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INVARIANCE OF SOLUTIONS TO INVARIANT PARAMETRIC

VARIATIONAL PROBLEMS

BY

JOHN E. BROTHERS1

Abstract. Let G be a compact Lie group of diffeomorphisms of a connected

orientable manifold M of dimension n + 1. Assume the orbits of highest dimension

to be connected. Let * be a convex positive even parametric integrand of degree n

on M which is invariant under the action of G. Let T be a homologically

'{'-minimizing rectifiable current of dimension n on M, and assume there exists a

(7-invariant rectifiable current 7" which is homologous to T. It is shown that T is

G-invariant provided 4* satisfies a symmetry condition which makes it no less

efficient for the tangent planes of T to lie along the orbits. This condition is

satisfied by the area integrand in case G is a group of isometries of a Riemannian

metric on M. Consequently, one obtains the corollary that if a rectifiable current T

is a solution to the n-dimensional Plateau problem in M with G-invariant boundary

dT, and if dT bounds a G-invariant rectifiable current 7" such that T — 7" is a

boundary, then T is G-invariant. An application to the Plateau problem in S3 is

given.

1. Introduction. Let G be a compact (but not necessarily connected) Lie group of

diffeomorphisms of a connected orientable manifold M of dimension « + 1.

Assume the orbits of highest dimension to be connected. Let * be a convex

positive even parametric integrand of degree « on Af which is invariant under the

action of G. Let F be a homologically ^-minimizing rectifiable current of dimen-

sion « on Af, and assume there exists a G-invariant rectifiable current 7" which is

homologous to T. We show that F is G-invariant provided ¥ satisfies a symmetry

condition which makes it no less efficient for the tangent planes of T to lie along

the orbits. This condition is satisfied by the area integrand in case G is a group of

isometries of a Riemannian metric on Af. Consequently, one obtains the corollary

that if a rectifiable current F is a solution to the «-dimensional Plateau problem in

Af with G-invariant boundary dT, and if 3F bounds a G-invariant rectifiable

current T' such that T — T' is a boundary, then T is G-invariant.

The first result in this direction was obtained by Fleming and Lawson [L2] for

the area integrand in R" + 1. They showed that if G is a group of orientation

preserving isometries which leave invariant a compact connected oriented (« — 1)-

dimensional submanifold B of S" c R"+1, then there exists an absolutely area
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minimizing G-invariant rectifiable current T in R" + 1 with dT = B. Our theorem

implies this result for the case where the orbits of highest dimension are connected.

The next result was obtained by Bindschadler [BD] for the area integrand on a

Riemannian manifold Af under the assumption that G is a group of isometries of

Af such that the distribution of orthogonal complements to the tangent spaces of

the orbits is involutive. He showed that if T is an absolutely area minimizing

rectifiable current of dimension m + 1 on Af (m is the maximal dimension of the

orbits) such that there exists a G-invariant rectifiable current 7" with 97" = dT,

then T is G-invariant.

Bindschadler's assumption concerning the orthogonal complements to the tan-

gent spaces of the orbits is, unfortunately, rather restrictive. Although it is satisfied

by the actions considered in [L2] (in case m = « — 1), it does not hold for the

action of the group S1 of complex numbers of modulus one on the unit sphere

S3 c R4 = C2 defined by complex scalar multiplication. Our investigation was

motivated by a desire to understand this situation, as well as to extend the result of

Fleming and Lawson to arbitrary manifolds in the stronger form suggested by

Bindschadler in which all solutions to the Plateau problem are invariant.

Our main result is in §4. The proof is based on a theorem of Fédérer [F3] which

asserts that in codimension one a ^-minimizing rectifiable current is also a solution

to a less restrictive variational problem which allows as candidates for the mini-

mum currents with real coefficients as well as integer coefficients. This allows us to

use averaging techniques, which when applied to rectifiable currents that are

candidates for the minimum of ^ yield the more general flat currents, which are

thereby also candidates for the minimum. We also make essential use of results in

[BD]; in particular, Lemma 3.6 was suggested by [BD, 4.8].

§5 contains regularity results for invariant ^-minimizing currents which are

implied by the general regularity theory in [Fl] and [SSA].

In §6 we apply the lifting theory developed in [BJ1] and [BD] to develop the

relationship between invariant ^-minimizing currents in M and solutions to a

related variational problem in M/G. This is especially useful if m — n — 1, in

which case the problem of finding invariant minimizing currents in Af reduces to

that of finding solutions to a one-dimensional variational problem, a procedure

previously used in [L2].

§7 contains applications of our theory to the discussion of several examples,

including the action of S1 on S3 mentioned above. We also discuss the relevance to

our results of the counterexample to the question of existence of invariant solutions

to the Plateau problem which was given by Fédérer in [Fl].

2. Preliminaries. The purpose of this section is to fix basic notation and

terminology, and discuss general concepts which will be used in the paper.

Notations which are not explained below may be found in [Fl, pp. 669-671]. Basic

facts concerning transformation groups may be found in [BG].

2.1. Throughout the paper Af and G will be as in §1. K and L will denote local

Lipschitz neighborhood retracts in Af which are G-invariant, with K compact and

L closed. We also assume that K n L is a Lipschitz neighborhood retract, and that
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K is the union of a countable family of submanifolds of class 1 of Af. A: will be an

integer with 0 < k < « + 1.

We denote the tangent space to M at x G M by Tx(Af) and the tangent bundle

by T(Af). 9C(Af) is the vector space of smooth vector fields on Af; 9CG(Af) is the

subspace of vector fields tangent to the orbits of G. If F is a vector space, /\k( V)

denotes the vector space of /¿-vectors in V. /\kT(M) is the /c-vector bundle of Af.

2.2. Orbits. For each x G M the isotropy subgroup at x is

GX = G n {g:g(x) = x}.

It is well known (see, for example, [BG, IV, 3.1 and VI, 2.4]) that there exists

x0 G M such that for each x G M, H = Gx is conjugate to a subgroup of Gx.

Recalling that if x and y are on the same orbit then Gx and G are conjugate, we

call an orbit G(x) principal if Gx is conjugate to //; denote m = dim G(x0). The

union A/0 of the set of principal orbits is open and dense in Af. Orientability of M

implies that the principal orbits are orientable [BG, IV, 3.11]; orient G/H. Con-

sider x G M and a subgroup Hx of Gx conjugate to H. The orbit G(x) is singular if

dim Gx/Hx > 0 and exceptional if dim Gx/Hx = 0. G(x) is a special exceptional

orbit if Gx/Hx has order 2. An orbit type is an equivalence class of orbits under the

equivalence relation of conjugacy of isotropy subgroups.

It is well known (see, for example, [BG, II, 5.8]) that Mq = Af0/G is a smooth

manifold of dimension « + 1 — m and the projection it: A/0-> M¡* is the projec-

tion map of a smooth fibre bundle £D1l0 with fibre G/H and structure group

9l(//)/// acting by right translation on G/H. (?fl(H) is the normalizer of H in

G.) Furthermore, bundle coordinate maps are equivariant.

It will be useful to provide Af with a G-invariant Riemannian metric b. Such a

metric may be obtained from an arbitrary metric b0 by averaging b0 with respect to

the action of G. Corresponding to b there is a unique Riemannian metric b„ on M¡

such that for each x G M0, ■ui(\Tx(G(x))1- is an isometry.

We define the volume function V on Af/G by

V(z) = i(z)'Xn(z)    for zGM/G,

where i(z) is the index of a suitable conjugate of H in Gx for x G z in case z is an

exceptional orbit, and i(z) = 1 otherwise. V is continuous on M/ G and smooth on

A/0*.

2.3. Currents. M^(Af) is the vector space of k-dimensional currents S G &k(M)

with compact support and finite mass M(5). M^oc(Af) is the space of currents

T G %(M) such that M(71y) < oo whenever y G ^(M). \\T\\ is the variation

measure of T and one has the representation

ït*)-/<?,*>rf||rn

whenever <> is a continuous differential k-form with compact support in Af, where

T(x) is a ^-vector of unit mass for || T\\ almost all x G M. Fk(M) is the vector

space of ^-dimensional flat currents (with compact support) in M. ^ik(M) is the

group of ^-dimensional rectifiable currents in M.

<»k(M) = %(M) + d%+x(M)
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is the group of k -dimensional integral flat currents in Af.

lk(M) = %(M) n {T: dT G %_X(M) or k = 0}.

is the group of /c-dimensional integral currents in Af. One has the inclusions

lk(M) C %(M) C %(M) C Fk(M).

FJtoc(Af ) and Rj^Af ) are respectively the sets of locally flat and locally rectifiable

currents in Af.

Whenever B G A c M we define the vector spaces of A-dimensional real flat

cycles

Zk(A, B) = { T: T G Fk(M), spt T c A, spt 37 c B or k = 0}

and the subspace of /c-dimensional real flat boundaries

Bk(A, B) - {T + 35: T G Fk(M), spt T c B, S G Fk+l(M), spt S G A}.

We define the group of /c-dimensional integral flat cycles

%k(A, B) = Zk(A, B) n %{M)

and the subgroup of /c-dimensional integral flat boundaries

%k(A, B) = {T + dS: T G %(M), spt T c B, S G % + x(M), spt S C A}.

We also define the /c-dimensional real homology group

Hk(A, B; R) = Zk(A, B)/Bk(A, B)

and the /c-dimensional integral homology group

Hk(A, B; Z) = %k(A, B)/%(A, B);

in case A and B are local Lipschitz neighborhood retracts these groups are

respectively isomorphic to the singular homology groups of the pair (A, B) with

real and integer coefficients [Fl, §4.4].

Let IF be a G-invariant open subset of M0. We will call T G tf)k(rV) a local

product if for each x G W there exist an open subset U of -n( W) containing tt(x), a

bundle coordinate map <£,,: U X G/H-^W, and Tv G 6ílk_m(U) such that

T\%(ir~lU) - *ut(Tv X G/H).

2.4. Integrands. A parametric integrand of degree k on Af is a continuous function

*: A*T(A/)^R

satisfying the condition

¥(ra) = r-*(a)    for a G /\kT(M), r > 0.

^ is positive if

*(a) > 0    for 0 ^ a G A*T(A/).

^ is eue« if

*(-«) = *(«)    for a G /\kT(M).

ty is convex if

*(a + ß) < *(a) + ¥(jß)    for* G M and a, ß G /\kTx(M).
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¥ is called an integrand of class q if the restriction of ¥ to the set of nonzero

elements of /\kT(M) is of class q. We associate with each x G M the constant

coefficient integrand

*x = *\TX(M).

Whenever ^ is positive and T G Mj^AZ), the function which corresponds '^(T(x))

with x G M is \\T\\ integrable; one denotes

f* ° fd\\T\\ = f *.

The parametric area integrand of degree k on M is the function

*(a) = \a\,        a G /\kT(M).

In this case /r* = M(7) whenever T G %(M).

Let ¥ be a parametric integrand of degree k and class 2 on Af. One says that ¥

satisfies a parametric Legendre condition if for each compact subset A of M there

exists c^ > 0 such that for each x G A,

D2*x(a)(ß,ß)>cA\ßA<*\2/\a\3

whenever a, ß G /\kTx(M) and a ¥= 0. (Here D2<ffx is the second differential of

^x.) The area integrand satisfies this condition with cA = 1. If ^ satisfies this

condition then Taylor's Theorem implies that ^ is convex; in fact, SF is elliptic

[Fl, 5.1.2]. Moreover, the argument in [Fl, 5.1.2] can be adapted to show that

ellipticity is equivalent to a parametric Legendre condition for k = « or k = 1.

Let * be a parametric integrand of degree k on M and A, B, C c Af with

B G A. A current T will be called homologically ^-minimizing in C with respect to

(A, B) if T G %(M), spt T c C, and

f * < (      *
-'r        •'t+q

whenever g e ©¿(.4, 5) with spt Q G C.

Suppose A, B, C are local Lipschitz neighborhood retracts, B is relatively closed

in A and C is compact. The following existence theorem is implied by the

discussion in [F3, 5.9]: Let ^ be a positive convex integrand. If T0 G ^k,k(M) with

spt T0 c C, then there exists T G "31^ (Af) such that T is homologically ^-minimiz-

ing in C with respect to (A, B) and

T - To G %(A, B).

We remark that if T is absolutely ^-minimizing with respect to (C, C n B) as

defined in [Fl, 5.1.6], then T is homologically ^-minimizing in C with respect to

(A, B) which in turn implies that T is homologically ^-minimizing with respect to

(C, C n B). Neither of the reverse implications holds in general; however, it is true

that if T is homologically ^-minimizing with respect to (M, B) then T is homologi-

cally ^-minimizing in C with respect to (Af, B) whenever C D spt T.

Finally, we observe that if ^ is an elliptic integrand on Rn+1, A is a convex

subset of R"+1 and B c A, then T G $l„(M) is absolutely ^-minimizing with

respect to (R"+l, B) if and only if T is absolutely ^-minimizing with respect to
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(A, B). This follows directly from the definition of "elliptic integrand" [Fl, 5.1.2]

and is useful in application of our results in R"+'.

2.5. Invariant integrands. The action of G on M induces an action on T(Af ) and

hence an action on /\kT(M). For each x G M0 we choose 0 =£ a G /\mTx(G(x))

and define for k > m,

%* - {« A ß: ß e A*-„Tx(AO}.

% x is clearly independent of the choice of a and is a linear subspace of /\kTx(M)

of dimension

„ = ("+ l-m).

\    k — m    I

\ = U{\y.xGM0}

is a G-invariant subbundle of A*T(Af0).

Let * be a parametric integrand of degree k on M. We will say that ¥ is

G-invariant provided

(i) ¥ is invariant under the action of G on /\kT(M), and

(ii) there exists a G-invariant continuous linear bundle map

II*: A*T(A/0)^%

such that

n*|% = H

and

^ » n*(a) < ^(a)    whenever a G A*T(Af0),

with strict inequality for a Ç %.

We extend n* to A*T(A/) so that LT^| A*T(A/) ~ A*T(A/0) = 0, and denote

n^x = n^| /\kTx(M0) for x G MQ. We also observe that (i) is equivalent to

G-invariance of the integral of *: If T G Mj^Af) then

I    <fr — i vf/   whenever g e G.
^»r        ■'r

(Compare [Fl, 5.1.1].) Note that the area integrand will satisfy (ii) if n,¡, is the

orthogonal projection onto %.

In case ^ is a positive integrand of class 2 which satisfies a parametric Legendre

condition and is such that (i) holds, Taylor's Theorem can be used to show that (ii)

is equivalent to the requirement that for each x G MQ, {D^x(a): 0 =£ a G %>x}

spans a linear subspace of /\kTx(M0)* of dimension not greater than v.

Next we suppose there exists a smooth invariant unit w-vector field v on Af0 such

that for x G M0, v(x) is tangent to G(x). Let ^ be a parametric integrand of degree

k + m and class q on Af0 such that g*^ = ^ for g G G. We define a parametric

integrand ¥* of degree k and class q on M¡ as follows: Let z G Mfi, x G z and \x:

T2(M*) —> Tx(Af0) be such that m^ ° Xx is the identity. Then

**(«) = F(z)*( A A(«) A vi»)    for a G A*T,(A/¿).
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It is clear that ^*(a) does not depend on the choice of \x or x G z. Smoothness

follows through use of local cross sections. Finally, we remark that in case ^ is

even, existence of 'ir* does not depend on the existence of v.

3. Invariant flat currents.

3.1. If i G %(M) and A is a smooth tensor field on M, then L¿A denotes the Lie

derivative of A with respect to |. For each current T G ^(Af) we define the Lie

derivative Lf T G ^(Af) so that

(LST)(<¡>) = -T(L(<¡>)    for <j> G ^(M).

Lemma. //£ G %(M) and T G %(M), then

3(TA0 = (37')Al + (-l)^1L{7'.

Proof. Using t4 to denote interior multiplication by £ [KN, p. 35] we have

Ä*)Jcü = (-l)%x)w for a G /\k+xTx(M). Consequently, for <i> G ^(M),

Ltf> = .«(</*) + ditf = (-l)*[ÍJ<ty - d(a<»],

hence our identity follows from the definition

T A {(*) = TitJtf   for 4, G 6D*+ '(A/).

3.2. Let n be the Haar measure on G with n(G) = 1, and denote

91t„ = M„(A/) + 3M,(A/).

There exists a chain map .,4 : "Dit „ -» 91L+ characterized by the formula

A(T)($) = f gtT(<j>) dug   for 7 G 91t*, <i> G &(M);
JG

compare [BD, 4.4]. We also denote A(T) = TG.

Lemma, (i) TG is G-invariant whenever T G 91t,.

(ii) A : F¿M) n 91t, -> F+(M) n 91tv
(iii) Lei ^ be a convex positive integrand of degree k such that g*^ = ty for

g GG.IfT G Mk(M), then

f  * <  f*.
•'rc        ■'r

Proof, (i) and (ii) follow from the definition of A and the fact that 3 ° A =

A o 3. (iii) follows from [F3, 2.1] and the observation that if ¥ > <i> G ^(M), then

* > g*<i> for g G G and thus

TG(<¡>) = [ T(g*<t>) dug < f*.

3.3. Lemma. Suppose T G B„(Af, L) is G-invariant. Then T /\ £ = 0 whenever

£ G %G(M) with spt £ c M0 ~ L.

Proof. Choose 5 G F„+1(A/) with spt(35 - T) C L. Then SG G F„+1(Af) and

spt(3SG — T) c L since L is invariant. Suppose ^ G %G(M) is induced on Af by

the action of a one-parameter subgroup of G. Then L,SG = 0, hence 3.1 implies
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that (35G) A Ig = 0 and so spt( T /\£G) g L. From this we conclude that T A £ =

0 because the set of vector fields ^ spans %G(M0).

3.4. Remark. Simple examples in R X S1 show that if S does not exist, then the

conclusion of Lemma 3.3 may not be true even if dT = 0.

3.5. Lemma. Suppose T G Fn(M) is G-invariant.

(i) If spt T n M0 = 0, then T = 0.

(ii) IfM(T) < oo, then \\T\\(M~ M0) = 0.

Proof, (ii) follows from (i) because Af — Af0 is closed and TL(M — Af0) G

F„(Af) by [Fl, 4.1.17].

Assuming spt T n Af0 = 0 we use [BG, VI, 2.4, 2.5 and IV, 1.2] to infer that

spt T c Af, u • • • U Ma, where each Af, is a smooth proper submanifold of Af

and is the union of the set of all orbits corresponding to a fixed orbit type. Now

lower semicontinuity of orbit type [BG, II, 5.5] implies that if M¡ is the union of the

set of all orbits of a fixed special exceptional orbit type, then M¡ is a relatively open

subset of M — Af0. We will show that spt T n Af,. = 0, hence infer using [BG, IV,

3.8 and 3.10] that 3C(spt T) = 0, which implies by [Fl, 4.1.20 and 2.10.6] that

T= 0.

In order to show that spt T n M,■ = 0 it will suffice to show that TLf = 0

whenever/ G ^(M) is G-invariant with spt/ c Af, u A/0. We can also assume

7r(spt/|A/,) to lie in an orientable open subset U of the manifold -n(M¡). Fixing/we

infer from the second proposition on [Fl, p. 373] that TLf corresponds to T, G

F„(A/,). Consequently, TLf = 0 unless dim Af, = «; assuming this to be the case we

observe that for 3C"m almost all z G U the slice T/(z) = <7}, <n\M¡, z> G Fm(z)

[Fl, 4.3.1]. Moreover, 7}(z) is G-invariant by [Fl, 4.3.2] and we infer using Lemma

3.1 that dTj(z) = 0, hence TA[z) represents a real m-dimensional homology class of

z. But z is not orientable [BG, IV, 3.11], hence Ta[z) = 0 and we conclude using

[Fl, 4.3.2] that 7} = 0.

3.6. Lemma. Suppose T G F„(M) n M„(A/) and T G F„(M) are such that

(i) T-T'G Bn(M, L),
(ii)gj7" = T' whenever g G G,

(iii) T' A I = 0 whenever £ G 9CG(Af ) with spt £ C A/0 ~ L, and

(iv) there exists £0 G 9CG(Af ) with spt i0cM0~L such that T A £0 ̂  °-

Then T - TG G B„(A/, L) and

Jtc        jt

whenever ^ is a convex positive G-invariant integrand of degree « on M.

Proof. We choose a G-invariant open set U with compact closure in Af0 ~ L

such that spt £0 c U; denote T0 = TL U. Referring to 2.5 we see that

sup {H 1X^11: x G U} < <x>,

hence

nr0= y r0|| An,f0£M„(M),
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and we infer using Lemma 3.2 that

f        * <  f    •*<[*.
J(TIT0)C JTIT0 JT0

Now the G-invariance and linearity oi n^ imply that (Iir0)c = H(T0G). Thus our

assertion will follow if we can show that n(T0G) = T0G because TG = Toc +

(T- To)G, hence

JTG JT0 JT-T0 JT

Choose S G Fn+X(M) with spt[35 - (T - T')\ c L and observe that

spt[35G-(7G- T')} gL

since L is invariant, hence spt[3(S - SG) - (T - TG)\ c L and thus T - TG G

B„(Af, L). Further, in view of Lemma 3.2 we can apply Lemma 3.3 to obtain

0 = (TG- 7')A£= 7-GA£

whenever £ G %G(M), spt £ c Af0 — L, which implies that on A/0 ~ L, H<f,TG =

TG. Finally, since TG\U = (T0Gy\ U, we conclude that

n(r0G) = r0G.

4. ^-minimizing currents.

4.1. Lemma. Let U and Y be oriented Riemannian manifolds with Y connected and

dim Y= m. Suppose T G Fx°lm(U X Y) n Mx°lm(U X Y) is such that

(i) f A£ = 0 whenever £ G %(U X Y) is such that £|{z} X Y is tangent to

{z} X Yforz G U,and

(ii) dT = 0.

Then there exists R G F^U) n MkXoc(U) such that T = R X Y. Furthermore, if

T e ^«(tf x Y), then R G ^(U).

Proof. The existence of R is obtained in [BD, 3.5]. If p and q denote the

projections of U X Y on U and Y, respectively, we infer from the definition of the

slice (R X Y, q,y} corresponding to y G Y [Fl, 4.3.1] that R = p$(R X Y, q,y).

Thus by [Fl, 4.3.6] R is rectifiable if T is rectifiable.

4.2. Corollary. Suppose there exists T G Fk + m(M0) n MÄ+m(A/0) which is

G-invariant and is such that \\ T\\(M0 ~ spt dT) =£ 0 and T A £ = 0 whenever £ G

9CG(Af) with spt £ c Af0. 77ie« the action of G preserves the orientation of G/H.

Proof. Let U be an open subset of the open set AfjJ — w(spt dT) such that

TLU ^ 0 and there exists a coordinate map ^v: U X G/H^> tt~xU. Applying

Lemma 4.1 we infer that

r|6D*+'"(7r-1t7) = <t>U9(R X G/H).

Our assertion now follows from the invariance of T and the equivariance of <¡>,j.
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4.3. Lemma. Let ^ be a convex positive G-invariant integrand of degree « on Af.

Assume 0 =£ T G Fn(M) n M„(M) is such that spt T G K and the following hold:

(i) A* = inf{/r+e*: Q G Bn(M, L), spt Q c K).
(ii) || T\\(B) = 0 where B = M0 n spt 37 ~ L.

(iii) There exists 7" G F„(Af ) n M„(A/) vw7« T - T G Bn(M, L) such that T is

G-invariant, \\ T'\\(M ~ B) ^ 0, and T' A £ = 0 whenever £ G 9CG(A/) wr« spt £ c

M0~L.

Then the following are true:

(1) T\tyn(M0 ~(fiu L)) is a local product.

(2)\\T\\[M~(M0~(BuL))] = Q.
(3) T is G-invariant.

Proof. Note that B is G-invariant because spt(3T — 37") c L and spt 37" is

invariant. Now T'L(M ~ L) ^ 0 because if spt T' G L then T = 0. Consequently,

since || 7"||(A/ ~ A/0) = 0 by Lemma 3.5, and A/0 n spt dT' c 5 U L, Corollary

4.2 implies that the action of G preserves the orientation of G/H.

Next we infer using Lemma 3.6 and (i) that

[*=[* (*)JTG JT

because K is invariant, and therefore rA£ = 0 whenever £ G 9CG(Af) with

spt £ c Af0 ~ L. Let U be an open subset of the open set Mi* ~ ir(B u L) such

that there exists an equivariant coordinate map <pv: U X G/H -^tr~xU; assume

also that U has compact closure in Af^" ~ tt(B u L). It follows from Lemma 4.1

that T\6Ù"(w~xU) is a product, hence (1) is clear. Moreover, it is also clear that

TLtt~xU is invariant; choosing a locally finite open cover of Af^ ~ it(B u L)

consisting of open sets such as U one uses a subordinate partition of unity to show

that 7L(Af0 ~ (B u L)) is invariant. Thus (3) will follow once (2) is verified.

For the proof of (2) we first observe that TLL G B„(M, L) by [Fl, 4.1.17], hence

because ^ is positive and DC(fi) = 0, we have

||rG||(/?uL)< ||7-||(äuL)-0.

Thus since 7L(Af0 ~ (B u L)) = rGL(Af0 ~(fiu L)), we have

f <fr = f * = o
JTL(M~M0) JTCL(M~M0)

by Lemma 3.5 and (*). Finally, positivity of ^ implies that TL(M ~ A/0) = 0.

4.4. Theorem. Let If be a convex positive even G-invariant integrand of degree «

on M and T G <3ln(Af) be homologically ^ minimizing in K with respect to (M, L).

Assume that conditions (ii) and (iii) of Lemma 4.3 are satisfied. Then the conclusions

of Lemma 4.3 hold for T.

Proof. With the help of [Fl, 4.1.12, 4.1.15 and 4.1.29] we observe that

Bn<K(M, L) = Fn,K(M, L) n B„(M, L) = B„(A/, L) n {Q: spt Q G K}

and

®„>Jf(A/, L) = §„,*(A/, L) n ®>n(M, L) = ©„(A/, L) n {Q: spt Q G K}.



INVARIANT PARAMETRIC VARIATIONAL PROBLEMS 169

Using this we apply [F3, 2.13 and 5.10] to infer that

f* = inf(f      *: Q G Bn(M, L), spt Q c K   ;

consequently, Lemma 4.3 applies.

4.5. Remarks. (1) Suppose M = R"+1 and G is a group of linear transformations.

In case dT is G-invariant and rectifiable we can take T' to be the cone over dT,

T = 60 X dT [Fl, p. 365], which is clearly invariant; moreover, T - T G

B„(Rn+1) because 37" = 37. If £ G %G(M) we infer with the help of [FF, 8.16] that

dT A £ = 0, from which it follows that T A £ = 0.

On the other hand, invariance of dT does not in general imply existence of 7"

even if H„_,(M; R) = 0. In 7.2 we will show that if G = S1 acts on M = S3 c C2

by means of complex scalar multiplication and 37" = c, + c2 where

c, = s3 n c x {0},     c2 = s3 n {0} x c

with their usual orientations when regarded as subsets of C, then T cannot be

S'-invariant. Furthermore, since this action is the restriction to S3 of an action of

S1 on R4, this example shows that our theorem does not hold in codimension 2 for

the case where Af = R4, K = S3 and L = 0.

Finally, we observe that if G is a group of linear transformations of M = Rn+X,

T G Fn(M) is G-invariant, and spt 37" n Af0 is compact, then spt 37" c M0. (Com-

pare [L2, Proposition 4.4].) Indeed, dT = S0+ Sx with S0, Sx G F„_,(Af), spt S0

c M0, spt Sx c M ~ Af0. S, is invariant hence so is S'x = ô0 X Sx G F„(M);

moreover, spt S{ c Af ~ Af0 and therefore Lemma 3.5 implies that S', = 0. This is

not, however, true in general. Simple examples can be found in Af = S3 with

G = S1 as in 7.2.

(2) If Af is a manifold with boundary N with G acting smoothly on Af u N, then

M \j N g M' where Af ' is an orientable (« + l)-dimensional manifold to which

the action of G can be extended and is such that Af u N is a smooth deformation

retract of Af'. Thus

B„(Af u N) - B„(A/') n {Q:sptQ GM u N}

and one can apply the theorem with M replaced by Af ' and K, L G M \J N to

obtain the analogous result for manifolds with boundary.

(3) With M, N, M' as in (2) we discuss the case where the dimension of the

principal orbits (in Af ) is n. It is easy to see that the action of G preserves the

orientation of M if and only if the action preserves orientation of the principal

orbits; assume this to be the case. By [BG, IV, 3.1 and 3.11], (M u A^o is

connected, hence each two principal orbits are homotopic and, when suitably

oriented, represent the same homology class P G H„(A/ u N; Z). In case there

exists a nonprincipal orbit z G Af u N/G it follows from the existence of linear

tubes [BG, VI, 2.4] that there is an «-dimensional rectifiable cycle Sz supported on

z which is homotopic to an oriented principal orbit z' G P. But unless z is a special

exceptional orbit dim z < « [BG, IV, 3.8 and 3.10], hence S2 = 0 = P. If z is

special exceptional then z is not orientable [BG, IV, 3.11], hence again Sz = 0 = P.
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Conversely, if all orbits in Af ' are principal and T G Bn(M u N) with spt T G M

U N /G, then one can use the lifting theory in [BD, §3] (see also 6.1) to show that

spt T G B0(M'/G), which is impossible. We therefore conclude that P ^ 0 if and

only if all orbits are principal. (See [BG, IV, §8] also.)

Suppose Af u N is compact with P^O. It follows from Theorem 4.4 and the

remarks in (2) that T G P has least n-dimensional area in P // and only if spt T is an

orbit with

F(spt T) = inf V\(M U N)/G.

For example, applying this to the flat (« + l)-dimensional torus T"+1 with P the

homology class containing T" X {x0}, x0 G S1, we see that T G P has least area if

and only if

T = T" X {x},       x G S1.

Finally, turning to the case where Af is aribitrary and the action of G preserves

orientation of the principal orbits, we assume F to have a local minimum at

z0 G M*. Choose a closed arc /* c Af£ such that V\I* has a minimum at

z0 G int /*, and denote / = ir~xI*. Let T0 be a current obtained by orienting z0.

Then T0 G P G H„(/; Z), and applying the preceding discussion with Af u N = I

we infer that T0 is of least area in P. It follows from [Fl, p. 525] that z0 is minimal

and stable. (It is of interest here to recall that if z is a special exceptional orbit then

z is minimal [HL, §3]; however, we do not know whether z is in general stable.)

Simple examples of the above can be found in surfaces of revolution in R3

obtained by rotating the graph {(x,f(x)): x G (a, b)} of a smooth positive function

/: (a, b)—>R about the x-axis. The meridian circle corresponding to x G (a, b) is a

geodesic if and only iff'(x) = 0, and is a stable geodesic if and only if/has a local

minimum at x. In this case, V(z) = 2trf(z) for z G Af/S1 = (a, b).

On the other hand, consider the action of S1 on S3 mentioned in (1). The orbits

of this action are all principal, are all geodesies, and are all unstable. However, F is

constant, V = 2m. This, together with the example discussed in (1), illustrates the

difficulties which are evidently inherent in the problem of extending our results to

codimensions greater than one.

5. Regularity.

5.1. Let ^ be a positive integrand of degree m + 1 and class 3 on Af0 such that

(i) ^ is invariant under the action of G on /\m+xT(M), and

(ii) for each compact subset A of Af0 there exists cA > 0 such that for each

x G A,

D2*x(a)(ß,ß)>cA\ßAa\2/\a\3

whenever a, ß G cVm+Ux and a^O. Note that the area integrand satisfies this

condition with cA = 1.

Lemma. Let T G Im + i(Af0) be homologically ^-minimizing with respect to A/q, and

suppose g$T = T for g G G. Then spt T—spt dT is an (m + I)-dimensional sub-

manifold of class 2 of M0.
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Proof. Assume spt T — spt 37" ̂  0. Let U be an open subset of the open set

A/q — 7r(spt 37") such that there exist an equivariant coordinate map ^¡j-. U X

G/H^>m-xU and a coordinate map X: U-^R"+x-m with X(U) = R" + i-m. In-

asmuch as T is rectifiable and invariant, we infer using [FF, 8.16] that T A£ = 0

for £ G %G(M), hence Corollary 4.2 implies that if v is a smooth unit w-vector

field on Ai/ which is tangent to the orbits, then v is invariant. Using v to define

the integrand ¥* of degree 1 on U as in 2.5 we see that if A * is a compact subset of

U and z G A * then

D2**(a*)(ß*, ß*) > c^A.\ß* A «*|7l«*|3

for a*, ß* G Tz(Af¿), a* i- 0. In view of [Fl, 5.1.3 and 5.1.2] we can therefore

apply [Fl, 5.3.20] in U to conclude that if R0 G lx(U) is absolutely ^-minimizing

with respect to U, then spt R0 ~ spt 3/Îq is a 1-dimensional submanifold of class 2

of M*.

Next apply Lemma 4.1 to obtain R G ^^(U) such that

T|6D'"+1(Aí/)=<í>(/8(/v X G/H),

use [Fl, 4.2.1, 4.3.4 and 4.3.6] to choose r > 0 such that

Rr = RLx~l{y:\y\<r} Glx(U),

and denote

Tr = <M*r X G/H) = TL(x ° nY^y: \y\ <r}.

Referring to [Fl, 4.1.28] we see that for || 7"|| almost all x G U,

f(x) = \x(R(TTx))Ay(x),

where A^. is chosen as in 2.5. Applying the coarea formula [Fl, 3.2.22] we conclude

that

*t||7;||.||/yLF

and use this to verify that /r* = J^**. Finally, consider Q G ZX(U) = $,(£/).

Then

S = <Mß x G/H) G <&m+x(*-lU),

and reasoning as above with Tr replaced by Tr + S we obtain

f      •qr=f       ^*.
JT, + S JRr + Q

Consequently, Rr is absolutely ^-minimizing with respect to U and the remarks in

the first paragraph imply that spt R n X '{ y: I yl < r) l% smooth. We conclude

that spt R, hence (spt T) n (tr~xU), is smooth.

5.2. Remark. The conclusion of the lemma also holds in case m = n — 2 and

T G l„(M0). To verify this one uses [SSA, II.7] in place of [Fl, 5.3.20] in the proof

of the lemma.
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5.3. Corollary to Theorem 4.4. Assume m G {« — 1, « - 2} and * is elliptic

and of class 3 on M. Then

spt T nintK r\ M0~ spt 37"

is an n-dimensional G-invariant submanifold of class 2 of M.

Proof. Using local coordinates in W = tt(Kq ~ spt dT), K0 = int K n Af0, and

using [Fl, 4.2.1, 4.3.4 and 4.3.6] as in the proof of Lemma 5.1 we cover W with

open sets U such that

Tu = TL-n~xU G ln(M),       spt Tv c K0,       spt 37^ c boundary U.

Since T'y is homologically ^-minimizing with respect to K0 and is invariant by

Theorem 4.4, we can apply Lemma 5.1 or Remark 5.2 with Af0 replaced by K0 to

infer that spt T n U is smooth.

5.4. Remark. For integrands which are close to the area integrand one has much

more information concerning the regularity of spt 7". Recall that x G spt T —

spt dT is called singular if there is no neighborhood U of x such that U n spt 7" is

a connected «-dimensional manifold of class 2.

It is a consequence of [SSA, II.8] that there exists a neighborhood % of the area

integrand in the class 2 topology such that the following is true: If ¥ G % is a

positive elliptic integrand of degree « and class 3 in M and T G Sln(Af) is

G-invariant and homologically ^-minimizing with respect to M, then no singular

point of 7" lies on an orbit of dimension greater than « — 7.

6. Minimizing currents in M¡. Assume that Af£ is orientable (which follows in

particular if H,(A/; Z2) = 0 [BG, IV, 4.4]); this, together with orientability of A/0,

implies that the standard fibre Y = G/H and the bundle 911^ are orientable. Also

assume that the action of G on y preserves orientation; in view of Corollary 4.2

this assumption will result in no essential loss of generality, while the first example

on [BG, p. 189] shows that it does not imply orientability of A/J. Denote K* =

ir(K n Af0) and L* - it(L n Af0). Assume 1Xr+x(L) = 0.

6.1. Orientability of 91t„ implies that the structure group 9t(//)/// can be

reduced to the subgroup % of orientation preserving transformations of Y. From

now on we will regard % as the structure group of 91^; as remarked in 2.2,

coordinate functions for 9ltn, hence admissible maps of the fibre Y, are equi-

variant.

Assign an % -invariant metric to Y such that <5C"(Y) = 1, choose a unit orienta-

tion w0 G tfy"(Y), and denote by Y the «i-vector field on Y such that <T, w0> = 1.

There exists a unique smooth unit m-vector field v on A/0 such that

/ty=(Ko7r)v|/(7)

whenever/: Y —> M0 is admissible. Furthermore, v is G-invariant. Let ß G Sm(Af0)

be dual to (F ° tr)v with respect to the metric b. Then £2 is G-invariant, |S2| =

1/F ° m, and /sfi = <o0 whenever / is admissible. One uses fi to show that the

action of G preserves orientation of M.
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The projection operator for 91LQ is the continuous linear map

of degree -m such that for T G ^(Af,,),

P^(T) = (-ir(*-"%(7"Lfi),       m< k,

P*diT) = 0,        m>k.

The lifting operator for 91tn is the linear map

L^-.M^M^^M^Mo)

of degree m characterized in [BD, 3.2]. Le^R) is locally equal to the image of

R X Y under a bundle coordinate map. Finally,

J°^ ° L^(R) = R

whenever R G MX^(M^). We remark that although L^ has a unique extension to

a chain map defined on the chain complex spanned by MX^(M0) [BD, 3.3], such an

extension does not exist for P™ unless dû = 0, which is true only if Hm(A/0; R) ¥=

0.

6.2. Lemma. Suppose R0 G M}°C(A/;J) and T0 = L^Rq. Then

(i) T0 G Mxk°lm(M0) and^\\T0\\ = P0IILF,

(ii)/or 117" 11 almost all x G M0,

f0(x)= AA(^o(«))AvW

whenever Xx is a linear right inverse of-n^Tx(Mo), and

(iii) JT ty = fR"ír* whenever ^ is a positive integrand of degree k + m on M.

Proof, (i) is [BD, 3.2 and 4.9] (for the proof of which it is not necessary to

assume G connected), (ii) follows from [BD, 3.3(4)]. (iii) follows from (i), (ii) and

the definition of ^* in 2.5.

6.3. Lemma. Let ^ be a positive integrand of degree k on M.

(i) To each T0 G ^¡^(Mq) with JT ^ < oo and spt T0 c K there corresponds a

unique T G $lk(M) such that

T\tyk(M0) = To   and    [*=[*.

(ii) Let k = «. Then La^ induces a one-to-one correspondence, also denoted Le^,

between

<&* = ^„(A/o*) n { R: j ** < oo, spt R c K*\

and

% = %(M) n {T: spt 7" c K,gsT = 7>r g G G}.

(iii) Let k = « and denote

%*={Q + dP:PG ®%im+t(M$)> \\P\\(V) < oo, Q G ^m(A/0*), spt Q G L*).

Then

LgJ® * n <&*) = <&H(M, L) n a.
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Proof. Choose a neighborhood U of K and X > 0 so that ||a|| < X^(a) for

x G U and a G /\kTx(M). Then M(7"0) < X/r^ < oo and so there is a unique

T G Mk(M) such that

T\<&(M0) = T0   and    || 7"||(M ~ A/0) = 0;

7" is clearly rectifiable. Moreover,

(*-(*=/"        ^(f)i/||7"||,

whence follows (i).

In case k = « we infer using Lemma 3.5 that if 7"0 is also invariant then 7"0 is the

restriction to ^"(Af,,) of a unique T G Sl„(M); T is clearly invariant. Furthermore,

it follows from [FF, 8.16], [BD, 4.2], Lemma 6.2(iii) and the proof of the last

assertion of Lemma 4.1 that L^, maps SI* univalently onto

S^(a/0) n f T0: f * < oo, gs7"0 = 7"0 for g G G, spt 7"0 c JT

(ii) is now clear.

In order to verify (iii) we first consider P, Q as in the definition of S3* with

Q + dP G SI*. Denoting 7" = L^(Q + dP) G SI we infer using Lemma 6.2(i)

that there exists S G %+x(M) such that S\6Un+x(Mo) = L^P, hence

spt^S - 7") c L u (M ~ A/0).

Moreover, ||S||(A/ ~ A/0) = 0 because DC + 1(M ~ A/0) = 0, hence [BD, 4.2] im-

plies that S is invariant. Consequently, Lemma 3.5 implies that spt(3S — 7") c L.

On the other hand, suppose dS + T G SI with S G % + x(M), T G %(M),

spt T g L. Using Lemma 3.1 and the fact that W+X(L u (Af ~ M0)) = 0 we

infer that S is invariant hence there exists P G Sl^.m+1(Af*) such that

£<at/ " S\6iy+\M0); moreover, ||P||(F) < oo by Lemma 6.2(i). Denoting R =

PytßS + 7") G SI* we conclude with the help of [BD, 3.3(8)] that

T\W(M0) = L^(R - dP),

hence spt(R - dP) c L*.

6.4. Theorem. Let If be a convex positive even G-invariant integrand of degree «

on M. Fix 0 =£ R G SI* (in the notation of Lemma 6.3) and denote

u* = infM       **: Q G SJ * n Sl*J,    T = L^R St„(M).

Assume cXT(B) = 0 where

B = Mo n spt dT ~ L = A(spt dR ~ L*).

Then T is homologically ^-minimizing in K with respect to (Af, L) if and only if

Proof. Suppose JR^* = ft* and 7", G Sl„(Af) is homologically ^-minimizing in

K with respect to (Af, L) with T - Tx G %n(M, L) (see 2.4). Then

A/0 n spt 37, ~ L c B,
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and in view of the fact that || T\\((M ~ M0) u B) = 0 = || 7, ||(5) by Lemma 6.3(i)

and [Fl, 4.1.20 and 2.10.6] we infer from [BD, 4.2] that 7" satisfies the assumptions

on 7" in Lemma 4.3 with T replaced by Tx. Consequently, Theorem 4.4 implies that

Tx is invariant, and referring to 6.1 and Lemma 6.3 we conclude that

*i = P<*TX G Sl^m(A/*),        spt RXG K*,        R - Rx G $ * n SI*.

Thus by Lemma 6.2(iii),

f ** >  f ** = f * > f * = f **.
JR, JR JT JT, JRX

Finally, we suppose 7" minimizes ^ and use Lemma 6.3 to infer that whenever

Q g Sa* n SI*,

(-**=(*<{ * = f      **.
JR JT JT+L^Q JR + Q

6.5. Remark. It follows from [Fl, 2.10.25 and 2.10.45] that

3C(ß) = 0   if and only if '^-'"(■nB) = 0.

7. Examples.

7.1. An orthogonal action of S1 on R3 can be represented as the action of a

one-parameter subgroup G of SO(3). The members of G have a common eigenvec-

tor v; denote by A the linear subspace spanned by v. Then G is the group of

rotations of R3 about A. Let c, and c2 be circles centered on A lying in planes

orthogonal to A and oriented in the same way. Let Ac, and k2 be integers,

Q = kxcx + k2c2, and T be an absolutely area minimizing rectifiable current with

37"= Q. Then by [Fl, 5.4.15], spt T—(c, u Cj) is a smooth 2-dimensional

minimal submanifold of R3 which is a surface of revolution by Theorem 4.4. It is

an elementary exercise in differential geometry to show that spt T is a subset of the

union of a catenoid and the discs spanned by cx and c2.

7.2. Let S3 = C2 n {(z, w): \z\2 + \w\2 = 1} and k2 > kx > 0 be relatively prime

integers. We define an orthogonal action of S1 on S3 by means of the function

which for a G R maps (z, w) to (e'k,az, e'*2°W), and denote the corresponding

subgroup of SO(4) by Gk k . Each Gk k represents a distinct action of S1 on S3,

and each closed one-parameter subgroup of SO(4) is conjugate to some Gk k .

Let cx and c2 be oriented geodesic circles in S3 which are invariant under the

action of Gk k, p and q be integers, Q = pcx + qc2, and T be an absolutely area

minimizing rectifiable current with 37" = Q. In contrast with the preceding exam-

ple the existence of inequivalent actions of S1 on S3 gives rise to many more

possibilities for T; in fact, there may exist no Gk¡ ¿^-invariant T. The case where

cx = s3 n c x {0},     c2 = s3 n {0} x c

is particularly interesting because in this case Q is Gk k -invariant for all choices of

Ac,, k2. We assume the orbits of Gk k to have the orientation induced by the natural

orientation of S1; this means in particular that c, and c2 have their usual orienta-

tions when regarded as subsets of C
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As we saw in §6, in order to understand the structure of an invariant T it is

sufficient to study the solutions to a suitable one-dimensional variational problem

in the orbit space Xk k = S3/Gkfc = trk¡k (S3). The structures of these spaces are

presented in detail in [HL, Chapters III and IV]; assuming /c, > k2 > 0 we sum-

marize the discussion therein:

(1) Xk k is a smooth manifold which is diffeomorphic to S2.

(2) For Ac, = Ac2 = 1 all orbits are principal and the projection «r,,: S3 —* Xxx is

the Hopf map.

(3) For /c, > Ac2 > 1 all orbits except c, and c2 are principal and have trivial

isotropy groups, c, and c2 are exceptional orbits with isotropy groups Zk and Zk ,

respectively. If Ac2 = 1 then c2 is a principal orbit.

(4) Define fRx(0,ï)^S3 by

Mfl, *) = (cos(*/2), e" sini>/2)).

Then mk k ° \p is an immersion onto Xk k — {c,, c2}.

(5) With respect to the coordinates induced by «¿^ ° \p the metric b„ of 2.2 is

given by the formula

\[k2 sin2 <f>(Ac2 cos2(<i»/2) + k\ sin2(<f>/2))-1 dB2 + d<b2].

Further, the volume function is

V(9, <f>) = 2-!r(k2 cos2(<í>/2) + k\ sin2(</>/2))1/2.

(6) If ^ is the two-dimensional area integrand on S3, then the associated

integrand ^* on Xk k ~ {c,, c2} is V77/2 times the length integrand with respect

to the metric

b*(9,<¡>) = (2/^)(v\)(9,<¡>)

= k2 sin2<f> d92+(k2x cos2(<>/2) + A:2 sin2(</>/2)) i/</>2.

(7) b* extends to a metric of class 2 on XkJc which is the metric of a surface of

revolution on which cx and c2 correspond to axis points and <f> and 9 respectively

parametrize the longitudes and meridians. In case Ac, = 1 = Ac2, b* is the metric of

the unit sphere S2 in R3.

(8) The normalizer 9t(GA k) of Gk k in SO(4) is the torus acting on S3 by

means of the function which for (u, v) G R2 maps (z, w) to (e'"z, e,vw). The group

^(Gk¡yk)/Gki¿2 acts on Xk fc and preserves the coordinate <i>, hence acts as the

group of revolutions of Xk k (about the axis through c, and Cj).

(9) For each a G R the longitude ya consisting of the closure of these points of

Xk k ~ {cx, c2} with 9 coordinate equal to a is (when properly parametrized) a

geodesic on Xk k with endpoints c,, c2. ya u yn+a is a closed geodesic whose

inverse image rkJc.a = w*^ (ya u yn+a) is a minimally immersed torus, and any

two of these surfaces are congruent. In particular, rk k ;0 is the real algebraic

variety

S3 n {(z, w): Im z*^v*' = 0}
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discussed in [Ll, §7]. t, ,.a is congruent to the Clifford torus

S3n {(z,w):|z| = |H}-

The immersion 4>: R2 -» S3 defined by

$(<i>, a) = (e'*'a cos(<b/2), eKk>a+a) sin(<i>/2))

maps R2 onto Tk k .a. Moreover,

%,k2;a = ^",!*2(yJ ~ (¿i U c2)

is the image under 4> of (0, it) X [0, 2w), hence is an embedded cylinder. We orient

ok k .a so that the current

%,*,;„ = ®M *) x [0, 2*));

this implies that

d°kx,k,;a  = ^2 -  Vl"

Finally, note that ok k .a is Gk k -invariant and that if ax, a2GR then there exists

F G SO(4) such that F%akiJcJt- o*^.

Theorem. Let T G Sl^S3) be absolutely area minimizing with spt 37" = c, U c2,

and kx, Ac2 be relatively prime positive integers. Then T is Gk k -invariant if and only if

there exists an integer r such that

dT = r(k2c2 — Ac,c,).

If T is Gk k -invariant, then there exist

ß - ± 1,        ajGR,        0 < a, G Z,       j =\,...,v,

such that r = ß(ax + • ■ •  +a„) and

V

T =  ß S   "jOk^a,-
y-i

Proof. Assuming 37 = r(Ac2c2 — kxcx) we apply Theorem 4.4 with T' = rok k ;a

and conclude that 7" is invariant.

In that which follows we always refer to the metric b* on Jt t. Setting K = S3

we denote the lifting operator of Lemma 6.3(h) by Lk k, or simply L, where the

form <o0 G ^'(S1) used in defining L (see 6.1) is positively oriented with respect to

the usual orientation of S1. Observing that

SI* = {R\^{X^ki ~ {cx, c2}): R G %(Xkvk))

we see that Lk k induces an isomorphism

LkX- %(**,*) - ^(S3) n { 7": 7"' is G^.^-invariant).

Furthermore, in this case the set SJ* of Lemma 6.3(iii) (with L = 0) is equal to

<$>x(Xk¡k ). Finally, we observe that if ya is oriented so that 3ya = c2 — cx then the

current i^^ = Lk¡J¡2(ya). (See [BJ1, 3.5(6)].)

Suppose T is G^¿^-invariant. Then there exists R G %lx(XktkJ such that T =

L(R); moreover, R minimizes length by Theorem 6.4. [Fl, 5.3.20] implies that

spt R ~ {cx, c2} is smooth, hence there exist

Oj G R   and   0 ¥= ßj G Z,      j = 1, . . . , v,



178 J. E. BROTHERS

such that

R = ßiya,+ • • ■ +ß,y<

Thus
V

and

37" = 2 ^,(^2 - Vi);

inasmuch as 7 minimizes area, the latter expression implies that all ßj have the

same sign.

Remarks. (1) It follows in particular from the theorem that although pcx + qc2

G SI, (S3) is invariant under the action of every Gk¡k, for a given pair of nonzero

integers p, q there may exist no 7" G Sl^S3) with 37" = pcx + qc2 which is invariant

under a given action.

(2) The classification of those area minimizing rectifiable currents T with

37" = rcx can be carried out in a manner similar to the above through application

of our theory to the group Gr0 using the discussion of the orbit space S3/Gr0 in

[HL, Chapter III]. However, the structure of such currents also follows directly

from [BJ2, 4.5]; in particular, the group action is irrelevant:

There exist oriented two-dimensional great hemispheres ox, . . . , oy and

ß - ± 1,        0 < ttj G Z,      j=\,...,v,

such that doj = c„ r = ß(ax + ■ ■ ■ + aj and

T =  ß 2  CLjOj.
j-i

(3) Finally, to complete the classification of those area minimizing rectifiable

currents 7" with 37 = pcx + qc2, we observe that if pq > 0, then

3F„7" = qc2 - pcx

where F is the isometry of C2 such that F(z, w) = (z, w). The structure of F$T can

now be inferred from the theorem.

7.3. Let M = RA x RA = R2*, X > 2, and G be the subgroup of 0(2À) generated

by SO(A) X SO(X) u {a}, where we define

o(x) = (xx, -x2, . . . , -A) G Rx    for x G R\

a(x,y) = (y, o(x)) G Rx X RA    for (x,y) G RA X R\

We also denote by SO(À — 1)' the isotropy subgroup at e, of the action of SO(X)

on Sx~l. Note that each isotropy subgroup G(j(iy) is conjugate to Gq^ ^e¡). In view

of the fact that a is in the normalizer of SO(A) X SO(A) it is not difficult to verify

that for r, s G R, G(re ̂ e ) is generated by
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SO(X- 1)' X SO(X- 1)'U {a2},    forO¥=r¥=s¥=0,

SO(X - 1)' X SO(X - 1)' u {a},      for r = s ¥° 0,

SO(X - 1)' X SO(X) u {a2}, for r + 0, s = 0,

G, for r = j = 0.

Consequently, the orbit G(x,y) is principal for 0 ¥= \x\ =£ \y\ ¥= 0, special excep-

tional for |jc| = \y\ ¥= 0, and singular for |jc| \y\ = 0 (but in verifying this one must

keep in mind that a2 G SO(X - 1)' X SO(X - 1)' if and only if X is odd).

Inasmuch as G is not connected, the principal orbits are not connected. Further-

more, the union of the set of nonprincipal orbits contains

S = RA X RA n {(x,y): \x\ = \y\},

which contains the support of a nonzero invariant rectifiable current of dimension

2X — 1, hence the conclusion of the fundamental Lemma 3.5 is not true. Note also

that G does not lie in SO(2X), hence the proposition in [L2] asserting existence of

invariant solutions to the least area problem does not apply.

Assign an orientation to SA~ \ denote

e = sA-' xsa-'gsi1a_2(a/),

and suppose T G ^l2X_x(M) is absolutely area minimizing with 37" = Q. It is

shown in [Fl, 5.4.17] that if 7" were G-invariant, then spt 7" would be equal to

S n {(x, y): \x\ < 1}, a contradiction to the regularity theorem [Fl, 5.4.15] in case

X = 2 or X = 3.
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