres such that a basis ofH2(W; Z) is represented by

s mutually disjoint piecewise linearly imbedded 2-spheres, but any s elements of

H2(W; Z) forming a basis of H2(W; Q) cannot be represented by mutually disjoint

locally flat 2-spheres.

The case í = 1 is the 4-dimensional result of M. Kato [5, Theorem D].

§1 concerns a general argument of quadratic forms of closed oriented odd-di-

mensional manifolds, where we shall give Fundamental Theorems I and II. In §2,

we shall give some algebraic invariants for a piecewise linear imbedding F'-* W

inducing an isomorphism <pq for all q > 0 and the above examples.

Spaces and maps are considered in the piecewise linear category throughout this

paper and it seems that this category is essential for our invariants, because, for

example, the Giffen's shift spinning construction produces a homotopy equivalent

topological (wild) imbedding Fg -» W for the manifold W in Example 2.5. (See C.

H. Giffen [4], W. T. Eaton, C. P. Pixley and G. A. Venema [2] and Y. Matsumoto

[18].)

1. Properties of quadratic forms of odd-dimensional manifolds. Let A" be a finite

complex with rankz HX(X; Z) > 1. Every element of HX(X; Z) corresponds

bijectively to a homomorphism from the free product F(X) of the fundamental

groups of the components of X (or HX(X; Z)) to a fixed infinite cyclic group </)

with a specified generator t by the identification Hl(X; Z) = Hom[F(X), </>]

(or = Hom[//|(Ar; Z), </>]). A nonzero element y of HX(X; Z) is indivisible if the

equation y = ny' with n G Z and y' G H\X; Z) implies that |n| = 1. Indivisible

elements of Hl(X; Z) correspond bijectively to epimorphisms from F(X) (or

HX(X; Z)) to </>. Let y G Hl(X; Z) be an element and X be the infinite cyclic

cover of X associated with y, that is, X is the fibered product of a map/: X —> 5'

inducing y and the exponential cover exp: R ' —> S1 (cf. [7, p. 437]). The covering

translation group of X is identified with <?> by the evaluation map y. For a
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(possibly empty) subcomplex X' of X, let X' be the lift of A" by the covering

projection X —> X. The rational homology group H^(X, X'; Q) = H^(X, X'; Q)y

is a finitely generated module over the rational group ring ß<<> of <()• T+(X, X')

= Tt(X, X'\ is the g<i>-torsion part of Ht(X, X'; Q) and T*(X, X') =

T*(X, X'\ is the dual vector space over Q. T*(X, X') admits a ö<i>-module

structure induced naturally from Tt(X, X') so that (fu)(x) = u(fx) (f G Q(t),

u G T*(X, X') and x G Tt(X, X')), since Q{t} is a commutative ring. The qth

Alexander polynomial Aqy(t) of the pair (X, A") with y G H\X; Z) is the order

ideal of the Q(t)-torsion module Tq(X, X') (or equivalently Tq(X, X')) (cf. [9]).

The qth Q(t)-Betti number ßqy(X, A") of the pair (X, A") with y G H\X; Z) is the

Q(t)-ra.nk of Hq(X, X'; Q). If two nonzero elements /,(/) and/2(r) in Q(t) are

equal up to units of Q(t}, then the notation/,(/) = f2(t) is used.

We have the following reduction formula.

Lemma 1.1. Let y = ny G Hl(X; Z) with nonzero y G Hl(X; Z) and nonzero

n G Z. Let

Tq(X, X% « £</>/ (/,(/)) © • • • ©ß</>/ (SÁ0)

be a cyclic decomposition. We have that ßq(X, A") = ßy(X, X') and

Tq(x, x% « e<i>/ (/,(/")) © • • • ©e<o/ (sac))
and, in particular, Ay(t) = A^t").

Proof. Clearly it suffices to prove this lemma for the case that n > 2 and X is

connected and y is indivisible. [Note that the case that n = -1 is obvious and

y = (—«)(— y) for n < — 2.] Let (X, X') be the cover of (A\ A") associated with

y G Hl(X; Z). X has just n components, since X is connected and y = ny, n > 2,

and y is indivisible. The actions t,t2, . . . ,t"~x are cyclic translations on the

components of X and the subgroup Im y = </"> of •(/) acts on each component of

X. Let A^0 be any component of X. X0 is the infinite cyclic cover of X associated

with the epimorphism y0: trx(X) -» Im y = <r"> defined by y. Let X¿ = X' n X0-

By assumption we have

Hq(X0, X¿; Q)yo « QOn>ß © ß<r>/ (/,(,»)) © • • • ®Q(t")/ (/(«"))

as g</">-modules, where ß = ßqy(X, A"). Hence we obtain that

Hq(X, X'; Q)y « 2   /'[ Q<.t"y<BQ(t"y/ (/,(/"))©• ■ ■ ©ß</">/(/,(/"))]
í=0

« ß<0/? © ß<0/ (/i('")) © • • • ©ô<0/ U(í"))

as ß<?>-modules. This completes the proof.

Let M be a compact oriented «-manifold with rankz HX(M; Z) > 1. Let

y G H1 (M; Z) be a nonzero element and M be the infinite cyclic cover of M

associated with y. By Duality Theorem (II) and Remark 1.7 of [9], there is a

nonsingular pairing

Tq(M, 9A/) X Tn-q-\M)^>T"-\M, 9M)
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induced from the usual cup product pairing

H9(M, dM; Q) X H"-q-l(M; Q)^H"-X(M, dM; Q).

Let My . . ., Mc be the components of M such that the restrictions y\M¡ are

nonzero, / = 1, . . . , c. Let d = ^ci=x\(.ty /ln\(y\M¡)\ < + oo. Note that M has just

d noncompact components and each noncompact component of M is an infinite

cyclic cover of some M¡ associated with an indivisible element y, in H1(M¡; Z)

specified uniquely by the equality y\M¡ = |<i>/Im(y|A/,)|y,. Using this infinite

cyclic cover, we can have the quasi-fundamental class2 for each noncompact

component of M. It follows that Tn_x(M, dM) is the direct sum of d copies of Q

with a basis consisting of the quasi-fundamental classes of the noncompact compo-

nents of M. This basis (as a set) is /-invariant and can be specified uniquely by the

orientation of M and the element y G Hl(M; Z). Using the dual basis ux, . . . ,ud

of this basis, we define a map X: T"~ l(M, dM) —* Q by the equality

A 2   ft«,-] = 2   ft-

In other words, X denotes the Kronecker product of an element 2f_] q¡u¡ G

T"~X(M, dM) with the sum of the quasi-fundamental classes of the noncompact

components of M. Note that the following triangle

T"-\M, dM)     ^

î« Q

F"-2(9M) A

is commutative, since the boundary operator 9: Tn_x(M, 9M)—» Tn_2(dM) sends

the sum of the quasi-fundamental classes of the noncompact components of M to

the sum of the quasi-fundamental classes of the noncompact components of dM,

where 5 is the dual homomorphism of the boundary operator 9. The pairing

Tq(M, dM) X T"~9~l(M) -^ Q induced by the map X and denoted also by u, is

2Let J/( be a compact connected oriented n-manifold with an indivisible element y G Hl(M ; Z).

Let Mt be the infinite cyclic (connected) cover of Mf associated with y . The quasi-fundamental class of

M^ is an element of T„_X(M , dM ) (as Q) which is the image of 1 e H°(M ; Q) under a canonical

composite monomorphism

ft\My, Q)^Ucl(My, q)    ^']H„_x(m^ M/,; ß)

(cf. [7, Definition 2.2] or [9, p. 181]), where note that for a lift /: M -»A1 of a map/: M -► S"

representing y   the following square

"°(a/,; e)    X    ffc»(Âg q)

ff°(Ä';Ö)      ¿      Hc\Rl;Q)

is commutative. The quasi-fundamental class of M   is determined uniquely by the orientation of M

and the element y   e Hl(Mf; Z).
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still nonsingular, because the cup product splits into the components.  By [9,

Lemma 1.8], and the above remarks, the cup product pairing

Hq(M, dM; Q) X Hn-q-\M, dM; Q)^Hn~x(M, dM; Q)

induces a pairing (evaluated by the map X)

T9(M,dM)X T"-q-x(M,dM)^Q

satisfying the identity x u y = j*(x) U y = x U j*(y), where j* :  T*(M, dM) —>

T*(M) is a homomorphism induced by the inclusion/: M c (M, dM).

Let n = 2m +1 (m > 1). A r-isometric symmetric bilinear ß-form < , ) =

< , >Y: Tm(M, dM) X Tm(M, dM) -> ß is defined by the identity

/       \ — Í x U 0 ~ (l)y     if w is odd,

( x u y if m is even,

for all x, y G Tm(M, dM).

Definition 1.2. The pair « , >, /) is called the quadratic form of M2m+X with

nonzero element y G HX(M; Z) (cf. [9, Remark 3.2]).

As an example, let E(k) be the manifold obtained from 53 by removing an open

tubular neighborhood of an oriented knot k in the oriented 3-sphere S3 and

y G Hx(E(k); Z) be the dual of a generator of Hx(E(k); Z) linking the knot k in

S3 by the linking number + 1. The quadratic form

« , A t): Tx(É(k), dÉ(k)) X Tx(É(k), dÊ(k)) -* ß

is necessarily nonsingular and called the quadratic form of the knot k (cf. J. W.

Milnor [19]).

For simplicity, we shall henceforth consider a closed (2m + l)-manifold A/2m+1.

Then in the case that m is even the quadratic form < , > is nonsingular by

definition. In the case that m is odd the (maximal) null subspace N = N(M) of this

quadratic form A )> whose ß-dimension is called the nullity of M with y and

denoted by ny(M), has a ß<r>-module structure and is ß<i>-isomorphic to a

direct sum of copies of Q(,f)/(t — 1) and Q(,t}/(t + 1), for N is precisely equal to

the kernel of t - t~x: Tm(M) -> Tm(M).3 The signature of the form < , > is called

the signature of M with y and denoted by ay(M). Note that ay(M) for odd m is

equal to the signature of the nonsingular form ( , )": Tm(M) X Tm(M) —> Q with

fm(M) = Tm(M)/N(M) induced from the form < , >: Tm(M) X Tm(M)^>Q.

We now describe the local signature al(M) at any value u in the interval [-1, 1]

(cf. J. W. Milnor [19]). Consider a nonsingular r-isometric symmetric ß-form < , >:

T X T ^> Q with a finitely generated torsion ß<(r)-module T. By tensoring with

the real field R, we consider this form as a nonsingular i-isometric symmetric

R-iorm < , }R: TR X TR-+R. TR splits into the />(r)-primary components CpW,

where p(t) ranges over all irreducible real polynomials of degree 1 or 2 with the

leading coefficient 1 and C,w = 0 except for a finite number of p(t). Because of the

3Thus, in the case that m is odd, if A¡¡,(± 1) ¥= 0 for the mth Alexander polynomial A£(t) of M with y,

then N = 0, i.e., the quadratic form < , ) is nonsingular.
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equality (f(t)x,y/R = (x,f(t x)y}R, the signature of the form < , )R (and hence

of A )) is me sum of the signatures of the forms restricted to Cp(i) with

p(t) = t - 1, / + 1 or t2 - 2ut + 1, -1 < u < 1 (cf. J. W. Milnor [19, p. 129]).

[Note that if px(t) ¥= rtap2(t~x), r G R, then CpM, i = 1, 2, are orthogonal, i.e.,

CpM±Cp2uv and if PM = rt>2('-1)> r G R, but Px(t) ^p2(t), then CpÁ0±CpÁí),

i = 1, 2. (See J. W. Milnor [20, Lemma 3.1].) Further, if p(t) = rtap(t~x), r G R,

then p(t) must be t - 1, t + 1 or t2 - 2ut + 1, -1 < u < 1.]

Definition 1.3 (J. W. Milnor [19]). For each value u, -1 < u < 1, oy is the

signature of the restricted form of < , }R to the component Cp(t), where p(t) = t —

1, / + 1 or t2 - 2ut + 1 according as u = 1, - 1 or — 1 < u < 1, and called the

local signature of the nonsingular form A ) at u G [— 1, 1]. The local signature of

the nonsingular form < , >": f m(M) X fm(M) -+ Q for odd m or < , >: Tm(M) X

Tm(M)^> Q for even m at u G [-1, 1] is called the local signature of M with

y G HX(M; Z) at u G [-1, 1] and denoted by oy(M).

Lemma 1.4 (J. W. Milnor). The signature of a t-isometric symmetric nonsingular

R-form of the following type

<, >r: *</>/ 02 - 2w< + 1) X R(t)/ (t2 - 2ut + 1) -* R,        - 1 < u < 1,

is ±2 (cf. [19, Assertion 11]).

Definition 1.5 (J. Levine [14]). The nonsingular i-isometric symmetric ß-form

« , >, t): T X F—> ß with a finitely generated torsion ß<r>-module T is null-

cobordant, if there is a ß<r>-submodule T0 of T that is a self-orthogonal comple-

ment, i.e., F0X = T0 with respect to this form < , >. Two nonsingular r-isometric

symmetric forms « , >', t), / = 1, 2, are cobordant, if the orthogonal

sum « , >'JL - < , >2, t) is null-cobordant.

Clearly the signatures of cobordant forms are equal. We also have the following

Lemma 1.6. The local signatures of cobordant forms at any u G [-1, 1] are equal.

Proof. It suffices to show that the local signature at any u G [-1, 1] of a

null-cobordant form is 0. Consider a null-cobordant form ((, , }R, t): TR X TR —» R

over R with T^ = T°. Let p(t) = t - 1, t + 1 or t2 - 2ut + 1, -1 < u < 1.

Note that the restricted form of < , ~}R to Cp(t^ is nonsingular, since for any different

1(0, Cp(i)±CqW Let y G Cp(ty Suppose <x,y) = 0 for all x G T% n Cp(iy Using

that Cp(l)±CqW for a different q(t), we obtain that A'A = 0 for all x G TR and

hence y G T% n Cp((). This implies that (F£ n C^)-1 = Ts°n C^t). Now the con-

clusion easily follows. This completes the proof.

Notations 1.7. Let X be an infinite cyclic cover of a finite complex X. The

ß</)-torsion module T^(X) splits into the /j(i)-primary components over ß</>,

where p(t) is a primitive,4 nonconstant, irreducible polynomial. The /»(i)-primary

component of T^(X) with />(r) = r — 1 or t + 1 is denoted by iUt(X) or

_, Ut(X), respectively, and the direct summand consisting of all the />(r)-primary

components with \p(l)\ ¥= 1 is denoted by U^(X). The corresponding parts of

4A nonzero element of <2<0 is primitive, if it is written as either the constant 1 or an integral

polynomial c„l" + c„_ ,/""' + •••+ c0 (« > 0) with c„ ( > 0), c„_ „ . . ., c0 (# 0) coprime (cf. [9]).
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T*(X) to ¡U¿X) and Ut(X) are denoted by ¡U*(X) and U*(X), respectively.

Similar notations are used for a pair (X, X').

The following Fundamental Theorem I is a generalization of Theorem 4.3 in [9]

which is a main tool to show a failure of the 4-dimensional Whitney lemma in the

piecewise linear category (cf. [9, Theorem C]).

Fundamental Theorem I. Let X¡, i = 1, 2, be finite complexes with nonzero

elements y, G H X(X¡; Z) imbedded in a finite complex Y so that y¡ are the restrictions

on the same element y G HX(Y; Z) to X¡. If Hq(Y, X¡; Q) = Hq+X(Y, X¡; Q) = 0,

i = 1, 2, then ßy>(Xx) = ßy2(X2) and xUq(Xx) is Q(t}-isomorphic to ^(X^ and so

the multiplicities of t = 1 in the roots of the qth Alexander polynomials Ay'(t) are

equal. Moreover, if Hq(Y, X¡; Z) = Hq+X(Y, X¡; Z) = 0, then Uq(Xx) is Q(t)-iso-

morphic to Uq(X2) and, in particular, Ay'(t) = Ay2(t) (up to f(t) with f(t) G Z(t}

and |/(1)| = 1).

Remark 1.8. A version using a finite field Zp instead of ß is also possible.

The proof of Fundamental Theorem I is parallel to the proof of Theorem 4.3 in

[9]. We sketch here only an outline of the proof. It proceeds as follows:

Hj(Y,Xi;Q) = 0

implies that Hj(Y, X¡; Q) = 7}(f, X¡) and xUj(Y, X¡) = 0. [Use the Wang exact

sequence.] From the exact sequence of the pair ( Y, X¡), it follows that ßy'(Xt) =

ßy( Y) and the sequence

Tq+l(Y, X,)X Tq(X¿% Tq(Y)% Tq(Y, X,)

is exact and so  , Uq(Xi) is ß</>-isomorphic to  , Uq( Y) (i = 1, 2). If

Hj(Y, X¡; Z) = 0,

then we have Uj( Y, X¡) = 0. Hence the above exact sequence implies that Uq(X¡) is

ß<i>-isomorphic to Uq(Y). In particular, Ay'(t)fx(t) = Ay2(t)f2(t) for sometí) G

Z(t) with |/(1)| = 1. This completes the outlined proof of Fundamental Theorem

I.

Fundamental Theorem II. Let M be the boundary of a compact oriented

(2m + 2)-manifold W with a nonzero element y G HX(W; Z) extending a nonzero

element y G HX(M; Z). Suppose that the sequence

Tm( W) X Tm(M) ir+l( W, M)

is exact at Tm(M). Then for even m the quadratic form « , >, t): Tm(M) X Tm(M)

—» ß is null-cobordant. In particular, A£(t) = f(t)f(t~x) for some f(t) G ß<i) and

o¿(M) = 0at all values u G [-1, 1] and ay(M) = 0. For odd m A^(t) = f(t)f(t~x)

for some f(t) G ß<i) and oy(M) = 0 at all values u G (-1, 1). Further, for odd m if

the kernel of t — t~x: Im 8 —» Im 8 is equal to the image of N(M) by the map 8, then

N(M) is Q(t}-isomorphic to the direct double 8(N(M)) ffi 8(N(M)) and, in particu-

lar, ny(M) = 0 (mod 2) and the induced nonsingular form « , >*, t): Tm(M) X

Tm(M)—> Q is null-cobordant. In particular, ay(M) = 0 at all values u G [-1, 1]

and oy(M) = 0.
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1.9. Proof of Fundamental Theorem II. Given .y G Tm(M), suppose i*(x) u y

= 0 for all x G Tm(M). By [9, Lemma 1.8], x u 8(y) = 0 for all x. Hence

8(y) = 0, for the cup product pairing Tm(W) X Tm + x(W, M)^>Q is nonsingular

([9, Duality Theorem (II)]). Using the exact sequence

Tm( W) -^ Tm(M) X Tm + X( W, M),

we see that v lies in Im /*. It follows that Im i* is self-orthogonal, i.e., (Im i*)x =

Im /* concerning the nonsingular cup product pairing Tm(M) X Tm(M) —> Q.

Since the sequence 0 -» Im i* —» Tm(M) -* Im 8 -» 0 is exact, from this fact and

the equality (tx) u y = x u (t'ly) we obtain that Ay(t) = f(t)f(t~x), where/(r) is

the order ideal of Im /*. For even m, we also obtain that the form (< , ), t):

Tm(M) X Tm(M) -> Q is null-cobordant and in particular oy(M) = 0 at all to G

[-1, 1] and ay(M) = 0. Let m be odd. Let T be the direct summand of Tm(M)

consisting of the />(i)-primary components such that p(± 1) ¥= 0. The quadratic

form « , >, t): Tm(M) X Tm(M) -> ß then restricts to the nonsingular form

« , >, t): T X T-* Q, since the order ideal P(t) of T satisfies F(± 1) ̂  0. [Note

that this asserts an isomorphism t — t~x: T « T.]

We have (T n Im/'*)-1" = 7"n Im/'* concerning this nonsingular pairing. By

Lemma 1.6 this implies that oy(M) = 0 at u G (-1, 1).

Assume that the kernel of r — r-1: Im 8 -> Im 8 is equal to 8(N(M)). Then we

have that the kernel sequence of the following morphism

0     -+     Im i*

it - A

0     ^     Im /*

is exact. Dividing by this kernel exact sequence, we obtain the quotient exact

sequence 0 —> Im i* —> Tm(M) —» Im 8 -> 0. Now it is easy to see that (Im i*)x =

Im /* concerning the nonsingular form < , >": fm(M) X Tm(M) —> Q. Therefore

the form « , >", t) is null-cobordant and oy(M) = 0 at all w G [-1, 1] and

ay(M) = 0. Since the induced pairing Im i* X Tm(M)/lm i* -» ß is nonsingular

and Fm(M)/Im i* w Im 8, the kernel of t - t~l: Im i* -* Im i* is ß<r>-isomor-

phic to the kernel of t — t"x: Im 8 —» Im 8 that is 8(N(M)) by assumption. Hence

N(M) is ß</>-isomorphic to the duplication 8(N(M)) © 8(N(M)), since N(M)

is ß<r)-isomorphic to a direct sum of some copies of ß<i)/(? — 1) and

Q(t}/(t + 1). In particular, ny(M) = 0 mod 2. This completes the proof.

Definition 1.10. Two closed connected oriented «-manifolds M„ /' = 1, 2, with

nonzero elements y, E HX(M¡; Z) are homology cobordant (or rationally homology

cobordant, respectively), if there is a compact connected oriented cobordism W + x

with dW = Mx u -M2 such that H„(W, A/,.; Z) = 0 (or Ht(W, M,\ Q) = 0,

respectively) and y, are the restrictions of the same element y G HX(W; Z) to M¡.

We have two standard consequences of Fundamental Theorems I and II.

-+     Tm(M)       -+     Im 5 ^    0

it - rx it - rx

-*     Tm(M)       X     Im 5 -^     0
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Corollary 1.11. Suppose (Mxm+X, yx) and (M2m+X, y2) are homology cobordant.

Then

(a) ßy'(Mx) = ßy2(M2),

(b) U,(MX) « U„(M2), N(MX) « N(M2) and ny'(Mx) = ny2(M¿),

(c) Ay'(t) = Ay2(t) (up to f(t) with f(t) G Z<A |/(1)| = 1 if q^m or up to

f(t)f(t~x) withflt) G Z</>, |/(1)| = 1 ifq = m),
(d) /or even m the quadratic forms « , >,., t): Tm(M¡) X Tm(M¡) -» ß are

cobordant and for odd m the induced nonsingular forms « , A, 0: Tm(M¡) X

fm(M,) -» ß are cobordant, i = 1,2,

(e) aJ'(M,) = al2(M2) at all u G [-1, 1] and oy'(Mx) = ay2(M2).

Proof. Note that Fm+1(^, dW)X TJdW)^> Tm(W) is exact, since the canoni-

cal homomorphism /„: Hm + x(W; Q) —> Hm + x(W, dW; Q) is the composite

Hm+i(W; Q) -* Hm+x(W, M,.; ß) -* //m + 1(#, 9*^ ß)   and   Tm+x(W, M,) =

#m+i(^. M>'> QY Hence the dual sequence Tm(W)X Tm(dW)X Tm+x(W, dW)

is exact. Then (a), (b), (c), (d) (m = even) and (e) (m = even) follow from

Fundamental Theorems I and II. [Note that the order ideal of Tm(dW) is the

product Aym>(t)Aym2(t) and A£(t) = AZ(t~x). So, A^(t)Ay2(t~x) = g(t)g(t~x) for

some g(t) G ß<0 and hence ^'(0gi(0gi('_1) = A^2(t)g2(t)g2(rx) for some 2,(0

G Z<r> with |g,(l)| = 1, since A£(t) = Ay2(t) up to/(i) G Z</> with |/(1)| = 1.

Further, note that <,> = <, >,± - <, >2 for the form < , >: Tm(dW) X Tm(dW)

—» Q.] Next, note that the above exact sequence induces a short exact sequence

0^ Um(W)'-Xum(dW)^ Um+x(W, dW)^>0

by using Um(dW) fa Um(Mx) © Um(Mx) (by (b)) and Um(W) « Um(Mx) and (by

[9, Duality Theorem (II)]) Um+x(W, dW) « í/m(J^) « i/m(M,). Noting these iso-

morphisms again, this short exact sequence also induces a short exact sequence

0 -* Nm( W) 'X N(dW) ̂  Nm+ '( W, dW) -* 0,

where Nm(W) and Nm+x(W, dW) are the kernels of t - t~x: Um(W)-+ Um(W)

and t - A: Um+x(W, dW)-+ Um+x(W, dW), respectively. This implies that the

kernel of t - A: Im 5 -> Im 8 is precisely equal to Nm+x(W, dW) = 5(^(9^)).

Therefore by Fundamental Theorem II the induced nonsingular form « , >",/):

Tm(drV) X fm(dW)-*Q for odd m is null-cobordant. But < , >*-< , }'x ±

— < , >2- This shows (d) (m = odd). From Lemma 1.6, (e) (m = odd) also follows.

This completes the proof.

Remark 1.12. The property (c) can be also generalized to the many-variable

Alexander polynomials (cf. [10]).

Example 1.13. Let Dx u D2 u • • • Uö„ be the disjoint union of 2-cells prop-

erly and piecewise linearly and locally-flatly imbedded in a 4-cell D4. Let M be the

boundary of the 4-manifold obtained from D4 by removing a regular neighborhood

of Dx u • • • U Dn in D4 meeting 9F>4 regularly. Clearly, M with an arbitrary

nonzero y G HX(M; Z) is homology cobordant to the connected sum #"SX X S2
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with some y' G HX(#"SX X S2; Z). By Corollary 1.11, we have that ßxy(M) = n

- 1, ny(M) = 0, Ay(t) = S0)S(t-i), SO) e Z<«>, 1/(01 = 1, and oy(M) = oy(M)
= 0, all u G [-1, 1], and the quadratic form « , >, t): TX(M) X F'(M)-> ß is

nonsingular and null-cobordant for all nonzero y G HX(M; Z) (cf. K. Murasugi

[21], A. Kawauchi [9], [10]).

Corollary 1.14. Suppose (M2m+X, y,) and (M2m+X, y2) are rationally homology

cobordant. Then

(a) ßl<(Mx) = ßl2(M2),
(b) XU,(MX)^XU,(M2),

(c) Ay'(t) = Ay2(t) (up tof(t) G ß<i> with SO) ^OiSq^morup ío/(í)/(A)

withflt) G ß<i> andfll) * 0 ifq = m),
(d) // m is even, then the quadratic forms « , >„ t): Tm(M¡) X Tm(M¡) -* Q,

i = 1, 2, are cobordant and, in particular, oy'(Mx) = ay2(M2) at all u G [-1, 1] and

oy>(Mx) = o-t^MJ,

(e) if m is odd, then ay'(Mx) = o¿2(M2) at all u G (-1, 1].

Moreover, for odd m assume that  _xUm(Mj) C N(M¡), i = 1, 2. FAe«

(f) N(MX) © N(M2) is Q(t)-isomorphic to a direct double N' © N' and ny'(Mx)

= ny2(M2) (mod 2),

(g) the induced forms « , >;,  /): Fm(M,) X Fm(M,) -* Q, i - 1, 2, are cobordant,

(h) ay'(A/,) = aT2(A/2).

Proof. By an analogous method of Corollary 1.11, we obtain (a), (b), (c) and (d).

The sequence 0 —> Im /* -» Fm(9 Ff) -» Im 8 -> 0 and the induced sequence 0

-^xUm(W)'XxUm(drV)^iUm+x(rV, 9^)^.0 are exact, and the kernel sequence

of the following morphism is also exact.

0     ^     xUm(rV)     C     xUm(dW)     -\     xUm+x(W, dW)     -*    0

it - A it - A \,t - A

0     -*     xUm(W)     C      xUm(dW)     i-     xUm+x(W, dW)     -*    0

Thus, oyi(Mx) — oyi(M2) = 0 at all w G (-1, 1] for odd m, showing (e). Let m be

odd. If _] Um(Mj) c N(M¡) (i = 1, 2), then combining this with the above remarks

we obtain that the kernel of t — t~x: Im 8 -» Im 8 is equal to S(N(9W)). Therefore,

by Fundamental Theorem II we have (f), (g) and (h). This completes the proof.

The above two corollaries will be positively used in the next section and an

intended paper [12].

2. A piecewise linear imbedding of a surface into some 4-manifold. Let F be a

closed oriented surface with s (> \) components Fx, . . ., Fs of genera g,, . . . , gs.

Consider a compact connected oriented piecewise linear 4-manifold W with an

isomorphism yq: Hq(F; Z) ?» Hq(W; Z) for all a > 0 and such that the intersec-

tion number of any two elements of H2(W; Z) is 0. It follows that 9Wis connected

and the sequence

0-* H2(W, dW;Z)XHx(dW;Z)%Hx(W;Z)^0
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is exact. Let <p2[Fx]*, • • • > V2IEs]* De ine basis of H2(W; Z) dual to the basis

<p2[F,], . . . , op2[Fs] of H2(W; Z), where [FJ is the fundamental class of Ft. Let

ax, . . . , as be the elements of Hx(dW; Z) obtained from <p2[F,]*, . . . , <p2[FJ* by

the composite monomorphism

H2(W;Z)    «    H2(W,dW;Z)^Hx(dW;Z).

Next, let <pxHx(Fx; Z)*, . . . , <pxHx(Fs; Z)* be the direct summands of

Hx(rV; Z) dual to <pxHx(Fx; Z), . . . ,cpxHx(Fs; Z) by using the decomposition

HX(W; Z) = <pxHx(Fx; Z) © • • • ®<pxHx(Fs; Z). Let G„ . . . , Gs be the sub-

groups of Hx(dW; Z) obtained from <pxHx(Fx; Z)*, . . ., opxHx(Fs; Z)* by the

canonical monomorphism /'*: HX(W; Z) -» Hx(dW; Z).

Definition 2.1. Let H be an abelian group and let H* = Hom[H, <i>] and G be

a subgroup of H*. An element y of H* is independent of G, if y(x) = 1 for x G H

such that y'(x) =f= 1 for some y' G G.

Suppose a piecewise linear imbedding <p: F—> W inducing this isomorphism <pq,

q > 0. Then çj is homotopic to a piecewise linear embedding <p': F—» W such that

for each i, <p'(F¡) nas Just one locally knotted point (cf. R. H. Fox and J. W. Milnor

[3]). So, assume that for our imbedding <p, 9(F,) has always just one locally knotted

point with knot type denoted by kt.

Theorem 2.2. Let 8X, . . . , 8S be 0 or 1 such that 8X + ■ ■ ■ +8S > 1. If there

exists a piecewise linear imbedding <p: F'^> W inducing the isomorphism <pq for all

q > 0, iAe« ny(dW) = 2gx8x + • ■ • +2gs8s, ßyx(dW) = s - \ + 2g,(l - 8X)
+ - - ■ +2gs(l — 8S) and the induced nonsingular form « , >",/): Tx(dW) X

Tx(dW) -^ Q is cobordant to the orthogonal sum « , }k8x, t)± • ■ ■ J.« , }k8s, t)

and in particular oy(dlV) = ou(kx)8x + ■ ■ ■ +oa(ks)8s at all u G [-1, 1] and

oy(dW) = o(kx)8x + ■ ■ ■ +a(ks)8s, and further

Ay(t) = (t - \)28^+ ■ ■ ■ +28A\(ts<) . . . \(ts-)

(up tof(t)f(t~x) with f(t) G Z</> and |/(1)| = 1) for all indivisible elements y G

Hx(dW; Z) sending ax, . . . , as to ts', . . . , tS' and independent of the subgroup

(1 - 8X)GX + ■ ■ ■ + (1 - 8S)GS.

Corollary 2.3. The cobordism class of the quadratic form « , V, t) of the knot k¡

representing the locally knotted point of (p(F¿) and its invariants: the knot signature

a(k¡) and the local knot signature ow(k¿) at all u G [-1, 1] and the knot polynomial

Ak(t) (up tof(t)f(t~x) withflt) G Z<í> and |/(1)| = 1) do not depend on a particular

choice of piecewise linear imbeddings inducing the isomorphism <pq for all q > 0.

This corollary easily follows from Theorem 2.2 by taking 8X + • ■ ■ +8S = 1.

2.4. Proof of Theorem 2.2. Let N be a disk sum in Int W of mutually disjoint

regular neighborhoods N¡ of <p(F¡) in Int W. N¡ is obtained from F/* X D2 and a

4-cell D4 by pasting (9F;°) X D2 to a knotted solid torus T¡ in dD4 with knot type

k¡, where F,° is a surface obtained from <p(F¡) by removing an open 2-cell. Since the

self-intersection number of <p(F¡) in W is 0, the framing of the knotted solid torus F,

is the null-homologous framing. Let a,0 = [p¡ X dD] G Hx(dN¡; Z), /' = 1, 2, . . . , s,
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where/), G F,° and let/), X dD have the orientation so that the linking number with

y(F¡) in W is +1. Let W' = W - Int N. Clearly, (W; dW, dN) is a homology

cobordism. Using this cobordism, the element a, G Hx(d W; Z) corresponds to the

element a° G Hx(dN¡; Z). Without loss of generality, we can assume that 5,

= . . . = sr = 1 and 8r+x = • • • = 8S = 0. Then y0 G Hx(dN; Z) corresponding

to y sends ax, . . . , a° to t and a°+,,..., a° to 1 and is independent of the

subgroup Gr+1 + • • • + (?,°, where G,° is the image of the canonical monomor-

phism /*: HX(N; Z) -* Hx(dN; Z) of the direct summand Hx(Ny Z) of

HX(N; Z) = HX(NX; Z) © • • • ®HX(NS; Z).

It is easily shown that y' G Hx(dN; Z) is independent of Gr°+X + ■ ■ ■ + G°

and y'(flr°+i) = • • • = y'(a^) = 1 if and only if y'\Hx(dNr+x; Z) © • • • ©

Hx(dNs; Z)= 1. [Note that y'(a°+x)= • • • = y'(a^) = 1 implies y'\Hx(dNr+x;Z)

© • • • @Hx(dNs: Z) G Gr°+1 + ■ • • + G,0.] Hence by direct computations,5

Tx(dN)y° « ©[ß</>/ (í - l)]2g>+ ' ■ ' +2g' © Tx(É(kx)) © • • • ©F,(F(^))

and ßxy (dN) = í — 1 + 2gr+1 + • • • +2gs. Further, the induced nonsingular

form « , )', t): Tx(dN)X Tx(dN) ^> Q is equal to the orthogonal sum

« , )k¡, t)± ■ ■ ■ ±« , )K, t) (cf. A. Kawauchi [8, p. 578]). The desired results now

follow from Corollary 1.11. This completes the proof.

Example 2.5. Consider the Matsumoto's 4-manifold Wx (cf. Y. Matsumoto [15])

constructed as follows: Let Sx X D2 be a standard solid torus in S3. Take the

imbedding h: Sx -* Sx X D2 illustrated in Figure 1. Extend A to a framed imbed-

ding A: Sx X Z)2-»Int51 X F>2 so that the framing is trivial in S3 via inclusion

Sx X D2 c S3. Let Wx be the mapping torus of h: Wx = Sx X D2 X [0, 1]/A. For

g > 2, further remove from Wx a 4-cell D4 which is a regular neighborhood of

p X D2 X (1/2), p G Sx, in Wx meeting the boundary dWx regularly and then

replace D4 by Fg°_x X D2 so that (dF°_x) X D2 is identified with the unknotted

solid torus (Wx — Int D4) n D4 in 9£>4 with trivial framing, where F°_, is an

Figure 1

5Note the fact that

Hx(F°x Sl; Z) « 0 [Z</>/ (/ - l)]2*

for all indivisible elements y e Hl(F° X Su, Z) sending [p x S1] e HX(F° XS';Z) to /, where F° is

an oriented surface of genus g with an open 2-cell removed.
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oriented surface of genus g — 1 with an open 2-cell removed. Clearly the resulting

4-manifold Wg(g > 1) is orientable and (simple) homotopy equivalent to a surface

of genus g. We show that rAere exists no piecewise linear imbedding from F to W

inducing a homology isomorphism.

Proof. From construction the self-intersection number of a generator of

H2(Wg; Z) is 0. So, the sequence

0-+H2(Wg, dWg; Z)Xfíx(dWg; Z)%Hx(Wg; Z)^0

is exact. Choose a basis a, xx,yx, . . . ,xg,yg of Hx(dWg; Z) so that a is the image of

a generator of H2(Wg, dWg; Z) by the boundary operator 9 and xx is the homology

class represented by a longitude curve in S1 X D2 which is null-homologous in

S3 - Int Sx X D2 and^! is a generator resulting from the mapping torus of A and

the other generators x2, y2, . . . , xg and yg are obtained from a homology basis for

F°_, X q, q G dD2. Suppose there exists a piecewise linear imbedding op: F—> W

inducing a homology isomorphism. We consider two kinds of elements y' and y" in

Hx(dWg; Z) such that y' sends a, xx,yx to t and x2,y2, . . . , xg,yg to 1, and y"

sends a to t and xx,yx, x2,y2, ... , x ,y to 1. By direct calculations,6

Hi{dWg; Q\. « ©[ ß<i>/ (t * l)]2g © Q«>/ (It2 - 3t + 2)

and

Hx(dWg;Q)r^®[Q«>/(t-l)]2*.

Hence Axy'(t) = (t - l)2s(2t2 - 3t + 2) and Ay"(t) = (t - l)2g. Then by Theorem

2.2, 2r2 - 3t + 2 must be of type f(t)f(t~x)(f(t) G Z(tp, |/(1)| = 1), which is

obviously impossible, since 2r2 — 3i + 2 is irreducible. This completes the proof.7

Here is another proof. By Lemma 1.4 we have ay'(dWg) = oy4(drVg) = ±2

(since 2r2 - 3t + 2 = t2 - 2(3/4)i + 1) and ay"(dWg) = 0. This contradicts Theo-

rem 2.2.

Using various imbeddings Sx -> Int S1 X D2 obtained from the imbedding A by

tying various knots in the dotted square in Figure 1, one can obtain infinitely many

4-manifolds with similar properties.

Example 2.6. Let Fg be a surface obtained from a closed connected oriented

surface Fg of genus g > 0 by removing an open 2-cell. Taking for each positive

integer m a knot km with Alexander polynomial A(m)(i) = mt2 - (2m - l)t + m in

the boundary dD4 of a 4-cell F>4, we construct a 4-manifold W^m) from F° X D2

and F»4 by attaching (9Fg°) X D2 to D4 along a knotted solid torus in dD4 with

knot type km and with null-homologous framing. Clearly, there is a homotopy

equivalent piecewise linear imedding op: F -^ W^m) whose locally knotted point has

6For example, find a finite presentation of 77,(9 W,) by using the van Kampen theorem and then apply

[9, Corollary 2.5] for this group. For g > 1 from construction we have

Hx(dWg; Q) = ® [Q</>/ (t - l)]2*-2 0 Hx(dWx; Q)

for all y E H\dWg; Z) sending a to /.

7The proof of the case that n = 1 and g = 1 gives an elementary proof of Y. Matsumoto's result [15].
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the type km. However, there exists no locally flat, piecewise linear imbedding from Fg

to W^m) inducing a homology isomorphism.

Proof. Note that the self-intersection number of a generator of H2(W^m); Z) is

0. Let a = [p X dD2]G Hx(dW^m); Z),p G F°. By Theorem 2.2 we have

oy(dWg(m)) = au(kj at all to G [-1, 1] and for all y G Hx(dW¡m); Z) sending a to /.

Hence, by Lemma 1.4, ay(dlV^m)) = ± 2 if to = (2m - \)/2m and ay(dW^m)) = 0

if co T-fc (2m — \)/2m (cf. J. W. Milnor [19]). By Theorem 2.2 there exists no locally

flat piecewise linear imbedding from Fg to W^m) inducing a homology isomor-

phism. This completes the proof.

Further,  we   obtain   that  no  two  manifolds  in  the  4-manifolds   rV£m\  m =

1, 2, 3, . . . are relatively homology cobordant? To see this, note that by Theorem

2.2 oy(dlVg(m)) at each co G [-1, 1] is invariant under all y G Hx(dW^m); Z) sending

a to t±x and hence that aJ(9Wg(m)) at each co G [-1, 1] is invariant under relative

homology cobordisms. It follows from the above calculation of the local signature

that no two manifolds are relatively homology cobordant.

Of course, any W^m) is not relatively homology cobordant to Fg X D 2.

Example 2.7. Consider a link L0 of 2-components illustrated in Figure 2 in a

3-cell D3 c S3. For each s > 2, let L be a link of s components in S3 obtained

from L0 by adding a trivial (i.e. unknotted and unlinked) link of (s — 2) compo-

nents in S3 — D3. (H s = 2, then L = L0.) Clearly, this link L is a boundary link

(that is, the components of L bound mutually disjoint orientable surfaces in S3).

Let ex, e2, . . . , es be a basis of H2(WL; Z) coming from the components of L,

where e,, e2 come from L0. We show that e,, e2, . . . ,es are not represented by

mutually disjoint piecewise linearly imbedded 2-spheres.

Figure 2

Proof. Let a,.a, be a basis of Hx(dWL; Z) dually related to the basis

ex,...,es of H2(WL; Z). Let y, y, and y2 be the indivisible elements of

Hx(dWL; Z) such that y = y, + y2 and y,(a,) = t and y,(a,) = 1, i ¥-j, i = 1, 2.

Suppose the basis e,, . . . , es are represented by 5 mutually disjoint piecewise

linearly imbedded 2-spheres in WL with locally knotted points of types kx, . . . , ks.

By direct computations,9 Ay(t) = (t2 - t + l)(t2 - 3t + 1), Af(t) = 1, i = 1, 2.

8Two bounded oriented manifolds Wx and W2 are relatively homology cobordant, if there is a relative

oriented cobordism IT between Wx and W2 such that Ht(W, W¡; Z) = Hf(dfV, dW>; Z) = 0, / = 1, 2.

'Compute a finite presentation of ■nx(dWL) by using the van Kampen theorem and then apply [9,

Corollary 2.5].
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By Lemma 1.4 and Theorem 2.2, ox/2(kx) + ox/2(k2) = oxy/2(drVL) = ±2 and

ax/2(k¡) = oxy>/2(dWL) = 0, i = 1, 2, a contradiction.

In particular, this boundary link L is not cobordant to a completely splittable link

(i.e. a link whose components Cx, . . . , Cs are contained in mutually disjoint 3-cells

By B2, . . . , Bs in S3 so that C, c B¡, i - 1,..., s).

To derive a further property of a piecewise linear imbedding of 2-spheres into a

4-manifold, let F be a surface consisting of 5 2-spheres Sx, . . ., Ss and let W be a

compact connected oriented 4-manifold with Hq(W; Q) « Hq(F; Q) for all q > 0

and such that any two elements of H2(W; Z)/(torsions) have the intersection

number 0. Then 9 W is connected and we have an isomorphism

d: H2(W,dW; Q) ^ Hx(dW; Q),

so Hx(dW; Z) has the rank s.

Theorem 2.8. // rAere exists a piecewise linear imbedding <p: F -» W inducing a

monomorphism <p„,: Hq(F; Z) -^ Hq(W; Z) for all q > 0, then we have ßxy(dW) = s

— 1 and Axy(\) # 0/or all nonzero elements y G Hx(dW; Z) (cf. [9, Theorem C]).

Proof. By Lemma 1.1 (the reduction formula), it suffices to prove this theorem

for all indivisible elements y G Hx(dW; Z). Let y G Hx(dW; Z) be an indivisible

element. We can find a basis bx,...,bs of Hx(dW;  Z)/(torsions) such that

y(A,) = t, i = I.s. Let N be a disk sum in Int W of mutually disjoint regular

neighborhoods A/, of S¡ in Int W. Since the self-intersection number of S¿ in W is 0,

Hx(dN¡; Z) = Z, that is, dN¡ is a homology orientable handle (cf. [11]). Note that

dN is homeomorphic to the connected sum (dNx)#(dN2)# ■ ■ ■ #(dNs). Let W =

W — Int N. Clearly, (W; dW, dN) is a rational homology cobordism. Note that /:

Hx(dW; Z)/(torsions) —> HX(W; Z)/(torsions) induced by inclusion is a mono-

morphism of a finite index. There are bases {xx, . . . , xs}, {yx, . . . ,ys} for

Hx(dW; Z)/(torsions), HX(W; Z)/(torsions), respectively, and nonzero integers

nx, . . . , ns such that I(x¡) = n¡y¡, i = 1, 2, . . . , s. Let n be the least common

multiple of «,,... , ns and let n = n¡ñ¡. Further let (m¡) be an invertible matrix

with (A,, . . . , bs) = (xx, . . . , xs)(m¡j). Let dx, . . . , ds be integers such that

(1, . . . , 1) = (dx, . . . , ds)(m¡j). Define a map y: HX(W; Z)/(torsions) -+ <i> by

the identities y(y¡) = t"1*, i = \, . . . , s. Let y„ = y7: Hx(dW; Z)/(torsions) -+ (t>.

We have

yn{bj) = y„(2 »v*») = y(2 w) = <<*•"*>" = f,

j = 1, . . ., s. By Lemma 1.1 it suffices to prove the assertion for this map y„. By

Corollary 1.14, ßy-(dW) = ßxy'(dN), and ^,Y»(1)^0 is equivalent to ^,Y'(1)^0,

where y' is the restriction of y to dN. Since dN is the connected sum of the

homology orientable handles dN¡, i = 1, . . . , s, it is not difficult to see that

ßj"(dN) = s - I and Ay"(\) ^ 0 for all indivisible elements y" G Hx(dN; Z).10 It

follows from Lemma 1.1 that ßy-(dW) = ßxy'(dN) = s - 1 and Ay-(l) ^ 0. This

completes the proof.

l0Note that there is a homomorphism from irx(dN) onto the free group of rank s.
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Let L be a link of s ( > 2) components. ßx(L) is defined to be ßy (E(L)), where

E(L) is a 3-manifold obtained from S3 by removing an open tubular neighborhood

of L and y0 G HX(E(L); Z) is an indivisible element sending each oriented

meridian curve of L to t (cf. [9]). We have that ßx(L) < s — 1. (See [10, Corollary

2.3].) Suppose L has the linking numbers 0.

Corollary 2.9. // ßx(L) < s - 2, then any s elements of H2(WL; Z) forming a

basis of H2(WL; Q) cannot be represented by mutually disjoint, piecewise linearly

imbedded 2-spheres.

Proof. We may consider that dWL is obtained from E(L) and s solid tori

Tx, ... ,TS by attaching 9F, to one component of dE(L). From the construction of

WL we have an isomorphism i#: HX(E(L); Z) « Hx(dWL; Z). Hence the indivisi-

ble element y0 G HX(E(L); Z) canonically determines an indivisible element y G

Hx(drVL; Z). Take an infinite cyclic cover (dWL, É(L)) associated with y. Since

H2(dWL, Ë(L); Q)^HX(Ë(L); Q)%Hx(dWL; Q)J^Hx(dWL, É(L); ß)

is exact and, by excision, H^(dWL, É(L); Q) = © J_, Hm(f„ 97); ß) is a ß<i>-

torsion module, it follows that ßx(L) = ßxy(dWL). By Theorem 2.8 we obtain a

desired result.

Example 2.10. Consider the Whitehead link L0 (of 2-components) (see, for

example, [9, Figure 1]) and the links ß0 and E0 illustrated in Figure 3. By direct

computations," ßx(L0) = ßx(Q0) — ßi(E0) = 0. Let L2 be L0, Q0 or E0. For each

j > 3, let Ls be a link of s components obtained from the link L2 in a 3-cell

D3 c S3 by adding a trivial link of (s — 2) components in S3 — D3. We obtain

ßx(Ls) = 5-2, since ßx(L2) = 0. By Corollary 2.9, for each s > 2 any s elements of

H2(WL,; Z) forming a basis of H2(WL,; Q) cannot be represented by mutually

disjoint piecewise linearly imbedded 2-spheres. For L2 = L0 we obtain a stronger

assertion than a result in [9, Application 3]. For L2 = ß0 or E0 this answers enough

a question of H. Lambert [13] who asked whether either of the links ß0, E0 bounds

two 2-cells mutually-disjointly and piecewise linearly imbedded in D4. By applying,

more directly, Theorem 2.8 we have that the link Ls cannot bound s 2-cells

mutually-disjoint and piecewise linearly imbedded in any rational homology 4-cell.

Ôo

Figure 3

"See [9, Corollary 2.4].
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One may note that Corollary 2.9 cannot apply for boundary links, since ßx(L) =

s — 1 for all boundary links L of i components (cf. N. Smythe [22] and [9,

Corollary 2.4]).

Now suppose F and W satisfy the assumptions of Theorem 2.8. For an integer n

and an element y G Hx(dW; Z) we let yn = ny G Hx(dW; Z). The proof of

Theorem 2.8 combined with Corollary 1.14 also implies the following.

Corollary 2.11. If there exists a locally flat, piecewise linear imbedding cp:

F—> W inducing a monomorphism <JA H (F; Z) —> Hq(W; Z)for all q > 0, then for

each indivisible element y G Hx(dW; Z) there exists a positive integer n such that

oy-(dW) = 0 at all u G (-1, 1] and Ay-(t) = f(t)f(t~x) for some f(t) G ß</> with

/(I) ¥■ 0.

Example 2.12. Let If0(m) be a 4-manifold in Example 2.6 with g = 0. W^ is

homotopy equivalent to S2 and any element of H2(W^; Z) can be represented by

a piecewise linearly imbedded 2-sphere. However, any nonzero element of

H2(rVçjm); Z) cannot be represented by a locally flat 2-sphere.

Proof. //,(9H^m); Z\ « ß</>/(A(m)(i")), A(m>(r") = mt2n - (2m - \)tn + m

by Lemma 1.1. Aim\t") has 2« distinct roots of complex numbers of norm 1. [Take

the derivative dA(m)(t")/dt.] Let t2 - 2ut + 1, - 1 < co < 1, be any real irreducible

factor of A(m)(/"). We have aj-(9^m)) = ± 2. Therefore by Corollary 2.11, we

obtain a desired result.

This fact was also obtained by M. Kato [5, Theorem D].12

Let sW(m) be a disk sum of H^m) and (s - 1) copies of S2 X D2. By Corollary

2.11 the above proof also implies that any s elements of H2(sW^m); Z) forming a

basis for H2(sWim^; Q) cannot be represented by mutually disjoint locally flat

2-spheres.
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