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HYPERBOLIC BIRKHOFF CENTERS

BY

I. P. MALTA

Abstract. The purpose of this paper is to show that if / is a diffeomorphism of a

compact manifold whose Birkhoff center, c(f), is hyperbolic and has no cycles,

then/satisfies Axiom A and is i2-stable. To obtain a filtration for c(f), the concept

of an isolated set for a homeomorphism of a compact metric space is introduced.

As a partial converse it is proved that if c(f) is hyperbolic and / is ii-stable, then

c(f) has the no cycle property. A characterization of S2-stability when c(f) is finite

is also given.

Introduction. In this paper we consider a diffeomorphism / of a compact

manifold M whose Birkhoff center is hyperbolic. We prove that if such a diffeo-

morphism / has no cycles, then it satisfies Axiom A and is ñ-stable.

We denote by Í2 = ß(/) the set of nonwandering points of /. Smale's Axiom A

requires

(a) ß has a hyperbolic structure.

(b) The periodic points are dense in fi.

In Smale's paper about ß-stability [9], he proved that if / satisfies Axiom A and

has no cycles, then / is i2-stable (for an easier proof see [6]). Later on, Newhouse [5]

showed that if the closure of the a-limit set of /, denoted by L~, is hyperbolic and

does not admit cycles, then/satisfies Axiom A and has no cycles, and therefore/is

ß-stable. In this paper we obtain the same conclusions by requiring the condition

of hyperbolicity and the property of having no cycles for a subset of L~, the

Birkhoff center of /, denoted by c(f). We define c(f) to be the closure of the set

{x G M\x G a(x) n w(x)}, where a(x) and u(x) are the a-limit and co-limit sets of

x for /. Our main result is the following theorem.

Theorem B. If c(f) is hyperbolic and has no cycles, then f satisfies Axiom A and

has no cycles. In particular f is 0,-stable.

We also prove, following [7], a partial converse of this result.

Theorem C. // c(f) is hyperbolic and f is Ü-stable, then c(f) has the no cycle

property. In particular, c(f) = ß(/).

In order to prove Theorem B, we initially consider a homeomorphism S of a

compact metric space K. We introduce some concepts which generalize others used

in the study of a diffeomorphism of a compact manifold. In this context, the basic

concept introduced is the one of isolated set for a homeomorphism. As we show in

Proposition (1.2), isolated sets have a fundamental property valid, in the case of a

diffeomorphism, for hyperbolic sets with local product structure: if there exists a
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decomposition having no cycles, we may obtain a filtration for the elements of this

decomposition. We show then that if c(f) is isolated and satisifies the above

hypothesis, then c(f) coincides with the nonwandering set of /, ñ(/). More

explicitly, we say that a compact set A c K is isolated for / if it is invariant by /

(i.e., /(A) = A) and there exists a neighborhood U of A such that A is the maximal

invariant set for/ in U, that is, n„ez/"(i/) = A. We then prove the following

theorem.

Theorem A. // c(f) is an isolated set Sor f and admits a decomposition c(f) = A,

U • • • U A, into isolated sets having no cycles, then c(f) = fi(/).

From this theorem we prove the main result of the paper, Theorem B, as stated

above. The idea of the proof is as follows. Let /be a C diffeomorphism, r > 1, of

a compact C°° manifold without boundary, whose Birkhoff center c(f) is hyper-

bolic. From Anosov's Closing Lemma we can show that c(f) coincides with the

closure of the set of periodic points of /, denoted by P. Then using Newhouse's

theorem [5] relative to the decomposition of P into basic sets, we obtain a

decomposition of c(f). Theorem B then follows, showing that this decomposition

satisfies the hypothesis of Theorem A.

In §1 we establish some notation and introduce the definitions in the context of

compact metric spaces. In particular, we define an isolated set for a homeomor-

phism of a compact metric space, which generalizes the idea of hyperbolic sets

having local product structure for a diffeomorphism of a compact manifold. In

analogy to the invariant manifolds of a hyperbolic set [3], we associate invariant

spaces to an isolated set. We obtain, in this context, well-known results for

diffeomorphisms, including a filtration lemma, that we use in the proof of Theorem

A.

In §2 we restrict our considerations to diffeomorphisms of a C°° compact

manifold. We restate the definition of a hyperbolic set having local product

structure for a diffeomorphism and recall some known results. These results enable

us to show that such sets are isolated. Also the invariant manifolds coincide with

the invariant spaces as defined in § 1. We prove Theorem B making use of Anosov's

Closing Lemma, Newhouse's theorem for the decomposition of P and Theorem A.

In §3 we prove Theorem C. For this purpose, we introduce the concept of

/'-stability; that is, the stability of the closure of the set of periodic points of a

diffeomorphism / We prove that if P = Per(/) is hyperbolic and / is P-stable, then

P has the no cycle property. This result is similar to the one known as ñ-explosion.

In fact, the proof of the above result is essentially the same given by Palis in [7].

We observe that to prove our main result, we need to consider the restriction of a

diffeomorphism to certain invariant subsets of the ambient manifold, which do not

have in general a differentiable structure. This is the main reason to study isolated

sets for homeomorphisms in the first part of the paper, where Theorem A is

proved.

We also point out that Theorem B implies a positive answer to a question posed

by Newhouse in [5].
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1. Isolated sets. In this section we will define isolated sets for a homeomorphism

of a compact metric space K, which generalize the idea of hyperbolic sets with local

product structure of a diffeomorphism. In analogy to the invariant manifolds of a

hyperbolic set for a diffeomorphism, we will associate two invariant spaces, called

the unstable space and the stable space, to each isolated set for a homeomorphism.

We can therefore consider the notion of cycles in a disjoint family of isolated sets.

The basic result of this section is Proposition (1.2). From it we obtain a Filtration

Lemma (1.8) and Lemma (1.9) which will be used to prove Theorem A.

Here / is a homeomorphism of a compact metric space K. We denote by P the

set of periodic points of/ and by ß the set of nonwandering points of/. That is,

ß = {x G K\ given a neighborhood U G K of x and n0 > 0,

there exists n G Z with \n\ > n0 such that/"(t7) n U ¥= 0}.

For a subset D c K, D will denote its closure in K, and int D will denote its

interior in K. For each x G K, we denote by &(x) the orbit of x, and by 0_(x) and

© + (*) the negative and positive orbit of x, respectively. Let x, y G K. We say that

y G a(x) if there is a sequence of integers «, —> oo such that/~^(x) —*y as / —> oo.

In a similar way, we define co(jc) to be the set of y G K such that there is a

sequence of integers «, -» oo such that f">(x) —>.y as i!-» oo. The set ct(x) is called

the a-limit set of x and u(x) is the co-limit set of x. Notice that <x(x) (or w(x)) is

closed, nonempty and invariant under/, that is, f(a(x)) = a(x) for every x in K.

Definition. A compact subset A c K is isolated for the homemorphism /:

AT —> AT if it is invariant under /, that is /(A) = A, and if there is a neighborhood U

of A such that Pi nfEZ/"(£/) = A.

In the sequel A c K is assumed to be an isolated set for /. As in the case of

hyperbolic sets for a diffeomorphism, we associate to an isolated set A, invariant

spaces, WS(A) and W(A), called the stable space and unstable space of A,

respectively, defined as follows:

W(A) = {x G K\a(x) c A}    and    WS(A) = {x G K\u(x) G A}.

If U is a compact neighborhood of A such that  C\n(=zSn(U) = A, we define

WUA, U) = n n>0S'"(U) and H^A, U) = H n>QSn(U). Thus we have W°(A)

= U n>0/"Woc(A, £/)),   W(A) = U B>o/"(^£c(A, U))   and   W°Xoc(A, U) n

WX^(A, U) = A.

We consider in WXoc(A, U), o = s,u, the topology induced by the metric in K.

Let t/bea compact neighborhood of A such that n„eZ/"(tV) = A. If F is a

compact neighborhood of A in rVXoc(A, U) such that /( V) c V, we call the set

D = V - f( V) a fundamental domain for W^A, U). In a similar way we define a

fundamental domain for ^^.(A, U). We observe that if x G WS(A) - A, then

there exists an integer k such that fk(x) G D. If D n A = 0, we call D a proper

fundamental domain.
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(1.1) Proposition. If A is an isolated set for f, then

D> = WUA, U) - f(WUA, U))

is a proper fundamental domain for WXoQ(A, U).

Proof. We need only to prove that A is contained in the interior of

flWUA, U)) in W^A, U). In fact, f(W^(A, U)) = f(U) n ^(A, U), thus
A c /(int U) n f*7oc(A, U) g KW^A, U)) and/(int U) n WXSX(A, U) is an open

neighborhood of A in WXoc(A, U). So we have Ds n A = 0.    □

The following fact is a basic one for our study since it enables us to obtain

several results, including a filtration lemma, which we will use in the proof of

Theorem A. Notice that it generalizes an analogous result for hyperbolic sets with

local product structure for a diffeomorphism [4].

(1.2) Proposition. Let V be a neighborhood of Ds in K. Then U' = W^A, U) u

6 + ( V) is a neighborhood of A in K, where 0+ V = U n>oS"{V).

Proof. Let us suppose the statement is false. Then if W is a neighborhood of A

in K, we have W <Z_ U', that is, there is a sequence xn G U — U' which converges

to x in A. Since xn G Wxuoc(A, U) = (Jn>0 S"(U) we have ©_(*„) £ U. For each n,

let mn > 0 be such that S~k(x„) G U for 0 < k < m„, but A^ + 1)(x„) G U. Thus

yn = S ""(Xn) G U — /(t/). We observe that mn -h> oo as n —» oo since A is compact,

/-invariant, and xn —» A. We can assume that yn converges to y G U. We now

claim that y G WS(A) - A. It is clear that y <$. A since A c int /( V), thus all we

need to prove is y G WS(A). But if y G WS(A) there exists k > 0 such that

Sk(y) & U, so for n sufficiently large we have /*(>"„) = S~m"+k(x„) G U. Since

mn —> oo as n —> oo, 0 < mn — k < mn for n sufficiently large, which gives a

contradiction. Thus y G W^A) and we can choose k0 G Z such that/*°(_y) G Ds.

Then fk°(yn) = f~m" + k°(xn) G V when n is large and so xn G U' contradicting our

assumption.    □

(1.3) Lemma. Let A,, A2 c K be isolated sets for f such that A, n A2 = 0. Then

(i) ~w\ax) n H^(A2) ̂  0 ^~w\ax) n ws(A2) # 0,
(ii) W(AX) n ^"(A2) *= 0 =* rVu(Ax) n *Ha2) ¥* 0

where W°(A(.) is the closure of W(A¿, and W°(A¿ = ^"(A,) - A,./or / = 1, 2 and

o = s, u.

Proof. Let U be a compact neighborhood of A2 such that n„ez/"(£/) = A2,

and let Ds = DS(A2, U) be a proper fundamental domain for rVXoc(A2, U).

(i) Let xn G W(AX) such that x„ -h> x G ~W"(AX) n A2, and let F = U„>06(jc„).

Then F c WU(AX) and so we need only to prove that F n Ds ^=0.

Given any neighborhood V of Ds, with V n A2 = 0, let tV' = W1^C(A2, ¿7) u

0 + (K) and k > 0 such that x¿. G ¿A Since xk G ^"(A2) (recall we have xk G

rVu(Ax)) there is nk > 0 such that x* G/n*(K). Thus U„>0 ©(•*„) n F ^ 0 for

every F, which implies F C\ Ds =£ 0.

(ii) If x G Tf^A,) n ^U(A2) then 0 ^ a(x) cTF"(A,) n A2.

Thus W(AX) n WS(A2) ̂  0 and from (i) we have "^(A,) n W^AJ ¥* 0.    D
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Let A,, A2, . . . , A, c K be disjoint isolated sets for/.

Definition. A cycle for the family {A,.},._, , is a sequence A,., . . . , A, such

that A,. = A,, and Wu(\t) n W'(A.   ) ¥° 0 for I <j < k.

Remark. The sequence A,, . . . , A, = A, is a cycle if there are points

xx, . . . , xk_, such that x¡ G U* _, A^, a(xj) G A, and u(xß c A, + ] for 1 < j < k.

(1.4) Lemma. Let {Ax, . . . , A,} be a family of disjoint isolated sets for f having no

cycles such that Kg U ,_, ^"(A,). Then ifWî'(Ai) n W(A^ ^ 0 (or W"(A¡) n

Ws(Aj) t^ 0, // i = j) there exists a sequence A, = AJo, . . . , AJk= A, such that

Wu(AJa) n Ws(\_) # 0for 1 < a < k.

Proof. Lemma (1.3) implies that TF^A,) n Ws(Aj) * 0. Let x G ~W"(A,) n

^(A,.^. Since AT c U i_i ^"(A,), there is 1 < /, < / such that x G W"(Aj).

Then x G Wu(Aj) n »"(AJ. But x G W"(A¡) n W"(Aj) and so, by Lemma

(1.3)(ii), we have W(A,) n Ws(Aj ) ¥= 0. Now assume A,,..., A, are defined for

/> < / such that A,. ^ A,, for 1 < a <p, W"(A¡ ) n Ws(k,   ) ^ 0 for 1 < a < p
- ^   Ja Ja Ja-I

and W(Ai) n ^"(A,- ) =£ 0. lfjp ¥= i we can obtain Ay + by the same process used

to get A.. Notice that the assumption of no cycles implies that A, ^ Ay if a ¥= ß.

Since 1 < ja < / we must have/, = / for some a which proves the lemma.

(1.5) Lemma. Let A be an isolated set for f and x G K. If a(x) n A =£ 0 but

x G WU(A), then

(i) a(x) n WS(A) ¥= 0,

(ii) a(x) n WU(A) * 0.

Proof, (i) Let U be a compact neighborhood of A such that nneZ/"(¿V) = A

and let Ds = DS(A, U) be a proper fundamental domain for W^ocCA, U). It suffices

to prove that given a neighborhood V of Ds such that V n A = 0, we have

6_(x) n V t¿ 0. By Proposition (1.2) we know that U' = »^(A, ¿7) U 0+ Kis a

neighborhood of A. Since a(x) nA^0, there exists k > 0 such that/~*(x) G ¿A

But x <2 W"(A), thus/"*(x) G ^(A, Í7) and so/"*(x) G fn(V) for some « > 0,

which implies 0_(x) f\ V ^ 0.

(ii) Let U be as above such that x G ¿7. Since /( If ,ioc(A, (7)) c W^A, U) we

have 6_(x) n WToc(A, (7) 7e 0. Let xA = /"'"(x) G U, with w* -> oo as k -» oo, such

that rt-»z6A, Since x* G WiUA, Í/) we have 6 + (xk) £ U. For each k > 0, let

mt > 0 be such that /""(x*) G (7 for 0 < m < mk but /"v+1(xA) £ (7. Then yk =

/m'(x¿) G (U - f~x(U)) and mk - nk < 0, that is>>¿ G 0_(x) for, if not, we would

have 0 < nk < mk and so fnk(xk) = x G U, which is a contradiction. We state now

that mk —> oo as A —» oo. Indeed, given N GZ +, there is A:0 > 0 such that x¿ G

D %>oS~n(U) for every A: > A0, since xA converges to A. Then S"(xk) G U for

0 < n < N and so mk> N for every A; > k0. We can assume that yk converges to

y G U - f~x(U) and we state that y G WU(A). It suffices to prove that y G

W"(A), since A c int f~x(U). If y G W(A), there exists/ > 0 such that f~J(y) G

U. Thus, there exists k0 > 0 such that for every A: > k0 we have mk — j > 0 and

f"k~J(xk) = f'J(yk) G Î/, which is a contradiction since 0 < mk - j < mk.    □

From this lemma we obtain immediately the following result.
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(1.6) Corollary. If {Ax, . . . , A¡} is a family of disjoint isolated sets for f such

that a(x) G UÍ=, A,- for every x G K, then a(x) G A, for some i = 1, . . . , /, that

is,K= UÍ_, W(A¡).

In the proof of the Filtration Lemma which follows, we will need the following

lemma that appears in [9].

(1.7) Lemma. Let F be a compact f-invariant subset of K and Q be a compact

neighborhood of F such that H „>o Aß) = F- Then there is a compact neighborhood

V of F such that V G Q and f(V) c int V.

(1.8) Filtration Lemma. // (A,, . . ., A,} is a family of disjoint isolated sets for f

having no clycles such that a(x) C U i_i A,/or every x G K, then

(a) there exists a filtration for the family, that is, there are compact sets 0 = K0 G

KXG ■ ■ ■ G K,= Ksuch thatf(K¡) c int K¡ and n„eZ/"(A, - K¡_x) = A,..

(b)ß(/)c ni., A,.

Proof, (a) We define the following relation on {A,}'_,: A, < A- if there is a

sequence A, = A^, . . . , AJk = A,, such that WU(AÁ ) n ^(A^) ¥= 0 for 1 < a <

A. By the assumption of no cycles this relation is a partial ordering. It induces a

total ordering A, < A2 < • • • < A, of the family where A, < Ay if A, < A; but

A, ¥= Aj. We define Kj by induction. Let K0 = 0 and assume we have defined

compact sets 0 = K0 c Kx c • • • G Kj forj < I such that

(i) /(*,) c int *,,

00 n»sïm - *,_>) = A, for 0 < i< j.
Let F = U¡<J+X rVu(A¡). We claim that F is closed and F n A* = 0 for A >j +

1. Indeed let (xn) be a sequence in F converging to x G K. We can assume that for

every «>0we have xn G W(A¡) for some fixed i < j + 1. From Corollary (1.6)

we know that there exists 1 < A < / such that a(x) G Ak, that is, x G Wu(Ak).

Then x G TF"(A,) n Wu(Ak). By Lemma (1.4) we conclude that Ak < A, and so

k < i < j + 1, that is, x G F. Clearly F n Ak = 0 for A >j + 1.

Now let Q c K be a compact neighborhood of F such that Q n (U^+i A,) =

0 Thus n,^ Aß) = F for if x G n„>0A2), then f'n(x) G Q for every

n > 0, that is, 0_(x) c Q, and therefore a(x) c Q. Thus a(x) G A¡ for some

i < j + 1, so x G U ,•<;■+1 W"(A() = F. Since F is invariant by / we can use

Lemma (1.7) and obtain a compact neighborhood V}, c Q of F such that/(Fy) c

int(I^). Let iÇ+, = Ä, u Fj. Then we have f(KJ+l) c int KJ+X and we need only

show that n„eZ A/Ç+i — /Ç) = A7+,. First we observe that

s = n /-(*,+, - 5)
nez

is closed for if xk G S is a sequence converging to x G K, then/n(x) G KJ+X for

every n G Z since A^ + , is compact. Suppose, to achieve a contradiction, that there

exists n G Z such that /"(x) G Ä,.. Then /" + 1(x) G int(Kß and thus S" + \xk) G

int Ä, for large A, which contradicts the fact that xk G S. Thus a(x) c S for every

x G S, so a(x) c A7+, for every x G S, that is, S G rVu(Aj+x). Similarly w(x) c 5

for every x G S. Thus using the dual of Lemma (1.5) we can conclude that
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S c Ws(Aj+x). Then S G WU(AJ+X) n Ws(Aj+x) = Ay+1. Now we observe that by

Corollary (1.6), K = \J \_x WU(A,) and so K, = K.

(b) It suffices to prove that if y G K - Lj'_, A„ then there exists' G 6 (y) and

a neighborhood V of y' such that /"( V) n V = 0 for every /j > 0. Choose Ay such

that a(y) c A, c (int K¡) - Kj_x. Take y, G 0(.y) such that 0_(.y,) c ^, - A}_,.

Since j', G Ay, there exists a number «0 > 0 such that y2 = f°(yx) G AJ, — A^_,.

But ©+(>»,) C A, and thusf"o(yx) G Kj_x. Let m0 > 0 be such that/-m(>'2) G A}.,

for 0 < m < w0 butA'"°+1)0>2) G *,_,. Then/ = /-m°(.y2) G Kj - /(*}_,). Take

a neighborhood FF c int Kj_x of f(Kj_x) and a neighborhood V of y' such that

W n V = 0 and/(F) c W. Thus we have/"(F) c f"~\W) G W for every n > 0

and therefore V n f"(V) = 0 for « > 0.    Q

(1.9) Lemma. //■ {A,, . . ., A,} is a family of disjoint isolated sets for f having no

cycles, and if x G K satisfies a(x) c U ,., ^"(A,) then x G U {_, rV(A¡).

Proof. We will show that if a(x) cUj,, FF"(A,.) but x G U í_i WU(A¿, then

we can get a cycle. Choose A , 1 < /, < / such that a(x) n A, ^ 0. Since

a(x) c A,, from Lemma (1.5)(i), we have a(x) n W^A,-) ^ 0. But by assump-

tion, a(x) cUj.i W"(A,.), so there exists 1 < i2 < I such that WU(A¡) n ^(A,,)

=£ 0 and a(x) n A, =£ 0. If <2 = /, we have a cycle. If not, we repeat the process

and obtain 1 < r3 < / such that WU(A¡) n W'(A¡) ^ 0 and a(x) n A#-3 ^ 0.

Continuing as above, since there are only finitely many sets A,, we eventually get a

cycle.

(1.10) Lemma. Let x G K. If y G a(x), then given e > 0 there is a sequence

y = y0>yi> ■ ■ ■ ̂ k = y in «(•*)such that ^(/(/>-i).^) < «/or i < / < a.

Proof. Given e > 0, let 0 < 8 < e/2 such that if p, q G K and d(p, q) < 8, then

d(f(p), f(q)) < e/2. Since f'"(x) converges to a(x) as n -» oo, there is n0 > 0 such

that d(f~"(x), a(x)) < 8, V« > «0. On the other hand, since/ G a(x) there are n„

k > 0 such that «, — A > n0,

¿(/-"'(x),.y) <5    and   d(f-"'+k(x),y) < 8.

Let x' = /""'(x). Since «, — A > «0, if 1 < j < A then

d(f(x% a(x)) = d(f-»>+J(x), a(x)) < 8.

Thus there exists yy G a(x) such that

d(SJ(x'),yj) = d(f(x'),a(x))<8,

so

rf(/+,(*'),/(>'y))<c/2.

Then putting y0 — yk ~ y we Set> f°r 1 < J < k,

d{S(yj-i),yj) < d(f(yj_x),f(x')) + d(fl(x'),yj) <e/2 + 8<e

proving the lemma.    □

(1.11) Lemma. Let (2„)„eZ+ be a family of compact subsets of K, invariant by f

such that if n > m then 2„ c 2m. For each n G Z+, let xn G 2„ and y„ G a(xn) be
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such that yn converges toy G 2 = fl „ez+ ^«- Then, given e > 0, iAere is a sequence

y ~ y~o> y~v • • • » h = >* *» 2 í«c/j /w í/(/(>^_ ,), >,) < e /or 1 < / < a.

Proof. Given e > 0, choose 0 < 5 < e/3 such that if p, q G K and */(/>, 9) < Ô,

then d(f(p), f(q)) < e/3. Take n0 G Z+ such that if x G 2„o, then there exists

y' Gil such that i/(x,.y') < 8. Take « > 0 such that/,, G a(xn) c 2„o and d(y,yn)

< 8. From Lemma (1.10) we know that there is a sequence_y„ = z0, zx, . . . , zk = y„

in a(x„) c 2„o such that d(f(zj_x), zj) < e/3 for 1 < j < k. Let y0 = yk = y and

/,. g 2 be such that d(yp zj) < 8 for 1 < j < A. Then d(f(yj_x), yj) <

¿/(/(^,_1),/(z/_,)) + d(f(zj_x), Zj) + d(Zj,y-j) < e for 1 < / < A, which proves the

lemma.   □

Now we may proceed to the main theorem of this section. First we give a

definition.

Definition. The Birkhoff center off, c(f), is the closure of the set of points in K

whose orbits are recurrent in the past as well as in the future. That is, c(f) is the

closure of the set (x G A"|x G a(x) n w(x)}.

(1.12) Lemma. If A c K is a compact set, invariant under f, such that ß(/|A) = A,

then A c c(f).

Proof. For each n > 0 let A¿ = {y G A\d(fk(y),y) < \/n for some A > 0}

and A~ = {y G A\d(f~k(y),y) <\/n, for some k > 0}.

Clearly A~ and A* are open and dense subsets of A, so An = A~ n A* is an

open and dense subset of A for each n > 0. Thus, since A is a complete metric

space, A = nn>0A„ is a dense subset of A, that is A = A. But if x G A then

x G a(x) n w(x). Thus A = A c c(f).    □

Corollary. If x G a(x), r/ien x G c(f).

Proof. a(x) is a compact invariant set such that ß(/|a(x)) = a(x).    □

Theorem A. If c(f) is an isolated set for f and admits a decomposition c(f) = A,

U • • • uA, into disjoint isolated sets having no cycles, then c(f) = ß(/).

Proof. From Lemma (1.8) (filtration), it suffices to prove that a(x) c c(f) for

every x G K. Suppose, on the contrary, that there exists x G K such that a(x) jZ

c(f). Let ÍF be the family of compact /-invariant subsets 2 of K, such that there is

an x G 2 with a(x) £ c(f). We order 'S by inclusion. Now suppose for the

moment that ^ possesses a minimal 2. Then take x G 2 such that o(x) £ c(/).

From the corollary of Lemma (1.12) we have that x G a(x). So a(x) is a proper

subset of 2. Since a(x) is a compact /-invariant set and 2 is a minimal set we

conclude that a(x) is not in 5', that is, a(x) C U '-1 ^"(A,-). Thus from Lemma

(1.9) we have a(x) c c(f), which is a contradiction. Thus to prove the theorem, it

suffices to prove the following lemma.

Lemma. 'S possesses a minimal 2.

Proof. Let & = {2ß, ß G %} be any subfamily of ÍF totally ordered by

inclusion. Let 2 = n^e98 2^.   We need to prove that 2 G f. If 2 G %, then
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a(x) c c(f) for every x G 2. Thus by Lemma (1.8) the family (A, n 2, . . ., A, n

2} admits a filtration and ß(/|2) c U ,., A, n 2. For each ß G %, take xß G 2ß

such that ot(Xß) z c(f). We know that «(x^) n (U{_i A,) ¥= 0 for every ß G 'S.

Thus we can suppose, without loss of generality, that a(Xß) n A, =£ 0 for every

ß G %. Let U be a compact neighborhood of A, such that H „eZ/"(£/) = A, and

U n (UÍ_2 A,) = 0. Since a(xß) n A, =£ 0 but a(xß) ¡Z A„ we conclude from

Lemma (1.5) that a(xß) n Ds =£ 0, where Ds = DS(AX, U) G U is a proper funda-

mental domain for IF,Joc(A,). For each ß G 9>, choose yß G a(xß) n Ds. Let us

take a subsequence yß such that yß converges to y G 2 n Ds. Since y G c(f)

(recall that y G Ds and Ds n c(/) = 0) and 2 admits a filtration, there is a

compact set AT' c 2 and a point/' G 0(/) such that f(K') c int AT' and/' G AT' -

/(#')• Let IF c K' be an open set in 2 such that /' G W and /(AT') c W. Since

/(Ä") is compact, there is an e > 0 such that if z G 2 and d(z, z') < e for some

z' G f(K'), then z G W. From Lemma (1.11) we know that there exists a sequence

/' = y0, yx, . . . ,yk = y' in 2 such that */(/(/,_,),/,) < e for 1 < / < A. We claim

that/,. G IF for 1 < j < fc. Indeed, since f(y0) = /(/') G /(AT') and d(f(y0),yx) < e

we conclude that/, G W c AT'. Let us suppose that we have proved that/, G W

for 1 < y < A. Then/(/y) G /(A") and d(f(yj),yJ+x) < e, so/,+ 1 G W. Thus/' G

f(K'), which is a contradiction. Thus SëÎ, proving the lemma.

We have concluded the proof of Theorem A. We will use it in the next section to

prove our main result, Theorem B.

2. Hyperbolic Birkhoff centers. In this section we will consider a diffeomorphism

of a compact manifold M. We will make use of the notation already introduced in

§ 1 together with the concepts of hyperbolic sets and their invariant manifolds. With

the help of Theorem A and well-known results, we will prove Theorem B. We

observe that from [4], hyperbolic sets with local product structure are isolated in

the sense of § 1, which enable us to make use of theorem A in this context.

Throughout, / is assumed to be a A-diffemorphism, r > 1, of a compact C°°

manifold without boundary. A compact set A c M is hyperbolic for / if A is

invariant under /, that is, /(A) = A, and 7/ leaves invariant a continuous splitting

TAM = Es © Eu expanding E" and contracting Es. That is,

\Tf(v)\<r\v\    ifvGE*,

\Tf(v)\ < A|ü|    ifu G E",

for some constant t, 0 < t < 1, and some Riemannian metric on M. This Rieman-

nian metric is said to be adapted to A.

Through each point p of A, pass two smooth invariant manifolds, Ws(p) and

rV"(p), tangent to E¿ and E£, respectively. These two invariant manifolds are

called the stable manifold and the unstable manifold of p, respectively [3]. Let us

define

W:(p) = {/ G M\d(f"(p),f(y)) <eforn> 0},

WM = {/ G M\d(f-"(p),f-"(y)) < e for n > 0},

where d is the topological metric on M induced by a Riemannian metric adapted to
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A. Then, W\p) = Un>0 S~n(Wl(p)) and W(p) = Un>0 A »?(/>)), Recall that
rVes(p) (respectively W"(p)) is an imbedded smooth manifold called the local stable

(respectively unstable) manifold of "size e" of p. The union W(A) =

Upe a W"(p) is called the unstable manifold of A, and similarly WS(A) =

Ui6A rV'(p) is called the stable manifold of A.

Definition. A hyperbolic set A has a local product structure if, for some e > 0,

Ku(p) n w'M) c A

for all/?, q G A.

According to results in [4], if A is a hyperbolic set having a local product

structure, then A is an isolated set for/ in the sense of §1, and W(A) = {x G

M\a(x) c A}. That is, the unstable manifold of A coincides with the unstable

space associated to the isolated set A as in § 1 ; similarly for WS(A).

We denote by Diff(Af) the set of C diffeomorphisms of M with the uniform C

topology, r > 1. We call/ G Diff(Af ) ß-stable if there exists a neighborhood N of

/in Diff(Af) such that for each g G N, g|ß(g) is topologically conjugate to/|ß(/).

Definition. We say that/satisfies Axiom A if

(a) ß = ß(/) has a hyperbolic structure,

(b) the set of periodic points is dense in ß.

In [5], Newhouse proved that if P is hyperbolic, then P has a decomposition,

P = A, u A2 u • • • U A, into disjoint hyperbolic sets having local product struc-

ture. From the observation above, {A,, . . ., A,} is a disjoint family of isolated sets.

Next we present a lemma which we will use in the proof of Theorem B. This

lemma, first communicated by Anosov, can be proved using a stronger result

showed by Bowen [1]. Newhouse gives, in [5], a proof for the case A = L~.

(2.1) Anosov's Closing Lemma. // A is a hyperbolic set for f, then P D ß(/|A).

We can now prove Theorem B.

Theorem B. If c(f) is hyperbolic and has no cycles, then f satisfies Axiom A and

has no cycles. In particular, f is ii-stable.

Proof. Since P c c(f), P is hyperbolic. Thus P has a decomposition into

disjoint isolated sets. So, by Theorem A, it suffices to prove that c(f) = P. But this

fact is a direct consequence of Anosov's Closing Lemma and the fact that

c(f) = Q(f\c(f)). In particular, from [9],/ is ß-stable.    □

We recall that/is called a Kupka-Smale diffeomorphism if/satisfies

(a) the periodic points off are hyperbolic,

(b) the transversality condition.

If, in addition, ß(/) is finite, / is said to be a Morse-Smale diffeomorphism.

As an immediate consequence of Theorem B, we have the following result.

(2.2) Corollary. If f is a Kupka-Smale diffeomorphism, and c(f) is finite, then f

is in fact a Morse-Smale diffeomorphism.

We observe that Theorem B is not true if we replace c(f) by the center of

minimal sets, i.e., the closure of the minimal sets of/ An example is the time-one
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map of Cherry's flow [2]. In this case the center of minimal sets is composed of the

two fixed points of the diffeomorphism, which are hyperbolic without cycles, but

does not coincide with the nonwandering set. In particular, this diffeomorphism is

not ß-stable.

3. A partial converse. In this section we prove Theorem C, which is a partial

converse to our main result. We also give a characterization of ß-stability when

c(f) is finite.

We first introduce the concept of .P-stability. Following the notation established

in the preceding sections, P = Per(/) will denote the closure of the set of periodic

points off.

We say that/ G Diff(M), r > 1, is P-stable if there exists a neighborhood N off

in Diff(Af) such that for each g G N, g|Per(g) is topologically conjugate to

/|pw(7). _  _
Definition. Let / G Diff(Af) with P =Per(/) hyperbolic. An «-cycle (n > 0)

on P is a sequence of basic sets Aq, . . ., A„, A„+1, such that rV"(A¡) n W*(Ai+x)

=£ 0, A,, = An+, and otherwise A, # A^ for / =¿= k. Here a basic set A is a

hyperbolic set with local product structure such that/| A is topologically transitive

and the periodic points are dense in A.

(3.1) Theorem. /// is P-stable and P =Per(/) is hyperbolic, then the decomposi-

tion of P into basic sets has the no cycle property.

Proof. We first prove the following assertion: if / is P-stable and there is an

«-cycle on P, then there exists g near / in Diff(M) such that Per(g) is hyperbolic

for g and has an (n — l)-cycle.

From the stability of hyperbolic sets, and the P-stability of /, we have that there

exists a neighborhood V of P such that for g near / in Diff(Ai), Per(g) is

contained in V and is hyperbolic for g [3].

Let Aq, . . ., A„, An+, be an «-cycle on P =Per(/). From

Ws(At) =   U    W(x)    and    IFU(A,) =   U    W*(x),
xeA¡ xeA¡

we have W(x¡) n W(yi+X) ^ 0 for some x,, /, G A, and 0 < i < ». We claim

that at least for one of the indices/, dim W(Xj) + dim Ws(yJ+x) > dim M. For

otherwise, if r = 2"_0 (dim W"(x¡) + dim W*(yi+X)) tnen r < n dim M. But since

A„+i = A0 and dim W(xi) + dim Ws(y¡) = dim M, we have r = n dim M, thus

reaching a contradiction. Let/ G rVu(Xj) n FFi(/-+1), the index/ chosen as above.

Clearly / G P. Thus after a small perturbation of / near / we get /, near / in

Diff(Af) so that, from the above observations, Per(/,) = P,fx\P= f\P, IFu(x,,/,)

and rVs(yj+x,fx) have a point of transversal intersection, and rVu(x¡,fx) n

Ws(yi+X,fx) ¥= 0 for 0 < i < n. We may assume that Xy,/y+1 are periodic points of

/(and thus of/,). Now,/,|A =/|A is topologically transitive and so we may

further assume yj+x = x,+ 1. Let z G rVu(xj+x,fx) n FFI(/y+2,/i). Since we have

assumed that / is /'-stable, we have that z G Per(/,) = P. Since closure W(xj, Si)

D W"(xj+X,fx), we claim that by a small local perturbation of/, near z we get g
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near/ in Diff(M) with Per(g) = P, g\P = f\P and Wu(Xj, g) n W\yJ+2, g) ¥= 0,

thus producing an (n - l)-cycle in P =Per(g) and hence proving our assertion. To

prove this, we use the following facts which are immediate consequences of the

X-lemma in [8]. Let 8 > 0 and F be a small neighborhood of Wg(xj+yfx).

(i) Consider x G rVs(xJ+x,fx) n F and a disc D G F through x of dimension

equal to dim rVu(xJ+x,fx) and transverse to W(xJ+x,fx) at x. Then given e > 0,

there exists n > 0 and a disc Dn c f"(D) such that Dn is e-Cr near W^(xJ+x,fx)

and fxJ(D") c F for 0 < j < n.

(ii) If z G rV$(xJ+x,Si) and F c F is a sufficiently small neighborhood of z, then

if/ G F n /f(F) for some k > 0, there exists 0 < 7 < A such that/,_>(/) G F.

We now prove our claim. Let Wg(xJ+x,Sx) and F be as above. Take z G

^«"(^y + i'/i) n Ws(y.+2'Si) and x G F a point of transversal intersection between

W(Xj,Si) and Ws(xj+X,fx). Let F be a small neighborhood of z such that V

satisfies (ii), 0(x) n V = 0 and 0 + (z)n V = {z}. Let D be a small disc in

W(xj,fx) n F transversal to Ws(xJ+x,fx) such that £> n Ws(xJ+x,fx) = {x}. Since

0 (x) n V = 0 we can take Z) such that 0_(Z>) n V = 0. Using (i) we can obtain

n > 0 and y G D„ G fx(D) sufficiently near z, so that there exists a diffeomor-

phism h of Af, which carries/ to z, coincides with the identity map outside V and is

e-C near the identity map. We then take g = /, »A. From (i) and (ii) we have that

/,"*(/) G V for every k > 0 and thus / G W"(xj, g). From the choice of F we also

have that z G IF,(/-+2, g)- Since g(/) = z we conclude that z G Wu(xj, g) n

The proof of the theorem goes now by induction on the length n of the cycle and

the fact that if P has a zero-cycle then / is not F-stable. For, as above, after a small

local perturbation of /, say to /,, JF"(x0,/,) and Ws(xQ,fx) have a point of

transversal intersection outside P, that is a transversal homoclinic point. From [10],

this point is accummulated by periodic points, and so / and /, are not F-conjugate

and thus / is not F-stable. This finishes the proof of the theorem.

From Lemma (2.1), the above theorem and Theorem B we get

Theorem C. If c(f) is hyperbolic and f is Q-stable, then c(f) has the no cycle

property. In particular, c(f) = ß(/).

As a consequence of this theorem and Theorem B we get

(3.2) Corollary. Let f G Diff(Af) and c(f) be finite. Then f is 9,-stable if and

only if ß(/) = c(f) is hyperbolic and has the no cycle property.
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