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UNDECIDABILITY AND DEFINABILITY

FOR THE THEORY OF GLOBAL FIELDS

BY

R. S. RUMELy'

Abstract. We prove that the theory of global fields is essentially undecidable,

using predicates based on Hasse's Norm Theorem to define valuations. Polynomial

rings or the natural numbers are uniformly defined in all global fields, as well as

Godel functions encoding finite sequences of elements.

We will prove that the elementary theory of global fields is essentially undecida-

ble. While this is a negative logical result, our proofs have the positive consequence

that a great variety of number-theoretic objects, from rings of integers and

valuations, to zeta-functions and adele rings, can be discussed in the theory of

global fields. It is our hope that the theory may eventually be a vehicle for applying

logical methods in number theory.

Our main theorems are as follows.

I. There is a finite collection of predicates which define every valuation, archi-

medean and nonarchimedean, of every global field, in terms of parameters.

II. There is a sentence which distinguishes number fields from function fields.

III. Given a global field K:

If K is a number field, the theory of number fields defines its algebraic integers,

the rational integers, and the natural numbers.

If K is a function field, the theory of function fields defines its field of constants F,

and for an arbitrary nonconstant x G K, defines the polynomial ring F[x] and a model

of 'N given by the powers of x.

Gödel functions encoding all finite sequences of elements of K exist for each of

these models of N.

This investigation was motivated by the papers of Julia Robinson [9], [10] and

Ershov [4], who used the Hasse-Minkowski theorem on quadratic forms to prove

the undecidability of a given number field, or field of rational functions over a

finite field of odd characteristic. Its original goal was to show the remaining

algebraic function fields were undecidable, completing the parallel between num-

ber fields and function fields. Then Simon Kochen observed that the proof showed

Received by the editors February 26, 1979 and, in revised form, June 25, 1979.

AMS (MOS) subject classifications (1970). Primary 02G05; Secondary 10L05, 12N05.
Key words and phrases. Undecidability, definability, global fields, function fields, number fields, Hasse

Principle, valuations.

'Work done at Princeton University.

© 1980 American Mathematical Society

0002-9947/80/O00O-0SO6/S06.75

195



196 R. S. RUMELY

the theory of algebraic function fields was essentially undecidable, and the question

became one of determining the strength of the theory of global fields.

Our predicates have the same basic structure as Robinson's and Ershov's, and we

begin with fundamentally the same number-theoretic data as they do, but our

thrust differs from theirs. We focus on the completions, first obtaining a class of

predicates which define valuation rings. Our main innovation is replacing quadratic

forms with norm forms, and the Hasse-Minkowski theorem with the Hasse Princi-

ple ("A' is true globally if and only if X is true locally everywhere") which holds for

norms from cyclic extensions. This avoids trouble with function fields of character-

istic 2, and with ramification at primes above 2 in number fields.2 The valuation

rings easily yield rings of algebraic integers, and they, in turn, the rational integers

and polynomial rings. We treat archimedean valuations at the end, making use of

the natural numbers, which are by then available.

1. Number-theoretic preliminaries. Throughout this paper K will be a global field,

that is, a number field: a finite algebraic extension of the rationals Q, or a function

field: a finite algebraic extension of some field of rational functions F(x), where F

is finite. The reader is assumed to be familiar with the basic theorems of algebraic

number theory involving local and global fields, but not necessarily with class field

theory. This material is covered, for example, in [1], [3] and [5]. We will introduce

deeper arithmetical facts as they are needed, in a series of lettered propositions; the

main theorems we cite are the theorems on primes in generalized arithmetic

progressions, Hasse's Norm Theorem, and Artin's Reciprocity Law.

Notations are standard. We use additive valuations; if p is a prime of K, we

normalize ord„(x) so that the ord of a prime element is 1. We use the same letter p

to refer to a prime ideal in a maximal order of A", the prime spot it induces in K, or

any of the valuations in it. We regard K as canonically embedded in its completion

ATp; t/p = {x G Kv\oTdç(x) = 0} is the group of units in the ring of integers of Kv

Subrings of K itself are distinguished by script type: 0p = {x G AT|ordp(x) > 0} is

the valuation ring at p. A bar (~) will be used for the residue class map; Kp denotes

the residue class field of K at p. For any ring R, Rx is its group of invertible

elements, and (r) is the principal ideal generated by r. If AT is a function field, F

denotes its exact field of constants; Fq means the finite field with q elements. The

characteristic of K is abbreviated x(^0- If L/K is a finite extension, the notation

Lsp/ATp carries an implicit assertion that ^ is a prime of L over p. Finally, we

sometimes shorten the names of the norm maps NL ,K and NL ,K to just N.

If AT is a number field, let / be the group of fractional ideals of its maximal order,

and P its subgroup of principal fractional ideals. Consider the free abelian group

on all valuations of K; its elements are called cycles. If one has

f-(n *c-l(n v)
\ arch /     V finite '

2Jan Denef has pointed out that Penzin [7] earlier established the undecidability of the rational

function fields in characteristic 2. His predicates, like ours, are based on Hasse's Norm Theorem, but he

uses it differently than we do. The author also thanks Denef for pointing out the results of Julia

Robinson in [8].
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then /(f) means the group of fractional ideals prime to the finite part of f, and Ff

means the subgroup of principal fractional ideals with a generator congruent to 1

modulo the ideal corresponding to the finite part of f, and positive at the real

archimedean primes occurring in f. Then, /(f)/Ff is called a generalized ideal class

group, and it is finite (see [5, p. 127]). Its elements are the generalized ideal classes.

The following well-known theorem is proved in [5, p. 166].

Proposition A (Number field case). Let f be a cycle. Then, every generalized

ideal class in 1(f)/ P^ contains infinitely many prime ideals.

The analogue of this for function fields is a folk theorem, but there does not

seem to be a reference for it. If K is a function field, choose some prime spot of K

and designate it px; then the ring

%.- n %

is a Dedekind domain and it has an ideal theory. Just as with number fields, one

has the groups /, P and their quotient ideal class group I/ P. For any ideal f of Ä„

one has /(f) and Ff. The extension to include the "infinite" prime px in this schema

goes as follows. Let H be any open subgroup of AT„X with finite index, and define

Ff H to be the group of principal fractional ideals of ^ which have a generator

congruent to 1 mod f, and lying in H at px. We will only be interested in the case

H = (K*Jm, where (m, x(K)) = 1, so we can write Ffm rather than Ff H.

Proposition A (Function field case). ^ is a Dedekind domain, and its units

are just the constants in Fx. The generalized ideal class groups /(f)/Ffm are finite iS

X(K)} m, and every generalized ideal class contains infinitely many prime ideals of

%>„■

Sketch of proof. It is shown in part I of [6] that ^ is a Dedekind domain, as

are indeed all rings tfLs = D p€S 0„ where S is a nonempty finite set of primes.

Furthermore, it is shown that the group of units of <3ls has rank #(S) — 1, and the

ideal class groups I/P are finite. Given that I/P is finite, one finds easily by

means of a diagram similar to the one in [5, p. 126], that /(f)/Ffm is finite.

The last part of the theorem is proved using L-functions. Each character \¡s of

/(f)/Ffm gives rise to an idele class character. Hence the L-series,

L(s,t) = Tl(l->¡,(p)N-°)-i,
pH

which converges for Re(i) > 1 can be meromorphically continued to the entire

complex plane. A unified treatment of L-functions for number fields and function

fields is given in [15, Chapter 10], where it is shown that if \p is nontrivial, then

L(\, >¡i) ¥= 0, oo, while if \¡/ is trivial then L(s, \p) has a pole of order 1 at s = 1. (See

especially [15, Corollaries 1 and 2, p. 124, the remark at the bottom of p. 125 and

Theorem 11, p. 288].) With this, the proof of the theorem for number fields given in

[5, p. 166], carries over.
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2. Definability of valuation rings. Let p be a finite prime of K. The goal of this

section is to find a predicate, as independent of p and K as possible, which, for a

proper choice of its parameters, is satisfied by precisely the valuation ring 0p. A

standard trick reduces the problem as follows: suppose / > 2 is a positive integer,

and suppose we can find a predicate R(t, c) with a choice of c so that R is satisfied

by exactly those t for which ordp(i) = 0 mod /. Then, choosing g to be a prime

element at p, 0„ is the set of all x satisfying

3r(l + gx' = t&R(t, c)).

Namely, if ordp(x) > 0 then ordp(l + gx') = 0, while if ordp(x) < 0 then

ordp(l 4- gx') = 1 mod /.

Our plan is to construct R(t,c) by using norm forms from cyclic Kummer

extensions of K. The first task, therefore, is to describe the representation proper-

ties of norm forms. Hasse's Norm Theorem says that an element is a "global" norm

from a cyclic extension if and only if it is a "local" norm at all the completions. If /

is a prime number, not equal to the characteristic x(^0> aQd if K contains the /th

roots of 1, then all extensions of the kind K(bx/')/K are cyclic. In this special

situation we can give a very precise description of the local extensions and local

norm groups. For it, we will need some facts about local fields, proved in [3, pp.

142-143].

Proposition B (Local norm indices). Let L^/ Kp be an abelian extension of

local fields. Then

(1) [ATp* : NL£] = [L%: ATJ, the degree of the extension,

(2) [Up: NUy] = ep, the ramification index.

We now have

Lemma 1. Let I be a prime number, and assume K contains the 2lth roots of 1.

Suppose p is a prime of K such that the characteristic of the residue class field Kp is

not I. We have

(1) // ordp(b) ^ 0 mod /, then L%/ Kp is totally ramified and of degree I, and

N(L£) is generated by b and (K*)'.

(2) //ordp(ft) = 0 mod / but b G (AT^)', then L^/Kp is unramified and of degree I,

andN(L^) = {x G A^ord^x) = 0 mod /}.

(3) IfbG (K*)', then L„/Kp is trivial and N(L£) = Kf.

Proof. Since / is a prime, p can be extended to L in only three ways, each of

which corresponds to a case above.

(1) If / f ordp(¿>), the value group of L^ = Kp(bx/I) will gain elements, so L^/Kp

must be totally ramified and of degree /. (K*)' and b are certainly norms; since

(ordp(¿>), /) = 1, the group generated by them contains elements with all ord

values.3 Thus any norm can be multiplied by an element of our group to make it a

3 Added in Proof. In Lemma 1, when / = 2, b is in general a norm from ^p(A2) only if V— 1 e K;

so we assume this throughout §2. With V— 1 e K, the conditions "is totally positive" in Lemma 3 are

vacuous. The requirement that V— 1 e Kcan be removed in §3 by forming a predicate S2(x, 0; c) for

the extension Af(V— 1 ), similar to S3(x, 0; c) for K(cS).
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unit. We claim NUV = (Up)'. To verify this, compare indices: because x(Kp) ¥=l,

Hensel's Lemma applied to x' — u = 0 shows that u G (U^)' iff it G (K*)'. Then,

since ApX is cyclic and contains the Ith roots of 1, [Up: U'v] = [K*: (AT,,*)'] = /, and

by Proposition B(2), [t/p: NU%] = /. As U¡, c NUV, we are done.

(2) If ordp(¿>) = 0 mod /, we can assume, after adjusting by an Ith power if

necessary, that ordp(¿>) = 0, b is not an Ith power in Uv, so neither is b one in A'px.

/„ = [Kv(bx/I): Kv] = I since / is prime. Therefore L^/Kv is unramified of degree /,

and it follows from Proposition B, (1) and (2), that the norm group is as stated.

(3) This is the only remaining case, and the assertions are clear.    □

For the remainder of this section fix the prime p, and whenever we deal with an /

assume that 2/th roots of 1 are in K. If an extension L = K(bx/I) is nontrivial, it

gives rise to a norm form

N,(b, a) = NL/K(a0 + axbx" + a2b2" + ■ ■ ■ + a,_¿P-«").

Note that N¡(b, a) can be explicitly calculated and has integer coefficients by the

theorem on symmetric functions. For example,

N2(b, a0, ax) = al - a\b,

N3(b, a0, ax, a2) = al + a\b + a\b2 — 3a0axa2b.

Experimentation suggests that no finite number of norm forms, with variables

independent of each other, can produce a predicate R. However, several norm

forms parametrizing each other, in effect giving an infinite number of forms, can.

Define

R,(t; c, d) «=> 3ax3a23a3Bw(w = N,(d, ax)&cw = N,(cd, a2)&t = N,(w, a3)).

The next lemma shows that if q is a prime of K, the first two conditions are a

device for saying "K(wx/')/K is unramified at q".

Lemma 2. Suppose I # x(^q) 's aprime number and Ka contains the 2lth roots of 1.

If d is a non-Ith power unit at q and ordq(c) = 1, then R¡(t; c, d) is satisfied only by

t G K such that ordq(<) = 0 mod /.

Proof. It is enough to look at the situation locally at q. By the first hypothesis,

KQ(dx/')/Kq is unramified of degree /, and by the second, K9((cd))x/'/Kq is totally

ramified. From the description of the norm groups given in Lemma 1, and the fact

that in Kv c is a prime element, we obtain

w = u ■ c"',       cw = v'(cd)m,    for some m, n,

where u and v are in t/q (but note that w, c, d G K). Now multiply the first

equation by c and take ordq of both. Equating, we get nl + 1 = ordq(ov) = m. This

leads to w = d- (vc"dn)', so ATq(w1//) = KQ(dx/l) is unramified of degree /, so by

Lemma 1 again, ordq(r) = 0 mod /.    □

If we could choose c and d such that R,(t; c, d) were satisfied by exactly those

t G K for which ord„(/) = 0 mod /, we would be done. Unfortunately, I do not

know whether such c and d exist. However, c and d can be chosen which impose

conditions at only one other prime besides p, and we will see that this is enough.
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Lemma 2 can be regarded as providing a sufficient condition for an element to

be in 0p; to prove a necessary condition we will need some facts from class field

theory. Recall that if L/K is a finite algebraic extension and q is a prime of K, then

Gal(LQ/ATq) is canonically isomorphic to the decomposition group {a G

Gal(L/AT)|a(£l) = Q}. We will regard the groups Gal(L0/ATq) as being embedded

in Gal(L/AT). Furthermore, if L/K is abelian, then the local norm groups

NLa/K(L¿) and the galois groups Gal(L0/ATq) (embedded in Gal(L/AT) as just

discussed) depend only on q, and not on the prime Q extending it. However, the

local norm groups for different q are not entirely independent. The relationship

between them is given by Artin's Reciprocity Law.

Proposition C (Hasse's norm theorem). Let L/K be a cyclic extension of global

fields. Then, for a G K, a G NL/K(L) iff a G NL ,K (Lq) for all primes q of K

(including archmimedean ones).

Proposition D. Let L/K be a finite abelian extension of global fields. Then for

each prime q, archimedean or nonarchimedean, there is a surjective homomorphism

( , L/K\: ATX -> Gal(LQ/A-q) c Gal(L/AT),

called the norm residue symbol at q, such that (x, L/K)a = 1 iff x G NL /K(L£).

Especially if La/Kg is unramified and ordq(x) = 0, then (x, L/K)q = 1. Collectively

they satisfy Artin's Reciprocity Law:

If a G K*, then H(a, L/K\ = 1.
q

Note that the product above is actually finite, since (a, L/ K)9 = 1 for almost all

q. The norm residue symbol is discussed in [2] and [3]; Hasse's Norm Theorem is

proved in [3, p. 185].

The construction of c and d differs slightly for number fields and function fields,

owing to the presence of archimedean primes in number fields. Let us treat the

number field case first. We are assuming p {/ and, as always, that K contains the

2/th roots of 1.

To construct c, first choose a number m so large that for all q|/, if a = 1 mod qm,

then a G (K*)1, and define a cycle f by f = (Upx) • (nq|/ qm) where the product

over p^, includes all archimedean primes. Let ß be the class of p in the generalized

ideal class group /(f)/Ff. Using Proposition A, choose a prime p, in ß_1. (If

ß = ß_1 we require also that p, =£ p.) We emphasize for future reference that there

are infinitely many possible choices for p,. Thus, pp, is a principal ideal with a

generator c such that

c = 1 mod qm for all q|/, c is totally positive.

Consider L = K(cx/I). p and p, are the only primes of K which ramify in L/K.

(Locally at the archimedean primes and at the q|/, the extension has been forced to

be trivial; at all other primes, Lemma 1 applies.) Letting 5ß and 513, be the (unique)

primes of L above p and p, respectively, we see that [L%: Kp] = [L^ : ATp] = /, and

by Proposition B(2), [i/p: NUV] = [{/ : NU^ ] = I. Pick a non-/th power unit

|p G £/„: then since NU9 = (Up)', ({„, ¿/K\ -'«*!-. Also, ( , L/K\ maps £/
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surjectively onto Ga\(L/K), so there is a non-/th power unit ¿Pi such that

(iPi,L/A-)Pi = aA

To construct d, by the approximation theorem, there is an element b of K for

which

b = 1 mod f     (so b is totally positive, and b G (ATqx) if q\l ),

b = ¿p mod p,   b = £Pi mod px.

Consider the class ß' of (b) in /(fpp,)/Ffpp : every ideal in it is principal, and it

contains infinitely many prime ideals. Pick one, and call it b. Now b • (A1) G Ffpp

is an ideal with a totally positive generator e, such that e = 1 mod fpp,. So,

defining d = be, we have a generator d for the prime ideal b, satisfying

d g(K*)' for all q|/,   dis totally positive,

d = £p mod p,   d = £Pi mod px.

We claim, moreover, that c G (Kbx)'. For, (d, L/K)q can be different from 1

only if q is p, p,, or b itself: at archimedean primes (d, L/K)9 = 1 because d is

totally positive; for q|/, (d, L/K)9 = 1 because d G (K*)'; and for all other finite

primes q besides p, p! and b, (d, L/K\ = 1 because LQ/Ka is unramified and

OTda(d) = 0. Furthermore d differs from £p by an Ith power in ATp since p {/, and

similarly for £p . By Artin's Reciprocity Law,

1 = IK* L/A-)q = (¿, L/K)v-(d, L/K),r(d, L/K)b = o ■ o~x ■ (d, L/K)»
q

so (d, L/K)b = 1, meaning d is a norm from the extension L%/Kb. But L/K is

unramified at b, and d is a prime element at b, so L^/Kb must be trivial. Since

L = K(cx/I) this means c G (AT^)'.

As a final remark, note that we could have imposed additional conditions of the

form

d = 1 mod q,,

d = 1 mod qf

where q,, . . . , qs are primes distinct from p and p,, by imposing the same

conditions on b and working in the generalized ideal class group

/(fpp1q1...qJ)/FtpP|qi...flj.

In the function field case we are assuming x(K) ¥= I and that K contains the Ith

roots of 1. Choose some prime of K distinct from p, and designate it px. Form the

ring

%>„ = n eq.

Let ß be the class of p in the generalized ideal class group //F(1)/, and using

Proposition A, choose a prime p, ^ P in the class ßA The remainder of the

construction of c and d is the same as with number fields, but with p^, replacing the
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archimedean primes and the phrase "is in (ATpx)     substituted for "is totally

positive". We need no longer worry about primes q dividing /.

Lemma 3. Let all notations and assumptions be as above; then R¡(t; c, d) is

satisfied by precisely those t for which ordp(i) = 0 mod / and ordp (t) = 0 mod /.

Proof. Lemma 2 shows that only t of this form can satisfy R¡(t; c, d). We will

prove the converse only for number fields, as the proof in the function field case is

analogous. Assuming t satisfies the conditions of the lemma, we must find a w such

that

3axBa2Ba3(w = N,(d, ax)&cw = N,(cd, a2)&t = N,(w, a3)).

In fact, w can be taken to be a prime element of 0^ : suppose (t) =

pn'px''qk' .. . q^. By the remark, we can find a prime ideal ro with a generator w

such that

w is totally positive,4

w = 1 mod qm for all q\l, sow G (K*)',

w = |p mod p,

w = |Pi mod px,

w = 1 mod b,

w = 1 mod q, for / = 1, . . ., j.

(Note that these conditions are all compatible.) For such a w:

(1) w is a norm from K(dx/l).

By Hasse's Norm Theorem it is enough to verify this locally at every prime.

Kx(dx")/Kx is trivial.At archimedean primes

Atq|/

Atb

At all other primes q

besides ro itself:

Ka(dx/')/Ka is trivial.

w = 1 mod b, so w G (AT0X/ is

a norm (b} / so Hensel's Lemma

applies to x' — w = 0).

ordq(w) = 0 and K(dx/')/K is

unramified at q, so w is a norm.

Hence by Artin's Reciprocity Law w is a norm at ro also.

(2) cw is a norm from K((cd)x/I).

Locally:

At archimedean primes:

Atq|/:

cd is totally positive since c

and d are; therefore KJlcdy'')/Ka

is trivial.

cd G (ATq )    since c and d are,

and again the extension is trivial.

4See footnote 3.
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At p: w — £p = d mod p, so w/d = 1 mod p

is a norm (since p {/). But cd

is a norm from ATp((ci/)1/')/ATp so

cw = (cd)(w/d) is also.

Atp,: similarly.

At b: w = 1 mod b, so w G (AT^)' since b} /.

We showed that c G (AT,,*)', so cw

is an /th power and a norm.

At all other primes q

besides ro: ordq(cw) = 0 and K((cd)x/I) is

unramified, so cw is a norm.

says cw is a norm at ro.

w is a totally positive.

w G (K*)'.

w = £p mod p, so w is a non-/th

power unit in ATp, and Kp(wx/')/Kp

is unramified of degree /. By

Lemma 1 and the assumptions on /,

t is a norm.

similarly.

w = 1 mod q„ so w G (A"qx)'

ordq(0 = 0 and K(wx/')/K is

unramified.

This only leaves ro, so t is a norm there too.    □

Recall now the remark made in constructing c that there were infinitely many

choices for p,. Carry out the construction of c and d for two different choices of p„

obtaining cx, dx and c2, d2, say. Then every t G K with ord„(/) = 0 mod / is a

product of an element i, satisfying R,(tx; c,, dx) and a t2 satisfying R¡(t2, c2, d^.

Hence (note that c, is a prime element for p), 0p is the set of x satisfying

S,(x; cx, dx, c2, d2) <s> 3tx3t2(l + c,x' = txt2&R,(tx; cx, dx)&R,(t2; c2, d2)).

3. Rings of algebraic integers. Now we remove the special assumptions on A* and

P.
If A* is a function field and x(^Q **" 2, then since ± 1 are always in K, the

predicate S2(x; c,, c2, c3, c4) picks out each valuation ring of K, for an appropriate

choice of c. If x(K) = 2, we can take / = 3. Then, if to2 + w + 1 = 0 has a root in

K, S3(x; cx, c2, c3, c4) picks out the valuation rings. However, if there is no root,

form the extension K(u>). Regarding K(cS) as a vector space over K with basis

And so, Artin s Reciprocity Law

(3) t is a norm from K(wx/I).

Locally:

At archimedean primes:

Atq|/:

Atp:

Atp,:

Atq„ . . . , qs\l:

At all other primes q

besides ro:



204 R. S. RUMELY

{1, to}, we can write out S3(x; c„ c2, c3, c4) for K(u>), with x = (x,y) representing

x + ya. Moreover, every valuation ring 0p of K is of the form 0p = 0sp n K,

where 0¥ is a valuation ring of K(<S) lying above 0P, so x G 0p iff

S3(x, 0; cx, c2, c3, c4) for a proper choice of the eight parameters.

If A" is a number field and p 12, then 0p is picked out by S2(x; cx,c2, c3, c4). If p|2

and K contains the cube roots of 1, then S3(x; cx,c2, c3, c4) works, while if not, we

can form K(u) as above and 0p will be picked out by S3(x, 0; c).5

Thus we have a collection of predicates which, for good choices of their

parameters, define every valuation ring of every global field. We can control what

happens with bad choices by using the well-known characterization of valuation

rings:

Theorem 1. There is a finite collection of predicates such that

(1) For every valuation ring of every global field, there is some predicate and some

choice of its parameters for which the predicate defines the valuation ring.

(2) For every choice of its parameters, each of the predicates is satisfied either by a

valuation ring or the entire field.

Proof. Let S(x; c) be any of the predicates discussed above. Suppressing its

parameters, put

V(x; c) *>[VyVz((S(y)&S(z)) -* (S(-y)ScS(y + z)&S(yz)))

& \/y(y ¥> 0 -» (S(y) V S(l/y)))] -► S(x).

The first clause of the hypothesis states that S(x; c) is satisfied by a ring; the

second requires the ring to be a valuation ring or all of K. If the hypothesis fails,

V(x; c) is of course satisfied by all of K.   fj

Call Val2(x; c), Val3(x; c), and Val3(x; c) the predicates produced from

52(x; c),   S3(x; c)    and    S3(x; c).

Further, define Val^(x; c„ . . . , c8) to be the exclusive disjunction of Val2, Val3,

and Val3 over the cases in the first paragraph of this section. Then, Val,, parame-

trizes all valuation rings of all algebraic function fields.

Corollary 1. 77ie exact constant field F of an algebraic function field K is

definable by a predicate independent of K.

Proof. We can use Const(r) <=> VcValF(r; c) because F = n p 0p.   □

If AT is a function field and x G K is not a constant, we will call the integral

closure of F[x] in K an algebraic function ring, Gx.

Corollary 2. Every algebraic function ring <3X in a function field K is arithmeti-

cally definable in terms of x.

Proof. Consider the predicate

Ring(/; x) <=> Vc(Valf(x; c) -► Wa\F(t; c)).

5See footnote 3.
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The integral closure of any ring in any field is the intersection of all the valuation

rings containing it.    □

In symbols this is 0^ = D ord (*)>o ®p = ^s m tne notation of §1, where

S = (p|x G 0P} is finite. We remark that conversely every Rs for a finite non-

empty S is of the form 0^ for some x.

Corollary 3. When K is a number field, its ring of integers 6K is arithmetically

definable by a predicate independent of K.

Proof. Since 0^ = D p 0P, define

Int(/) ** VcVal2(,; c )&VcVal3(i; c)&VcVai3(t; c).   □

Corollary 4. There is a sentence which is true in all function fields and false in all

number fields.

Proof. The predicate VcVal2(r; c) defines the field of constants for any function

field of characteristic not 2. On the other hand, when it is interpreted in a number

field, it is satisfied by some ring "31 for which H pj2 0p ç *& G 6K. Especially, 3 is

not a unit in "31. So, the statement

2 = 0V3 = 0V 3r(VcVal2(/; c)&3 • / = 1)

will serve our purpose.    □

4. The undecidability of global fields. For a function field we will show how, given

a nonconstant x G K, to define the polynomial ring F[x] in K. This means A" is

undecidable, by a result of Raphael Robinson in [11]; in our case his proof even

yields a specific model for the natural numbers, given by the powers of x. For a

number field, we show how to separate N from A".

It will be convenient to abbreviate the division predicates for function fields and

number fields, respectively, as

¿ll/vA^^MRingCi; x)&kxh = k2)

and

kx\Nk2<^3h(lnt(h)&kxh = k2).

Note that kx, k2 need not be in the rings of integers, but if kx is, and the division

predicate is true, then k2 is also.

First consider the case when K is a function field; throughout, x will denote a

fixed nonconstant element of K. The predicate we use is an adaptation of the one

given by Julia Robinson in [10]. The idea is to find a predicate satisfied by

arbitrary finite subsets of K, and then by means of an inductive definition to

describe F[x] as those elements lying on the "edges" of certain finite subsets.

Lemma 4. The predicate

F>(f, gx, g2) ** Vc(ValF(/gf '; c) V ValF(tg2x; c))

is satisfied by a finite subset of K for every nonzero choice of gx, g2; and gx, g2 can be

chosen so that any given finite subset is contained in the set of elements satisfying it.
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Proof. This is really a statement about the adele ring of A'. Since F is finite, the

adele ring Kx is locally compact, that is, if o is a given adele, the set D(a) = {b G

ATA|ordp(bp) > ordp(ap) for all p} is compact. On the other hand, K is discrete in A"A,

so K n D(a) is finite. These facts about adele rings are proved in [15, Chapter 4].

Here we are using a defined by

= ig,    ifordp(g,) < ordp(g2),

*      [ g2   if ordp(g,) > ordp(g2).

If a finite subset {bx, b2, . . . , b„} of K is given, first choose g, so that ordp(g,) <

min{ordp(¿>,)} at all p where any ordp(¿>,) < 0, and then choose g2 so that ord^g^

= 0 at all p where ordp(g,) > 0.   □

Lemma 5. 77zere is a predicate SetF(r; g; x) which quantifies over finite subsets of

function fields.

Proof. We mean that for all values of its parameters SetF is satisfied by some

finite set of r's, and for every finite set there is a choice of the parameters which

yields that set. Let B be a nonempty finite subset of K. The claim is that there are

gx, ..., g5 in K such that

SetF(t; g; x) «* D(t; g„ g2)& (1 + (r - g3)g4|F?xg5)

is satisfied by exactly the t G B. g3 merely translates B; taking g3 G B, we can

ignore it in the predicate, and assume 0 G B.

Choose gx, g2 as in Lemma 4 for this new B, and let C be the set of all t G K

satisfying D(t; gx, g2); C is a finite subset of K containing B. The second condition

in the predicate is designed to separate B from C. We want to choose g4 so that:

(1) tg4 G ex for all t G C.

(2) The quantities 1 + tg4 for all r G C are pairwise relatively prime elements of

(3) The only ! G C for which 1 + tg4 is a unit of 0X, is t = 0.

The first two conditions will be satisfied by any g4 G 6X divisible to a sufficiently

high power by all primes of 0^ occurring in the factorizations of the nonzero

fractional ideals (t) and (<, — t.) for /, t¡, tj G C. For if s is such an element, and

some prime p of <9X divides 1 + st¡ and 1 + stj, then p\s(t¡ — tj), so p|íí, by

construction, so p|l, a contradiction.

Fix such a nonzero s. We will take g4 = sr for a suitably chosen r. Now, 1 + tsr

is a unit in 6X iff its norm to F[x] is a unit, and the only units in F[x] are the

constants in Fx. Because F(x) is the ground field, the product

P(r) =   II     II (NK/Hx)(l + tsr) - /),    for r G F[x],
fee /EF
t¥-0

is a polynomial in r, and it is clearly not the zero polynomial. Moreover, P(r) = 0

iff for some nonzero / G C, 1 + tsr is either 0 or a unit of 0X. Since F[x] is an

infinite ring, there is an r in it for which P(r) =£ 0. Set g4 = sr, and put

g5 =  LT    (1 + tg4).    U
teB
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Theorem 2. Let K be an algebraic function field, F to exact field of constants, and

x a nonconstant element of K. Then, the polynomial ring F[x] is arithmetically

definable in terms of x by a predicate independent of K.

Proof. Specifically, suppressing the parameters g and x of Set^-,

t GF[x]iff Poly(/;x)

«* t = 0 v[Ring(r; x)&3g {g, # 0&g2 # 0&Setf

&Va[SetF(a) -> (Set^xa) V 3d(Const(d)&SetF(xa - dxt)))]) ].

(0
First suppose / G F[x], t ^ 0. Let B be the set of all polynomials in F[x] with

degree less than or equal to deg(r). If g,, g2, g3, g4, g5 are chosen for this B as in

Lemma 5, one checks easily that the right side is satisfied.

Conversely, suppose the right side is satisfied by some nonzero /, for a particular

g, so r G 0X. Let B be the set of all b satisfying Setp(b; g, x). From Lemma 4, B is

a finite set, and the hypotheses require 1 G B. For each nonzero b G B there is an

m > 0 and a constant d ¥= 0 such that -,SetF(xmb; g, x) but Setp(xmb — dxt;

g, x). Define the least such m to be m(b) and let a corresponding d be d(b). Then,

recursively, put

1 + (0),

ai(x) + rx(x)t

bt = ^_ ,*"<*-> - d(b^x)xt = q,(x) + n(x)t

stopping only if some b¡ = 0. Inductively q¡(x) and r¡(x) are polynomials in x, with

i-\ 1-1

deg(9,0)) = 2 rn(bv)    and    deg(r,(*)) = 1+2 m{bv)
o-O v-\

for i > 1. This means, if / >y, then r,(x) — r,(x) t^ 0. If some b¡ = 0, then / =

-qi(x)/ri(x); otherwise, since B is finite there will be two indices i >j with b¡ = br

Solving for t, one obtains t = -(q¡(x) — qj(x))/(r¡(x) — ry(x)).

If r,(x)|<7,(x) or if (r,(x) — rj(x))\(q¡(x) - qfix)), then risa polynomial. But if not,

then / would have some irreducible polynomial of F[x] in its denominator, and so

could not lie in 6X, a contradiction.    □

For the convenience of the reader, and for our own future use, we recall Raphael

Robinson's construction of a model of N in F[x] using the powers of x. He

observes first, that a polynomial in a constant multiple of a power of x if and only

if x is the only irreducible polynomial dividing it, and second, for a constant d,

x — l\dx" — 1 if and only if d = 1. Thus we have

Mtple(r; x)<=»Poly(r; x)&t * 0&Vy((Poly(.y; x)&y|r) ->(.y|l V x\y)),

Power(i; x) <=» Mtple(i; x)&(x - l)|(f - 1)

b0=l

bx = ¿>0xm(*o) - d(b0)xt
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and t G {1, x, x2, . . . } iff Power(f; x). Addition in the model comes from multipli-

cation in K; to define multiplication in the model, use the fact that multiplication

in the natural numbers can be described in terms of addition and divisibility by the

formulas

n = r(r + 1)<=> \/m(n\m+* (r\m&r + l\m)),

n = ri <=> (r + s)(r + s + 1) = r(r + 1) + s(s + 1) + n + n.

For divisibility in the model, note that xm — l|x" — 1 iff m\n.

Now suppose K is a number field. If the archimedean valuations of K were

available as well as the nonarchimedean ones, we could define a predicate quanti-

fying over finite subsets of A* in the same way as in Lemmas 4 and 5, and in turn

define N. For totally real fields this can actually be done (see §6).

However, in any case Julia Robinson has shown [8] that there is a uniform way

of defining the natural numbers in the ring of integers of a number field. Her

results may be formulated as follows.

Lemma 6. There is a predicate, SetN(t, gx, . . . , g5), which quantifies over finite

subsets of number fields.

Proof. We can take

SetN(t; g)**[g2* 0&Int((i - g,)g2)&Int(g4)]

&[ g3 ¥> 0& (t - gx)g2((t - gx)g2 + l)|„g3]

&[0 + (t - gO&sJUftj-

The fact that for a given choice of g only finitely many / can satisfy Set^r, g), is

based on a result of Siegel [16, pp. 204-205]: "Let / be a positive number. Given a

polynomial f(x) with coefficients in 6K and at least two distinct roots, then there

are only finitely many x G <SK such that \NK/,Q(f(x))\ < t." Here/(x) = x(x + 1),

and we have replaced x by (r — gx)g2; f(x)\Ny is equivalent to \NK/(i(f(x))\ <

\NK,Q(y)\. On the other hand, given a finite set B in K, g,, g2, andg3 can be chosen

so that B is contained in the finite set satisfying the first two clauses, and then g4

and g5 chosen to separate B from the remainder of this set, as in Lemma 5.    □

Theorem 3. Let K be a number field. Then N can be arithmetically defined in K by

a predicate independent of K.

Proof. Let

Nat(n)**3g{Set„(0,g)&Vt[SetN(t,g)^(t = n\/SetN(t + l,g))]).

We find that every n G N satisfies Nat(w) by choosing g so that exactly

{0, 1, ... , n} satisfies Set^f, g); on the other hand, the inductive form of the

definition implies that only elements of N can satisfy it.    □

Combining Theorems 2 and 3 and Corollary 4, we see that any statement about

natural numbers can be formulated in the theory of global fields.

Theorem 4. 77ie elementary theory of global fields is essentially undecidable.
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5. Gödel functions. Given the preceding results, it is natural to ask which

functions and predicates are arithmetically definable in the theory of global fields.

It will soon become evident that the theory is very strong, and almost any object of

number-theoretic interest can be defined. The reason for this is of course the

coding power of the natural numbers.

For number fields we will be interested in defining functions and predicates of

the type/(t>,, . . . , vk; nx, . . . , n,) where the v¡ range over A" and the «, range over

N. In function fields there is no uniquely determined model of N but rather a

collection of equivalent ones, so our functions and predicates must be specified in

the form f(vx, . . . , vk; x"', . . . , x^; x) where the last x indicates that

{1, x, x2, . . . } is the model of N under consideration. For convenience of notation

we will write f(vx, . . ., vk; «,,... , n¡) for both, it being understood that there are

always two separate cases, and the n¡ are in the model of N at hand.

Lemma 7. There is a function, F(g; n), arithmetically definable in the theory of

number fields (respectively, F(g; x"; x) in the theory of function fields) such that for

all g, F(g; 0) = m for some m G N, and for any finite sequence kx, . . . ,kn of

elements of K there is some g such that

F(g;0) = «    and   F(g; i) = k,

for i = 1, . . . , n.

Proof. Let ß(a, i) be a standard Gödel function as defined, for example, in

Shoenfield [14, p. 115], so that for all finite sequences mx, m2, . . . ,mn there is some

a such that

ß(a, 0) = n    and   ß(a, i) = m¡

for i = 1, . . . , n. The idea is to sharpen the arguments in Lemmas 5 and 6 so that

not only finite sets, but finite sequences, can be distinguished, and then parametrize

them with the standard Gödel function.

Case I. Function fields. Let SetF(/; g,, . . . , g5, x) be the predicate of Lemma 5,

and choose g as in that lemma for the set {&,-}. We may assume 0 G {kj} after

translating it by a suitable element g6 of K which will appear as one of the

parameters of F. Our intention is to show that there are hx, . . . ,hn of the form

x2m, _  xm, such that.

(1) The quantities 1 + h¡kj are all in 0^.

(2) For all /,, i2 and for distinct kJt kji the 1 + h¡kJt, 1 + h¡kj are pairwise

relatively prime.

(3) No 1 + hfkj is a unit of 6X.

Each of the h¡ will depend on the preceding ones; we first construct A,. As in the

proof of Lemma 5, if s is any element of 6X which is sufficiently divisible by all

primes of 0X occurring in the factorizations of the ideals (k¡) and (k¡ — kj) then the

1 + skj will be in 0X and will be pairwise relatively prime. Since every prime of 6X

overlies one of F [x], s can be chosen to be in F [x]. (Here/7 = x(^O-)

But every polynomial in Fp[x] divides infinitely many polynomials of the form

x2m — xm. To see this, note first that if d is a common divisor of the degrees of the
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irreducible polynomials r,(x), . . ., r„(x) then r,(x), . . ., rv(x)\xp — x. And sec-

ond, if q(x) is any polynomial in F [x], then ^x^') = (q(x)Y'.

It remains to show that we can choose hx of the form x2m — xm so that the

1 + hxkj are nonunits as well as being pairwise relatively prime. Examining the

proof of Lemma 5, we must find r, s G Fp[x] and an m such that rs = x2m — xm

and P(r) =£ 0. But this is clearly possible since P(r) has only finitely many roots.

Picking such an r, with its corresponding m, set m, = m and hx = x2m' — xm'.

In choosing h2 we want the 1 + h2kj to be pairwise relatively prime, and also

pairwise relatively prime with all the 1 + hxk¡. This will be the case when h2 is

sufficiently divisible by all the primes appearing in (hx), the (k¡), and the (k¡ — k).

Thus, we can recursively find h2 = x2""2 - xmi, h3 = x2"*3 — x™3, and so on.

Finally, letg7 = IT"=,(1 + h¡k¡). An element k of A" satisfies

SetF(k; gx, . . . , g5, x)&l + h¡k\ g7

iff k = k¡. Note that in this case, ß(a, i) = m¡ is an abbreviation for ß(x", x', x) =

x"\ Then,

F(gy - i> 0 -

ß(a, 0)     if g8 = x" for some a, and / = 0,

k if gg = xa for some a, i > 0,

and there is exactly one k G K

satisfying SetF(k; g„ . . . , g5, x)&

[l + (k-g6)(ß(a,i)2-ß(a,i))]\F^

0 otherwise,

will be the Gödel function we want.

Case II. Number fields. The construction here is based on the predicate

SetN(t; gx, . . ., g5) of Lemma 6. It is similar to, and simpler than, the one in the

function field case, with the polynomials x2m — xm replaced by elements of N.   □

One consequence of this lemma is that inductive definitions are possible: for

example,

w' = H(u; i) =

1     if / = 0,
v    if /' > 0 and 3g[F(g; 1) = u&F(g; i) = v

& VJfc(l < k < i) -» F(g; k) - w  F(g; k - 1)].

Rather than prove a general theorem, we give further examples. Suppose A" is a

number field. Then, the definability of each of the following is a consequence of

that of its predecessors:

(1) the function P(g, a; m) = 2™_0 F(g; i + l)w',

(2) the degree and coefficients of the minimal polynomial for a over Q,

(3) the degree of the extension K/Q,

(4) the different and discriminant of A"/Q,

(5) the statement that/) is a prime of Q ramified in A\
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For function fields note that there is a natural surjective map M(x"; x) from

(1, x, x2, . . . } onto F [x], such that 1 = x° goes to 0, and if n = U'P^xp¡H wherep¡

is the z'th prime number, then x" -* ZTiTo' n, + ix' for « > 0. The definability of this

map is left as an exercise.

With the Gödel functions of Lemma 7, different parameters g from K are

required to encode each finite sequence of elements of K. In some situations it is

desirable to have a function which codes sequences in K using only parameters of

N. Now in general, if F is a subfield of K it is not possible to code elements of K

using parameters from F, because K may have nontrivial autmorphisms over F.

(Indeed, a theorem of Raphael Robinson in [12] asserts that an element of K is

definable using parameters of F if and only if it is invariant under Gal(K/F).)

However, this is the only limitation:

Corollary 5 (Strong Gödel functions). There is a function G(u; m, n) such

that for any number field K and any us G K, G(u>; m, n) encodes all finite sequences of

Q(u>). Similarly, for function fields there is a function G(u; xm, x"; x) which encodes

all finite sequences of Fp(x, us).

The proof is an easy exercise in Gödel coding. In the number field case the idea

is to construct a surjective map from N to Q(<o), and compose it with a standard

Gödel function. The map from N to Q(w) can be formed by first encoding a map

of N onto Q, and then encoding finite sums S"_0 b¡us' using the Gödel function of

Lemma 7. The function field case is similar, and uses the mapping M(x", x)

discussed above. If x is such that K is separable over Fp(x), then there will be an w

with K = F^x, us); and there always exists such x.

6. Archimedean valuations. In this section we provide arithmetic definitions for

the archimedean valuations of a number field. The method we used previously to

define the nonarchimedean valuations can be extended to give the real archi-

medean ones, but in the case of complex valuations it fails, essentially because

there are no nontrivial extensions of C from which to take norms. The definition

we do give for the complex valuations depends heavily on the fact that the rational

numbers are already available. It would be desirable to have an independent

definition, for using it we could obtain a predicate quantifying over finite subsets of

number fields similar to the one in function fields, and define N without using the

result of Siegel.

By a definition of an archimedean valuation of K (or of an embedding of K into

R or C which induces it) we mean a predicate which is satisfied by precisely the

closed unit ball of that valuation. Such a predicate evidently enables us to compare

magnitudes of elements.

The unit ball and the ordering induced on K under a real embedding can easily

be defined in terms of each other, and the set of nonnegative elements under any

real embedding can be obtained directly, using
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Proposition E (Hasse-Minkowski). A quadratic form with coefficients in a

number field K represents 0 in K iff it represents 0 in all completions of K.6 Moreover

(1) Every quadratic form in five or more variables represents 0 in a nonarchimedean

completion.

(2) Every quadratic form in two or more variables represents 0 in C.

(3) A quadratic form represents 0 in R iff it is indefinite.

Proof is given in [6, §66].

Fix a real embedding of K, and pick any a G A" which is positive under that

embedding and negative under all the other real embeddings. Then the predicate

Rx(x; a) «=> 3vx . . . 3v5(0 = av2 + v\ + v\ + v\ — xvf)

is satisfied by precisely those x G K which are nonnegative under our chosen

embedding: the quadratic form on the right automatically represents 0 in nonarchi-

medean and complex archimedean completions of K, and by our choice of a it is

indefinite at all real completions except the fixed one. It is indefinite there if and

only if x is positive; and when x = 0 of course Rx(x; a) is also trivially satisfied.

For general a, Rx(x; a) is satisfied by 0 and by those x which are positive at real

embeddings where a is positive. So the predicate

Re(x; a) ^[Vy(Rx( v; a) V Rj-y, a)) -* Rx(x; a)]

is satisfied either by all of K or by the set of nonnegative elements under some

embedding of K into R.

Now we turn to the complex archimedean valuations of K. We may assume that

V— 1 G K; if not, it can be adjoined and the complex embeddings of K will be

obtained as restrictions of those of A{V — 1 ). In this situation A" is totally

complex, so Í ® q R is isomorphic as an algebra to C2, where 2r2 = [A": Q].

Fixing an isomorphism between them, we obtain a dense embedding

<D: K^K® 1-+A^R-tcA

Thus, <b(k) = (<px(k), q>2(k), . . . , q>r2(k)) where the <pj and their complex conjugates

give all embeddings of K into C. Fix a square root of — 1 in K and designate it /;

we can assume 0 has been chosen so that lm(q>j(i)) > 0 fory = 1, . . . , r2.

Our procedure for defining the complex valuations has three steps. First we

prove a geometric lemma showing how a certain type of cone contained in an

"upper half-space" of C2 can be manipulated to give the closed unit ball of a

valuation. Then we generate these cones and many others using the recursive

coding of §5. Finally, we characterize those sets which are the closed unit ball of an

archimedean valuation.

To begin, for each j = 1, . . . , r2, define

Hj = {lGC2\lm(Zj) >0},

Bj = {zGC'2||z7|< 1},

3£, = {zGC'2||z,|=l},

6 A form 2 CyXjXj is said to represent 0 in a field if there are numbers b¡, i — 1,. . ., n, in the field, not

all 0, such that 2 c¡jb¡bj = 0.
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and for £ G C with |f | = 1, put

dBjÜ) = {zGC'2|z,. = f}.

Hj is what was referred to above as an upper half-space; Q>~X(<S>(K) n B) is the

closed unit ball of the embedding qsj. Further, when d, h > 0 define a "strip"

StTj(d, h) by

StT/d, h) = {z GC'2| \zk\ <difk ¥>j; |Re(z,.)| < d, Im(zy) > h),

and for a > 0 define Cj(a) to be the cone spanned by Str^a, 1), that is,

Cj(a) = {r ■ z\r G R, r > 0, z GStry(a, 1)}

= U   Str/ra,r). (1)
r>0

Lemma 8. Suppose that for some a > 1, a subset Sj of K can be defined such that

Cj(a) n *(A") c *{Sj) C Hj n <¡>(K).

Then the closed unit ball of the embedding <py. K-^C can also be defined.

Proof. The proof consists of applying linear fractional transformations and

taking unions of sets constructed from S,. A linear fractional transformation T on

K gives rise in a natural way to a mapping T: C2 -» C2. In terms of coordinates, if

T(k) = (ak + b)/(ck + d) with a, b, c, d G K, put

Tj(zj) = (tpj{a)zj + q>j(b))/ (<py(c)z/. + <pj(d));

then

f(z) = (r,(z,),...,rr(zr2)). (2)

(The domains of T and T are taken to be the points where they are defined.) For

k G K, <&(T(k)) = T(<P(k)). But more importantly, since F is a linear fractional

transformation, if V is any subset of C2 then f(V n $(K)) = f(V) n <&(A").

Similarly for unions: if { Fa} is a collection of subsets of C2, then U(Fa n ®(K))

= ( U Fa) n í*(A^). Hence we can view our operations as acting either in K or in

C2. We are really interested in them on K, but their interpretation comes best from

the picture in C2.

We assert the following predicates lead from Sj to the closed unit ball:

P,(z)<=>3w(w G Sj&(w + i)z = -iw - 1),

P2(z)<^3u3q(Px(u)&q G Q&(1 + qi)u = (1 - qi)z),

P3(z)**3u3q(P2(u)&q G Q&0 < q < l&z = qu),

Ball(z)<=>VA:(A: ¥= 2^>3r3s(P3(r)&P3(s)&z + kr = s)).

By hypothesis, 5, can be defined, and V— 1 G K. Since a > 1, i is distinguished

from — / as being the unique square root of — 1 in S¡. Q and its ordering < can be

defined by earlier results. Hence these predicates can be expressed formally. Their

interpretation is as follows: consider the linear fractional transformation

T(w) = - (iw + 1)/ (w + /)■
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Because of our normalization of 9, each Tj(w) interchanges the upper half-plane

and the unit disc. Thus f(H/) G Bp and especially f(®(S)) G B}.

A strip Str7(ra, r) is a product of sets shown on the left side of Figure 1, so by

formula (2) its image under T will be a product of sets on the right side, a wedge

touching — i in the y'th coordinate and the exterior of a disc containing — i at the

other coordinates. For large r the radii of the omitted discs shrink to 0. In addition,

T is an open map, so the image of Stry(ra, r) is open.

0<—► i

Figure 1

Let

Px = T(Cj(a)).

By formula (1), Px is an open set contained in J5, with 9BA — i) in its closure. The

numbers (1 + qi)/(\ — qi) for q G Q are dense in the unit circle for each embed-

ding of K into C, so

is an open set contained in By with the entire boundary dBj in its closure. Finally,

the points of Bj with nonzero jth coordinate are dense in A, and each of them

generates a ray from the origin which intersects dB,. P2 contains points arbitrarily

close to this intersection. Therefore,

P3 = {r ■ u\r G R, 0 < r < 1, u G P2} =    \J     qP2
0<9<1

is open and dense in Bj.
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When carried out in K, these steps yield a set whose image under $ is dense in

Bj, and is open in the relative topology induced on $(A") from C"2. Ball(z) effects

the closure operation.   □

If Sj is only defined in terms of parameters, the lemma leads to a definition of

the closed unit ball relative to those parameters. Such a set Sr will be given, for

example, by the convex hull of 2r2 elements of K whose images under 4> approxi-

mate closely enough the vectors

*- (1,0,0,. ...-L-)        *.-('.*•...a;¿)

<V, = (o,o,...,i,^)      ^-, = (o,o,...,/,¿)

^ = (°'-'°'1 + 4^)' **-(-! + '...-.-1^-1 + 4^).

It is clear from §5 that the predicate S(s; u>, m, n), which is to be satisfied by

x = 2   qj^Mj G Q, % > 0, Uj = G(u>; m,j) foij = 1.n J,

where G(to; w, «) is the strong Gödel function of Corollary 5, can be defined. As u>,

m, n run through all possible values it is satisfied by cones which give rise to all

closed unit balls.

It remains to characterize closed unit balls among all subsets of K. In the

following, we use multiplicative valuations.

Theorem 5. Suppose K is a number field and B is a subset of K. Then, B is the

closed unit ball for some archimedean valuation \ of K (that is, B(x) iff x G {k G

K\\(k) < I}) if and only if

(1) VxVy[(B(x)&B(y)) -* (B((x + y)/2)&B(xy))],

(2) Vx[x = 0 V B(x) V B(\/x)\,

(3) -, 5(2)&Vx[ -, B(x) -> -, B(\ + 2x)],

(4) Vx{Vr[r 9* 0 -> 3y(B(y)&B(x + ry))] -» B(x)}.

Remarks. Axioms (1) and (2) are satisfied by all valuation rings of K above

primes of Q other than p = 2. Axiom (3) ensures we have an archimedean

valuation. Any set satisfying (1), (2) and (3) lies between an open and a closed unit

ball; Axiom (4) gives closure.

Proof. Clearly the closed unit ball of an archimedean valuation satisfies (l)-(4).

Conversely, given a set B as in the theorem we must construct the valuation A.

Notice that all the axioms remain true when restricted to Q. We first prove the

theorem when K = Q, and then do the general case.

We will need a lemma, easily established by induction on n.

Lemma 9. Let D be a subset of (0, 1, 2.n} containing 0, 1, and n, and such

that if r, s G D and r + s is even, then (r + s)/2 G D. Then, D = (0, 1, 2, . . . , n}.
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For the case K = Q:

(A) By (2), since 1 = 1/1 and -1 = l/(—1) these are both in B. By (1), their

average 0 = (1 + (—1))/2 G B, and 1/2 G B. At this point we remark also that

by (1), b G B iff - b G B.

(B) Next we show n G B for integers n > 2; the proof is by induction. From (3),

2Î5. Therefore, by (3) and (A), 3 = -(1 + 2(-2)) G B. Suppose we know n g B

for n G {2,3, ... , 2m + 1}, where m > 1. Then, 2m + 2 & B, since otherwise

m + 1 = (2m + 2)/2 would give m + 1 G B. Also 2m + 3 = 1 + 2(m + 1) im-

plies 2m + 3 G B.

(C) Therefore, by (2), {(l/n)\n G N} c B. Fix n, and consider the set

{0/n, \/n, 2/At, . . . , n/n}. Axiom (1) enables us to apply Lemma 9 to the

numerators of these fractions, so the entire set is contained in B. Using the remark

at the end of (A) we see that {q G Q| |^| < 1} G B.

(D) Now suppose q G B and \q\ > 1. By the multiplicative closure of B, q" G B

for n = 1, 2,_For large enough n, \q"\ > 2, so (2/qn) G B. But then 2 =

q"(2/q") G B, a contradiction.

This completes the proof in this case; now let K be an arbitrary number field.

From the case just treated, {q G Q| \q\ < 1} c B.

Consider an embedding,

K -+ K ® 1 -> K ® R s R'. x C2
Q

where [A": Q] = r, + 2r2. With some abuse of notation, our eventual goal is to

show B = K n {z G Rr' X C2| |z | < 1} for some/. As a first step we show that B

contains an open ball Bx about 0 in the topology induced on K by K °* K ® R. Let

w be a primitive element for K, so K = Q(w); then also K = Q(l/w) so we can

assume u> G B. It is easy to verify, using Axiom (1) and induction, that we can take

( ""I /I  xn-l

Bi = [ 2 <¥*'l kl < (j)   'a.GO-

Now define a function A: K —> R by

A(x) =   inf {\q\ \x/q G B}.

We claim A is a valuation:

(E) The set {q G QJx/17 G B} is not empty, because as we have just shown, for

large enough q, x/q is in the ball Bx c B. Thus A is well-defined; clearly X(x) > 0

for all x, and \(q) = |<¡r| for q G Q.

For the remainder of the proof, p, q and r will denote elements of Q. If

\q\ > À(x), then by definition there is some r with \q\ > r > \(x) and x/r G B, so

also x/q = (x/r) ■ (r/q) G B. If \q\ < \(x), then x/q G B, so ?/x G B.

(F) À(x) = 0 iff x = 0: (<=) is obvious. (=») means that for all q ¥= 0, x/q G B.

Therefore, for all q, qx G B. Suppose x ^ 0. Using the ball Bx exhibited above, we

see that K = (Qx)Bx c B. This contradicts 2 G 5.

(G) If x,y G K with y # 0, then X(x) < A(.y) iff x/y G £: (<=) If x/.y G B,

then having 7/9 G B implies x/q = (x/y) ■ (y/q) G 5. (=>) Here we use the

n=[A":Q].
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closure of B. Given X(x) < X(y), if x/y & B, then y/x G B, so by the direction

(<=) just proved, X(y) < \(x). Hence X(x) = X(y). Since y ¥= 0, by (F) there arep, q

such that p > X(x) = X(y) > q > 0. For any such p, q we have x/p, q/y G B by

(E), hence (x/y)/(p/q) = (x/p) • (q/y) G B. Takingp/q arbitrarily close to 1 we

see that x/y is in the closure of B with respect to the topology induced on K from

K 0 R. In view of Axiom (4) and the fact that B contains a ball about 0 with

respect to this topology, we obtain x/y G B, contradicting our assumption.

In particular X(x) < 1 iff x G B.

(H) X(xy) = X(x)X(y): X(xy) < X(x)X(y) because if x/p, y/q G B, then

(xy)/(pq) G B. Assume X(x>>) < r < X(x)X(y); then xy/r G B but r/xy G B.

Choosep, q with \p\ < X(x), \q\ < X(y), r < \pq\ < X(x)X(y). Then, r/pq G B and

p/x, q/y G B, so r/xy = (r/pq)(p/x)(q/y) G B, a contradiction.

(I) X(x + y) < 2 max(X(x), X(y)): Suppose X(x) > X(y); we can assume X(x) ¥*

0 for otherwise x = y = 0. Then, by (G), y/x G B, so by Axiom (1), (x + y)/(2x)

= (1 + y/x)/'2 G B. Hence, by (G) again, X(x + y) < X(2x) = 2 • X(x).

Thus by [1, Chapter 1], X is a valuation of K and we have described B as its

closed unit ball,    fj

Combining Lemma 9 and Theorem 5, we have

Theorem 6. There is a predicate which for every choice of its parameters is satisfied

either by all of K or by the closed unit ball of some archimedean valuation of K, and

every such ball is obtained for some choice of the parameters.
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