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Abstract. Let G be a finite group. In this paper we consider maps/: P -* M from

equivariant polyhedra into equivariant p.l. manifolds. We prove an equivariant

general position result which shows how to approximate a given continuous proper

equivariant (or isovariant) map /: P —* M by a G-map which is in equivariant

general position. We also apply this equivariant general position result to get a

general G-imbedding theorem. Applied to the case of G-imbeddings of simplicial

G-complexes into euclidean representation space this general G-imbedding theorem

gives a result which provides a good hold on the required dimension of the

euclidean representation space. For example in the case when G = Zm we prove

that there exists a representation space R^*'"1^) with the property that any

A:-dimensional simplicial Zm-complex X admits a proper p.l. Zm-imbedding into

R*k,m\p) and we also show that the dimension r(k, m) is best possible, i.e., one

cannot find a euclidean representation space of lower dimension than r(k, m) with

the same property as R^k,m\p). Simple explicit expressions for the dimension

r(k, m) are given. We also consider the case of semi-free actions with a given

imbedding of the fixed point set into some euclidean space. Furthermore we show

that the p.l. G-imbeddings of equivariant p.l. manifolds into euclidean representa-

tion space obtained by our G-imbedding results are in general equivariantly locally

knotted although they are locally flat in the ordinary sense. This phenomenon can

occur in arbitrarily high codimensions.

Introduction. Let G be a finite group. In this paper we prove an equivariant

general position result which shows how to approximate a given continuous proper

equivariant (or isovariant) map, from an equivariant simplicial complex into an

equivariant p.l. manifold, by a G-map in equivariant general position, see Theorem

3.10 and the Definition preceding Proposition 3.9. (All simplicial complexes are

assumed to be countable, locally finite and finite-dimensional. For the notion of an

equivariant p.l. manifold, see [8] or §1 of this paper.) Our original motivation for

proving an equivariant general position result was in applications to equivariant

engulfing and other similar techniques in equivariant p.l. topology. In this paper we

apply our equivariant general position theorem to obtain G-imbedding results. We

prove the following general G-imbedding theorem; see Theorem 3.11.

Theorem A. Let P be an equivariant polyhedron, Q an equivariant subpolyhedron

of P and M an equivariant p.l. manifold, and let e: P —>R be any given invariant
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positive function. Let f: P —» M be a proper G-map such that f\Q is a p.l. G-imbed-

ding. Let (Hx), . . . , (Hv) be the orbit types occurring in P — Q, and assume that

(i) dim P?< < dim Mjfc - dim M>a?< - 1,
(ii) 2 dim Pf' < dim Mjjfo - 1

for i = 1, . . . , v and any component P"' of PH'. Then f is equivariantly e-homotopic

rel |ß| to a proper p.l. G-imbedding h: P —» M.

Here M"a) denotes the component of MH which contains f(P„), and Mj?J* is the

set of points in M"a^ with isotropy subgroup strictly greater than H. If we moreover

assume that / is isovariant then condition (ii) alone is sufficient for the existence of

a G-imbedding that approximates/ arbitrarily well; see Theorem 3.12. We feel that

these two G-imbedding results form the appropriate generalization of the classical

result, in the ordinary nonequivariant case, on the existence of imbeddings of a

polyhedron P into a (2 dim P + l)-dimensional p.l. manifold M.

In §4 we apply our general G-imbedding result, Theorem A, to the case of

G-imbeddings into euclidean representation space. By the theorem of Mostow [10],

every action of a compact Lie group with a finite number of orbit types on a

finite-dimensional separable metrizable space can be equivariantly imbedded into a

euclidean representation space for the group. But Mostow's theorem does not say

anything about the required dimension of the euclidean representation space.

Copeland and de Groot showed in [3] that every action of a cyclic group of prime

order on a ^-dimensional separable metrizable space can be equivariantly im-

bedded into a euclidean representation space of dimension 3& + 2or3A: + 3, and

they also proved that this result is best possible. In [9] Kister and Mann obtained

results on the required dimension of the euclidean representation space in the case

of actions of compact abelian Lie groups with a finite number of distinct isotropy

subgroups, on finite-dimensional separable metrizable spaces. For G an arbitrary

finite group our result (see Theorem 4.2), is

Theorem B. Let X be a simplicial G-complex and X0 a G-subcomplex of X, and let

(Hx), . . . , (Hv) be the orbit types occurring in X — X0. Let Rr(p) be a representation

space for G such that there exists a proper p.l. G-imbedding A0: X0—*Rr(p) and

assume that

©dim*"' < dim[Rr(p)]"' - dim[Rr(p)]>"' - 1,

(ii) 2 dim XH> < dim[Rr(p)]"' - 1

for i = 1, . . ., v. Then h0 can be extended to a proper p.l. G-imbedding A: A-—»

W(p).

The case X0 = 0 gives the wanted absolute version. When Theorem B is applied

to the case of an arbitrary finite cyclic group we get the following; see Corollary

4.3.

Corollary C. Let G = Zm, where m = px' ■ ■ ■ p£• andpx,. . . ,pn are distinct

primes. Then there exists a euclidean representation space Rr<*,m)(p), where
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2k + I + (ax + . . . +an)(k + 2)     if k is even and m is odd,

r(k, m) = ■ 2k + (ax + . . . + a„)(k + 2) if k is even and m is even,

2k + 1 + (ax + ... +a„)(k + 1)     ifk is odd,

such that any k-dimensional simplicial Zm-complex X has a proper p.l. Zm-imbedding

into R*k'm)(p).

We prove in Proposition 4.4 that this result is best possible. In case m = p, a

prime, the dimension given by Corollary C is the same as the one in the Copeland-

de Groot result. In the case of actions by cyclic groups of prime power order, the

Kister-Mann result (see [9, Theorem 2]) gives almost the same dimension as in

Corollary C; but for example in the case of Zm-actions, where m = px . . .pn and

px, . . . ,pn are distinct primes, on /e-dimensional space, k odd, the Kister-Mann

result gives the dimension (2" + \)k + 2" whereas the best possible dimension,

given by Corollary C, is (n + 2)k + n + 1. In the case of actions by an arbitrary

finite abelian group, we also obtain a corresponding improvement, compared with

the Kister-Mann result, of the required dimension of the euclidean representation

space, see Corollary 4.7.

If one considers only semifree actions and assumes that the fixed point set is

imbeddable in euclidean space Rä, one gets very low required dimensions for the

euclidean representation space. In the case of compact, finite-dimensional metric

Zm-spaces such a result has been proved by Allen (see [1, Theorems 1.1 and 1.2]).

Our corresponding result (Corollary 4.5) in the case of simplicial Zm-complexes

obtains the same dimensions as in the result by Allen. We also give a result of the

same type in the case of actions by an arbitrary finite abelian group; see Corollary

4.6.

In order to give a specific numerical application of Theorem B also in the case of

a nonabelian group, we show that for G = S3, the symmetric group on three letters,

there exists a euclidean representation space R5*+4(p) of dimension 5 k + 4 such

that every k-dimensional simplicial S3-complex has a proper p.l. S3-imbedding into

R5*+4(p).

Furthermore we show in §4 that the p.l. G-imbeddings of equivariant p.l.

manifolds into euclidean representation space given by Theorem B are in general

equivariantly locally knotted although they are locally flat in the ordinary sense.

This phenomenon can occur in arbitrarily high codimensions. Among other things

this shows that the existence of p.l. and smooth G-imbeddings are questions of

completely different natures. (Recall in this connection that every smooth G-mani-

fold has a uniquely determined structure of an equivariant p.l. manifold, see [8].)

For results concerning the existence of smooth G-imbeddings we refer to Wasser-

man [15].

Let us now describe the outline for the proof of our equivariant general position

result, Theorem 3.10. The proof falls into three main steps, each of which has a

local and global part. The local part deals with G-maps from a finite equivariant

simplicial complex X into some orthogonal representation space Rm(p), and with

equivariant general position of compact equivariant subpolyhedra in Dm(p). The
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local results are proved in §2. The global part deals with G-maps from equivariant

polyhedra into equivariant p.l. manifolds. In all three steps the globalization

consists of a patching together process of the corresponding local result in order to

get the global result. The globalization is carried out in §3. All the results are

established in relative forms. Of the three main steps the first is to approximate the

given equivariant or isovariant map / by an equivariant or isovariant, respectively,

p.l. map/,. In the case when/ is equivariant this is standard. The case when/ is

isovariant is new and of independent interest, and it requires considerably more

care than the case when / is equivariant. See Lemma 2.3, Theorem 3.3 and

Corollary 3.4. In this connection we should point out that M. H. Schwartz in [14]

proves that stratified continuous maps have stratified simplicial approximations

(there is an extra assumption in the relative case). Next the equivariant or

isovariant p.l. map /, is approximated by an equivariantly nondegenerate p.l. map

f2. In particular f2 is always isovariant. This second step requires some dimension

assumptions. See Lemma 2.5 and Theorem 3.5, and Lemma 2.8 and Theorem 3.7.

As a by-product we obtain the following result on approximation of an equivariant

map by an isovariant map, which is of independent interest. (See the Remark after

Theorem 3.7.)

Theorem. Let f: P —> M be a proper G-map. Let (Hx), . . . , (Hv) be the orbit types

occurring in P and assume that

dim Pf< < dim Mfa - dim M%$ - 1

for i = 1, . . . , v and each component P"' of PH'. Then f is equivariantly e-homotopic

to an isovariant proper (andp.l.) map A: P —» M.

For the third step we first prove that one can, by an equivariant ambient isotopy,

move any equivariant subpolyhedron of M into equivariant general position with

respect to any finite number of equivariant subpolyhedra of M, see Lemma 2.12

and Proposition 3.8. Using this result we show that the equivariantly nondegener-

ate p.l. map /2 can be approximated by a map f3 which is in equivariant general

position. See Proposition 3.9 for a precise statement. All three steps together gives

us our equivariant general position result Theorem 3.10. The general G-imbedding

result Theorem 3.11 and its isovariant version Theorem 3.12 now follow easily.

The first start on this work was made in the summer of 1975 at the Institute for

Advanced Study in Princeton, but the work was then put aside. At the Conference

on Transformation Groups in Newcastle upon Tyne in August 1976, the author

spoke about part of it and the results concerning approximation of equivariant or

isovariant p.l. maps by equivariantly nondegenerate p.l. maps (in the case of maps

from finite equivariant simplicial complexes) were announced in [7]. Most of this

work was completed while the author was on leave from the University of Helsinki

and enjoyed the hospitality of "Institut des Hautes Etudes Scientifiques" to which

the author expresses his gratitude.

Some notation and terminology. Let -f be a G-space. Then Gx denotes the

isotropy subgroup of G at the point x G X. Let H denote a subgroup of G, then
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XH denotes the fixed point set of H and by X>H we denote the set of points with

isotropy subgroup strictly greater than H, i.e., X>H = {x G X\H c¿ Gx}. Thus

X" — X>H is the set of all points in X with isotropy subgroup equal to H.

Sometimes we also denote this set by XH, i.e.,

XH - XH - X>H.

A G-map or an equivariant map /: X -+ Y, where X and Y are G-spaces, is a map

such that f(gx) = gf(x), for every x G X and all g G G. It follows that Gx c GKx),

for every x G X. An isovariant map /: X —> Y is defined to be a G-map such that

Gx = G/w, for every x G X.

Assume that d is an invariant metric for Y. Let e: X -» R be an invariant positive

function (given a positive function e': X —» R, the function e: X —> R, defined by

e(x) = minÄgG e'(gx), is an invariant positive function and e(x) < e'(x) for every

x G X). Let/: X —> Y be a G-map. A G-map A: X —> Y is an e-approximation to/

if o"(/(x), A(x)) < e(x) for every x G X. A G-homotopy F: * X / -> y from/ to A

is an e-homotopy from/ to h if d(f(x), F(x, t)) < e(x) for every x G X, i.e. each F,:

X -» F, where F,(x) = F(x, r), is an e-approximation to / If F is an e-homotopy we

also have the symmetric condition d(F(x, s), F(x, t)) < 2e(x) for every x G X.

Given an invariant positive function é": X X /-»R define e0(x) = min,e/ ê(x, t).

Then e: X X I -» R, defined by e(x, /) = e0(x), is an invariant positive function

and e(x, t) < ë(x, t) for all (x, t) G X X I. By || || we denote the standard norm in

R", i.e., ||x|| =^x2 + ... +x2  for x = (xx, ..., x„).

Let A c R" and xx, . . . , xr G R", then «^4, xx, . . . , xr>> denotes the affine

subspace of R" generated by the set A u {xx, . . . , xr}. By Int B we denote the

interior of a set B, and int M = M — dM denotes the interior of a manifold M

with boundary dM. A proper map is one for which the inverse image of any

compact set is compact. In this paper the dimension of the empty set is somewhat

problematic. Given the empty set 0 we set dim 0 = — 1, but in other cases we

may have a conclusion of the form dim A < — 5 and the correct conclusion to be

drawn is that A = 0. Further definitions and terminology are given in § 1.

1. Preliminaries. Let G be a finite group. By a simplicial complex we mean a

geometric simplicial complex, that is, the topological realization of an abstract

simplicial complex considered as a topological space together with the structure

given by the simplexes. In this paper all simplicial complexes will be countable,

locally finite and finite-dimensional. A simplicial G-complex consists of a simplicial

complex X together with a G-action <p: G X X —y X such that the map g: X —> X is

a simplicial homeomorphism for every g G G. We define an equivariant simplicial

complex to be a simplicial G-complex X which satisfies the following two condi-

tions.

1. For every subgroup H of G we have that if s = <u0, . . . , t>m> is a simplex of X

and s' = <A0t>0, . . . , hmvm}, where h¡ G H, i = 0, . . . , m, also is a simplex of X

then there exists h G H such that At), = h¡v¡, i = 0, . . ., m.

2. For any simplex s of X the vertices vQ, • ■ . ,vn oî s can be ordered in such a

way that we have G   c • • • C G„o.
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In condition 1 the vertices v0, ■ ■ ■ , vm need not be distinct. The subgroup Gv , in

condition 2, is called the principal isotropy subgroup of the simplex j and Gv<¡ the

maximal isotropy subgroup of s. An abstract simplicial G-complex satisfying condi-

tion 1 above is called regular by Bredon [2, p. 116, Definition 1.2]. Now consider

the following condition.

1'. If s = <u0, . . . , um> is a simplex of X and s' = <g0«o • • • > gmvm~>> where

g, G G, i = 0, . . . , m, also is a simplex of X then there exists g G G such that

gv¡ = gfi¡, i = 0, . . . , m.

We have

Lemma 1.1. A simplicial G-complex satisfies conditions 1 and 2 if and only if it

satisfies conditions Y and 2.

Proof. Let Ibea simplicial G-complex which satisfies conditions 1' and 2. Let

r/bea subgroup of G. Let 5 = <t)0, . . ., vm} be a simplex of X and assume that

s' = (h0v0, ■ ■ ■ , hmvmp, where h¡ G H, i = 0, . . . , m, also is a simplex of X. We

shall show that there exists h G H such that At), = h¡v¡, i = 0, . . . , m.

Since X satisfies condition 2 we can assume that v0, ■ ■ ■ ,vm are ordered such

that Gv c • • • C Gv. Since X satisfies condition 1' there exists g G G such that

gv, = h¡v¡, i = 0, . . . , m. Thus we have A, = gg¡, where g¡ G Gv, i — 0, . . . , m. It

now follows that

V'Am = (ggi)~1ggm = gryg~Xggm = ft_1?m G gVi,

since gm G Gv c G„. Thus (h¡"xhm)v¡ = t>„ i.e., h = hm G H is such that /it), = A,t)„

i = 0, . . . , m.    □

Examples, (a) We first describe a simplicial G-complex which satisfies condition

1' but does not satisfy condition 1. Let G = Z2 X Z2 and let e, T G Z2 denote the

identity and generator, respectively, of Z2. Let G act on R2 by (T, e\x,y) =

(—x,y) and (e, T)(x,y) = (x, —y), and hence (F, F)(x,/) = ( — x, —y). Now

define

X={(x,y)GR2\\\x\\-r\\y\\=l}

and give A the simplicial structure with vertices v0 = (1, 0), u, = (0, 1), v2 = (-1, 0)

and t)3 = (0, -1), and 1-simplexes <t>0, t),), <t>,, t>2>, <t>2, t>3> and <u3, t>0>. Then A1

is a simplicial G-complex which satisfies condition 1'. Now consider the subgroup

H = {(e, e), (T, T)} of G and denote r = (T, T). Then <t)0, t),> and <tü0, t),> are

simplexes of X but there does not exist h G H such that hv0 = td0 and At), = o,.

Hence X does not satisfy condition 1.

(b) A simplicial G-complex X which satisfies condition 1, i.e., is regular, but does

not satisfy condition 2 can be constructed as follows. Let G = Z6, and let X be the

1-dimensional simplicial G-complex whose 0-skeleton is Z6/Zj u Z6/Z2 with the

natural Z6-action and 1-skeleton consisting of the six 1-simplexes a, Ta, . . ., T5a,

where a is a 1-simplex joining the vertex eZ3 with the vertex eZ2.

(c) The simplicial complex X of Example (a) with Z2-action given by the

antipodal map is an example of a simplicial Z2-complex which satisfies condition 2

but does not satisfy condition 1'.
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For a simplicial G-complex to be an equivariant simplicial complex is a purely

technical condition. The second barycentric subdivision X" of a simplicial G-com-

plex X satisfies condition 1 (see Bredon [2, p. 116, Proposition 1.1]) and it is also

easily seen that X" satisfies condition 2. Thus we have

Lemma 1.2. Let X be a simplicial G-complex. Then the second barycentric

subdivision X" is an equivariant simplicial complex.    □

Also observe that any equivariant subdivision of an equivariant simplicial

complex is again an equivariant simplicial complex. Moreover observe that an

equivariant simplicial complex in particular satisfies the following. For any simplex

s of I we have that if x G s and gx G s then gx = x, and moreover that if x G s

and gx = x then gy = y for every y G s. Furthermore we have that if x, y G s then

the isotropy subgroups Gx and Gy are in relation, i.e., either Gx c Gy or Gy c Gx.

The orbit space X/ G of an equivariant simplicial complex X has the structure of

an ordinary simplicial complex such that the natural projection p: X —* X/G is

simplicial and/; maps each simplex of X homeomorphically onto the corresponding

image simplex of X/ G.

Let X be an equivariant simplicial complex and Y an equivariant subcomplex of

X. Recall that Y is said to be full in X if any simplex of X all of whose vertices lie

in F is a simplex of Y. We now define

Definition 1.3. An equivariant subcomplex Y of X is strongly full in X if Y is

full in X and satisfies the following condition: Let s be a simplex of X and v a

vertex of j such that v G Y. Then for any vertex w of 5 such that Gv C¡ Gw we also

have w G Y.

Let H y . . ., Hs be subgroups of G and consider the equivariant subcomplex

U/_! GXH< of X. Since X is an equivariant simplicial complex it follows that

U/_i GXH> is full in X. For let s be a simplex of X all of whose vertices lie in

U?_i GXH', and let w be a vertex of s such that Gw is the principal isotropy

subgroup of i. Then w G GX"'«, some i0, 1 < /0 < s, and it then follows that

j C GXH'o(z u Ui GX"'.

Lemma 1.4. Let Y be a strongly full subcomplex of the equivariant simplicial

complex X. Then Y U ( U ;=, GXH>) is full in X, for any subgroups Hx, . . . , Hs of G.

Conversely, let Y be full in X and assume that Y u GXH is full in X, for every

subgroup H of G, then Y is strongly full in X.

Proof. Assume that Y is strongly full in X and let Hx, . . ., Hs be subgroups of

G. Let s be a simplex of X with vertices v0, ■ ■ ■ ,v„ G Y u (U;_i GXH<). Let

t)0, . . . , vm, where — 1 < m < n, be all the vertices of s that belong to U/_, GX"',

thus vm+x, . . . , vn G Y. If m — n it follows, since U/=, GXH> is full in X, that s is

a simplex of U ■=, GX"' and hence also of Y u (U •_, GX"'). If m - -1 it follows

that s is a simplex of Y. Now assume 0 < m < n — 1. Then v0 G

UUi GX"', say v0 G GX\ and vn G Y. We have GVq c G^ or GVn c Gv<¡. If

Gc c G then vn G GX"'» c UJ.| GX"' which is a contradiction since m < n.

Thus GCn Ç GVo, and since Y is strongly full it follows that v0 G Y. In this way we
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see that v0, ■ ■ ■ , vm G Y, and thus it follows that s is a simplex of Y and hence also

of y U(U,-i GX%

Now let y be full in X and assume that Y u GA" is full in X for every subgroup

H of G. Let 5 be a simplex of X, and let v be a vertex of s which lies in Y. Let w be

some other vertex of s with Gc c¡ Gw. Let a be the 1-simplex with vertices v and w.

Then u e Y u GY0- and w G Y u GAG- and hence, by our assumption that

y U GXG" is full, we have a c y U GAG». Since a (J: GAG» we have a G Y, and

hence also w G Y, which is what we wished to prove.    □

Also observe that the condition of being a strongly full subcomplex is a purely

technical condition, for if Y is an equivariant subcomplex of X we have by taking

the first barycentric subdivision that Y' is strongly full in X'. Moreover we have

that if y is full or strongly full in X then Y* is full or strongly full, respectively, in

X*, for any equivariant subdivision X* of X.

Let p: G ^> O(m) be an orthogonal representation of G. By Rm(p) we denote

euclidean space Rm together with G-action through p. We denote

Dm(p) = convex hull of {±ge\ g G G, i = 1, . . . , m},

Sm-x(p) = dD'n(p).

Here ex, . . . ,em denote the standard unit vectors in Rm. The G-spaces Sm~x(p),

Dm(p) and Rm(p) can be triangulated such that they are equivariant simplicial

complexes, and such that Sm~x(p) is an equivariant subcomplex of Dm(p) and

Dm(p) is an equivariant subcomplex of Rm(p), see [8, §1]. Also recall that if AT, and

K2 are rectilinear equivariant simplicial complexes in Rm(p) such that \KX\ = \K2\

then Kx and K2 have a common equivariant (simplicial!) subdivision, see [8, §1]. We

will need the following lemma.

Lemma 1.5. Let X be a finite equivariant simplicial complex and f: X —» Dm(p) a

linear G-map. Then there exists an equivariant subdivision X' of X and an equiv-

ariant triangulation Dm(p)t of Dm(p), such that f: X' -» Dm(p), is a simplicial G-map.

Proof. For the proof it is convenient to have X imbedded as a rectilinear

equivariant simplicial complex in some R"(t) (such an embedding exists by

Proposition 1.1 in [8]). Let Dm(p)l be an equivariant triangulation of Dm(p), i.e.,

Dm(p), denotes a rectilinear equivariant simplicial complex structure on Dm(p). Let

X* be an ordinary subdivision of X and Dm(p)f an ordinary subdivision of Dm(p),

such that/: X* —> Dm(p)* is simplicial. For each g G G we have a new rectilinear

ordinary simplicial complex structure, denoted gDm(p)f, on Dm(p). The simplexes

of gDm(p)f are of the form go, where a denotes some simplex of Dm(p)*. The

intersection of all the rectilinear simplicial complex structures gD(p)*, g G G, gives

us a rectilinear cell G-complex structure, denoted Dm(p), on Dm(p). The cells of

Dm(p) are of the form c = fl f.¡ g,o¡, where N = \G\ and g, ¥= gr, if i ¥=ï, and

each a, is a simplex of Dm(p)*o, ¡_= I, . . . , N. Since g(nf_, g¡a¡) = O fl i (gg¡)a¡

we have that for each cell c of Dm(p) also gc is a cell of Dm(p), for every g G G.

Now Dm(p) has a G-subdivision Dm(p)„ obtained by inductively starring the cells

of Dm(p) at the centroids (beginning with the 2-cells), which is a simplicial
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G-complex. (In connection with the above argument see Edmonds [4].) Since

Dm(p)t is an equivariant simplicial complex and Dm(p), is a (simplicial) G-subdivi-

sion of Dm(p), it follows that Dm(p)t is in fact an equivariant simplicial complex.

Let A be the rectilinear cell G-complex structure on |A| which is the intersection

of all the rectilinear simplicial complex structures gX*, g G G, as above. Then /:

X ^> Dm(p) maps each cell a1 of À onto a cell f(d) of Dm(p). Now let X' be a

G-subdivision of X obtained by starring each cell d (dim d > 2) at some point

d G d for which f(d) = ß(f(d)), where ß(f(d)) denotes the centroid of the cell/(a"),

and moreover in such a way that the cell gd, g G G, is starred at the point gd. To

see that we can in fact have this last condition satisfied observe that the rectilinear

cell G-complex X has the property that, if gd = d for some cell d of A and g G G,

then gx = x for every x G d. This property of X follows from the fact that A is a

G-subdivision of the equivariant simplicial complex A. Hence the process of

starring each cell gd, g G G, at gd is well defined, for if gxd = g2d then gxx = g2x

for every x G d, and thus in particular gxd = g2d. Then A' is a simplicial G-com-

plex, and since A" is a G-subdivision of X we have in fact that A' is an equivariant

simplicial complex. Moreover the map/: A' -^ Dm(p)t is simplicial.    □

Lemma 1.6. Let K and L be equivariant simplicial complexes and f: AT —» L a

proper G-map which is p.l. Then there exist equivariant subdivisions K' and L' of K

and L, respectively, such that f: K' -» L' is a simplicial G-map.

Proof. Since /: K —* L is a proper p.l. map there exist ordinary subdivisions K*

and L* of K and L respectively such that/: K* —» L* is simplicial. The rest of the

proof is completely analogous to the proof of Lemma 1.5.    fj

In the following Lemma 1.6 will be used without specific reference to it. In a way

one wishes to define a proper map /: K —» L to be a p.l. G-map if there exist

equivariant subdivisions K' and L' of K and L, respectively, such that/: K' —» L' is

a simplicial G-map, and Lemma 1.6 then shows that this definition is well defined

in the sense that a proper map /: K —» L is a p.l. G-map if and only if it is a p.l.

map and a G-map.

The notion of an equivariant combinatorial manifold, with or without boundary,

is also defined in [8] but for completeness we repeat it here. An equivariant

simplicial complex M is an w-dimensional equivariant combinatorial manifold if for

every vertex v of M there exist an orthogonal representation pv: Gv^> O(m) and a

p.l. G^-homeomorphism

a:Lk(v, M)^Sm~x(pv).

We say that M is an m-dimensional equivariant combinatorial manifold with

boundary if for every vertex « of M either Lk(t), M) is p.l. G„-homeomorphic with

Sm~x(pv), for some pv: Gv -» O(m), as above, or there exist an orthogonal represen-

tation p'v: G,, —» 0(m — 1) and a p.l. G^-homeomorphism

a':Lk(t), M)^Dm-x(p'v).

In particular an equivariant combinatorial manifold M, with or without boundary,

is when  we forget  the  G-action  a  combinatorial  manifold,  with  or without
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boundary, respectively. We denote the boundary of M by dM. Also observe that in

the case that Lk(u, M) is p.l. G„-homeomorphic with Sm~x(pv) there exists a p.l.

G„-homeomorphism ß: St(t), M) -» Dm(pc), and if Lk(t), M) is p.l. G„-homeomor-

phic with Dm~x(p'v) there exists a p.l. Gc-homeomorphism

ß: St(t), M) -^Dm(p'c® id).

For any x G dM we have, if x e St(t), M) and /?: St(t), M) -* Dm(rv) is a p.l.

G„-homeomorphism, that ß(x) G dD m(rv).

Also note that in [8] it is proved that if N is a smooth G-manifold, with or

without boundary, and h: K —» N is a smooth equivariant triangulation of N, then

AT is an equivariant combinatorial manifold, with or without boundary, respec-

tively. Moreover existence and combinatorial uniqueness of smooth equivariant

triangulations of any smooth G-manifold N, with or without boundary, is estab-

lished in [8].

Let S be a G-space. An equivariant triangulation of S consists of an equivariant

simplicial complex K and a G-homeomorphism t: AT-» S. Two equivariant triangu-

lations tx: Kx —* S and t2: AT2 —» S are called equivalent if t2xtx: AT, —» K2 is a p.l.

G-homeomorphism. Given an equivariant triangulation t: K —* S we have the class

of all equivariant triangulations of S equivalent to t, called the preferred class of

equivariant triangulations of S determined by t. Two equivariant triangulations r,

and t2 of S determine the same class of preferred triangulations of S if and only if

/, and t2 are equivalent. An equivariant polyhedron F is a G-space P together with a

(nonempty!) preferred class of equivariant triangulations of P. An equivariant

subpolyhedron ß of P is a G-subset of P such that for some preferred equivariant

triangulation h: K —» P there exists an equivariant subcomplex L of K such that

A(L) = Q. In particular it follows that ß is a closed subset of P. An w-dimensional

equivariant p.l. manifold (with or without boundary) M is an equivariant poly-

hedron such that in the class of preferred equivariant triangulations of M there

exists an equivariant triangulation t: ÄT-» M with K an m -dimensional equivariant

combinatorial manifold (with or without boundary). In fact, in this case, for any

preferred equivariant triangulation t': L^Mwe have that L is an w-dimensional

equivariant combinatorial manifold (with or without boundary). In this paper we

shall from now on use the terms "equivariant combinatorial manifold A/" and

"equivariant p.l. manifold M" both in case dM = 0 and in case dM =£ 0.

Let P and ß be equivariant polyhedra. A proper map /: P —» ß is a p.l. G-map if

the proper map t-1 ° f ° t: K^L is a p.l. G-map for some (and hence all)

equivariant triangulations t: AT —> P and t: L -» ß of P and Q, respectively.

Let us also note in this connection that given a proper G-map /: P —» ß there

exists an invariant positive function e: F-^R such that any e-approximation h:

P -» ß to/ also is proper. It then follows by applying this to the proper map Fc:

P X I —» Q, where Fc(x, /) = /(x), that there in fact exists an invariant positive

function e: P -» R such that if F: P X I —> Q is any e-homotopy from / to some

map A, then F is a proper map.

Let K be an equivariant simplicial complex and 5 a G-space. We say that a

G-map /: K -» S is equivariantly nondegenerate if for every equivariant simplex Gs
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of A" we have that f\ : Gs -» S is a G-imbedding. Observe that any equivariantly

nondegenerate G-map is isovariant and nondegenerate in the ordinary sense, i.e.,

imbeds ordinary simplexes of K. The following example shows that the converse is

not generally true.

Example. Let G = Z3 = {e, T, T2} and K = Z3X I, with Z3-action given by

left multiplication on Z3 and trivial action on the unit interval /. Let L = 3A2, the

boundary of a 2-simplex, with simplicial Z3-action given by permutation of the

vertices a, Ta and T2a. Then L is a simplicial G-complex (but not an equivariant

simplicial complex!). Let /: A"—> L be the G-map defined by/(e, t) = (1 - t)a +

tTa, for any t G I. Then/is a simplicial G-map which is isovariant and nondegen-

erate, in the ordinary sense, but/is not equivariantly nondegenerate. An analogous

example, with a linear G-map from K into R2 with Z3-action given by Tz = e2m/3z,

all z G R2, shows that: A linear G-map from an equivariant simplicial complex into

some orthogonal representation space that is isovariant and nondegenerate in the

ordinary sense need not be equivariantly nondegenerate.

On the other hand we have

Lemma 1.7. Let K and L be equivariant simplicial complexes and f: K —> L a

simplicial G-map that is isovariant and nondegenerate in the ordinary sense. Then f is

equivariantly nondegenerate.

Proof. Let Gs be an arbitrary equivariant simplex of K, where s denotes an

ordinary simplex of K. Let a, b G Gs such that f(a) = /(A). Write a = gxu and

A = g2v, where u, v G s. Then f(gxu) = f(g2v) and thus, denoting g0 = gx~lg2, we

have/(n) = f(g0v). Hence/(m) G f(s) n g0/(5)> and therefore, since L is an equi-

variant simplicial complex, we have g0S(u) = /(")• This implies that/(w) = /(t>) and

hence that u = v, since / is nondegenerate. Moreover g0/(u) = /(«) implies that

g0 G Gf(uy = Gu, since/is isovariant. Thus g0u = u and therefore a = gxu = g2u =

g2v = b.    □

If P is an equivariant polyhedron we say that a G-map /: P —» S is equivariantly

nondegenerate if for some equivariant simplicial complex P* triangulating P the

G-map /: P* —» S is equivariantly nondegenerate.

2. Local results. In this section we consider the local situation, i.e., we consider

maps from a finite equivariant simplicial complex A into some Dm(p) and also

general position of equivariant subcomplexes of Dm(p). These results are then

globalized in the next section to give the desired approximation results in the case

of equivariant or isovariant maps from equivariant polyhedra into equivariant p.l.

manifolds. In this section A will always denote a finite equivariant simplicial

complex. We begin with the following well-known lemma.

Lemma 2.1. Let Y and Z be equivariant subcomplexes of X and let f: X —» Dm(p)

be a G-map such that f]: Y n Z —» Dm(p) is linear. Then, given e > 0, there exist an

equivariant subdivision X' of X and a G-map A: X' —» Dm(p) such that h\: Y' —»

Dm(p) is linear and A is equivariantly e-homotopic rel|Z| to f.
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Proof. Let 8 > 0 be such that d(x,y) < 8 implies ||/(x) - /(>>)|| < e/2. Let A'

be an equivariant subdivision of A such that (7 u Z)' is full in X' and mesh(A')

< 8. Now define h: X' —» Dm(p) as follows. If j = <t>0, . . . , vkp is a simplex of Y'

define h on the vertices of s by h(v¡) = /(t),), i = 0, . . . , k, and then define A on all

of j by extending linearly. If í is a simplex of Z' define A on 5 by h\s = /|j. Since/

is a G-map and /|( y n Z)' is linear it follows that this gives us a well-defined

G-map A: (y u Z)' -» Dm(p) such that h\ Y' is linear and h\Z' = /|Z'.

Then extend A to all of A' in the following way. If s is a simplex of X' such that

j D | y U Z| = 0 we define h\s = f\s. Now let s be a simplex of X' - (Y u Z)'

such that s n \ Y u Z| ^ 0. Since (7u Z)' is full in A' we have j = sxs2, where

sx n | y U Z\ = 0 and s2 is a simplex of (Y u Z)'. Define A on j by extending

linearly the map h already defined on sx and s2. This gives us a well-defined G-map

A: A' -* Dm(p) such that A| y is linear and A|Z' = f\Z'.

It follows from the way the map A is constructed that diam(A(i)) < diam(/(i)) <

e/2, for every simplex 5 of A', and hence, since A and/ agree on all the vertices of

X', we have ||A(x) — /(x)|| < e for every x e A. The map H defined by H(x, t) =

(1 - t)S(x) + th(x) is an equivariant e-homotopy rel \Z\ from/to A.    □

Proposition 2.2. Let Yx, Y2 and Y3 be equivariant subcomplexes of X such that

y, n y3 = 0 and let f: X -* Dm(p), be a G-map such that f\: Y2^> Dm(p), is

simplicial. Let e > 0 be given. Then there exist equivariant subdivisions A* and

Dm(p)* oS X and Dm(p)„ respectively, and a G-map A: X* -+ Dm(p)f such that h\:

(y, U Y2)* —> Dm(p)* is simplicial and h is equivariantly e-homotopic rel | Y2 U y3|

to S

Proof. Let Y = Yx u Y2 and Z = Y2 u Y3 and note that since Yx n Y3 = 0

we have Y n Z = Y2. Now Proposition 2.2 follows easily from Lemma 2.1 using

Lemma 1.5.   □

The next result (Lemma 2.3 and Proposition 2.4 below) proves that one can

approximate isovariant maps by isovariant simplicial maps and this in a relative

fashion. The proof of Lemma 2.3 is quite involved. There are also some fine points

to observe. The first is that already Lemma 2.3 is given in the form with

subcomplexes Yx, Y2 and Y3 where Yx n Y3 = 0, which is a stronger assumption

than the one of the type used in Lemma 2.1 with subcomplexes Y and Z (cf. the

proof of Proposition 2.2). We have pointed out in the proof of Lemma 2.3 where

this extra strength of the assumption is needed. The other point is that in

establishing the existence of an isovariant map A, of desired type, that approxi-

mates the given isovariant map / we only prove that A is equivariantly homotopic

to/. (This situation should be compared with the result in Lemma 2.7.)

Before giving Lemma 2.3 and its proof we shall here describe some notation and

also a specific subdivision procedure that we use in the proof of Lemma 2.3. For

any subgroup H0 of G we denote

J(H0) = {H is a subgroup of G\H <£ H0}.
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We define

B(H0)=      U      D">(p)H.
HEJ(H0)

Then B(H0) is a closed subset of Dm(p) and for any x G Dm(p) we have that

x G Dm(p) — B(H0) if and only if Gx c H0. If s is a simplex of some equivariant

simplicial complex we denote by I0(s) the maximal isotropy subgroup of s. For any

finite equivariant simplicial complex K and any subgroup H of G we denote by K

( < H) the ordinary subcomplex of K consisting of all the simplexes s (together with

their faces) of K that have I0(s) = H, i.e., K ( < H) is an ordinary subcomplex of K

and

K(<H)=     U    *•
s<K

I0(s)=H

Let L be an equivariant subcomplex of K such that L is full in K. By N(L, K) we

denote the simplicial neighborhood of L in K, i.e., N(L, K) is a subcomplex of K

and

N(L, K) =     (J    s.
s<K

mii'0

Clearly N(L, K) is an equivariant subcomplex of K and

N(L, K) = {s < N(L, K)\s n L = 0}

is an equivariant subcomplex of N(L, A"). Since L is full in K we have that every

simplex s of N(L, K) can be written in a unique way as a join 5 = í,í2 where

sx < L and i2 < N(L, K). By C(L, AT) we denote the simplicial complement of L in

K, i.e.,

C(L, K)=     U    *•
s<K

snL-0

Then C(A", L) is an equivariant subcomplex of K and we have

K = N(K, L) U C(L, K) and N(L, K) n C(L, K) = Ñ(L, A").

Now let C(L, K)* be any equivariant subdivision of C(L, K). Then extend this

subdivision to an equivariant subdivision AT* of A" as follows. By A^(L, A")* we

denote the equivariant subdivision of Ñ(L, K) induced from the subdivision

C(L, K)* of C(L, K). If í is a simplex of N(L, K) we write s = sxs2 where sx < L

and s2 < N(L, K). Let s% denote the subdivision of s2 induced from N(L, K)*.

Then define a subdivision s* of s by s* = sxs*. This gives us an equivariant

subdivision of N(L, K) which on Ñ(L, K) equals Ñ(L, A")*, and hence an equiv-

ariant subdivision K* of K which is an extension of the subdivision C(L, AT)* of

C(L, K). We also have L* = L. We call A"* the join extension of C(L, K)* to K.

Observe that for the join extension K* of C(L, K)* to K the following holds (this

will be crucial for us). For any equivariant full subcomplex L0 of L we have

L¡ = L0 and N(L¿, K*) = N(L0, AT)* and N(L$, K*) = Ñ(Lo, K)* and

C(L*, A"*) = C(L0, K)*.
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Lemma 2.3. Let Yx, Y2 and Y3 be equivariant subcomplexes of X such that

y, n y3 = 0 and let f: X -h> Dm(p) be an isovariant map such that f\: Y2^> Dm(p)

is linear. Then, given e > 0, there exist an equivariant subdivision X' of X and an

isovariant map A: A' -» Dm(p) such that h\: (Yx u YJ -» Dm(p) is linear and A is

equivariantly e-homotopic rel | Y2 u y3| to f.

Proof. Before giving the actual proof let us heuristically describe the idea in the

proof. Let s be an ordinary simplex of A and let H = I0(s) be the maximal isotropy

subgroup of s. Since/: A —» Dm(p) is isovariant we have

f(s) c Z>» - B(H).

Thus dist(/(f), B(H)) > 0. The first part of the proof consists of constructing an

equivariant subdivision A" of A' such that denoting

d, = dist(/(i), B(I0(s)))

we have

diam/(j) < \min(ds, e), (*)

for every simplex j of A'. Once this has been done the map A is constructed so that

it agrees with/on all vertices of A' and is linear in (Yx u Y^'. By induction, in the

dimension of simplexes, it then follows using (*) that A is isovariant.

Now let us say a few words about the construction of the subdivision A" of A.

Let for example s = <t)0, t>,, u2) be a 2-simplex with G0 = H0 and Gv¡ = G„ = Hx

where H0 j2 Hx, and let sx = <t),, t)2) be the back face of s. Assume that we have

diam/(i) < \min(ds, e), where ds = dist(/(s), B(H0)), but diam/(.s,) <(; lnún(ds¡, e),

where ds = dist(/(s,), B(HX)). Thus we need to subdivide further in order to make

sx and hence also f(sx) smaller. But we must not introduce new simplexes, with

maximal isotropy subgroup equal to Hx, whose images under / come closer to

B(HX) than f(sx). Hence we may not introduce any new vertices in s that lie outside

sx. Thus we subdivide s by taking an appropriate subdivision s'x of sx and give s the

subdivision s' = %y',. This is the main idea behind the construction of the equi-

variant subdivision A" of A which satisfies (*).

Let us now begin the actual proof. We shall first construct an equivariant

subdivision A' of X, with Y' full in A', such that for any simplex í of A' we have

diam/(i) < \n\\n(ds, e) (*)

where

ds = dist(/(5), B(I0(s))).

Let Hx, . . ., Hr be subgroups of G forming a complete set of representatives for

the orbit types occurring in A, ordered in such a way that (H¡) > (H) implies / </.

We denote

i

A,. =  (J GX"j,       i=\,...,r,
7=1

and define A0 = 0. Let A(0) be the first barycentric subdivision of A, then y,(0) is

strongly full in A(0>, and this property is then preserved under further subdivisions
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of A<0). The fact that each A,(0) is full in A(0) (in fact A",, is full in A") and that this

property is preserved under further subdivisions of A(0) will also be used in the

proof. We shall inductively construct successive equivariant subdivisions A"(0),

Xw, . . . , A(r) of Xm, and equivariant subcomplexes A <0), A2x\ .. ., A^x such that

the following conditions are satisfied

(a) Af$i = C(A/">, A<">), 0<i <n,n = 0,...,r,

(b) mesb.(/l<">) < S„, n = 1, . . . , r,

where 8n > 0 is such that d(x, y) < 8„, any x, y G X, implies that

\[f(x) - f{y)\\ < \ rnm(dist(/(4--I>( < Hn)), B(Hn)), e).

We have already constructed A"(0). Now let Af^ = A"(0). Then condition (a) is

satisfied and condition (b) is satisfied in an empty way. Now assume that

A"(0), . . . , A(n) and Af>, . . . , A*ft.x, where 0 < n, have been constructed and satisfy

conditions (a) and (b). Since we have 0 = |Ao| c |A,| c • • • C \Xr\ = |A"| it

follows from the formula

4,5?, = C(X¡n\ A(n)),        0 < i < n,

that

|*|-\AX\DL42|D ••• ?\An+x\

and also that the orbit types occurring in |^4, + I|, where 0 < / < n, are

(Hj+l), . . . , (Hr). Now consider the finite ordinary subcomplex An"lx (< Hn+X) of

A„nli- If ■* £ ^li (< Hn+1) we bave Gx C H„+x. Since/ is isovariant it follows

that

fXA^Xx (< Hn+l)) c D"(p) - B(Hn+x)

and hence

dist(f(Ai»lx(<Hn+l)), B(Hn+x)) -dtt+x> 0.

Let ^/i+i > 0 be such that if d(x,y) < 8n+x, any x,y G X, then

\\S(x)-S(y)\\<-2rnin(dn + x,e).

Now let (Al?lx)* = C(A„(n), X("Y be an equivariant subdivision of A(„"lx such that

mesh((^i">,)*)<S„ + 1.

Then define X{n+1) = A<n)* to be the join extension of Agft = C(X<"\ X(n)*) to

X(n\ Then A<"+1) is an equivariant subdivision of X(n) such that AJ,"+XX) = A%&,

and also A„(n+1) = X<"\ By the induction assumption we have 4?, = C(A,(n), A"(n)),

for 0 < i < n. Since A,(n) c X™, for 0 < i < n, it follows by the properties of the

join extension from C(A„(n), A(n))* to X(n) that we have for 0 < i < n

A\n++xX) = 4+T = C(Xf\ *-<">)• = C(X¡n)*, A"(n)*) = C(Ain + 1), A"<"+1>).

This and the definition Ä£$> - C(Xf+\x\ A(n+1)) shows that condition (a) is

satisfied and since mesh(A^xX)) = mesn(^n+*i) < £„+, we also see that condition

(b) is satisfied. This completes the inductive step.
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Now let A' = A(r). Then we have

A'i+X = C(A/, A"),       0 < i < r,    and (1)

mesh(A¡) < mesh(^í')) < 8¡,        1 < i < r. (2)

Also X' — A\ D • • • D A'r D v4^+, = 0, and the orbit types occurring in A'¡,

1 < i < r, are (//,), . . . , (//,). Now let s be an arbitrary simplex of A". Let A:,

1 < k < r, be such that (70(5)) = (#*)• Since A'k = C(X'k_x, A') it then follows that

j is a simplex of A'k. Thus we have

diam(í) < mesh(A'k) < 8k

and hence

diam(/(i)) < {- min(o^, e)

where dk = dist(f(Akk~X) (< Hk)), B(Hk)). Now observe that since no point in

A¡f~X) has isotropy subgroup strictly greater than Hk it follows that for any

equivariant subdivision A^~X)* of ^1¿*_1) we have

|^-1>*(<^)|c|^-,>(<//,)|.

Let g G G be such that gl0(s)g~x = Hk. Then I0(gs) = Hk and hence gs is a

simplex of A'k (< Hk). Thus we have

\gs\c\A'k(< Hk)\c\Akk-» (< Hk)\.

Hence it follows that

dk < dist(f(gs), B(Hk)) = àist{f(s),g-xB(Hk))

= dist(f(s), B(g-xHkg)) = dist(/(i), B(IQ(s))).

Thus we have proved that

diam(/(í)) < i min(o;, e). (*)

We now define A: A' -^ Dm(8) as follows. If sx = <t)0, . . . , vk} is a simplex of

y,' define A on the vertices of 5 by h(v¡) = f(v¡), i = 0, . . . , k, and then define A on

all of sx by extending linearly. If s0 is a simplex of A' such that s0 n Y'x = 0 we

define A on í by A|i0 = /|i0. Now let s be a simplex of A' — Y'x such that

s n y,' ¥= 0. Since y[ is full in A' we have, in a unique way, s = j,j0 where

sx < Y'x and s0 n y,' = 0. Then define A on 5 by extending linearly the map A

already defined on sx and s0. Since / is a G-map this gives us a G-map A:

A' -» Dm(8), and A|(y, u y2)' is linear and A|(y2 u Y3)' = f\(Y2 u Y3)'.

Let us now show that A: A' —» Dm(8) is isovariant. For this first observe that if

s = sxs0, where sx < Y'x and s0 n Y[ = 0, and [a,, A] c í is the line segment from

a point a, e i, to any point b G s, then A is linear on [a,, A], i.e., we have

A((l - t)ax + tb) = (1 - r)A(a,) + /A(A),       axG sx,b Gs and 0 < / < 1.

(#)

(This is easily verified using the fact that a, G sx and that A|j, is linear. It is also at

this point that we use the fact that we have the setup with subcomplexes Yx, Y2 and

y3, where Yx n Y3 = 0, and not a setup of the type used in Lemma 2.1 with
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subcomplexes Y and Z. Compare the construction of the map A above with the

construction of the map A in the proof of Lemma 2.1.) We are now ready to prove

that A is isovariant. Let s be an arbitrary «-simplex of A'. We claim that if x G s

then GhM = Gx. This claim we prove by induction in n. If n = 0, we have s = <(u>

a vertex. Since A and / agree on vertices and / is isovariant we have GA(u) = Gf(v) =

Gv. Now assume that we have proved our claim for the value n — 1, where n > 1.

Let s be any n-simplex of A' and x G s. If s n Y{ = 0 then A|s = f\s and hence

Gh(x) = Gj(X) = Gx. Assume next that s f\ Y'x¥= 0. Then s = sxs0 where sx < Y'x,

sx=rJ= 0 and s0 n Y'x = 0 (where s0 = 0 is possible). Since y,' is strongly full in A'

it follows that one of the vertices of sx has isotropy subgroup equal to I0(s). In fact

it also follows that all the vertices of s0 have isotropy subgroup equal to the

principal, i.e., minimal, isotropy subgroup of s. Thus we can write s =

<t)0, . . . , vn) and sx = <u0, . . . , vk/, where 0 < k < n, with Gv = I0(s). Now if x

belongs to some (n — l)-dimensional face of s then it follows by the induction

assumption that GhM = Gx. Thus we can assume that x = 2"=0 t¡v¡, where 2"_0 r,

= 1 and /, > 0, for all / = 0, . . . , n. Then we have Gx = Gv the principal isotropy

subgroup of 5.

It follows from the way the map A is constructed that we have diam(A(s)) <

diam(/(i)). Thus, since h(v0) = f(v0), we have

\\h(y) - S(y)\\ < diam(A(j)) + diam(S(s)) < 2 diam(S(s)), (**)

for any y G s. Hence it follows from (*) that

\\h(y) - f(y)\\< dist(f(s), B(I0(s)))

for every y G s. Hence we have h(y) £ B(I0(S)), for every y G S. Therefore we

have Gh(y) c I0(s) for every y G s and in particular

GMx) C I0(s) = GVo.

Now let

Since A lies in an (n — l)-dimensional face of s we have by the induction

assumption that GA(¿)) = Gb = Gv . Since

x = t0v0 + (1 - tQ)b

and t)0 G sx, we have by (#) that

A(x) = t0h(v0) + (1 - to)h(b)

that is

h(b) = -^-(h(x) - t0h(v0)).
1 '0

Since GA(x) c Gv this shows that the point A(A) is fixed under GhM, i.e.,

Gh(x) C Gh(b).

Since Gh(b) = G^ = Gx we get GA(x) c Gx, and hence GA(;c) = Gx since A is a

G-map. This completes the induction and proofs that A is isovariant.
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By (**) and (*) we have that ||A(_y) — f(y)\\ <e for any y G X. Since also

h\ I Y2 U Y3\ = /| | y2 U y3| it follows that H: X X / -+ Dm(8), defined by H(y, t)

= (1 - r)f(y) + rh(y), is an equivariant e-homotopy rel| Y2 u y3| from/ to A.    □

Proposition 2.4. Let Yx, Y2 and Y3 be as in Lemma 2.3, and let f: X -» Dm(8), be

an isovariant map such that f\: Y2 -^ Dm(8), is simplicial. Let e > 0 be given. Then

there exist equivariant subdivisions X* and Dm(8)f of X and Dm(8)t, respectively,

and an isovariant map A: A* -+ Dm(8)f such that h\: (Yx u Y2)* -+ Dm(8)* is

simplicial and A is equivariantly e-homotopic rel| Y2 U y3| to f.

Proof. This follows easily from Lemma 2.3 using Lemma 1.5.   □

Example. Let G = Z2 and X = I X Z2, where the unit interval / has vertices 0

and 1, and Z2 acts on X by trivial action on / and by multiplication on Z2. Let

R2(t) = R © R(±), where Z2 acts trivially on R and acts by Tx = -x on R(±).

Define a linear Z2-map /: A->R2(t) by defining /(0, e) = (1, 1) and /(l, e) =

(3, -1) and extending linearly and equivariantly. Then f(\, e) = (2, 0) and/(|, F)

= (2, 0), and hence / is not equivariantly nondegenerate (/ is nondegenerate in the

ordinary sense). Moreover it is impossible to alter /, by a small change, into an

equivariantly nondegenerate map. Observe that dim AG = -1 < dim R2(p)G = 1

and dim Aw = 1 < dim R2(p){e} = 2. Now consider/as a Z2-map/: A -h> R2(t) ©

R( ± ) = R3(p). Let e > 0 and define a linear Z2-map A : X —> R3(p) by defining

A(0, e) = (1, 1, e) and A(l, e) = (3, -1, 0) and extending linearly and equivariantly.

Then A is equivariantly nondegenerate and an e-approximation to /. Observe that

dim A{e> = 1 and dim R3(p){e> - dim R3(p)>(*> -1=3-1-1 = 1.

This example leads us to the next lemma. It is the version in parentheses that is

of primary interest to us. Observe that since dim 0 = — 1 the dimension assump-

tion in Lemma 2.5 in case G = {e}, i.e., in the ordinary nonequivariant case, is the

correct one; dim(y — Z) < dim Dm = m.

Remark. Observe that if a subgroup H of G does not occur as an isotropy

subgroup of some point in Y, then Y" — H>H = YH = 0. It follows that in

Lemma 2.5 below the expression "for every subgroup H of G" could as well be

changed in the following way. Let Hx, . . . , H, be subgroups of G forming a

complete set of representatives for the orbit types occurring in Y. Then we need

only assume that the dimension assumption in Lemma 2.5 holds for the subgroups

Hx, . . . , Hr We have chosen the formulation "for every subgroup H of G" for

sheer convenience. This same remark also concerns the formulation of many other

results in this paper.

Lemma 2.5. Let Y and Z be equivariant subcomplexes of X such that Y n Z is

strongly full in Y. Let f: A -> Dm(p) be a linear G-map such that f\: Y n Z ->

Dm(p) is isovariant (isovariant and nondegenerate). Assume that

dim(Y" - (Y>" u Z)) < dim Dm(p)" - dim Dm(p)>H - 1

for every subgroup H of G. Then, given e > 0,f is equivariantly e-homotopic rel|Z| to

a linear G-map A: X —> Dm(p) such that h\: Y —> Dm(p) is isovariant (isovariant and

nondegenerate). Moreover we can choose A such that h(Y — Z) c Dm(p).
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Proof. Let Hx, . . . , Hs be subgroups of G forming a complete set of representa-

tives for the orbit types occurring in A, ordered in such a way that (//,) > (H)

implies i <j. Let us denote Y0 = Y n Z and

n

yn = U gy"' u (y n Z),      n = 1, . . . ,s.
1 = 1

Since y n Z is strongly full in Y it follows by Lemma 1.4, that Yn_x is full in Y

and hence also in Yn, n = 1, . . . , s. Observe that we have

Yn - Yn-i = G{Y»- - (Y>»> u Z)),        n=l,...,s.

We shall construct linear G-maps

A„:A-»Dm(p),       « = 0, ...,s,

such that

1AI>A> = A„_,|y„_„n> 1,
2. ||A„(x) - /(x)|| < e, for every x G X,

3. A„|: y„ -» Dm(p) is isovariant (isovariant and nondegenerate),

4.A„(y„-z)c¿",(p),

5.A„|Z=/|Z.
Let A0 = / and assume inductively that A0, . . . , A„_,, where « > 1, have been

defined and satisfy the above conditions. We now construct h„ as follows. Let

Gvx, . . . , Gvp, Gvp+X, . . . , Gvq be the equivariant vertices of Yn, where

Gvy . . . , Gvp are the ones in Yn_x and Gvp+X, . . . , Gvq are the ones in Y„ — Yn_x,

and where we moreover have chosen vp+x, . . ., vq G Y"" — (Y>H- U Z). Thus we

have Gv = Hn, for i = p + 1, . . ., q. Let us denote A„_,(t),) = y¡, i = \, . . . ,p.

Inductively we now construct points

yP+v ■ •• ,y, e Dm(P)H-

such that the following conditions will be satisfied. We denote below

k = dim(y"-- (Y>"-u Z)).

(i) Denoting S = {yx, . . . ,yq} we have that

yj € ((Rm(p)", gxzy ..., glz,)),        p + 1 < / < q,

for every subgroup H of G such that Hn £ //, and any zx, . . ., z¡ G S — {y^} and

g,, . . . , g, G G with / < k. (Recall that «Rm(p)H, gxzx, . . ., g,z,>> denotes the

affine subspace of Rm(p) generated by the set Rm(p)" U {gxzx,. . . , g¡z,}.)

(ii)

d(yj,S(vj)) <e,       p+l<j<q.

This is possible, since for Hn Ç. H we have

dim((Rm(p)", gxzx, ..., glz,)) < dim Rm(p)>H" + I

< dim Dm(p)>H- + fc < dim Dm(p)"" - 1,

and since G is finite.

Now let Gwx, . . . , Gwr denote the equivariant vertices of X — Yn and construct

a linear G-map A„: X -» Dm(p) by defining it on the equivariant vertices of X in the
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following way:

(a)A„|Gt),. = A„_,|Gt)„ 1 <i <p.

(b) h„\: Gv¡ -h> Dm(p) is defined by A„(gt),) = gy¡, for all g G G andp + 1 < i <

q,

(c) hn\Gwj = f\Gwjt 1 <j <r,

and then extending linearly to the equivariant simplexes of A. (Observe that the

definition given in (b) gives a well-defined G-map since Gv = Hn and y¡ G

Dm(p)"% fox p + 1 < i <q.)

It follows directly from the above construction that A„ satisfies conditions 1, 2, 4

and 5. We claim that A„|: Yn -» Dm(p) is isovariant (isovariant and nondegenerate).

We first prove that A„| Y„ is isovariant. Let /t be an equivariant simplex in Yn. We

shall show that A„|: A —> Dm(p) is isovariant. If /I c y„_, this follows from the

induction hypothesis. Thus we can assume that A is an equivariant simplex of

y„ — y„_i and hence we have dim A < k. Since Yn_x is full in Yn at least one of

the equivariant vertices of A lies in Yn — Yn_x. Let A = Gs where s is an ordinary

simplex and we have chosen s c Y"\ Let a0, . . . , ae, ae+1, . . ., ad be the vertices

of s, where ae+,,..., ad denote the ones belonging to YH- — (Y>Hn \J Z), and we

have -1 < e < d. Now we have a, = g¡Vj,, where g¡ G G, i = 0, . . . , d, and where

Vj and v, belong to different equivariant vertices, i.e., different orbits, if i =£ i'.

Moreover e + 1 < i < d implies that/» +1 < /, < q and that g G N(Hn).

Let x G s, we claim that G^(x) = Gx. If x belongs to a face of í which lies in

y„_, this follows from the induction hypothesis. Thus we can assume, since Yn_x is

full in y„, that x = 2?_0 *,«„ with 2?=0 r, = 1, r, > 0, and at least one t¡. ̂  0,

where e + 1 < /' < d, say td ^= 0. Denote G^(x) = A", thus we have Hn = Gx c K.

Since A„(x) = 2?=0 '<3% ^ R^ip)^ and td i= 0 it follows that

^^((R^p^g^,...^^,^,», (•)

where we have denoted K' = g¿ xKgd and g,' = gd xg¡, i = 0, . . . , d — 1. If Hn G. K

then, since gd G N(H„), we also have Hn C¡ AT'. Since d < k and ^ G 5 - {.yy},

i = 0, . . . , d — 1, and /> + 1 < jd < q we see that (*) is in contradiction with (i).

Thus Hn = K, that is, Gx = GAW. It now follows that hn\A is isovariant and hence

that A„|: Yn -+ Dm(p) is isovariant.

It now remains to prove, assuming/|Y n Z to be nondegenerate, that hn\Yn is

nondegenerate. From the inductive assumption that A,| Y¡, i = 0, . . . , n — 1, are

nondegenerate and condition (i) it follows that if s = <a0, . . ., arf) is a simplex of

y„ then the points hn(a0), ■ ■ ■ , hn(ad) are affinely independent and hence hn\s is an

imbedding.

Now h = hs: X -+ Dm(p) and the (not linear) homotopy H: X X I -+ Dm(p),

defined by H(x, t) = (1 — t)f(x) + th(x), satisfy the conclusions of the lemma.    □

Proposition 2.6. Let Yx, Y2 and Y3 be as in Lemma 2.3, and let f: X -> Dm(p), be

a simplicial G-map such that f\: Y2 —> Dm(p)t is isovariant (equivariantly nondegener-

ate). Assume that

dim(Yx" - (Y>" u y2)) < dim Dm(p)" - dim Dm(p)>H - 1
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for every subgroup H of G. Let e > 0 be given. Then there exist equivariant

subdivisions A* and Dm(p)* of X and Dm(p)t, respectively, and a simplicial G-map A:

A* -> Dm(p)* such that h\: (Yx u Y2)* -^ Dm(p)* is isovariant (equivariantly nonde-

generate) and such that A is equivariantly e-homotopic rel| Y2 u y3| to f. Moreover we

can choose A such that h(Yx - Y2) c Dm(p).

Proof. Let Y = Yx u Y2 and Z = Y2 u Y3. Since Yx n y3 = 0 we then have

y n Z = y2. Also observe that Y - Z = Yx - Y2 and Y" - (Y>" u Z) = Yx"

— (YX>H u y^ for any subgroup H of G. Let A' be an equivariant subdivision of

A such that Y2 = (Y r\ Z)' is strongly full in Y'. Applying Lemma 2.5 to the linear

G-map/: A" -h> Dm(p) we get a linear G-map A: A'->/^(p) such that h\Y' is

isovariant (isovariant and nondegenerate) and A is equivariantly e-homotopic rel|Z|

to/and A(y — Z) c Dm(p). By Lemma 1.5 there exist an equivariant subdivision

A" of A" and an equivariant triangulation Dm(p),o of Dm(p) such that A: A~"^>

Dm(p)t is simplicial. Let Dm(p)f be a common equivariant subdivision of Dm(p)t

and Dm(p),o. Since A: A" ^ Z)m(p),o is a simplicial G-map and Dm(p)* is an

equivariant subdivision of D m(p), there exists an equivariant subdivision X* of A "

such that A: A* —» Z)m(p),* is a simplicial G-map. In the case when h\Y' is

isovariant and nondegenerate we have by Lemma 1.7 that A|: Y* —» Dm(p)f is

equivariantly nondegenerate.    □

Lemma 2.7. Let f: X —»• Rm(p) be a linear isovariant map. Then there exists 8 > 0

such that any linear G-map A: X —» Rm(p) satisfying \\f(x) — h(x)\\ < 5, /or eue/y

x G A, « isovariant and moreover isovariantly 8-homotopic to f.

Proof. Let 5 be a simplex of A and denote the maximal isotropy subgroup of s

by Io(s). Since / is isovariant the isotropy subgroup at any point in f(s) is a

subgroup of 70(j). For any subgroup H0 of G we denote

J(H0) = {H is a subgroup of G|// (j; //0}.

Now for any simplex î of J we set

bs=     U     Rm(p)"
//ey(/<,(*))

Thus /(j) n Bs = 0, and since f(s) is compact and Bs is closed it follows that

ds = dist(/(j), Bs) > 0. Now set

ô = min{ds\s is a simplex of A}.

We shall show that if A: A -h> Rm(p) is a linear G-map such that ||/(x) - A(x)|| <

8, for every x G X, then A is isovariant. Let s be an «-simplex of X. We claim that

if x E j then Gh(x) = Gx. This we prove by induction in «. If « = 0, then j = <u0>

a vertex. Since A is a G-map we have GVg c GA(0o). Since ||/(t)0) — h(v0)\\ < 8 < ds,

we have A(t)0) £ Bs and hence GA(Co) c GC(¡. Thus GA(t)o) = G„o. Now assume that we

have proved our claim for the value « — 1, where « > 1. Let 5 = <t>0, . . . , v„} be

an «-simplex of A and x G s. Here the vertices of s are ordered such that Gv is the

maximal isotropy subgroup of s and Gv is the principal isotropy subgroup of s, i.e.,

the minimal isotropy subgroup of s. If x belongs to some (n — l)-dimensional face

of s then it follows by the induction assumption that GA(JC) = Gx. Thus we can
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assume that x = 2"=0 t¡v¡, where 2"=0 r, = 1, t¡ > 0 and t¡ ¥= O, i = O, . . . , n. Then

we have Gx = Gv . Since ||/(x) — A(x)|| < 8 < ds, we must have GAW c GD¡. Hence

the point

w = (i - -r^T-W%> + tatM*) = 2 tttW
V        «      «o / l      'o , = i '      'o

is fixed under the subgroup GhM, that is, GA(x) c Gw. But we have w = h(y), where

the point y = S"=1 t¡v¡/(\ — t0) belongs to an (« — l)-dimensional face of i.

Moreover Gy = Gv . By the induction assumption we have Gw = Gh(y) = Gy, and

hence Gh(x) c Gv. But since A is a G-map we have G„n = Gx c GAW, and hence

GA(x) = Gx. This completes the induction step and shows that A is isovariant.

We get a well-defined G-homotopy F: A X / -h> Rm(p) by defining /(x, /) =

(1 — t)f(x) + th(x); and since for each fixed t the map F,: X -»Rm(p), defined by

Ft(x) = F(x, r) is a linear G-map satisfying ||/(x) — F,(x)|| < 8, for every x G A, it

follows that F, is isovariant. Hence F is an isovariant 5-homotopy from / to A.    □

Lemma 2.8. Let Y and Z be equivariant subcomplexes of X such that Y n Z is

strongly full in Y. Let f: X -^ Dm(p) be a linear isovariant map such that f\:

Y n Z —» Dm(p) is nondegenerate. Assume that

dim(Y" - (Y>" u Z)) < dim Dm(p)"

for every subgroup H of G. Then, given e > 0, / is isovariantly e-homotopic rel|Z| to

a linear isovariant map A: A —» Dm(p) such that h\: Y —» Dm(p) is nondegenerate.

Moreover we can choose A such that h(Y — Z) c Dm(p).

Proof. The proof is very similar to that of Lemma 2.5. Let the notation be the

same as in the proof of Lemma 2.5. First observe that using Lemma 2.7 we can

assume that e > 0 is such that if A': A-» Dm(p) is any linear G-map which is an

e-approximation to /, then A' is isovariant and moreover the homotopy H: X X I

-* Dm(p), defined by H(x, t) = (1 — t)f(x) + th'(x), is isovariant. Then proceed as

in the proof of Lemma 2.5, but this time, in constructing the linear G-map A„:

X^> Dm(p), choose the pointsyp + x, . . . ,yq G Dm(p)"" such that

yj $ «Si*i, • • • - &*/»>       p + I <j <q,

for every subgroup H of G such that Hn G. H, any k or less points zx, . . . , z, G S

— {yy}, I < k, and any gx, . . . , g, G G, and also such that d(yj,f(v/)) <e,p+\<

j < q. This is possible since

dim«g,z„ . . ., g,z/)) < I - 1 < k - 1< dim Dm(p)H- - 1.

It then follows that the linear G-map A„: A -^ Dm(p) is such that A„|: Yn -> Dm(p) is

nondegenerate and A„ is an e-approximation to / and hence also that A„: X —»

Dm(p) is isovariant.    □

Proposition 2.9. Ler y,, Y2 and Y3 be as in Lemma 2.3, and let f: X -> Dm(p)t be

an isovariant simplicial map such that f\: Y2^> Dm(p), is equivariantly nondegener-

ate. Assume that

dim{Yx" - (Y>" u y2)) < dim ¿»"(p)"
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for every subgroup H of G. Let e > 0 be given. Then there exist equivariant

subdivisions X* and Dm(p)f of X and Dm(p)t, respectively, and an isovariant

simplicial map A: X* -» Dm(p)* such that h\: (Yx u Y-J* -» Dm(p)* is equivariantly

nondegenerate and A isovariantly e-homotopic rel| Y2 u y3| to f. Moreover we can

choose A such that h(Yx - Y2) c Dm(p).

Proof. This follows from Lemma 2.8 in exactly the same way as Proposition 2.6

followed from Lemma 2.5.    fj

Let M be an equivariant p.l. manifold, Ä0cMan equivariant subpolyhedron of

M and e: M-»Ran invariant positive function. Then an equivariant p.l. e-isotopy

of M rel R0 is a level-preserving p.l. G-homeomorphism 4>: M X I —» M X I such

that $(x, 0) = (x, 0) for every x G M and $(y, t) = (y, t) for every (y, t) G R0 X

I andp2&: M X I -h> M is an e-homotopy.

Given such a$we denote by 4>( the p.l. G-homeomorphism <!>,: M —» M defined

by <£>,(*) = f"2^(x, t). If 4>, = A we also sometimes say that 4> is an equivariant

ambient p.l. e-isotopy of M rel R0 from id to A. Lemma 2.10 below is a straightfor-

ward equivariant version of the "Alexander trick".

Lemma 2.10. Let A: Dm(r)^> Dm(r) be a p.l. G-homeomorphism such that

h(x) = x for every x G dDm(r), and moreover \\h(x) — x\\ < e for all x G Dm(r),

where e > 0. FAe« there exists an equivariant ambient p.l. e-isotopy of Dm(r)

re\dDm(r)from id to A.

Proof. The proof is the same as in the ordinary case.    □

Lemma 2.11. Let E denote a triangulation of Dm(p), as an equivariant simplicial

complex. Let Gv¡ G E, i = 1, ...,«, be some equivariant vertices of D and assume

that K is an equivariant subcomplex of E such that K n St(t)„ E) = 0, i =

1, . . . , «. Let

w,. G St(t)„ E)G"'

such that \\w¡ — u(.|| < e/n, i = 1, . . . , «, and let h: E —* Dm(p) be the linear G-map

defined on the vertices by h(gv¡) = gw¡, i = 1, . . . , «, and h(v) = v for every vertex

v & U "=i Gv¡, and extended linearly to the simplexes. Then A: Dm(p) —» Dm(p) is a

G-homeomorphism and there exists an equivariant p.l. e-isotopy of Dm(p)

rel(AT u dDm(p)) from id to A.

Proof. It is easily seen that for each /', 1 < i < n, the linear G-map A,: E —»

Dm(p) defined on the vertices by h¡(gv¡) = gw¡ and A(t>) = v for all t> £ Gv¡, and

extended linearly to the simplexes, is a well-defined G-homeomorphism. We have

A,|(F - St(Gt),, E)) = id. Let ß, denote the Gv-equivariant subpolyhedron of

Dm(p) determined by St(t>,, E). Then Q¡ is p.l. G„-homeomorphic to some Dm(T),

where t,: Gv -* 0(m). Since A,|: ß, —» ß, is a p.l. Gv-homeomorphism such that

A,(x) = x for x G 3ß, and ||A,(x) — x|| < e/n for every x G ß,, it follows by

Lemma 2.10 that there exists a Gv -equivariant ambient p.l. (e/«)-isotopy 4>w of ß,

rel 3ß, from id to A,|ß,. This gives us a G-equivariant ambient p.l. (e/«)-isotopy

4>(,) of Gß, rel G(3ß) from id to A,|Gß,. Extending í>(,) by the identity map on
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(Dm(p) - GQi) X 7 we get a G-equivariant ambient p.l. (e/«)-isotopy <ï>(0 of Dm(p)

ve\(Dm(p) - GQ¡) and hence rel(A: u dDm(p)) from id to A,. Since A =

A„ °  • • •   » A, we have that <£> = í>(n) o ...   o $(') is a required isotopy.   □

Definition. Let R and Vx, . . . , Vr be equivariant subpolyhedra of the equi-

variant p.l. manifold M, and R0 an equivariant subpolyhedron of R. We say that

R — R0 is in equivariant general position with respect to each Vt, i — 1, . . . , r, if

dim[((* - R0) n F,)*], < dim[(Ä - R0)H]ß + dim[(V,)H]ß - dim Mf

for every subgroup H of G and each component Af" of M", and /' = 1, . . . , r.

Here [PH]ß denotes the part of PH lying in M", i.e., [PH]ß = PH n Ai". Observe

that, since Af is an equivariant p.l. manifold, we have

dim M[/ = dim(Af/ - M>") = dim[MH]ß.

Lemma 2.12. Let K and Lx, . . . ,Lr be equivariant subpolyhedra of Dm(p), and K0

an equivariant subpolyhedron of K such that K n 3F>m(p) C AT0. Then, given e > 0,

there exists an equivariant ambient p.l. e-isotopy $ of Dm(p) rel(3F>m(p) U K0), such

that ®X(K — A"0) is in equivariant general position with respect to each L¡, i =

\,...,r.

Proof. Let Hx, . . . , Hs be subgroups of G forming a complete set of representa-

tives for the orbit types occurring in K, ordered in such a way that (H¡) > (H)

implies i <j. We denote

( ¿ GKi
Kn = Ko U I  U   GK"'\,       « = 1, . . . , s.

Each Kn is an equivariant subpolyhedron of Dm(p). We shall construct equivariant

ambient p.l. e/j-isotopies $(1), . . . , $(i) and p.l. G-homeomorphisms <p0, . . . , <ps

such that

1. *<"> o <p„_! = <p„,

2. <p„(A"n — A"0)  is in  equivariant general position with respect to each  L„

/' = 1, . . ., s,

3. 4><">|(3F»m(p) u <P„-i(K„_x)) X I = id.

Define $(0) = id and <p_, = <p0, and assume inductively that <ï>(0), . . ., <í>("-1) and

qo0, . . . , <p„_,, where « > 1, have been constructed and satisfy the above condi-

tions. Let E be an equivariant triangulation of Dm(p) having equivariant subcom-

plexes F0 and F, and Lx,...,Lr triangulating <p„_i(A70) and tpn_x(K), and

Lx, . . . , Lr, respectively, and such that F0 is strongly full in F. Denoting Fj = F0 u

(Uf=i GF"') we have that F¿ triangulates <pn_x(Kj),j = 1, . . . , s, and by Lemma

1.4 Fj is full in F. Now let Gvx, . . . , Gvk be the equivariant vertices of Fn — F„_,

= G(FH" - (F>H" u F0)), where the ordinary vertices t), are chosen such that

vx,...,vkG FH- - (F>"- u F0).

Thus Gv = Hn, i = I, . . . , k. Then we inductively construct points

wx,...,wkG Dm(p)"" - {Dm(p)>H- U dDm(p)),
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such that

(i) each w¡ does not lie in any proper hyperplane in Rm(p)"- spanned by points

from the set

vert(F"-) u

k

U N(Hn)wj
/=i

where vert(FW") denotes the set of vertices of EH".

(ii) each w¡ is so close to t>, that, using Lemma 2.11, we have that the linear

G-map
ß:E^Dm(p)

defined on the vertices by /8(gu,) = gw¡, i = 1, . . . , k and ß(gv) = gv for every

v £- Gv¡, 1 < i < k, and extended linearly to the simplexes of E, is a p.l. G-

homeomorphism and there is an equivariant ambient p.l. e/s-isotopy i>(n)

rel(F„_, u dDm(p)) from id to ß. Now define <p„ = ¥xn) ° <p„_„ thus ß = <p„ ° <p~Jx.

Now conditions 1 and 3 are satisfied and it remains to show that <p„(Kn — K0) =

ß(Fn — F0) is in equivariant general position with respect to each L¡, i = 1, . . . , r.

Since <p„\Kn_x = cpn_x\Kn_x and since

<p„(KH- - (K«- U K>"-)) = ß(F"- - {Ff- U F>»-))

it is enough to show that

dim[ ß(FH- - (F>"" u F0)) n L,] < dim(FH- - (F>"» u F0))

+ dim(L,//» - L>"-) - dim Dm(p)"" (*)

for i = 1, . . . , r. Let a be a simplex in FH" — (F>H" (j F0). Let a0, . . . , ae,

ae+y . ■ ■ , adbe the vertices of o, where ee+x, . . . ,ed denote the ones belonging to

F"" - (F>H- u Fo""). Since F„_, is full in F„ we have that F>H" u Eg" is full in

FH" and hence we have — 1 < e < d — 1. Since Ga = //„, / = e + 1, . . . , d, we

have

a, = g;^,    where gy G N(Hn),j = e + 1, . . ., d,

and moreover u,, 7¿ t)¿.. if/ ¥•/. We have /8(a) = <a0, . . . , ae, ge+,w/j+i, . . . , gdwid}.

Let t = <c0, . . . , c,> be a simplex in L,"" — Lf'"-, 1 < / < r. In the case that

/8(a) and t span Rm(p)//" we have

dim( /?(a) n t) < dim /8(a) + dim t - dim Rm(p)w"

< dim(F"- - {F>"- u Fo""))

+ dim(L,"" - Ij>*) - dim Dm(p)H", (1)

and moreover obviously

dim(/8(a - a0) n t) < dim(/8(a) n t) (2)

where a0 = <a0, . . . , ae> denotes the face of a lying in F>H- u F"".

Next assume that /8(a) and t do not span Rm(p)"\ It follows that the points

a0, . . . , ae, ge+iwir+l, ■ ■ -, gd-iwid_, and c0, . . . ,c, span a proper hyperplane of
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Rm(p)"n. Hence it follows by the construction of the points wx, . . . ,wk that

gdw¡d $ «a» •••»«,. &+iWUl, . . . , S,_iWw c0, . . . , c,».

From this it follows that

<a0, . . . , a„ ge+ ,wU[, . . . , g^)0 n <c0, . . . , c,> = 0

i.e.

/8(a) n t = 0.

Since a — a0 = U a,, where each a, is a simplex of FH" — (F>H- u F"") such that

/8(a,) and t do not span Rm(p)"" we now get that

ß(o - a0) n t = 0. (3)

Now (2) and (1), and (3) imply that (*) is valid. This completes the inductive step.

Then observe that

$ = $<*) o   ...   o d>(!)

is an equivariant ambient p.l. isotopy with the desired properties.    □

3. Global results. In this section we establish global versions of the results proved

in §2, prove our equivariant general position result Theorem 3.10 and deduce the

G-imbedding results Theorems 3.11 and 3.12. In the theorems and corollaries

3.1-3.7 below F denotes an equivariant polyhedron, Q is an equivariant subpoly-

hedron of F and M is an equivariant p.l. manifold. In the theorems e denotes an

arbitrary given invariant positive function e: F^>R, and in the corollaries e is a

given invariant positive function e: F X I -» R, which can be assumed to be such

that e(x, t) = e'(x), for all t G I, where e': F -h> R.

Theorem 3.1. Let f: P —» M be a proper G-map such that f\: Q —» M is p.l. Then

there exist a proper p.l. G-map A: P —» M and an equivariant proper e-homotopy

rel\Q\ from f to A.

Corollary 3.2. Let f0, /,: P -» Af be proper p.l. G-maps and F: P X I —> M a

proper G-homotopy from f0 to /, such that F\Q X I is p.l. Then there exists a proper

p.l. G-homotopy F,: F X I -h> M from f0 to /,, such that FX\Q X I = F\Q X I and

Fx is an e-approximation to F.

Theorem 3.3. Let f:P^>Mbean isovariant proper map such that f\: Q -* M is

p.l. Then there exist an isovariant proper p.l. map A: F —» M and an equivariant

proper e-homotopy rel| Q \ from f to A.

Corollary 3.4. Let f0,fy P —» M be isovariant proper p.l. maps and F: P X I —»

M an isovariant proper homotopy from f0 to /, such that F\Q X I is p.l. Then there

exists an isovariant proper p.l. homotopy Fx: P X I —» M from f0 to /„ such that

FX\Q X I = F\Q X I and F, is an e-approximation to F.

Theorem 3.5. Let f: P —> M be a proper p.l. G-map such that f\: Q^> M is

isovariant (equivariantly nondegenerate). Assume that

dim(Fa" - (P>" u ß)) < dim M%a) - dim Mffi - 1,
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for every subgroup H of G and each component P" of P". Then there exist an

isovariant (equivariantly nondegenerate) proper p.l. G-map A: F —» M and an equiv-

ariant proper e-homotopy rel|ß| from f to A. Moreover we can choose A such that

h(P - Q) C int M.

Corollary 3.6. Let /0,/,: F —> M be isovariant proper p.l. maps and F: P X I —»

M a proper G- homotopy from f0 to /, such that F\Q X I is isovariant and p.l. Assume

that

dim(P„" - (P>" u Q)) < dim M%a) - dim M}% - 2

for every subgroup H of G and each component P" of P". Then there exists an

isovariant proper p.l. homotopy Fx: P X I ^> M from f0 to /,, such that FX\Q X I =

F\Q X I and F, is an e-approximation to F.

Theorem 3.7. Let f: P —» M be an isovariant proper p.l. map such that f\: ß —» M

is equivariantly nondegenerate. Assume that

dim(P? - (P>" u ß)) < dim M%a),

for every subgroup H of G and each component P" of PH. Then there exist an

equivariantly nondegenerate proper p.l. G-map A: F -h> M and an isovariant proper

e-homotopy rel|ß| from f to h. Moreover we can choose A such that h(P — Q) C

int M.

Remark. Observe that Theorems 3.1 and 3.5 in particular give us the following

result: Let/: F —» M be a proper G-map and assume that

dim^" - P>") < dim M%a) - dim M%$ - 1

for every subgroup H of G and each component P" of P". Then/is equivariantly

e-homotopic, by a proper homotopy, to an isovariant proper (p.l.) map A: F —» M.

The proofs of the above four theorems are completely similar to each other,

using Propositions 2.2, 2.4, 2.6 and 2.9, respectively. In all four cases the proof

consists of a patching together process of the corresponding local result, in order to

get the global result. (Compare also with corresponding proofs in the ordinary

nonequivariant case, e.g. the proof of Lemma 4.2 in Hudson [6] or the proof of

Theorem 1.6.10, Part I in Rushing [12].) We give the proof for the case of Theorem

3.5, being the one that looks most complicated. The Corollaries 3.2 and 3.4 are easy

consequences of the corresponding theorems.

Proof of Corollary 3.6. Since/,,/, and F\Q X I are p.l. we have by Corollary

3.2 that there exists a proper p.l. G-homotopy F': F X I —» M from/0 to/, such

that F'\Q X I = F\Q X I and F' is an e/2-approximation to F. Now the proper

p.l. G-map F': F X / -> M is such that F'|(F X {0, 1} u ß X I) is isovariant and

hence, using the dimension assumption, it follows by Theorem 3.5 that there exists

an isovariant proper p.l. map F,: F X I-> M such that F,|(F X (0, 1} u ß X /)

= F'|(F X (0, 1} u ß X I) and F, is an e/2-approximation to F'. Then F, is as

desired.    □

Furthermore we have the following strengthened versions of Theorems 3.5 and

3.7.



140 SÖREN ILLMAN

Theorem 3.5' (3.7'). Everything as in Theorem 3.5 (3.7) but with the added

conclusion that the homotopy from f to h moreover is p.l.

Proof. This follows from Theorem 3.5 and Corollary 3.2 (Theorem 3.7 and

Corollary 3.4).    □

Proof of Theorem 3.5. We can assume that e: M -» R is such that if F:

F X I -^ M is any e-homotopy from / to some map A then F and hence also A are

proper maps. Now choose equivariant triangulations of ß c P and M such that /

is simplicial. Denote these triangulations again by Q, P and M. Let Gvx, Gv2, . . .

be the equivariant vertices of M. Let us denote /?■ = (m + \)/(m + 2) ■ St(u,, M),

where m = dim M,j= I.(Here (m + l)/(m + 2) • St(u, M) denotes the set

of points x G s < St(t), M) such that the «-coordinate xv of x in j satisfies

l/(«i + 2) < x0 < 1.) We have M = \J JZX Int GBy Observe that if x G Bj then

Gx c Gv. Let P° and A/0 be equivariant subdivisions of F and M, respectively,

such that for any equivariant simplex A of P° we have f(A) c Int GBp for some/,

and each GBj,j — 1, . . ., is an equivariant subcomplex of M° and/: P° —» M° is

simplicial. Let AX,A2, ... be the equivariant simplexes of F° — ß° ordered in

such a way that an equivariant simplex follows all its faces (ß° denotes the

equivariant subdivision of ß induced by the subdivision F° of F). We denote

P°n = Q° u ( U aX      « = l,....

Each F„° is an equivariant subcomplex of F° and U„°=i Pn = ^> and ^o = ß° by

definition. We shall inductively define equivariant subdivisions P' of F° and A/' of

M° and simplicial G-maps /: P'—> Af', i= 1,..., such that the following

conditions are satisfied. (By P'n we denote the equivariant subdivision of F„°

induced from the subdivision P' of F°.)

l./|: F/ —> A/' is isovariant (equivariantly nondegenerate).

2./ is equivariantly (e/2')-homotopic rel|F,_,|, by a proper homotopy F(/), to

/,-!,/>   1.
3./(|F,|-|ß|)cintAf.

4. If y4 is an equivariant simplex of F° then/(/l) c Int GBj, for some/.

Let/0 = f: P° —> M° and assume inductively that/0, ...,/_, have been defined

and satisfy the above conditions. We have/_,(y4,-) c Int GÄ,(l), for some/(/'). Let

A¡ = Gs¡, where s¡ is an ordinary simplex in P°, and we have chosen s¡ such that

S-i(s¡) C Int Bm = lnt((m + \)/(m + 2) ■ St(vj(i), A/)). Let us for simplicity de-

note A¡ = A, s¡ = s, Bj{i) = B and u,(l) = v. Let K0 be the maximal isotropy

subgroup of 5 and let us denote Gv = H. We have A"0 c H.

Let us denote 5 = 5, -/,_,(JV(|G»|, F'"1)) and R = R¡ =/:,1(S'1) and let R'

and 5' be equivariant subdivisions of R and S, respectively, such that

S-i(N(\Gs\, R')) c Int GB and/_,: R' -> 5" is simplicial. Let A?'-1 be the stan-

dard extension (see [8, p. 202]) of the equivariant subdivision S" of S to an

equivariant subdivision of Af'A Let P'~x also be a standard extension of the

equivariant subdivision Ä' of Ä to an equivariant subdivision of P'~x, but this



APPROXIMATION OF G-MAPS 141

time, instead of starring at the barycenters, starring the simplexes a of N(R, P'~x)

- R at an interior point of (/_i|a)"'A(/_,(a)) and G-translates go at correspond-

ing points. Then /_,: P'~x —> AA1 is simplicial, P'~x equals P'~l outside

N(R, P'_1) and A/'"1 equals A/'-1 outside N(S, AF"1), and

f_x(N(\Gs\, P'-1)) c Int GB.

We then have f_x(N(\Hs\, F'"1)) c Int B and hence gN(\Hs\, P'~x) n

A/(|//j|, F'-1) = 0 if g g H. It follows that

JV(|Gj|, F'"1) = GiV(|//*|, F'"1) s G x„ JV(|/fe|, F'"1). (1)

Let ß: B —> Dm(r), where r: H —* O(m) is an orthogonal representation of H, be a

p.l. //-homeomorphism. Now consider the //-map ß ° (/_,!): N(\Hs\, P'~x) -»

Z)m(T). Take //-equivariant subdivisions N(\Hs\, P'~x)* and 5* (where B is consid-

ered as a subcomplex of A?'-1), and Dm(r)* such that

/8 o (/_,!): N(\Hs\, F'"1)* -* /^(t)* (2)

is a simplicial //-map and ß: B* —» Z)m(i-)* is a simplicial //-homeomorphism. Let

us denote

X = N(\Hs\, F'"1)*

and let y,, y2 and Y3 be the //-equivariant subcomplexes of X given by | Yx\ = |//s|

and |y2| = |A| n |F,_,| and |y3| = Bd|P||A"| Let AT be an arbitrary subgroup of H

and let (YxK)a be some component of Yx, and denote by P* the corresponding

component of PK. Then we have (YxK)a - (Y>K u Y2) c P* - (P>K U Q) and

hence

dim(( yf )„ - ( Y>" U y2)) < dim(F,f - (F>^ ij ß))- (3)

Let x G (YxK)a, then/_,(x) G BK and BK is connected. Since/., is G-homotopic

to / it follows that /_,(x) and f(x) lie in the same component of MK, i.e.,

f¡-i(x) G Mffa). Hence we have BK c Mffa), and therefore

dim A/£a) = dim 5^.

Since B>K c Ai^f we have dim B>K < AfA>f and hence

dim A/£a) - dim M%£ < dim BK - dim 5>/i:. (4)

By the dimension assumption in Theorem 3.5 and (3) and (4) we now get

dim((YxK)a - (y>* u y2)) < dim Dm(r)K - dim Dm(r)>K - 1.

Since this holds for every component ( YxK)a of Yx  it follows that in fact

dim(yf - (Y>K u y2)) < dim Dm(j)K - dim Dm(r)>K - 1

for every subgroup K of //.

Now since | y2| c |F,_,| we have that the simplicial //-map

ß » U--il): A"- Z>m(t)*

is such that /8 ° (/_,|)|y2 is isovariant (equivariantly nondegenerate). Thus by

Proposition 2.6 there exist equivariant subdivisions X* and Dm(p)** of X and
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Dm(p)*, respectively, and a simplicial H-map

hx: X* ^ Dm(j)**

such that A,|(y, u Y2)* is isovariant (equivariantly nondegenerate) and A, is

//-equivariantly e,-homotopic rel| Y2 u y3| to ß ° (/_,|), for any given e, > 0, and

moreover A,(y, — Y2) c Dm(T). Now consider the simplicial //-map

A = ß~x o A,: A*^> B**

and its G-extension

A = id XHh:G XH X* ^ G X H B** ^GB**.

By (1) we have

A: N(\Gs\, P''"')**-* GB**.

Observe that A(x) = /,_,(*) for every x G Bd^^dG^I, P'"l)|. We define

/■: \P\^\M\

by

fi\\N(\Gs\,Pi-x)\=h,

f\ \P\ - \nt^\N(\Gs\, P'~x)\ = /_,| \P\ - lnt^\N(\Gs\, P'~l)\.

This gives us a well-defined G-map/: \P\ -» \M\. Let L = LJ(i) = /l',(G.ß,{j)), then

L is an equivariant subcomplex of P'~x. Now extend the equivariant subdivision

N(\Gs\, >"'-')** of N(\Gs\, F'"1) to an equivariant subdivision L** of L such that

S¡\: L** —» GB** is simplicial. Let M' be the standard extension of the equivariant

subdivision GB** of GB to an equivariant subdivision of Af A Let F' be a

standard extension of the equivariant subdivision L** to an equivariant subdivision

of P'~x chosen such that/: P' —> M' is simplicial. Then P'~x equals P'~x outside

N(L, P'~x) and A/'' equals A?'-1 outside JV(G5, A?'"1) and/ equals/., outside

N(L, P'~x). Choosing e, > 0 small enough we see that /: P' -» Af' satisfies

conditions 1-4.

To conclude the proof we show that we can take AF = lim,^,,^ Ai', P' =

Ii"1/-»» P' ana h = iim/^oo/ and that then A: P' -^ M' is a proper, isovariant

(equivariantly nondegenerate) simplicial map such that h(\P\ — \Q\) c int M and A

is equivariantly e-homotopic rel|ß| to/. We have that F' equals P'~x and/ equals

/._, outside Ñ(R¡, P'~l) u Ñ(LA¡), P'~l) and Af equals Af "' outside Ñ(S¡, Af "')

U N(GBm, M'~x). Observe that for fixed j0 we have/(/) =/0 for only finitely

many i. For if S¡-\(A¡) C GBJo then f(A¡) c G ■ St(vJo, M), assuming e(x) <

l/(w -I- 2) for every x G \P\, and, since/is proper,/_1(G- St(vJo, M)) is compact

and hence meets only finitely many A¡. It is now immediately seen that any

compact set C in F or in M intersects the sets N(R¡, P'~x) u N(LÂi), P'~x) or the

sets N(Sy Af "') u N(GBm, Af-1), respectively, for only finitely many /". It fol-

lows that F' = lim,^.^ F' and Af = lim,^^ Af exist and it is then immediately

seen that A = lim,^^/: P' —> Af has the desired properties.

Since each F(,), i > 1, is an equivariant e/2'-homotopy rel F,_, from/_, to/ it

follows (by a standard argument) that the map F: P X I -» M defined by
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F(x, r) = F«>(x,  J.J^J^)    for 1 - \/i < t < 1 - 1/ (i + 1), i > 1,

F(x, 1) = A(x),

is a well-defined continuous G-homotopy from / of A. Moreover F is rel|ß| and

since F is an e-homotopy it follows that F is proper,    fj

Our next result shows that any equivariant subpolyhedron Af can be moved, by

an equivariant ambient isotopy, into equivariant general position with respect to

any finite number of equivariant subpolyhedra of M. This result is the global

version of Lemma 2.12.

Proposition 3.8. Let R and Vx, . . . ,Vr be equivariant subpolyhedra oS the

equivariant p.l. manifold M, and R0 an equivariant subpolyhedron of R such that

R n dM c R0. Let e: Af ^>R + be an invariant positive function. Then there exists

an equivariant ambient p.l. e-isotopy 'if of M rel(3A/ u Ä0) such that ^x(R — R0) is

in equivariant general position with respect to each Vk, k = 1.r.

Proof. Triangulate M and use M again to denote this equivariant combinatorial

manifold. Let Gvx, Gv2, ... be the equivariant vertices of Af and denote B¡ =

(m + \)/(m + 2) ■ St(vj, Af). Then each B} is a Gv -equivariant subpolyhedron of

Af and

GBj = G X c  Bj,      /-l,....

Each GBj is a G-equivariant subpolyhedron of Af and Af = U jl, Int GBy Con-

sider R triangulated such that R0 is an equivariant subcomplex of R and such that

for any equivariant simplex A of R we have A c Int GBj, for some /. Let

Ay A2, . . . be the equivarient simplexes of R — R0 ordered in such a way that an

equivariant simplex follows all its faces. Let us denote R¡, — R0 U U j_. Ay We

shall define p.l. homeomorphisms A,, / = 0, 1, . . . , of Af and equivariant ambient

p.l. isotopies ty(,), i'=l,2,..., of Af rel(3Af u R0) such that

1.*(/>°A,._, = A,..
2. *(,) is an (e/2')-isotopy.

3. If A is an equivariant simplex of R then h¡(A) c Int GBy, for some/.

4. h¡(R¡ — R0) is in equivariant general position with respect to each Vk, k =

\,...,r.

In order to start an induction define A _, = A0 = id and ¥(0) = id, and then

assume that A0, . . . , A,_, and ^<0), ... ,'¥•'' l\ where i > 1, have been defined and

satisfy the above conditions. Thus we have h¡_x(A¡) c Int GÄ,(l), for some/(/'). Let

us for simplicity denote A¡ = A and F,(l) = B. Let A = Gs, where s is an ordinary

simplex in R chosen such that h¡_x(s) c Int B.

Denote Gv = H, where v = u,(l), and let ß: B —> Dm(p) be a p.l. //-homeomor-

phism, where p: H -» 0(m) is an orthogonal representation of H. Let K0 =

/8(A,._,(/?,_,) n B) and K = y3(A,_,(/?,) n 5) and Lk = ß(Vk n B), k = I, . . . , r.

Then Aq, A" and Lx, . . . ,Lr are //-equivariant subpolyhedra of Dm(p), and AT n

dDm(p) c A0. By Lemma 2.12 there exists, for any given e, > 0, an equivariant

ambient p.l. e,-isotopy $ of Dm(p) re\(dDm(p) u A"0) such that 4>,(A" - K0) is in
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equivariant general position with respect to each /,,, . . . , Lr. Using the fact that

GB X / « G x H (B X I) we now define ¥*> by

*(,)|G5 X / = id XH [(/A1 X id) o 4> o (ß x id)],

*(,)|(Af - Int GB)X I = id.

Then define A, = ^,(/) ° A,_,. Observe that since the G-homeomorphism A, is G-ho-

motopic to id we have

[(A,.(/?,.-/g)JY = A,([(F,.-/gFg

for any subgroup F of G and any component My of MF. It follows that in order to

establish condition 4 for A, we must show that

dim(A,.([(/?, - R0)F]y) n F,) < dim[(/?,. - R0)F]y + dim[(Vk)F]y - dim MyF,

for every subgroup F of G and each component Af/- of MF, and A = 1, . . . , r. The

fact that A,_,(Ä,_, — R0) is in equivariant general position with respect to each Vk,

k = 1, . . . , r, gives us

dim(A,_1([(Ä,._,-/?0)J?)n Vk)

< dim[(/?,_, - /?„),.]y + dim[(F,)f]Y - dim A//,

for every subgroup F of G and each component My of AfF, and k = 1, . . . , r.

Since /?, - Ä0 = (/?,. - /?,_,) u (/?,_, - /?o) and A,|/?,_, = A,_,|/?,_„ and Ä, -

R¡-i — At: = Gs, it now follows that it is enough to prove that

dim(A,([iF]y) n Vk) < dim[sF]y + âim[(Vk)F]y - dim MyF

for every subgroup F of G and any component Af^ of MF, and k = 1, . . . , r. Let

//' denote the principal isotropy subgroup of s, then //' c H. Now if F ¥* H' we

have sF = 0 and there is nothing to prove. Thus we need only consider the case

F = //'. Then sH, = s. If [s]y = 0 there is again nothing to prove. Thus we can

assume that My is the component of Af " that contains s. Since s c B it follows

that s belongs to the same component of Af " as v = vjV), i.e., v G M" . Hence

dim My"' = dim BH' = dim Dm(p)"'.

We have /?A,_,(//i) = K - K0 c £>m(p) and A,(//i) = ß~x<i>xßhi_x(Hs). Thus we

get

dim(A,(i) n Vk) = dim(A,.(//i V n Vk) = dim(4>,(A: - ATq)/,, n Lk)

< dim(AT - K0)H, + dim(Lk)H, - dim Dm(p)"'

< dim 5 + dim[(KA.)//,] - dim Afyw',

for k = 1, . . ., r. This completes the proof of the fact that A, satisfies condition 4.

Choosing e, > 0 small enough conditions 2 and 3 will be satisfied. Finally

observe that any compact subset of Af X / intersects only finitely many sets

GBj X I. Also each ^w equals the identity outside Int GBm X I and for fixed /„

there are only finitely many i such that j(i) = jQ. Thus given a finite collection

GBj X I, . . . , GBj X I there exists an i0 such that for any /' > i0 we have that ^(,)
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equals the identity outside U k =, Int GBJk X I. It follows that

* = lim  *(,) o   ...   o *(">
i—»00

is a well-defined equivariant ambient p.l. isotopy of Af which satisfies the conclu-

sions of the proposition,    fj

Definition. Let K be an equivariant simplicial complex and L an equivariant

subcomplex of K and /: K —> Af an equivariantly nondegenerate proper p.l. G-map,

where Af is an equivariant p.l. manifold. Let Vx, . . ., Vr be equivariant subpoly-

hedra of M. We say that f\ : K — L —» M is in equivariant strong general position

with respect to each Vpj= 1, . . . , r, if the following condition is satisfied. For any

subgroup H of G and for any component M" of M" the following holds: Let

sx, . . . , sn (any « > 1), be any distinct simplexes of K — L with principal isotropy

subgroup equal to H such that/($,-) c Af" for i — 1, . . . , «. Then

dim fi /(*,)) n Vj 2   dim s¡ + dim[( V)   1    - n ■ dim Af/
;=1

for/ = 1, . . . , r. Here [ VH]p = VH n A//'.

Observe that if í and i' are simplexes with principal isotropy subgroups H and

//', respectively, where H ¥^ //', then /(i) n /(i') = 0, since / in particular is

isovariant. Also, in case 5 and s' have principal isotropy subgroup H but/(i) c M"

and f(s') c M", where Af/ and M", are different components of Af ", we clearly

have f(s) n /(■?') = 0. Hence the situation considered in the definition is the only

relevant one.

If /| : A* — L —» Af is in equivariant strong general position with respect to

V = Af we simply say that/|: K — L —» Af is in equivariant strong general position,

and this means that, under the same conditions as above, we have

dim n As,) < 2 dim s\ - (n - l)dim Mß".
í=i

Proposition 3.9. Let P* be an equivariant simplicial complex and Q* an equi-

variant subcomplex of P*, and let Vx, . . . , Vr C Af and e: P—»R+ be as before.

Assume that f: P* —> Af is an equivariantly nondegenerate proper p.l. G-map such

that f(P — Q) c int Af. FAe« there exists an isovariant proper p.l. e-homotopy rel Q

from f to an equivariantly nondegenerate proper p.l. G-map h: P* —* M, where

h(P — ß) C int Af, and such that h\: P* — Q* —» M is in equivariant strong general

position with respect to Vj,j= 1, . . . , r.

Proof. We can assume that e is such that any e-homotopy F from / to some

other map A is proper. Let Ax, A2, ... be the equivariant simplexes of P* — Q* in

such an order that an equivariant simplex follows all its faces. Denote F* = Q* u

U jL, A-. We shall inductively define equivariantly nondegenerate proper p.l.

G-maps /,: P* -^ Af, « > 0, and isovariant homotopies F(n): F X /—* M, n > 1,

such that

(1) F(n) is an e/2" +'-homotopy rel P„_, from/„_, to/„.
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(2) f„(P - ß) C int M.

(3) f„\: P* — Q* —> M is in equivariant strong general position with respect to

each Vyj = 1, . . . , r.

Put/0 = /and assume that/0, ...,/„_, have been defined and satisfy the above

conditions. Let Wx, ... , Wv be all the following equivariant subpolyhedra of Af

(i) V„ i = 1, . . . , r.

(ii) n/_i/,_,(5,), any d equivariant simplexes Bx, . . . , Bd of P„_, — Q (d not

fixed).

Let us denote L = link(,4n; P*), and R0 = Sn-i(An ' L)> and R = Ro U Sn-i(A„).

Then we have R n dM c R0- Let e, = (l/2"+1)min{e(x)|x G An ■ L}. By Proposi-

tion 3.8 there exists an equivariant ambient p.l. e,-isotopy ^ of Af rel(3Af u R0)

such that tyx(R — R0) is in equivariant general position with respect to each

Wx, . . . , Wc. Now define F(n): F X / -h> Af by

F"(x, t) = *(Sn-i(x), t) = *,/„_,(x)    for x G An-L and t G I,

F(n)(x, /) = /,_ ,(x)    for x G P - A„- L and t G I,

and let/„(x) = F<">(x, 1). Thus/„(x) = *,/„_,(*) if x G A„ ■ L and/„(x) = /n_,(x)

if x E F — /!„ • L. Hence it follows that fH is equivariantly nondegenerate. Since

F„_i D (An ■ L) c Àn- L it follows that F(n) is an isovariant e / 2"+ '-homotopy

rel P„_, (in fact Fw is also p.l. and proper). Also/„(P — Q) c int Af.

Let us now show that fn satisfies condition 3. First, using the fact that/„_,

imbeds the equivariant simplexes of P*, it is easily seen that fn_x(Ar) = R — R0.

Thus we have fn(An) = ^fx(R — R0). Since ^,(Ä — R0) is in equivariant general

position with respect to each Wj we get

dim[(/„(i„) n Wj)H]ß < dim[(fn(À„))H] + dim[(Wj)H]ß - dim Mß",

for any subgroup H of G and any component M" of Af ", and/ = 1, . . . , v. Now

let sx, . . ., sk be k (any k > 1) distinct simplexes of P* — Q, such that /„(*,) C

M", i = 1, . . . , k. Since/„|P*_, = Sn-i\R*-i we need only consider the case when

at least one of the simplexes belongs to P* — F*_,. Since/, imbeds equivariant

simplexes we see that we can assume that exactly one, say sk, of the simplexes

belongs to P* - P*_x. Then/„(4) c [(SM„))H]ß, and denoting

k-l

w= n/n-,(G5,.)n Vy
/=i

we get

dim! | f) /.(i/)) n v\ = dim(/„(4) n W) < dim 5, + dim[ rFw] ß - dim Af/.

Since/,_,|: F*_, — ß —» Af is in equivariant strong general position with respect to

each Vy we have

k-\

dim[ WH] ß <  2   dim 5,. + dim[( F,)w] ̂  - (k - 1) • dim A//,
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and hence

dim      p SM) n Vj\\ < 2   dim 5,. + dim[(Vj)H]ß- k dim Af».

This shows that/, satisfies condition 3, and completes the inductive step.

Since/, equals/„_, outside (An ■ L)° it follows that A = lim,,^.^ /„: P* —> Af is a

well-defined equivariantly nondegenerate proper p.l. G-map such that A|: P* — Q

-h> Af is in equivariant strong general position with respect to Vj, j = I, . . . , r.

Moreover A(F - Q) c int Af.

The map F0: F X / —> Af defined by

F0(x, 0 = F<">(x,     '"j1"^"^)    for 1 - 1/« < t < 1 - 1/ (« + 1), « > 1,

F0(x, 1) = A(x)

is a well-defined continuous isovariant homotopy from / to A. Since F0 is an

e/2-homotopy from/to A it follows that F0 is proper. Moreover F0|ß X / = (f\Q)

X id and hence F0|ß X / is p.l. Thus by Corollary 3.4 there exists an isovariant

proper p.l. e-homotopy rel ß from/ to A, such that F|ß X / = F0|ß X / and F is

an e/2-approximation to F0. Then F is an isovariant proper p.l. e-homotopy rel Q

from/ to A. (In fact one can also easily show that already F0 is p.l.)   fj

Theorem 3.10. Let P be an equivariant polyhedron, Q an equivariant subpoly-

hedron of P and M an equivariant p.l. manifold and Vx, . . . , Vr equivariant subpoly-

hedra of M, and let e : F —»• R+ be any invariant positive function. Let f: P —* M be a

proper G-map such that f\: ß —» Af is p.l. and equivariantly nondegenerate. Either

assume that

dim(F/ - (P>" u Q)) < dim M%a) - dim M}& - 1 (1)

for every subgroup H of G and any component P" of P", or assume that

fis isovariant   and   dim(Pa" - (P>" u ß)) < dim Af£a) (2)

for every subgroup H of G and any component P" of P". Then there exist an

equivariant triangulation P* of P, inducing Q*, and an equivariant proper e-homotopy

rel| ß | from f to an equivariantly nondegenerate proper p.l. G-map A: F* —> Af such

that h\: P* — Q* -^ M is in equivariant strong general position with respect to each

V¡, i = 1, . . . , r. Moreover h(P - ß) C int Af.

Proof. This follows under assumption (1) from Theorems 3.1, 3.5 and Proposi-

tion 3.9, and under assumption (2) from Theorems 3.3, 3.7 and Proposition 3.9.    □

If in Theorem 3.10 we, to begin with, are given an equivariant simplicial complex

F', then the equivariant simplicial complex F* of the conclusion can be chosen to

be an equivariant subdivision of F'. This is seen immediately from the proof of

Theorem 3.10.

It should be observed that the condition to be in "equivariant strong general

position" depends on the specific equivariant triangulation F* of P. If A|: P* —» Q*

-> M is in equivariant strong general position (with respect to V¡,i = 1, . . . , r) and
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P** is an equivariant subdivision of P* it does not follow that A|: P** — Q** —» M

is in equivariant strong general position (with respect to F„ / = 1, . . . , r). But there

are other forms of equivariant general position in terms of dimension estimates for

the singular set

S¿(h) = (x G P\ |A"'A(x)|> k)

that are of completely polyhedral nature and do not involve any particular

equivariant triangulation. We leave it to the reader to formulate such results and

deduce them as corollaries of Theorem 3.10.

As an important application of our equivariant general position result Theorem

3.10, we get the following two equivariant imbedding theorems. They follow from

3.10 be letting Vx = M and V2 = f(Q) = h(Q).

Theorem 3.11. Let f: P^M be a proper G-map such that f\Q is a p.l.

G-imbedding. Let (//,), . . . , (//„) be the orbit types occurring in P — Q, and assume

that

(i) dim />*' < dim Mjfc - dim M>?> - 1,
(ii) 2 dim P?> < dim Af^ - 1,

for i = 1, . . . , t) and any component P"' of P"'. Then f is equivariantly e-homotopic

rel|ß| to a proper p.l. G-imbedding A: F—* Af.

Proof. Since (i) holds it follows from Theorem 3.10 that there exist an equi-

variant triangulation P* of P, inducing Q*, and an equivariant proper e-homotopy

rel|ß| from/to an equivariantly nondegenerate proper p.l. G-map A: P* —» Af such

that A|: P* — Q* -^ M is in equivariant strong general position with respect to Af

and/(ß). We claim that A is a G-imbedding.

Since A is proper it is enough to show that A is injective. Let x, y G P such that

A(x) = h(y). We wish to prove that x = y. If x,y G Q this follows from the fact

that A|ß = /|ß is an imbedding. Next assume x,y G P — ß. Since A is isovariant

it follows that x and y have the same isotropy subgroup, and furthermore we can

assume that Gx = Gy = H = //„ for some i, 1 < i < t). Let Af/ denote the

component of Af " for which A(x) = h(y) G M". Since / is G-homotopic to A it

follows that f(x) G M" and f(y) G M". Let i, and s2 be the open simplexes of

P* — Q* such that x E i, and y G s2, and let P" denote the component of P"

containing i,,/ =1,2. Then M"a¡) = M" = M"a¿, and hence

2 dim P% - dim Af/ < - 1,       / = 1, 2.

Now if i, and s2 are distinct open simplexes it follows, since A|F* — Q* is in

equivariant strong general position, that

dim(A(i,) n A(i2)) < dim s, + dim s2 — dim Af/ < — 1,

and hence A(i,) n ^(^2) = 0> which is in contradiction with the fact that A(x) =

h(y) G A(i,) n h(s2). Thus i, = s2 and since A|s, is an imbedding it follows that

x = y.

Finally assume that x E F — ß and y G ß. Since x belongs to F — ß we may

again assume that  Gy = Gx = H = //„ for some i,   I < i < o.  Let P"o  be a
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component of P" such that M"ag) = A//, and such that dim P" < dim P" for

every component P" of P" with M"a,} = A//. Then 2 dim F" - dim M" < - 1.

Let i be the open simplex of P* - Q* such that x G s, and let P" denote the

component of PH containing s. Then we have dim P" < dim P" and

dim^Aiß))^ = dim[A(ß)„ n A//] < dim P».

Since A|F* — Q* is in equivariant strong general position with respect to A(ß) it

now follows that

dim(A(i) n A(ß)) < dims + dimf^ß))^ - dim Af/ < -1,

and hence that h(s) n h(Q) = 0, a contradiction with A(x) = h(y) G h(s) n

A(ß). Thus A(x) = h(y) is impossible if x E F — ß and .y E ß. This completes the

proof of the fact that A is injective and hence a G-imbedding.    □

Theorem 3.12. Let f: P —» Af be an isovariant proper map such that f\Q is a p.l.

G-imbedding. Let (//,), . . . , (Hv) be the orbit types occurring in P — Q, and assume

that

2 dim F/' < dim Mfa - 1

for i = 1, . . ., t> and any component P"' of P"'. Then f is equivariantly e-homotopic

rel|ß| to a proper p.l. G-imbedding A: F —> M.

Proof. Since / is isovariant and we in particular have dim P"' < dim M"^, for

/ = 1, . . . , t) and any component P"' of P"', it follows that Theorem 3.10 applies.

The rest of the proof is the same as that for Theorem 3.11.    □

4. Equivariant imbeddings into euclidean representation space. In this section we

consider the question of existence of G-imbeddings of equivariant simplicial

complexes into euclidean representation space. Recall that all our simplicial com-

plexes are assumed to be countable, locally finite and finite-dimensional. As soon

as we know how to construct proper G-maps from equivariant simplicial complexes

into euclidean representation spaces our general G-imbedding Theorem 3.11 can be

applied and gives us the result stated in Theorem 4.2. The required result on the

existence of proper G-maps is given by the following lemma.

Lemma 4.1. Let X be an equivariant simplicial complex and Y an equivariant

subcomplex of X. Let R"(p) be a representation space for G, f: Y —» R"(p) a proper

G-map and assume that

dim (A - Y)" + 1 < dim [R"(p)]"

for every subgroup H of G. Then there exists a proper G-map f: X —» R"(p) such that

f\Y=f

Proof. We may assume that Y is full in A. Let Gx,, Gx2, ... be the equivariant

vertices of A - Y. Denote Gx =//,,/= 1, 2.Then, in any case, dim[R"(p)]"j

> 1. Choose vj G [R'Xp)]"' such that ||u,|| =/, / = 1, 2.Then ||gu,|| =/ for

every g E G and / = 1,2,.... Denote Xm - Y u Xm, where Xm denotes the

w-skeleton of A, and let k = dim A. If Gsx is an equivariant simplex of Y we
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denote

dx(Gsx) = dist(/( Gs,), 0).

Let Gs2 be an equivariant simplex of Y — X and let Gxj, . . . , Gx, be the

equivariant vertices of Gs2 that belong to A — Y (there is at least one since Y is full

in A). We then define

d2(Gs2) = min{/„ . . . ,/.}.

If now Gs is an arbitrary equivariant simplex of A we define

d(Gs) =

dx(Gs)    if Gs c y

min(dx(Gs n Y), d2(Gs)) if Gs is a simplex of A - Y and Gs n Y =£ 0,

d2(Gs)   if Gs n y = 0.

We shall define G-maps/m: Am -» R"(p), 0 < m < k, such that

WSm\Xm-l   = Sm-V

(ü)Sm(Gs) C R"(p) - D"(d(Gs)), for every equivariant simplex Gs of A"m.

Here A_, = Y and /_, = /, and D"(a) = {x G R"(p)| ||x|| < a}. Define /0:

Ar0 —> R"(p) by /0|A = / and f0(gXj) = g»,., / — 1, 2, ... . Assume inductively that

fm_x has been defined and satisfies (i) and (ii). Let Gs be an equivariant w-simplex

of A - y. Then /m_,| Gs is defined and since d(Gs) < d(Gs') for every equivariant

face Gi' of Gs we have

/m_,(Gs)cR"(p)-/r(o-(G*))-

Let s = (y0, . . . ,ym} and let // denote the principal isotropy subgroup of s. Then

/m_,(s) c [R"(p)]" - D"(d(Gs)), and

q = dim[R"(p)]w > dim(A~ - Y)H + 1 > m + 1.

Since [R"(p)]// - Dn(d(Gs)) has the homotopy type of S?_l, or R9 in case d(Gs) =

0, and m < q — 1 it follows that/m_,|i can be extended to a map F^,: j —> [R^p)]"

- D"(d(Gs)). Then

fm:Gs^R"(p)- D"(d(Gs))

defined by fm(gy) = gf„(y), where y G s, g G G, is a well-defined G-map which

extends/OT_,|Gi. Applying the above to every equivariant w-simplex of A — y we

get a G-map fm: A"m—»R"(p) which satisfies conditions (i) and (ii). Let/ = /t:

A^R"(p).

We claim that / is proper. Let C c R"(p) be compact. Let a > 0 be such that

C c D"(a). Since f\Y =/ is proper there are only finitely many equivariant

simplexes, say Gsx, . . . , Gs„ of Y such that

/(Gs,) n D"(a) * 0.

Letjo > a,j0 G N. It now follows that only the equivariant simplexes Gs of A that

either have as a face one of the simplexes Gsx, . . . , Gs, or have as a vertex one of

the equivariant simplexes Gx,, . . ., GxJq are such that possibly/(Gs) n D"(a) ¥= 0.

Thusf~x(D"(a)) is compact and hence also/_1(C).    □
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Theorem 4.2. Let X be a simplicial G-complex and A0 a G-subcomplex of X, and

let (//,), . . . , (Hc) be the orbit types occurring in X — X0. Let Rr(p) be a representa-

tion space for G such that there exists a proper p.I. G-imbedding A0: A0—* Rr(p) and

assume that

(i) dim X"' < dim[Rr(p)}"' - dim[Rr(p)]>//' - 1,

(ii) 2 dim X"' < dim[Rr(p)]"' - 1

for i = 1, . . . , D. FAen A0 can be extended to a proper p. 1. G-imbedding A: A—»

R'(p).

Proof. It follows from Lemma 4.1 that there exists a proper G-map /: A -^ Rr(p)

such that/|A0 = /0. The result now follows from Theorem 3.11.    □

Let G = Zm = {e, T, . . . , Tm~x}, where m > 2. We shall use the following

notation. If ps\m, where p is an odd prime and s > 1 or p = 2 and s > 2, we

denote by R2(\/ps) the euclidean plane R2 = C together with Zm-action given by

Tz = ex\r>(2m/ps)z, where exp(^) = ey. For m even we denote by R(±) the real

line with Zm -action given by Tx = -x. Furthermore, for any integer k > 0, we

denote

R2(\/ps) © . . . ©R2(l//>2)     if p"\m, and either/7 is odd and

'V'    **   ——^ s > 1 orp = 2 and s > 2.
Ek(\/Ps) = { [k/2] + x

R(±) © . . . ©R(±), if/> = 2 and s = l,and2|w.

* + i

The dimensions of these spaces are given by

k + 2   if /c is even andp is odd or/» = 2 and s > 2,

dimEk(l/p)      ^k+l    if yt is odd or if/» =2 and s = 1.

Our Theorem 4.2 now gives us

Corollary 4.3. Let m = p? ■ ■ ■ p^, where px, . . . ,pn are distinct primes, and

k > 0 be integers. Define R^k,m\p) to be the euclidean representation space

RK*-»)(p) = R2* + 1 © Ek(\/px) ® ... ®Ek(l/px")

® ... ®Ek(\/Pn) © . . . ©F,(l//C)-

FAe« any k-dimensional simplicial Zm-complex X admits a proper p.I. Zm-imbedding

into R^k,m\p). The dimension r(k, m) is given by

r(k, m) =

2A + 1 + (a, + ■ • ■ +an)(k + 2)     if k is even and m is odd,

2k + (a, + • • • +an)(k + 2) if k is even and m is even,

2k + 1 + (a, + • • • +an)(k + 1)     if k is odd.

Proof. It is straightforward to see that Rr(k'm)(p) satisfies the two conditions in

Theorem 4.2 for every subgroup H of Zm.   □

Let m = p, a prime. In Copeland-de Groot [3] it is proved that every ^-dimen-

sional, separable, metrizable Zp-space admits a Zp-imbedding into R'**-''). The
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dimension r(k, p) is given by

3k + 3    if k is even and/? ^ 2,

r^'P'      { 3k + 2    if /c is odd or/» = 2.

Thus in the special case of actions of cyclic groups of prime order our result only

contributes the addition to the result by Copeland and de Groot that in the case of

simplicial Z^-complexes the Z^-imbedding can moreover be chosen to be p.l. (and

proper). Furthermore Copeland and de Groot show (see §4 in [3]) that their result

is best possible and since their examples are (finite) simplicial Zp-complexes it also

follows that our result Corollary 4.3 is best possible in the case when m = /», a

prime. We shall show in Proposition 4.4 that our result Corollary 4.3 in fact is best

possible for every finite cyclic group Zm.

In Kister-Mann [9] G-imbeddings into euclidean representation space of finite

dimensional separable metrizable G-spaces, where G is a compact abelian Lie

group, are considered. For G = Zm, where m — /»,"' . . . p°n, their result proves that

any A-dimensional separable metrizable Zm-space can be Zm-imbedded into a

euclidean representation space of dimension s(k, m), where

2k + 1 + ((a, + l)(a2 + 1) . . .(a„ + 1) - 1)(A + 2)

if k is even and m ¥=2,

s(k, m) = < 3A + 2        if A is even and m = 2,

]2k + 1 + ((a, + l)(a2 + 1) . . . (a„ + 1) - 1)(A + 1)

if A is odd.

Thus in case m = /», a prime, the dimension given by Kister-Mann is the same as

the one given by Copeland-de Groot and by our result. If m is a prime power,

m = p" where a > 2, the dimension given by the Kister-Mann result equals the

one given in our Corollary 4.3 if /» ^ 2 or if k is odd, and in case k is even and

m = 2", a > 2, the Kister-Mann dimension exceeds ours by one. Thus in the case

of actions of cyclic groups of prime power order our dimension result is only a

slight improvement of the Kister-Mann result. But for example in the case when m

is the product of distinct primes, m =/»,.. ./>„, where « > 2, the dimension given

by our Corollary 4.3 is by far much lower than the dimension given by the

Kister-Mann result. In this case our result gives the dimension

(« -I- 2)A + 2« + 1     if A: is even and m = px . . .p„ is odd,

(« + 2)A + 2« if A is even and m is even,

(« + 2)k + « + 1       if A is odd,

r(k,px .../»„) =

whereas the dimension obtained by the Kister-Mann result is

,. ,      Í (2" + \)k + 2n+x - 1     ifAiseven,
s(k, p, . . . pn) = { '
\ ,fx       Pn)      |(2„ + 1)Â. + 2„ if A is odd.

Let us now show that our result Corollary 4.3 is in fact best possible.
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Proposition 4.4. Let m > 1 and k > 0 be integers and let r(k, m) be as in

Corollary 4.3. FAe« there exists a k-dimensional finite simplicial Zm-complex which

cannot be Zm-imbedded (not even topologically) into any euclidean representation

space of dimension r(k, m) — 1.

Proof. Let p be a prime dividing m and let p" be the highest power of/» that

divides m. Let 1 < s < a. We define a A-dimensional simplicial Zp,-complex

Kk(Zp,), with free Z^-action in the following way.

(1) If A is odd we let

Kk(Zp.) = Sk

with free Z^.-action on Sk given by T(zx, . . . , zd) = (£z,, . . . , £zd), where d =

(A + l)/2 and (zx, . . . , zd) G S(Cd) = S2d~x and £ = exp(2m/ps).

(2) If A is even we let

Kk(Zp.) = (Dk X Zp,)/~

where (x, g) ~ (x', g') if and only if x = x' E Sk~x, and the Z^-action is the one

induced from the diagonal Z^-action on Dk X Zp, which on Dk is given by

T(zx, ...,zd) = (izy ..., ízd), where d = A/2 and (z„ . . . , zd) G D(Cd) = D2d

and £ = e\p(2i/ps), and on Zp, is given by multiplication on the left. Observe that

Kk(Z2) is a A-dimensional sphere with the antipodal action also in the case when A

is even.

The Z^.-spaces Kk(Zp.) can be given equivariant triangulations such that they

become equivariant simplicial complexes. By restricting the Zp¡-action to the

subgroup Zp c-> Zp, each Kk(Zp,) becomes a Z^-space. We then have the Z^-imbed-

ding

i: Kk(Zp) ^ Kk(Zp.)

which for A odd is the identity map and for A even is induced from the

Zp-imbeddingZ)* X Zp<^> Dk X Zp,.

We make each Kk(ZpS) into a Zm-space by changing the Zp,-action to a

Zm-action through the natural projection Zm -^ Zp,. Then every point in the

Zm-space Kk(Zp.) has isotropy subgroup equal topsZm c Zm.

Now assume that we are given a Zm-imbedding

A: A-^Z^) -+ V,

where F is a euclidean representation space, which we may assume to be an

orthogonal representation space for Zm. Let us denote //, = psZm, H0 = /A'Zm,

Vx = V"' and V0 = V"°. Then Im(A) c Vx and Im(A) n V0 = 0. Thus

A = 77 o A: AT^Zp.) -- K, -^ K,/ V0 = W

is a Zm-map with Im(A) n {0} = 0. Hence A defined by h(y) = h(y)/\\h(y)\\ is a

Zm-map

h:Kk(Zp,)^S(W) = S*-.1,

where w = dim ff = dim Vx — dim F0.



154 SÖRENILLMAN

Since every point in the Zm-space Vx is fixed under psZm it follows that

Zm/psZm ss Z , acts on W and moreover this Z^-action is free on W — {0}.

Likewise Zm/psZm at Z , acts on Kk(Zp.) and this action is just the original given

free Z^-action on Kk(Zp,). Restricting these actions to the subgroup Zp «^ Zp, and

composing A with i we get the Z^-map

A o t: Kk(Zp) ->S(W) = 5""-'.

If /» = 2 this implies (see p. 91 in [3]) that k < w — 1. If p = 2 and s > 2 we

moreover have that w must be even since Z2, acts freely on W — {0}, and hence in

case A is even we have A < w — 2. Thus for/» = 2 we have

A + 1 < w   if A is odd or if s = 1,

A + 2 < w   if A is even and s > 2.

For p ¥= 2 the argument is Copeland-de Groot [3] shows that

A + 1 < w   if A is odd,

A + 2 < w   if A is even.

Now let m = px' ■ ■ ■ p¡¡-, where /»,,...,/»„ are distinct primes. Let Ak be the

A-skeleton of the (2A + 2)-simplex. Then by Flores [5] A k does not imbed into

euclidean space of dimension less than 2 A + 1. We define a A-dimensional finite

simplicial Zm-complex A by

A = Ak Ú Kk(Zp) (j ... ÙKk(Zpf) Ù ... ÙKk(Zp) ú . . . Ú Kk(Zp.n),

where u denotes the disjoint union. Assume we are given a Zm-imbedding /:

X -* F. If H - p?'Zm and //' = ppZm, where / **/, we have V" n F"' = Fz™.

Hence it now follows that we must have dim V > r(k, m).    □

Corollary 4.5. Let X be a k-dimensional simplicial Zm-complex with semi-free

Zm-action and assume that Az™ Aas a proper p.I. imbedding A0 into Rd. Then X has a

proper p.I. Zm-imbedding, extending A0, into a euclidean representation space Re(p),

where

(max(A — \, d) + k + 2     if k is even and m ¥= 2,

max(A, d) + k + \ if k is odd or m = 2.

Proof. The representation Re(p) is the direct sum of R««*(*-M>ppM<*¿)] and a

representation space R*+2(p')[R* + '(p')] with Zm-action which is free outside the

origin. The claim now follows from Theorem 4.2.    □

For compact, finite-dimensional metric spaces the topological version of

Corollary 4.5 has been proved by R. Allen (see [1, Theorems 1.1 and 1.2]). In

particular Corollary 4.5 shows that all A-dimensional semi-free simplicial Zm-

complexes A with dim Az™ < A/2 have a Zm-imbedding into a euclidean represen-

tation space of dimension 2A -t- 1.

In the case of semi-free actions of noncyclic finite abelian groups we obtain the

following.
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Corollary 4.6. Let G = «,©.. . ®Rr © Sx © . . . ©5,, where r + s > 2 and

the R's are finite cyclic groups of order =£ 2 and the S's are cyclic of order 2. Let X

be a k-dimensional simplicial G-complex with semi-free G-action, and assume that

Xa has a proper p.I. imbedding h0 into Rd. Then X has a proper p.I. G-imbedding,

extending A0, into a euclidean representation space Re(p), where

_  Í d + r(k + 2) + s(k + 1)     if k is even,

[d + (r + s)(k + 1) ifk is odd.

Proof. For k odd any finite cyclic group has a linear action, which is free

outside the origin, on (k + l)-dimensional euclidean space. The direct sum of r + s

copies of such spaces plus a copy of Rd gives the desired representation space Re(p)

for G, and an application of Theorem 4.2 proves the claim. The proof is completely

analogous in the case when A is even,    fj

Taking d = 2 A + 1 we see that any semi-free A-dimensional simplicial G-com-

plex has a proper p.l. G-imbedding into a (2A + 1 + r(k + 2) + s(A: + 1))- or

(2A + 1 + (r + s)(k + l))-dimensional, for k even and odd respectively, euclidean

representation space. In this situation the dimensions are the same as the ones

given by Kister-Mann [9, Theorem 1] in the topological case. In their proof the

factor R2* + l comes from an imbedding of the orbit space A"/G, whereas in our

case it comes from an imbedding of the fixed point set AG, and hence their proof

does not establish a topological version of Corollary 4.6.

We now turn to the case of arbitrary actions of finite abelian groups, and

compared with corresponding result by Kister-Mann (see [9, Theorem 2]) we obtain

an improvement of the required dimension of the euclidean representation space.

Let G be a finite abelian group. We say that Hx, . . ., Hv are generating subgroups

of G if any subgroup H of G, where H ¥= G, is an intersection of some of the //,'s.

Corollary 4.7. Let G be a finite abelian group as in Corollary 4.6 and let

v = v(G) be the minimal number of generating subgroups of G. Then there exists a

euclidean representation space R^p), where

j 2k + 1 + v[r(k + 2) + s(k + 1)]     ifk is even,

[ 2k + 1 + v(r + s)(k + 1) ifk is odd,

such that any k-dimensional simplicial G-complex admits a proper p.l. G-imbedding

into Rw(p).

Proof. Assume that A is odd. Let H ^ G be a subgroup of G. Then, as described

in the proof of Corollary 4.6, the group G/H has a representation space V of

dimension (r + s)(k + 1) such that dim Ae) - dim F>{e> = A + 1. Considering

F as a representation space for G we then have dim V" — dim V>" = A + 1. Let

Hx, . . . , Hv be generating subgroups of G. For each Ht, i = 1, . . . , v, we let F, be

a representation space of the type described above. Then, letting R^p) = R2*+1 ©

F, © . . . © Vv, the result follows by Theorem 4.2. The proof in the case when A is

even is completely analogous.    □
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In the corresponding result by Kister-Mann (see [9, Theorem 2]) the factor v is

replaced by the total number r0 of subgroups // of G, with H =£G. (Corollary 4.7 is

also valid as stated in case r + s — 1, i.e., r = 1 and s = 0 or r = 0 and s = 1. But

in this case G is cyclic and the result has already been covered by Corollary 4.3,

which in fact is a little sharper in the case when G is cyclic of even order m, where

m =£ 2, and k is even.)

In order to give an application of Theorem 4.2 for a nonabelian group we

present the following example.

Example. Let G = S3 the symmetric group on three letters. Let x,y G G with

x2 = l,y3 = 1 and xy = y2x. There are altogether six subgroups of G and they are:

G, K = {1,7,y2}, H = {1, jc) and two conjugates of H and {1}. Let R3(a) denote

R3 together with the G-action which permutes the coordinate axes. Then we have

dim[R3(a)]G = 1 and dim[R3(a)]" - dim[R3(p)p" = 1 and dim[R3(a)]{1} -

dim[R3(a)]>(1) = 1. Let R(±) denote the euclidean line R together with G-action

given by xa = — a and y a = a, for every a G R. Then dim[R(±)]Ar —

dim[R( ± )]>K = 1. Hence Theorem 4.2 implies that

R5*+4(p) = R* ®[R3(a)f+1 ©[R(±)f + 1

is such a representation space for S3 that any A-dimensional simplicial 53-complex

has a proper p.l. 53-imbedding into R5fc+4(p).

Let us conclude by showing that the p.l. G-imbeddings of equivariant p.l.

manifolds into euclidean representation space given by our G-imbedding result are

in general equivariantly locally knotted although they are locally flat in the

ordinary sense. This phenomenon can occur in arbitrarily high codimensions.

Among other things this shows that the existence of p.l. and smooth G-imbeddings

are questions of completely different nature.

Example. Let G = Z5 and let R2(p,) and R2(p2) denote the euclidean plane with

Z5-action given by Tz = exp(2ff//5)z and Tz = exp(4w/'/5)z, respectively. Let

M = D2(p2). By Theorem 4.2 there exists a p.l. Z5-imbedding of Af into R © R2(p,)

© R2(p,) (and also into R2(p,) © R2(p,) © R2(p,)). But any p.l. Z5-imbedding A:

Af-*R" © (R2(p,))* = V, where « > 1 and A > 2 (or « > 0 and A > 3), is equi-

variantly knotted at A(0). That is, denoting A(Af) = N, we have for any equivariant

triangulation V* of V inducing an equivariant triangulation N* of N with A(0) = v

a vertex, the ball-pair (St(t), V*), St(u, N*)) is not equivariantly p.l. homeomorphic

with any standard ball-pair (Dm(T), D2(t')), where m = « + 2A. For if these

ball-pairs were equivariantly p.l. homeomorphic it would follow by de Rham [11]

that r is isomorphic to

id © . . . ©id ©  p, © . . . ©p,

" k

and that t' is isomorphic to p2. Since t contains t' as a direct summand we would

have that

id © . . . ©id © p, © . . . ©p.



APPROXIMATION OF G-MAPS 157

contains p2, a contradiction. In fact using Theorem I in Schultz [13], instead of the

result by de Rham, we see that (St(t>, V*), St(t), A/*)) is even topologically equi-

variantly knotted, i.e. (St(u, V*), St(u, N*)) is not Z5-homeomorphic with any

standard ball-pair (Dm(r), D2(t')). On the other hand, since m - 2 > 3, we have

by Zeeman [16] that (St(t), V*), St(v, N*)) is p.l. homeomorphic with (Dm, D2).

To get an example with Af a compact equivariant p.l. manifold without

boundary take Af = S2(p2 © id). If we do not insist on Af being compact we may

as well take Af = R2(p2).
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