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»-VALUATIONS AND ORDERED *-FIELDS

BY

SAMUEL S. HOLLAND, JR.

Dedicated to the memory of Reinhold Baer

Abstract. We generalize elementary valuation theory to '-fields (division rings

with involution), apply the generalized theory to the task of ordering '-fields, and

give some applications to Hermitian forms.

1. Introduction. By a *-field I mean a (not necessarily commutative) field %

together with a one-to-one mapping a-^> a* (called the involution) that satisfies

these conditions: (a + ß)* = a* + ß*, (aß)* = ß*a*, and a** = a. R. Baer [3,

Chapter IV, Appendix I] calls a Mield ordered when it contains a subset n (the

domain of positivity)

(1) consisting solely of symmetric elements (a* = a),

(2) containing 1 but not 0,

(3) closed under sum,

(4) closed under X -» p*Xp for p ¥= 0, and

(5) containing either X or -X for each nonzero symmetric X.

The subset n defines the positive elements (X > 0), and we totally order the set of

symmetric elements by setting X > p when X - u G n. The real numbers R, the

complex numbers C, and the quaternions H all have orderings-take the domain of

positivity as the positive reals in all three cases.

For a commutative field with the identity involution, Baer's axioms specialize to

A. Prestel's axioms for a "^-ordered" field [13]. These axioms differ from the usual

(Artin-Schreier) postulates in requiring only closure of the domain of positivity

under X —> p2X for nonzero p, in place of requiring that positive elements have a

positive product. Thus an ordered field in the usual sense satisfies Prestel's, and

hence Baer's, axioms. (But not conversely, as Prestel has constructed <7-orderings

that do not qualify as orderings in the usual sense [13].)

This paper continues the study of ordered *-fields begun in [7]. Ordered *-fields

seem to merit such further consideration on at least four counts. First, they have

intrinsic interest deriving from their above-mentioned close relationship to the

classical commutative ordered fields of Artin and Schreier, and the commutative

^-ordered fields of A. Prestel. Second, they show real promise of use in the theory

of noncommutative Hermitian forms; see [5, Chapter I, Appendix I] and §§5 and 6
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of this paper. Third, the theory of ordered "-fields may help advance our knowl-

edge of *-rings, especially the Baer '-rings. And fourth, they may help delineate the

structure of orthomodular lattices and the lattice-based axiom systems of quantum

physics, because *-fields appear in the representation theory of both systems.

Within the theory of ordered '-fields, the classical number fields R, C, and H

have a special significance, so a word or two seems in order here to clarify how

they fit into the theory.

We call '-fields (9C,, *) and (Di^, #) *-isomorphic when there exists an algebraic

isomorphism <j> of 5C, onto Xj such that (using functional notation)

<f> ° * (a) = # ° <f>(ot)

for all a in 9C,. If 5C, has a domain of positivity II, then one checks routinely that

<í>(n) serves as domain of positivity ordering %2. If we deal with a fixed representa-

tive field % and an automorphism <j> of %, then we speak of the involutions * and

# as conjugate: # = <¡> ° * ° <¡>~x. We generally regard conjugate involutions as

abstractly identical.

The real numbers R admit only the identity involution. The classical quaternion

field, with R as center, has nontrivial automorphisms, but the ordinary quater-

nionic involution stands conjugate only to itself. When I write the symbol "H", I

mean the quaternion field with this involution. The quaternion field admits other

involutions, but none of them ordered.

The complex number field, as a pure field, admits an up-to-isomorphism char-

acterization as the only algebraically closed commutative field of transcendence

degree c and characteristic 0. Select a particular field W with these attributes. W

admits many involutions. For each involution # of W, not the identity, the fixed

field F of # has a unique ordering, and we have W = F(i), i2 = -1, i* = -i.

Hence every involution of W is "complex conjugation" with respect to its (real

closed) fixed field F, and W is an ordered *-field for any choice of involution. Two

involutions stand conjugate in aut(IF) exactly when their fixed fields are isomor-

phic (and therefore order isomorphic, since uniquely ordered). These fixed fields

may have various order properties: Dedekind complete, archimedean but not

Dedekind complete, or nonarchimedean. The involutions with Dedekind complete

fixed field, i.e. with F = R, form an infinite conjugacy class in aut( W). When I

refer to "C", the complex numbers as an ordered *-field, I mean W together with

one of the involutions in this conjugacy class. Now each of these involutions

determines a metric \a\2 = a*a, and any of the other involutions in this same

conjugacy class is a discontinuous linear map on this metric space. But it is

probably unwise and unnecessary in most contexts to select one involution this

way, then refer to another conjugate one as "discontinuous". In most circum-

stances, one probably need not distinguish conjugate involutions. The key dis-

tinguishing feature of an involution # on W is the order character of its fixed field,

which determines (W, #) as an ordered '-field.

Corollary 3 of [7] characterizes R, C, and H as the only Dedekind complete

ordered '-fields.
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This paper is organized under the following headings:

§2. '-valuations;

§3. Lifting an ordering: examples of ordered *-fields;

§4. The order topology and order valuation of an ordered '-field;

§5. Hermitian forms;

§6. Generalization of Wilbur's theorem.

2. "-valuations. We deal in this section with a general '-field X (no ordering). A

map w of X (the multiplicative group of nonzero elements of X) to an ordered

group G that satisfies

(1) w(aß) = w(a) + w(ß),

(2) w(a + ß)> min(w(a), w( ß)), a + ß ^ 0,

(3) w maps onto G,

(4) w(a*) = w(a),

we call a * -valuation of X. One need not assume G abelian, as this follows from

axioms 1, 3, and 4.

Call the set

$= {a G X: w(a) > 0} U {0}

the *-valuation ring of w; it determines w uniquely up to equivalence in the usual

way. $ has these two properties: (1) it contains every a*a~x, a G X, and (2) it

contains at least one of a, a~x for each a G X. A subring of X that satisfies these

two conditions I call a *-valuation ring, a terminology justified by the following

result.

2.1. Given a subring $ of a *-field X that contains every a*a~x, a G X, and

contains at least one of a, a~x for each a in X, then there exist an ordered abelian

group G and a *-valuation w: X -» G such that 4> equals the *-va!uation ring of w.

Proof. Let 4> denote the multiplicative group of invertible elements in $. We

have a*a~x G O for every a in X, because (a*a~x)~x = ß*ß~x with ß = a*.

Hence aßa ~xß~x E$' for every a, ß in X by virtue of the identity

aßa~xß-x = ((a*)*(a*)-i)((ß*a)*(ß*a)-l)(ß*ß-x).

Hence <ï>' contains the commutator subgroup [X, X] of X, and so lies normal in

X with abelian quotient G = X/4>'. Define w: X -» G as the natural map, and

order G by setting a > 0 <=> a = w(a), a G $. That completes the proof.

The trivial '-valuation has G = {0}. A '-valuation is trivial exactly when its

"-valuation ring equals all of X. The nontrivial case we also refer to as proper.

The first condition defining a '-valuation ring, namely that it contain every

a*a A a G X, already by itself has strong implications. I shall call a subring $ of

X that satisfies this condition symmetric.

2.2. Any symmetric subring <I> of a "-field X has the following properties:

(1) it is "-closed (a G <ï> => a* G $);

(2) [X, X] G $ ; in particular ß ~ x<S>ß = $/or all ß in X ;

(3) each ideal A in 4> is "-closed, two-sided, and has the property that aß G A => ßa

G A;
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(4) if A is a prime ideal in 5>, A ¥= $, then the sets

{aß~x: a,ß G <ï>, ß G A},        {ß~la: a, ß G í>, ß G A}

are equal. This set, call it <Ï>A, is itself a "-subring of X containing $>, and hence also

symmetric.

Proof. The "-closure of Í» follows from the equation a* = (a*a ~ x)a. During the

proof of 2.1 we proved every element of the commutator subgroup is invertible in

<S>, which is item (2). As for (3), the "-closure of a left ideal follows from

a* = a(a*a~x)a, that of a right ideal from a* = a(a~~xa"), and two-sidedness

from "-closure. The equations a*ß* = (a*a ~')(<*/?)(/A 1ß") and ßa = (a*ß*)*

prove the last assertion in (3). As for (4), we use the identity a/A1 =

(ß(a*a~x))~x(ßa*ß~x) to prove the equality of the two sets. If a and ß belong to

<ï> but ß does not belong to the ideal A, then ß(a*a~') cannot belong to A owing to

the invertibility of a*a~x in 4>. Hence a/A1 has the form jtAa, u, a G 4>, u £ A.

That proves the equality of the two displayed sets in (4). To prove 4>A closed under

product, argue as follows:

(axßx-x)(a2ß2-x) = ax{ßx-xa2)ß2x = ax(a3ß3x)ß2x

= (axa3)(ß2ß3y\

noting that ^ftîA if both ßx G A and ß2 & A (here we use the primeness).

Finally, establish the closure of Í>A under sum from the identity

axßx~x + a2ß2x = (axß2 + a2(ß2xßxß2))(ßxß2)~\

That completes the proof of 2.2.

If, in (4) of 2.2, we use 0 for the prime ideal A, then <£>0 equals the quotient field

of 4>. If $ is a "-valuation ring, then 4>0 = X.

A "-valuation ring satisfies the symmetry condition (1), so has all the properties

in 2.2. It satisfies also the traditional condition (2), that it contain at least one of a,

a-1 for each a in X. From this latter condition we can deduce the usual properties

of "-valuation rings, listed in 2.3 which follows (using Krull's terminology [9]). The

omitted proof runs almost the same as in the commutative case. (A right segment in

G means a subset consisting exclusively of nonnegative elements and containing

with each a every b satisfying b > a.)

2.3. Let 4> denote a "-valuation ring in the *-field X, and let w, G denote the

"-valuation and ordered group respectively belonging to 4>.

(a) An ideal in 4> with finite basis is already principal. If an ideal A is prime, then

a" G A => a GA for any n = 2, 3, . . . . Conversely, if for some fixed n = 2, 3, . . .

the ideal A satisfies a" G A => a G A, then A is prime.

(b) The set of noninvertible elements in í> forms a proper ideal ^P that contains

every other ideal. We have ? = {« E O: w(a) > 0} u {0}.

(c) The map A —» w(A\0) is an order isomorphism of the multiplicative system of all

proper ideals of $ onto the additive system of all right segments of G. The ideals of $

are totally ordered by set inclusion. If A, D A2, then A, is a factor of A2 (A2 = AA,) <=>

either A is principal, or both A, and A2 have no finite basis.

(d) The ideal A is principal <=> the right segment w(A\0) has a least element.
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(e) Let Abe a proper ideal in $, C = w(A\0) its corresponding right segment. Then

A is prime <=> { g G G: | g\ < c for all c G C} forms an isolated subgroup of G. (An

isolated subgroup contains along with each positive g each d satisfying 0 < d < g.)

With each "-valuation ring 4> with maximal ideal 'dP we associate the residue class

"-field %, = &/<$ with involution defined by (a + <3>)* = a* + <?. We shall use

the symbol 0 to stand for the natural "-homomorphism of <I> onto (X0: 9(a) = a +

<éP. Then, by definition of the involution on Xq, 0(a") = 0(a)* for all a in Í».

We define a "-place as a mapping <J> of a "-field X into a system A u {oo}

consisting of a "-field A with involution #, and a separate symbol oo such that <i>

satisfies

(l)if a =£ 0, then<f>(a) = oo =^<p(a~x) = 0,

(2) <p(a*a~') ^ oo for all nonzero a,

(3) if <Ka)^oo and $(ß) ^ oo, then <f>(a ± ß) = <K«) ± <Kß), <&aß) =

</>(a)<K0), and <>(a") = <f>(a)#.

One then verifies routinely

2.4. 77te ser $ = {a G X: <í>(a) ¥= oo} constitutes a "-valuation ring in X w/rA

maximal ideal 9 ={aGX: <>(a) = 0). IFe have A "-isomorphic to the residue

class "-field®/®.

We thus have the usual tie-up between "-valuations, "-valuation rings, and

"-places.

We end this section with a generalization to "-valuations of an important

theorem from commutative valuation theory [9, Satz 6].

2.5 Theorem. Any symmetric subring of a "-field X not itself a field extends to a

proper "-valuation ring.

With the help of A. R. Richardson's result on simultaneous linear equations over

a division algebra [16, Theorem 15], and (4) of 2.2, one can adapt Krull's proof in

[9] to prove Theorem 2.5. I forego the details.

3. Lifting an ordering: examples of ordered "-fields. Continue the terminology of

the preceding section: X a "-field with "-valuation ring $ and residue class "-field

5Q, = $/g>, 6p the maximal ideal of $.

We now address this question: Given an ordering of the residue class "-field Xq,

can we lift this ordering to X? The answer is "yes" (under a mild additional

condition), by a direct generalization of Prestel's method [14].

Inasmuch as both the "-valuation ring i> and its maximal ideal 9 are invariant

under inner automorphisms of X, any inner automorphism of X, say Ap(x) =

pxp A induces an automorphism of Xg (not generally inner) which we denote by

the same symbol:

Ap(0(x)) = 0(pxp-x),       xG$.

Composing an inner automorphism Ap with our involution *, we get an antiauto-

morphism #ofX, # = Ap ° * or x* = px*pA This antiautomorphism quali-

fies as an involution exactly when p*p~x belongs to the center of X. Since

p* + p = (p*p~x + l)p, we may replace p by the symmetric element p* + p when
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p*p~x G center(X), unless p*p~x + 1=0. But this corresponds to skew p. Hence

any involution # on X of the form x* = px*p~x may be obtained already with p

symmetric or skew.

Given p symmetric or skew, the involution # = Ap ° * induces an involution

on Xq. We call the element p smooth if this induced involution on Xq is conjugate

to *. That is, p is smooth when there exists an automorphism Tp of Xq so that

# =ap° * = rpo » or;1  onX,.

I call a "-valuation w: X -> G smooth when char(X) ¥= 2 and w fulfills the

following conditions:

(1) w(2) = 0;

(2) each equivalence class w x(g) contains a smooth symmetric element if it

contains symmetric elements at all, otherwise it contains a smooth skew element.

With regard to condition (2) note this: If condition (1) holds, then w~x(g) always

contains either a symmetric element or a skew element. Because, given a with

w(a) = g, then a = a + a* is symmetric, 8 = a — a* skew, and both w(o) > g,

w(8) > g. But we have also g = w(a) = w(^(o + 8)) > min(H'(a), w(8)). Hence we

must have either w(o) = g or w(8) = g, so either o or 8 belongs to w~x(g). Hence,

in (2), smoothness is the issue; the symmetric and skew elements come free. And,

as we shall see, smoothness represents a mild condition on w.

Given a "-valuation w: X -> G, we define, with Prestel, a presection as a

function s: G —> X that selects for each g in G an element s(g) in w~x(g) such that

(1)5(0)=1,
(2) s(g) is symmetric if w~ x(g) contains symmetric elements, otherwise it is skew,

(3) s(2g) = ßß* for some ß,

(4) s(g + 2k) = ys(g)y* for some y.

We call the presection smooth if each s(g) is smooth and the selected family of

automorphisms of Xq, {ri(g): g G G}, has these properties.

(i') r, = /,
(3') Tsi2g) = Aß, given *(2g) = ßß",

(4') Ts(g+2k) = Ay ° Ts(g), given s(g + 2k) = ys(g)y*.

3.1. Lemma. Any smooth valuation has a smooth presection.

Proof. Start by selecting s(0) = 1, and Tx = identity of Xq. For each 2g =£ 0, the

class H>-1(2g) always contains a ßß"; select such an element as the value s(2g), and

select as an automorphism of Xq Tßß, = Aß. Next select a representative a in each

coset of 2G, selecting 0 for 2G itself. Call A the set of representatives so selected.

For each nonzero a in A, select s(a) smooth symmetric if w~x(a) contains

symmetric elements; otherwise select s(a) smooth skew (possible because of the

assumption of a smooth valuation). With each smooth s(a) comes its automor-

phism ri(a) of Xq. Then for each g in G, we have g = a + 2h for a unique a in A

and h in G. Define s(g) = ßs(a)ß* where s(2h) = ßß*. And for automorphism we

may take Ts(g) = Aß ° TsW by the following argument. First,

(Aß ° rJ(a)) » * « (Aß » rJ(a)r' = Aß » rî(a) ° * ° r^¿ ° Aßx.
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Now rs(o) °  *  ° r^1) = As(a) o  * , and *  « Afi-, - Ar "  * , so

(Afi ° r.(«)) °    *    ° (^/J ° r^«))"1  " Aß ° ̂ (a) ° 4s« °    *   = 'Ww °    * '

which shows Tßs(a)ß, = Aß ° Tí(a) as desired. That completes the definition of í and

T on all of G. It remains to establish properties (4) and (4'). Given m G G of the

form m = g + 2k, write g = a + 2h, unique a in A and h in G, so

m = a + 2(h + k).

Then, by definition, s(g) = ßs(a)ß* where i(2/t) = /?/?*, and í(/m) = ¡is(a)fi* =

(riß~x)(ßs(a)ß*)(liß'x)* = ys(g)y*. Likewise, by definition, Ti(g) = Aß » rí(a)

and rí(m) = yí„ o rí(a). Then Tí(m) = ^ » ¿-> „ rj(g) = ^ ° r^,,. That proves

Lemma 3.1.

3.2. Theorem. Given a "-field X with smooth valuation w, there exists a map N of

X onto its residue class *-field Xq such that

(l)N(a) = 0<=>a = 0,

(2) for each a and each symmetric X in X, there exists ß in Xq so that

N(aXa*) = ßN(X)ß*,

(3)

,   t. _ j N(a)*    when w~x(w(a)) contains a symmetric element,

( — N(a)*    otherwise,

(4) ifN(a) + N(ß) * 0, then N(a + ß) = N(a), N(ß), or N(a) + N(ß) accord-

ing as w(a) < w(ß), w(a) > w(ß), or w(a) = w(ß).

Proof. According to Lemma 3.1, our smooth valuation w has a smooth presec-

tion s: G-> X with family {ri(g): g G G} of automorphisms of Xq having the

properties   listed   above.   Given   a G X   with   w(a) = g,   define   N(a) =

^j(g) ° ¿'(«•Kg)-1)' ^ tne natural "-homomorphism of w's "-valuation ring <I> onto

Xq. Set also N(0) = 0.

(1) is clear. As for (2), set g = w(aXa*) = I + 2c, I = w(X), c = w(a). Then

s(g) = s(l + 2c) = ys(l)y* where w(y) = c = w(a). Also Tj(g) = Ay ° rj(/). Then

A(«X«*) = rs7])oö(aXa*i(g)-1)

= r^)0ö(aXa*y*-'.(O"'y-1)

= r-(xg)°Ay°0(y-xaXa*y*-xs(l)-1)

= K(l\oe(y-xaXa*y*-xs(l)-1).

Since y~xa G $", we have

= (K(h ° <?(y-'«))(r^ o 0(Xa*y"-xs(iy1))

= (r.7/) ° 0(y-xa))(Tr(l\ o Am o 9(s(iy1Xa*y"-x))

= (r^1, o ^y-1«))^1 o ^(/) o 9(s(iy 1x))(rJ71 o ^ „ *(«•,•-'))

= (rJ7/)^(y-1a))(rí7/)oe(x5(/)-1))(rí7/1)o^(/)o * o^y-1«)).
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The middle term equals N(X). For the last term, apply the formula

Asd) ° * = r,(/) °  *  ° T7v\>

to get *   » T^r] ° 9(y~xa). Thus N(aXa") = ßN(X)ß* where ß = T^,] ° 0(y~xa).

For (3) we argue as follows.

N(a)*= *  oTrixg)o0(as(g)-1)

= ±T¿¡)°AÁg,°9(s(g)-1a")

( + for symmetric s( g), — for skew)

= ±r^)°0(«*í(g)-1)= ±N(a").

The proof of (4) follows very much the argument in [13, Lemma 3.8]; we leave

the details to the reader.

3.3. Corollary. Given a "-field X with smooth "-valuation w and residue class

"-field Xq, then every ordering of Xg lifts to X.

More precisely : Refer to the function N of Theorem 3.2. For nonzero symmetric a

in X, set a > 0«=» N(a) > 0 in Xq. This orders X. 77te ordering is moreover

compatible with w in the sense

0 < a < ß^>w(a) > w(ß).

The proof is a direct application of Theorem 3.2.

We now apply Theorem 3.2 and its corollary to construct examples (and

nonexamples) of ordered "-fields. The constructions use also this principle: An

ordered "-field is formally real (refer to §5). Put another way, in an ordered "-field

an expression axpa* + ■ ■ ■ + anpa* with p symmetric can vanish only trivially.

(a) Generalized complex and quaternionic *-fields. When a* = a for all a in the

"-field X, then X is necessarily commutative, and the definition of a domain of

positivity n reduces to this: IT contains 1 but not 0, is closed under sum, contains

p2X along with X for any p ¥= 0, and contains either X or — X for each nonzero X.

This kind of ordering Prestel calls a "^-ordering", and in his papers [13], [14], he

gives many examples and a detailed analysis.

Each example of a ^-ordered commutative field Zq gives rise to two different

examples of ordered "-fields with nontrivial involution, namely the complex num-

bers 2n(V— a ) and the quaternions %>(- a, - ß) built on Zq. In fact the domain

of positivity II for Zq also serves as domain of positivity for both Zn(V — a ) and

Zn(-a, — ß). (Here a and ß represent positive elements of 2n, Zn(V— a ) carries

the standard "complex conjugation" involution, and 2n(— a, — ß) stands for the

usual quaternion "-algebra over Zq with basis 1, i,j, k where i2 = — a,j2 = — ß,

ij = k = — ji, involution determined by <"* = — /,/* = — /.)

Conversely, given a commutative field Zq, if either Zq(V— a ) or Zq( — a, — ß)

for a, ß in%o admits an ordering, then this ordering induces a ^-ordering on Zq,

and in that induced ordering we have both a > 0 and ß > 0 as follows from the
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general condition £*f > 0. Thus each example of an ordered complex or quater-

nionic "-field arises from a ^-ordered commutative field in the manner described

previously. Indeed, for such generalized complex and quaternionic "-fields, our

theory of ordered "-fields reduces essentially to Prestel's theory of ^-ordered fields.

(b) Tensor product of quaternionic *-fields. Surprisingly, the tensor product of

quaternion "-fields with its usual involution never admits an ordering. If Xj and

Xj are quaternion "-fields with respective bases {1, /,/, k} and {1, u, v, w} over a

common center A, then the element p = j ® u of X = X, ® X2 is symmetric with

respect to the usual involution * on X induced by X, and Xj. But a*pa + p = 0

for a = i <8> 1 as a simple calculation shows, so X cannot admit an ordering.

(c) Nonabelian and abelian bicyclic *-fields. Next we discuss a class of odd-dimen-

sional examples (and nonexamples) that come under the "bicyclic" "-fields of

Albert [1] whose method of construction goes like this. Start with a tower of

commutative fields Zq c Z c 911 of characteristic zero, with Z/Zq of degree 2,

911/2 cyclic of odd degree n > 3 with, say, S as generator of Gal(91l/Z), and

911/Zq normal (Galois) with Galois group generated by S and an automorphism *

of period 2. Albert refers to this situation as bicyclic. Distinguish two cases

according to the relation connecting * and S: If *S* = S~l call this case

nonabelian bicyclic; if *S = S*, abelian bicyclic. Now, select adroitly an element

y G Z that makes the cyclic algebra X = (911/Z, S, y) a field, and that satisfies

either y = y* in the nonabelian case or yy* = 1 in the abelian case. The cyclic

field X has center Z and has 911 as a maximal abelian subfield; we describe it in

the usual way

% = {lt0+ Hxy + • • • +lin_xya-x:fiiGGyii,yn = y,yli = S(n)y}.

The formula >>* = y, respectively y* = y A then determines uniquely an involution

on X in the nonabelian, respectively the abelian, case. These are the nonabelian

and abelian bicyclic "-fields of Albert-all finite dimensional by definition.

We construct first an infinite family of nonabelian bicyclic ordered "-fields.

3.4. Let p be a prime = 3 (mod 4), let u> = exp(2iri/p), and let A = Q(w + w) be

the maximal real subfield of the cyclotomic field Q(w). Let x be an indeterminate, set

Zp = A(x"), Z = Q(u>)(x"), and 911 = Q(w)(x). Take S(x) = xw as a generator of

Gal(9lt/Z), and define * on 9H by setting f* = Ï for f G Q(u>) and x* = x. Then

the nonabelian bicyclic *-field X = (9H/Z, S, 2) admits an ordering.

Proof. When p = 3 (mod 4), then Q(<u) = A(V — p ) has degree 2 over A =

Q(w + u>*) [10, Article 183]; hence Z = Q(u)(xp) has degree 2 over Zq = A(x").

Since * S* = S ~x (as is easily checked), the tower of fields Zq c Z c 911 stands in

the nonabelian bicyclic case with deg(9!t/Z) = p. Write the general nonzero

element p of 91L as a formal Laurent series in x, coefficients in Q(w):

u = fx*(l +Xx+ ■ ■ ■),       0 * f G Q(<o).

Then deduce that if 2 G Z were a norm from 911, then Q(w) would contain the

realpth root of 2, which is clearly not the case. Thus X = (91L-/Z, S, 2) is a field.

Since 2* = 2, we can extend the involution (as before) from 91L to X, making X

into a nonabelian bicyclic "-field.
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Next represent the general nonzero element a of X as a formal Laurent series

« = x"(f0 + Sxy + S2y2 + • ■ • +^xy"-x) + x"+1( ...) + •••

where £, G Q(w) and not all f, equal zero. One then checks easily that the function

w: X -h> Z defined by w(a) = n qualifies as a "-valuation (§2). The residue class

"-field Xq we can identify with Q(u>)(2x/p), which under complex conjugation is an

ordered "-field. To lift this ordering to X, we need to verify smoothness of our

"-valuation.

Clearly w(2) = 0. As to the second condition, we need to check that each w~x(n)

contains a smooth element p. To say that p is smooth means that the involution

# = Ap ° * , where A (•) = p(-)p~x, induces on Xq an involution conjugate to its

*. Now note that if p = ßß*o where a = o* G center(X), then # = Ap ° * is

conjugate to * on X itself because then # = Aß ° * ° Aßx. Hence such a p is

clearly smooth. In our just-constructed nonabelian bicyclic example, x =

(x(p + X)/2)2x~p with x~p central. Hence x is smooth, and clearly also x" for any

n G Z. Thus our valuation is smooth, and by Corollary 3.3 we can lift the ordering

of Xq to X. That completes the proof of 3.4.

The abelian bicyclic case presents a sharp contrast to the nonabelian.

3.5. No abelian bicyclic *-field admits an ordering.

Proof. Maintain the notation used in the discussion preceding 3.4, and sym-

bolize the general abelian bicyclic "-field X as (9H/Z, S, y). We may assume the

maximal abelian subfield 91L generated over the center Z by a symmetric element

p; 91L = %(p), p* = p. Then f = Trace^/^p) lies in the center Z and satisfies

?* - S. Let a - £ - np. We have 0 ^ a = a", yet

o +yoy* + ■ ■ ■ +y"-xo(yn-x)* = a + yoy-x + ■ ■ ■ +A_1oA("~1)

= 0 + S(o) + ■ ■ ■ +S"-\o)

= Trace(a) = 0.

Thus our general abelian bicyclic "-field never admits an ordering.

(d) "-fields of fractions of ordered Ore "-domains. The definition of ordered "-field

makes no reference to inverses-it applies to any "-ring. The construction of our

next class of examples uses this fact and the following result.

3.6. An ordering of an Ore "-domain ldP extends uniquely to its field of fractions X.

Proof. An involution on 9 extends uniquely to X, and the equivalence class

containing aß ~ ' is symmetric with respect to the extended involution if and only if

ß*a is symmetric in ty. The definition

aß~x >0in%**ß*a>0in<3'

then effectively extends a given ordering on "ÍP uniquely to X.

The Weyl algebra is an Ore domain [4, p. 137] which we shall use to construct an

example, illustrating the application of 3.6. We shall in fact construct two examples

in parallel, a "real case" and a "complex case".

3.7. Let Zq denote a q-ordered commutative field, set Z = Zq in the real case,

Z = Zn(/), f   = -1, in the complex case. Let W(%) denote the Weyl "-algebra over
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Z generated by indeterminates x and u subject to the relations xu — ux = 1, x* = x,

u* = — u in the real case, xu — ux = /', x* = x, u* = u, i* = — i in the complex.

Then W(%) admits an ordering, and thus also its Ore field of fractions A.

Proof. Write the general nonzero a G IF in the normal form

a = p0 + upx + ■ ■ ■ +u'p„       Pi G Z[x], 1 < i < l,p, *0, (1)

where we add term-by-term, and multiply according to the rule

pu1 = u'p + ( ¡)"'~'Ap + {^'"^P + • • * +A'P>       P e Z[*]>

where A = 3/3x in the real case, A = i'9/8x in the complex.

For an a as given by (1), define N(a) = fa, where f9 is the first nonzero

coefficient of the polynomial p,,

Pi = £,** + ¿Vi*"*' + • • • .       £, G 2, />*,£,# 0.

Set also N(0) = 0. The map N so defined maps W onto Z, and has the following

properties:

(i)A(a) = 0<=>a = 0;

(ii) N(aß)= N(a)N(ß);

(iii)

#(„•) = ( (-l)'^(a)*     in the real case,

[ N(a)*    in the complex case;

(iv) if N(a) + N(ß) t¿ 0, then N(a + ß) = one of N(a), N(ß), N(a) + N(ß).

Then the definition a > 0 <=> A(a) > 0 for symmetric a orders W. Thus, in this

case we have constructed directly the function N of Theorem 3.2.

(e) Power series "-fields. The power series construction of P. M. Cohn detailed in

[7] provides another example of an ordered "-field, and at the same time provides a

useful representation of the field of fractions A of our Weyl "-algebra. This

construction goes as follows. Start with Zq and Z as in the previous construction.

Construct the field Z((x)) of Z-coefficient formal Laurent series in the single

indeterminate x. Write the typical element in Z((x)) as

<t> =  I Snxn+q, (2)

q an integer, positive, negative, or zero, the f„ in Z, and f0 =£ 0 understood unless

<j> = 0. Endow Z((x)) with the natural involution determined by x* = x. Next

form the set X of formal Laurent series in an indeterminate y, coefficients in

Z((x)) written on the left. Write the typical element a in X as

« = 2 <>nyn+p, (3)
n = 0

p an integer, positive, negative, or zero, <>„ G Z((x)), and <b0 =£ 0 understood unless

a = 0. Add term-by-term, and multiply according to the relation xy ~ ' — y ~ lx = 1

in the real case, xy~x — y~xx = i in the complex. To determine the general

formula for multiplication, note that products of the form y "<f> determine, through

distributivity, the general expression for the product of elements of the form (3).
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Then, as in [7], show that

y"<f> - (/ - ÄA)""(>")

where R symbolizes the operation of right multiplication by y, R(a) = ay, and

A = 3/3x in the real case, A = /3/3x in the complex. Thus

3<í>   ,4.1       ■> n(n + 1) 32<f>   „.,
yn4> = <byn + en-£y"+l + e2    V   2     L~^y"+2 + • • •

where e = 1 in the real case, e = » in the complex.

Make X into a "-field by setting y * = - y in the real case, y * = y, i* = — i in

the complex. Thus, with a as in (3),

a* = (-iy[<b0yp + (p(3<J>0/3x) - <i>,y+1 + • • • ]    in the real case,

and

a* = <¡>*yp + (/p(3<í)*/3x) + <t>^)yp+1 + ■ ■ ■     in the complex.

Let G = Z x Z as an abelian group under componentwise addition, ordered

lexicographically by

(m,n) ^ 0    according as m ^ 0

and

(0, n)^0    according as « ^ 0.

Given nonzero a represented as (3) with <f>0 represented as (2), define w(a) = (p, q)

G G. This is a "-valuation on X whose residue class "-field Xq we can identify

with the center Z. The natural "-homomorphism 9 of $ onto Xq has the form

m +•••) + *iy + •••)- $■
One checks easily this property of 9: Given any nonzero elements ax, a2, . . ., a„ in

X, if the product axa2 . . . a„ lies in the "-valuation ring <I>, then the product in any

order lies in $, and the element 9(axa2 . . . an) of Xq does not depend on the order.

Hence 9(pxp~x) = 9(x) for every nonzero p and every x G Í». Consequently all

symmetric and skew elements of X are smooth, and we may therefore by

application of 3.3 lift the natural ordering of %> = Z to X. (In this case the

function N of Theorem 3.2 is easily given explicitly: N(a) = 9(y~px~9a) when

w(a) = (p, q).)

Return to the Weyl algebra W(%) and a typical element a in normal form

a = p0 + upx + ■ • ■ +u'p¡. By substituting u = y~x in this expression, we get an

element of the just constructed "-field X. This identification embeds W(Z)

"-isomorphically in X. The subfield of X generated by W(%) equals A, the Ore

field of fractions of W(%).

4. The order topology and order valuation of an ordered "-field. I summarize first

some elementary properties of ordered "-fields [13], [7]. If X > 0 and (m/n) > 0,

then (m/n)X > 0; if X > 0 then X-1 > 0; if 0 < X < 1 then 0 < X2 < X < 1; if

X > 1 then X"1 < 1; if 0 < X < 1, then X-1 > 1; and if X > 1 then X2 > X > 1.

The theorem of [7] asserts that an archimedean ordered "-field is *- and order
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isomorphic to a subfield of the real numbers R, the complex numbers C, or the real

quaternions H.

Given now an ordered "-field X with domain of positivity n, define a norm

|| • ||: X ->n by ||a|| = a*a. Clearly ||a|| > 0 when a ¥• 0, and ||0|| = 0. One

checks easily the following properties of the norm.

II« + /?H<2(M+||/3||),        \\aß\\= ß"\\a\\ß,

Ij«-1|| = ||«*[| — '    and    ||X|| = X2      whenX = X*.

Given e > 0 in X set N(e) = {a G X: ||a|| < e}. This system of neighborhoods of

0 defines a Hausdorff topology on X, the order topology, which makes continuous

the following operations: addition and subtraction, a —» aa0 at 0 (a0 fixed), a -» a2

at 0, and a ^> a~x at 1. To make X a topological "-field I need to assume, in

addition, the continuity of the involution, that is, I need to assume that given e > 0

in X there exists o > 0 so that ||a|| < S => ||a*|| < e.

4.1. Theorem. An ordered "-field X with continuous involution is a topological

"-field under its order topology.

Proof. Verification of the continuity of addition and subtraction presents no

difficulty. As for multiplication, check first that given a0 G X, then for any e > 0

there exists 8 > 0 such that ||a|| < 8 =» ||aa0|| < e. Here just set 5 = a0~1*ea0~x.

Next use the continuity of * to verify the continuity of a -» a^a. Then handle the

general case with the identity

aß - a0ß0 = (a- a0)(ß - ß0) + a0(ß - ß0) + (a - a0)ß0

with its consequent inequality

\\aß - a0ß0\\ < 2\\(a - a0)(ß - ß0)\\ + 4\\a0(ß - ß0)\\ + 4||(o - ajß0\\.

Given e > 0, then (by the arguments just given) there exist 5, and S2 so that

|| ß - ß0\\ < 8X => \\a0(ß - ß0)\\ < 6/12 and ||« - «0|| < 82 => ||(a - a0)ß0\\ <

e/12. Set 8 = min^, 82, 1, e/6). Then ||a — a0|| < 8 and || ß — ß0\\ < 8 together

imply

||(« - a0)(ß - ß0)\\=(ß - ß0)*\\a - a0\\(ß - ß) < (ß - ß)* ■ I ■ (ß - ß0)

= \\ß- ßo\\<8<e/6,

so that \\aß - a0ß0\\ < 2(e/6) + 4(e/12) + 4(e/12) = e.

As for the inverse, first check its continuity at a0 = 1. Note that if ||1 — a\\ <

\/n for some integer n > 3, then \\a\\ > (n — 2)/2n. Now given e > 0, select

8 < min(l/4, e/4). Then ||1 - a|| < 8 => ||a|| > 1/4 or 1 < 4||a|| whence

lla-'H = a-x*a~x < a",*(4||«||)a_1 = 4.

So || 1 — a|| < 8 implies

II«"1 - 1|| -=((« —«(1 - «)||= (1 - a)*a-'*a-1(l - a)

= (1 - a)*|a_1||(l - a) < 4||1 - a|| < e.

Next check continuity of the inverse at the nonzero a0 in the following steps.

First choose 5, =3||a0||. Then ||a - a0|| < 8X =* \\a — a0\\ < 5l|a0ll soa^O and
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a ~ ' exists. Now, given e > 0, by continuity of left multiplication there exists 82 > 0

such that ||a-1a0- 1|| < ô2 => ||(a_1a0 - l)a0_1|| < e. Note that (a~~xa0- l)a0_1

= a~x — a0~x. By continuity of the inverse at 1, there exist 83 > 0 such that

||a¿"lo¡ — 1|| < 83 => IKaQ-'a)-1 — 1|| < 82; and by continuity of right multiplica-

tion there exists 84 > 0 such that ||a — a0|| < 54=* ||a0_1(a — a0)|| < 83. Set 8 =

min(5[, 84). If ||a — a0|| < 8, then ||a — a0|| < 8X so a-1 exists, and ||a — a0|| < 84

so ^¿"'(a - a0)|| = ||ao_1a — 1|| < S3. From this latter inequality deduce

UK-1«)-' - 1|| = HcAoo - 1|| <S2, whence IKcAo,, - l)«,,"1» = Ha"1 - a¿l\\

< e. That completes the proof.

4.2. Corollary [13, Satz 1.4]. A commutative q-ordered field is a topological field

under the interval topology induced by the usual absolute value.

Proof. As already pointed out, when * = identity, Baer's ordering reduces to the

^-ordering of A. Prestel which differs from the common concept of commutative

ordered field in that the condition X > 0 => p2X > 0 ( p ^ 0) replaces the familiar

condition that positive elements have a positive product. To derive the corollary

from the theorem, we need only to show that the norm ||X|| = X2 and the usual

absolute value |X| (|X| = ± X according as X > 0 or < 0) define the same topology.

Given e > 0, set 8 = min(e, 1). Then one checks easily that \a\ < 8 => ||a|| < e. For

the converse, take e < 1 and choose 8 = e4. Then |a|| < 8 => |a| < e2 < e. That

completes the proof of the corollary.

We take up now the order valuation of an ordered "-field. This valuation

measures "orders of magnitude".

As above, we let X denote an ordered "-field, X its multiplicative group of

nonzero elements. Call a G X medial provided that 0<r<a*a<i for some

positive rationals r and s; call a infinitesimal if a*a < l/n for all n = 1, 2, ... ;

and call it infinite if a*a > n for all n = 1, 2,... . Use 911 (medium) to stand for

the set of medial elements, 2 (small) for the set of infinitesimal elements, and A

(large) for the set of infinite elements. Clearly X equals the disjoint union of 2,

911, and A. Using the elementary properties listed in the first paragraph of this

section, one may verify the following properties of these sets:

2: closed under * and multiplication; 2 u {0} also closed under ± ;

911: a "-closed multiplicative subgroup of X closed under sums of positive

elements;

A: closed under *, multiplication, and sums of positive elements.

Also we have

2"' = A,       A"1 = 2,       2911 = 9112 = 2,       A91L = 91LA = A,

2 + 91L = 9H,       911 + A = A,       2 + A = A.

I shall prove a few typical cases, starting with a G 2 => a* G 2. If a G 2, then

a*a < l/n, n = 1, 2, . . . . Let X = a*a. Then nX < 1 so (nX)2 < nX < 1, whence

X2 < X/n or a*aa*a < a*a/n. Then

(a~x)*(a*aa*a)a~x < — (a_1)*(a*a)(a_1),
n
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or aa* < \/n, n = 1, 2, ... ,   which shows a* G 2. One proves in a similar way

the "-closure of 9H and A.

Closure of 91L under multiplication: Suppose a, ß G 911 so that 0 < rx < a*a

< sx and 0 < r2 < ß*ß < s2 for rational rx, sx, r2, s2. Then from the first inequality

we get 0 < r, ß*ß < ß*a*aß < sx ß*ß, which yields in turn 0 < rxr2 < (aß)*(aß)

< sxs2. Thus aß G 91L.

One may check similarly the remaining statements, and the bulk of the following.

4.3. Theorem. X denotes an ordered "-field, 2 and 9H its sets of infinitesimal and

medial elements respectively. Then <ï> = 2 u 9It U {0} is a "-subring of X contain-

ing for each a in X at least one of a, a~x. 9 =2u {0} is a "-closed, two-sided

ideal in 4> that contains every proper ideal. In the quotient field Xq = $/?P, endowed

with the natural involution (a + <dP)* = a* + 9, the definition a+<ÍP>0<=>a>0

(a = a* G 9) defines effectively a domain of positivity making Xq into an archi-

medean ordered "-field, *- and order isomorphic therefore to a subfield ofR, C or H.

The proof follows the lines given previously. To check, for example, that we have

an ordering on Xq, we must verify that every symmetric element of Xq equals

a a + <3> where o = a*. But if a* + 9 = a + <3\ then a - a* G 9, and o =

{-(a + a") satisfies o = o* and a - o =\(a - a") G 9, so o + <ÍP = a + <3\ As

for the archimedean character of the ordering of Xq, if 0 < o + ^ < 1/n + ty,

n = 1, 2, ..., then 0 < a < \/n in X for n = 1, 2, . . . , whence a G 9 con-

tradicting o + ty > 0.1 leave the remaining details to the reader.

The "-subring <I> consists of those a which satisfy a*a <n for some positive

integer n (depending on a in general), and the maximal "-ideal ?P consists of those

a satisfying a*a < \/n for all n = 1, 2, .... In keeping with the usual terminol-

ogy, I call 4> the valuation ring of finite elements, 9 the ideal of infinitesimal

elements, and Xq = <^/9 the residue class "-field associated to the given ordering.

As noted, we may regard Xg as a "-subfield of R, C, or H. We use 9 for the natural

"-homomorphism of $ on Xq: 9(a) = a + 9.

The appropriate notion of valuation to go with our general kind of (noncom-

mutative) valuation ring has been found by Rado [15]; see also the paper of

Mathiak [11].

4.4. Theorem. The formula a— ß <=> ßa ~ ' G 91L defines an equivalence relation

on X, and the formula [a] < [/?]<=> ßa~x G 2 defines effectively a total ordering of

the set G = {[a]: a G X} of equivalence classes. The map w: X —* G defined by

w(a) = [a] satisfies these conditions:

(10 w(a) <w(ß)^> w(ay) < w(ßy)for all y in X;

(2) w(a + ß)> min(w(a), w(ß)) (a + ß =£ 0);

(3) w maps onto G;

(40 w(a) > w(\) => w(a") > w(l).

Proof. The reflexivity, symmetry, and transitivity of the relation — follows from

the fact 911 is a multiplicative subgroup of X. To show the effectiveness of the

definition of the relation < in G, we need to prove that ßa~x G 2, a, ~ a, and
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ßx~ ß together imply that ßxaxx G 2. This follows from the identity ßxax ' =

(ßxß~x)(ßa~x)(aaxx) which represents ßxaxx as the product of two medial

elements and an infinitesimal one, thus infinitesimal. If [a] < [ß] and [/?] < [y],

then [a] < [y] because ya~' = (yß~x)(ßa~x) G 2. Thus we have an ordering on

the set G, in which any two unequal elements are comparable, because if ßa ~ ' G

91L, then either ßa ~x or ( ßa ~ ')"" ' = aß ~ ' is infinitesimal. As to the conditions on

the map w, condition (10 is obtained simply because (ßy)(ay)~x = ßa~x.ln (2) we

may assume w(a) < w(ß), so that min(w(a), w(ß)) = w(a). Then (a + ß)a~l = 1

+ ßa~x is finite, hence w(a) < w(a + ß). Condition (3) follows by definition, and

condition (40 from the closure of 2 under *. That completes the proof.

The map w: X -* G constructed in Theorem 4.4 I call the order valuation of our

ordered "-field X. For the ordered "-fields constructed in §3 (which constitute all

examples known at present), their order valuations have the additional property

that w(a") = w(a) and therefore qualify as "-valuations in the sense of §2 (see 4.6).

However, I do not know that w(a") = w(a) holds in general for the order valuation

(it appears unlikely), and pending availability of a larger class of examples the

question remains open.

For an archimedean ordered X, which we may consider as a "-subfield of R, C,

or H, our norm ||a|| = a*a equals the square of the usual norm, and the order

topology coincides with the usual topology. The order valuation, on the other hand,

becomes trivial in the archimedean case, with the value set reducing to the single

element [1].

In the nonarchimedean case, the order valuation can be used in the usual way to

define the order topology.

4.5. Consider a nonarchimedean ordered "-field X with order valuation w: X —» G

(see Theorem 4.4).

(a) The topology defined on X by the system of neighborhoods Ng = {a: w(a) > g)

U {0}, g G G, equals the order topology.

(b) If we have w(a") = w(a) for all a in X; then the involution is continuous in

the order topology.

Proof, (a) Given the order topology neighborhood Ne = {a: a*a <e}, e > 0,

set 8 = min(e, 1), g = w(8).

If a G Ng, so that w(a) > g = w(8), then a8 is infinitesimal, i.e. (aS~1)*(a8~1)

< \/n, so a*a < 82 < 8 < e. Thus a G Ne, so Ng G Ne.

Conversely, suppose given g = w(ß) G G. The desired inclusion, Ne G Ng, will

follow from e < ß*ß/n, n ■» 1, 2,.... If ß is medial or infinite, we may choose e

as any symmetric infinitesimal; if ß is infinitesimal, choose e = (ß*ß)2. That

proves (a), and (b) then follows easily.

For the next result, refer to §2 and the numbered conditions after Theorem 4.4.

4.6. If the order valuation w of the ordered "-field X satisfies (4) w(a") = w(a),

then the value set G becomes a commutative ordered group under the addition

[a] + [/>] = [aß], and the valuation w satisfies (1) w(aß) = w(a) + w(ß), thus

qualifies as a "-valuation in the sense of §2.

Proof. The hypothesis, in its equivalent form a*a~x G 91L, forces the symmetry
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of our valuation ring of finite elements 4>, whence the theory of §2 applies.

Statement 4.6 then follows directly from 2.1, as the ordered set G here coincides

with the G there.

5. Hermitian forms. Given a (finite- or infinite-dimensional) left vector space E

over a (general) "-field X, we define a Hermitian form on E as a map (■, •) from

F X F to X satisfying the usual axioms

(Xa + pb,c) = X(a, c) + n(b, c),       (a, b)* = (b, a).

In this paper, "form" means a Hermitian form on a left vector space over a "-field.

We shall use, by and large, the terminology of [5].

We write <X> for the one-dimensional form on Xe with (e, e) = X, and write

<X,> + • • • +<X„) for the «-dimensional form with orthogonal basis

e,, e2, . . . , e„ such that (e¡, e,) = X,. When X, = X2 = ■ • • = Xn, we write n(X) for

<X> + • • • +<X> (n times).

Call the "-field X formally real if for each nonzero symmetric X in X, and each

positive integer n, the form n<X> is anisotropic. This supercedes the definition

given in [7] which required anisotropy only when X = 1. One of the major open

questions in this young subject: Does every formally real *-field admit an ordering!

An affirmative answer here would follow from an affirmative answer to this

question: In a formally real *-field, if n(\)> represents p, does w<(p) represent 1 for

some positive integer ml

When the underlying "-field carries an ordering, then the usual definitions of

positive definite form and positive semidefinite form apply. Much of the basic theory

dealing with forms over commutative ordered fields carries over to this case. In the

noncommutative case, the Schwarz inequality can be phrased this way.

5.1. For a positive semidefinite form we have

(y, x)(x, x)_1(x,y) < (y,y)

for any anisotropic x and any y.

We get as a consequence

5.2. A nonsingular positive semidefinite form is positive definite.

And Sylvester's "law of inertia" goes over.

5.3. G/t>en a finite-dimensional form {(•, ■), E} over an ordered *-field, we may

write E as the direct sum of three orthogonal subspaces E = L + P + N such that

the form restricted to L vanishes identically, the form restricted to P is positive

definite, and restricted to N is negative definite. The dimensions of P and N are

uniquely determined, andL = E±.

We deal now with a positive definite form on a finite or infinite-dimensional left

vector space E over an ordered "-field X, and shall show how we can consider this

form as an extension, in a sense, of a positive definite form over one of the three

classical number fields.

Continue the notation of §4: <£> stands for the valuation ring of finite elements in

X, 9 for the ideal of infinitesimal elements, and Xq = «I»/1? for the residue class

"-field of X. Denote by V the set of vectors x in E for which (x, x) G <ï>. Call the

elements in V finite vectors. We can then prove without difficulty: The set V of
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finite vectors qualifies as a left <&-module, and the form restricted to V takes its values

in $.

Denote by R the set of all x in E for which (x, x) G 9, and call these

infinitesimal vectors. R forms a O-submodule of V, and (V, R) = (R, V) G <dP. Let

<f> stand for the natural homomorphism of V onto the quotient space H, H = V/ R,

<p(a) = a + R. Continue to use 9 for the natural homomorphism of 4> onto Xg,

9(a) = a + 9. One checks routinely that H forms a Xo-vector space under the

canonical scalar multiplication: given i) G Xq and x G H, select a G í> with

9(a) = Tj and select a G V with $(a) = x. Then define r\x = <b(aa). Given x, y in

Ff", select a, b in V with <#>(«) = x, <j>(b) = y, and define f(x, y) = 9((a, b)).

Straightforward computations verify that this defines a positive definite form on H.

Note that the map </>: F—» H takes orthonormal sets to orthonormal sets, so that if

the form represents 1 on every one-dimensional subspace of E, we shall have

dim(F) = dim(H). We have proved

5.4. Theorem. Suppose given a left vector space E over an ordered "-field X,

together with a positive definite form on E. Then the quotient space H of finite vectors

modulo the infinitesimal vectors, with its natural inherited structure, becomes a

classical positive definite inner product space over Xg, the residue class "-field of X,

Xq a "-subfield of R, C or H. If the form represents 1 on each one-dimensional

subspace of E, then dim(F) = dim(H).

Suppose now that X is a general "-field, not necessarily ordered, but carrying a

non trivial "-valuation w: X -» G. One has available in this case the following

useful construction (compare [6]).

5.5. Given a "-field X with nontrivial "-valuation w: X —» G, and given a left

X-vector space E (of any dimension) with an anisotropic Hermitian form (•, ■) that

satisfies "Schwarz's inequality",

2w((x,y)) > w((x, x)) + w((y,y))

for any nonorthogonal vectors x, y in E, then the system of neighborhoods

Ng = {x G E: w((x, x)) > g} U {0},       g G G,

makes E into a topological vector space.

The omitted verification follows routine lines.

As to the hypothesized "Schwarz inequality", we can single out two quite

different and separately useful sets of circumstances in which it holds.

5.6. If X carries an ordering compatible with the valuation in the sense that

0 < a < ß =í> w(a) > w(ß), and the form is positive definite, then Schwarz's inequal-

ity holds.

This follows directly from 5.1. All the examples constructed in §3 have compati-

ble orderings.

5.7. If the form is anisotropic and satisfies the following condition: for any pair of

nonzero orthogonal vectors x, y we have w((x, x)) =£ w((y, y)), then Schwarz's

inequality holds.
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One checks easily that the stated condition is equivalent to: x ¥= 0, y ¥= 0,

(x, y) = 0 together imply w((x, x)) ^ w((y,y)) mod 2G. We therefore describe this

property of the form by saying that orthogonal vectors belong to different square

classes.

Proof of 5.7. Under this assumption we wish to prove 2w((x,y)) > w((x, x)) +

w((y>y)) when (x,y) ¥= 0. Select 0 =£ e G Xx + Xy so that (x, e) = 0. Then

y = Xx + pe, (x, y) = (x, x)X", and

2w((x,y)) = 2w((x, x)) + 2w(X*) = w((x, x)) + w(X(x, x)X").

Now (y, y) = X(x, x)X* + p(e, e)p", so our desired inequality reduces to

w(X(x, x)X") > h>(X(x, x)X* + p(e, e)p"). But Xx _L pe, so w((Xx, Xx)) ^ w(( pe, pe)),

hence

w(X(x, x)X* + p(e, e)p") = min{H>(X(x, x)X"), »v(p(e, e)p")

< w(X(x, x)X"),

as desired.

The following general construction of a class of forms satisfying 5.7 comes from

a remarkable paper by Hans Keller [8].

5.8. Theorem. Suppose given a *-field X complete with respect to a nontrivial

*-valuation w: X—» G. Select from X a sequence Xn, n = 1, 2, . . ., of nonzero

symmetric elements, and set pn = w(Xn).

(1) The set E of sequences {£,, £2, . . . } of elements from X such that the series

2°1( îiXiè? converges in X forms a left vector space over X (under the usual

componentwise operations), and the formula (x,y) = 2?L[ &-X)n* where x = {£,},

y = {tj,} defines a Hermitian form on E.

(2) If the pn satisfy this condition: m =£n=*pm ^p„ mod2G, then the form

defined in (1) is anisotropic and in E nonzero orthogonal vectors always belong to

different square classes (5.7 satisfied). Moreover the space E is complete with respect

to the topology described in 5.5, and in E any orthogonal family of nonzero vectors is

countable.

(3) Suppose that the sequence pn also has this property : p„ —* oo and for any

bounded-below sequence qn for which qn =p„ mod 2G also qn —* oo. 77ie«, given any

maximal orthogonal set {f} of nonzero vectors, x = 2Jt. j(x,/■)(/■>/-)-1/- Sor any

x G E (every maximal orthogonal set is a basis); every topologically closed subspace

M oS E is ^-closed (satisSies M = M±J~); and for any closed subspace M, E = M

+ aA.

The condition on the pn given in (3), which replaces an incorrect condition I had

used earlier, comes from a letter from Professor H. Gross. Mrs. A. Faessler caught

the original mistake, and I thank her and Professor Gross for their help.

Keller in [8] deals specifically with the commutative field A obtained by

adjoining countably many indeterminates Xx, X2, ... to the rational field Q, and

takes for his field X the completion of A with respect to the usual valuation w with

value group G = Z X Z X .... Under this valuation, pn (= w(X„)) equals the
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element of G that has 1 in the nth place and 0 elsewhere. This selection satisfies the

conditions in (2) and (3) of Theorem 5.8.

Keller's construction finally settled the long open problem as to the existence of

a "nonclassical Hubert space": an infinite dimensional form {(•, •), E}, different

from real, complex, and quaternionic Hubert space, yet satisfying E = M + M1-

for every _L-closed subspace M. (The nonstandard Hubert spaces do not neces-

sarily have this property, see [12].)

Proof of Theorem 5.8. (1) In the complete nonarchimedean field X, conver-

gence of a series 2 an is equivalent to w(an) —» oo. From the identity 2w(fctXir\*) =

wdOfXfÇi) + wÇtyXfâ) conclude then that the series used to define the form in (1)

always converges.

(2) From the assumption that the pn are all incongruent mod 2G, deduce that

w(£¡Xff ) = w(rijXj7ij*) <=> i = j, so that, in particular, the terms in (x, x) = 2 i¡Xff

have distinct values. Hence if nonzero entries occur on the right at all, then there is

exactly one index i = n where wfáXff) has its minimum value. If (x, x) = 0, then

we would have -£,*„£ = 2/#n && with w(&Xff) > »<&*„£)> * **. * con-

tradiction. Hence our form is anisotropic, and, for x =£ 0, w((x, x)) =

min wfâXjÇ*) = min 2w(£,) + p,, the minimum occurring at exactly one index

i = n. Set N(x) = w((x, x)) = 2w(Q + p„, and T(x) = n. Call N(x) G G the norm

of x, and the positive integer 7"(x) the type of x. Check that 7"(x) = T(y) <=> N(x)

= N(y) mod2G, and that (x, y) = 0 => 7"(x) =£ T(y). Thus orthogonal vectors

belong to different square classes (5.7 satisfied) which validates Schwarz's inequal-

ity and legitimatizes the use of the topology described in 5.5. The proof of the

completeness of E under this topology follows the pattern of the usual proof of

completeness of l2. The map x —» T(x) maps each orthogonal family of E one-to-

one onto a subset of the positive integers. In particular then, every orthogonal

family is countable. A series 2 x, converges in F<=> N(xf) —» oo. Using the easily

proved continuity of the form, check that if x = 2 X¿¿ for an orthogonal family f,

then necessarily X, = (x, SiKSuSi) • Finally note that the specific orthogonal se-

quence e, which has 1 in the ith place and 0 elsewhere forms an orthogonal basis

for our space x = 2(x, e,)(e„ e,)_1e, = 2 £,e, for every x = {£,} G E.

(3) Assuming now the condition stated in (3), check that for any orthogonal

sequence/ and any x, the series 2(x, fXS¡>S¡)~lS¡ converges in E. This implies that

every maximal orthogonal set is an orthogonal basis. Given a topologically closed

subspace M of E, choose a maximal orthogonal subset/ of M. Then, given x G E,

set m = 2(x,S¡)(S¡>S¡)~% and write x = m + (x — m) to show E = M + M±.

The equation M = M^1- follows from this.

6. Generalization of Wilbur's theorem. Continue the terminology of the preceding

section, except for brevity call a subspace M closed when M = M±A-. Following

Kaplansky, we call a nonsingular form on a space E orthomodular when M + M x

= E for every closed subspace M. As noted in the previous section, Hans Keller

has constructed an example of a nonclassical infinite-dimensional orthomodular

form [8]. On the other hand, one can characterize the classical forms by adding

some reasonable conditions. The following result generalizes Wilbur's Theorem 5.8
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from his paper [17]. For other results along this line see [6].

6.1. Theorem. Suppose the ordered "Sield X has this property: For every symmet-

ric infinitesimal e, 1 + e = aa* for some a G X. Let E stand for an infinite-dimen-

sional left vector space over such an ordered "-field, and suppose given on E an

orthomodular form ( ■, ■ ) that represents 1 on every one-dimensional subspace. Then

X is either R, C, or H, and {E, (■, ■)} is the corresponding classical Hubert space.

We use Theorem 5.4 to prove this result, and shall use the notations in the

discussion preceding that result. Note that an orthomodular form that represents 1

on every one-dimensional subspace is necessarily positive definite, so we can apply

Theorem 5.4.

Given a ^-submodule M of the 4>-module V of finite vectors, set M' = {x G V:

(x, M) = 0), the orthocomplement of M in V. Clearly M' = A/-1 n V. Given any

subspace M of E, formal considerations show that (M n F)"1 D Afx. Conversely,

given x G (M n V)x, then for any m G M either m G M n F or (m, m)~xm G

M n V. In either case we conclude that (x, m) = 0 so x G Mx. Thus (M n F)x

= A/-1-, and it follows that W" = A/11 n F for any O-submodule Af. Call a

3>-submodule M of V closed when M = M".

6.2. Lemma. The map g(Af ) = M n V takes the lattice of all closed subspaces of

E one-to-one onto the lattice of all closed Q-submodules of V such that M G No

g(M) G g(N). Also M = M" => V = M + M' for $-submodules M of V.

All verifications follow routinely.

6.3. Lemma. For an orthomodular form, the natural map <j>: V —> H takes closed

$-submodules of V onto closed subspaces of H, and for a closed Q-submodule M of V

we have ^(M)-1 = 4>(M') and <XM) + <KA/)X = H.

Proof. For any <£>-submodule M of V, <¡¡{M') G ^A/A because if x = <i>(a),

a G M', then for any m G M

fix, <f>(m)) = /(<!>(«), <t>(m)) = 9((a, m)) = 0(0) = 0

so x G «XA/A Suppose conversely that x G ^M)-1 so that/(x, >?(m)) = 0 for all

m G Af.

Now x = <f>(a) for some a G F, so

0 = fix, <b(m)) = f(<b(a), <t>(m)) = 9((a, m))

for all m G M. Thus (a, m) G 9 for all m G M. Assuming M closed, we have

M + Af = V, so that a = ax + a2, ax G M, a2 G M'. Then (a, m) = (ax, m) for

all m G M. Putting m = ax we get (ax, ax) G 9 which means ax G R so <K°i) = 0.

Thus x = <b(a2), a2 G M', so x G <$>(M'). Hence <K^)X Q <KM') which proves

^>(M)X = <$>(M') for every closed subspace M of V. Then

«¡.(A/)-1-1 = <j>(A/0X = <¡>(AA) = </>(A/),

establishing the closure of <i>(A/) in H. Finally, given x G H, x = <b(a) some a G V,

whence a = a, + a2, ax G M, a2 G M'. So

x = <b(a) = <¡>(ax) + <b(a2), <¡>(ax) G <t>(M), <?(a2) G </>(A/0 = «íW^
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Thus H = <¡>(M) + <f>(A/)x, which completes the proof.

6.4. Lemma. Given a left vector space E over an ordered "-field X, and given a

positive definite orthomodular form on E that has an infinite orthonormal sequence,

then the residue class "-field of X equals R, C, or H.

Note that we can prove that the residue class "-field of our "-field equals R, C, or

H under considerably weaker hypotheses than those used in the theorem itself. This

suggests that the theorem probably holds under weaker hypotheses.

Proof. With e,, e2, . . . the given orthonormal sequence, define p, = e(21-',

e, = ± 1, then define

In-l

Cn=     2    Pie>Ï + (° -  °2n-l)Plne2n> M  =   1,2,..., (1)
1=1

2m

dm = OPf'^l  + (°2m -  °)P2m+le2m+l  ~   2 9i*l> W =   1, 2, . . . , (2)
/=1

where on = 2"_, p2, o = 2^.] pf = 4/3. Then verify by direct computation that

(cn, dm) = 0, n, m = 1,2,..., and that all (cn, cm), (dn, dm) lie in the rational field

Q. Clearly Qc$ the valuation ring of finite elements of X, so all vectors e,, c„, dm

lie in V.

Define a closed subspace M of F by M = {cn: n = 1, 2, . . . }" (' equals

orthocomplementation in the space V). Owing to the orthomodularity of V, we

have M + M' = F. In particular,

\pxxex = c + d,       c G M,d G M'.

Note that all the vectors dm lie in Af = {c„}'.

In Xq = $/íP, the residue class "-field of X, the rationals Q form the unique

subfield generated by 1 ; use the same symbol for a rational in X as for one in Xq,

and regard the natural homomorphism 9: 3> -» Xq as the identity on Q. The

natural homomorphism </>: V —» H preserves orthogonality, preserves rational-

valued inner products because f(<Ka)> <Kb)) = 9((a, b)) and 0 = identity on Q, thus

preserves all the relationships holding among the vectors e,, c„, dm. Also <f> maps the

closed subspace M onto a closed subspace N of H; we have TVx = <p(M'), and

N + A x = H (Lemma 6.3). So we have the equation

\px x<p(ex) = <tfc) + <b(d),       <t>(c) G N, <¡>(d) G N x.

Now embed the space {H, Xq} into the classical Hubert space {H~, X¿~} in the

usual way, X¿~ = R, C, or H. The extended form on H ~ induces an orthocomple-

mentation on H~ that we shall denote by #. Given a subset S of H, we have the

relation Sx = S * n H, where Sx equals the //-orthocomplement of S, and S *

its H~ orthocomplement.

The subspaces N, N x in H remain orthogonal subsets of H~. Construct first the

X¿~ -subspace of H~ generated by N, then construct its metric closure L, a closed

subspace of H~. At both stages of this construction, you preserve the existing

orthogonality to N x, so have Ax G L*, and of course N G L. We have H~ = L

+ L*; in particular
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op-x<j>(ex) = <f>(c) + <b(d),       <f>(c) G N G L,<t>(d) G Ax G L*.

Let/ = <K^,)- The/ form an orthonormal sequence in H and also in H~. The

vector x = 2°1 x pj¡ belongs to H~ because 2f p,2 = a < oo (in fact o = 4/3). Let

y = <rpf '/, — x. We have/(x,y) = 0 and opxxfx = x + y.

I shall prove that x = <¿>(c) G A.

We have

||2

I* - «non = S ft/i - <t>(<ln) - °P2nXS2n

oo 2n-l II2

ILpJí - 2 pJi + ̂ »-ipï.1/!» - ^¿.l/J
I 1

2 Pi// + <»2«-lP2».!/a. - aP2«'/;2n

S    P^ + (P2n + «2--1P2«1  -  OPa.')/!
2/1 + 1

Nowp2„ + ff2/,_,p¿1 - ap¿,' = (a2„ - o)p2nx = - p2~I2S+1 p,2;

l*-*.)lf - Jrf +.(*• J,«f -¿^♦(f5k)'-
Since <i>(c„) G <í>(A/) = A, the vector x lies in the metric closure of A, hence x G L.

A similar calculation shows that y = lim <b(dm). Since all dm he in Af, all <K^m)

lie in <j>(M')= Ax. The metrically closed subspace L*   contains Ax, hence

contains y. Now we have

ffpf'/i = <KC) + </>(¿),       *(c) G L, 4(d) G L#,

and opxxSx = x + y, x G L,y EL*. Thus, by uniqueness, x = <¡>(c). Since <p(c) G

N, we have x G N G H.

Hence, for any choice of e, = ± 1, the vector

x = Í(e,./2<-')/.
i

belongs to H. Since the inner product on H takes its values in Xq, Xq contains

every

s(ï(l/2-x)fi, |(e,/2'-')y¡) = I*,/*- - «, + $ + 5 + • • •

for every choice of e, = ± 1. Any real number, in its base 4 representation, equals a

rational combination of such numbers. Hence R G Xq, so we have Xq = R, C, or

H. That proves Lemma 6.4.

To show that X contains no infinitesimal elements, I adapt with very slight

modifications the ingenious arguments of Wilbur [17, Lemmas 5.5 through 5.7].
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6.5. Lemma. Let (•, ■) be a nonsingular orthomodular form over a (general) "-field,

and let {e,} and {/} be two mutually orthogonal orthonormal sequences. If x G

{e,}xx, then there exists y G {/}±x with (y,f) = (x, e,), i = 1,2, ... , and (y,y)

= (x, x).

Proof. Argue as in [17, Lemma 5.5] using f e, + |/, \e¡ — \f¡ in place of the

vectors au¡ + av¡, au¡ — av¡ there.

6.6. Lemma. Let ( •, • ) be a positive definite orthomodular form over an ordered

"-field, and let {e,}, {/}, {g,} be mutually orthogonal orthonormal sequences. Given

x G (e,}xx and given field elements /J„ y, that satisfy ßßf + y,y* = 1, / =

1, 2, ... , then there exists y G {e,}xx with (y, e¡) = (x, e,)ßf, i = 1, 2, ..., and

(y, y) < (x, x).

Proof. Essentially Lemma 5.7 of [17].

Refer now to the proof of Lemma 6.4. Take e, = + 1, i = 1, 2, . . ., so that

p, = 21 A / = 1, 2, . . ., and take the vectors cn, dm as given there. Maintain the

notation M = {cn}" (a closed subspace of the space V of finite vectors) and set

f e, = c + d,       c G M, d G M'. (3)

Define a¡ = (c, e,), the Fourier coefficients of c with respect to the orthonormal set

e,. From (3) we find that fa, = (c, c) so that a, is symmetric. From (1) we find

(«i. c„) = 1, n = 1, 2, . . . ,   and from (3), (4/3)(e„ c„) = (c, c„) so (c, c„) = 4/3,

n = 1,2,.... Equation (1) allows us to compute (c, cn) and we get

4     2«-i
T =   2  P,«, + (° - a2»-i)P2«1«2n.       «=1,2,- (4)
J       i = i

The condition (c, rf„) = 0, « = 1,2,..., yields

In

0 =  OpxXax  -   2 P,«,  + (°2n  -  °)P2~nl+la2n+l> n = 1,2,- (5)
(=1

Equations (4) and (5) show that the knowledge of a, determines all the an. Since a,

is symmetric, we see that all the a, are symmetric and mutually commute.

As we establish in the proof of Lemma 6.4,

«Kc) = 2 pJ,; g h,
/-i

where <í> is the natural map of the space V of finite vectors onto the quotient space

H, and/ = <i>(e,). Hence

Pi=f(<p(c),f) = 0((c,ei)) = 0(ai),

0 the natural map of the finite scalars $ onto R, C, or H. In particular, 0(ax) = p,

= 0(px), so 0(ax — px) = 0. It follows that ax — p, is either 0 or a symmetric

infinitesimal e. If a, = p„ then a, = p, = 2'-1 for all /'= 1, 2, .... In the second

case, the recursions (4) and (5) show that a, = p, + f,e where f, G Q, / = 1,2,....

We shall assume that X has infinitesimals, and shall work to a contradiction. If

ax = px select any symmetric infinitesimal e; it will commute with all the rational
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a, = p,. Otherwise set e = a, — p,; this symmetric infinitesimal will likewise com-

mute with all the a¡. In either case the a, are all nonzero medial elements (finite,

noninfinitesimal).

Now apply Lemma 6.6. We may assume that we have, in advance, broken up our

original orthonormal sequence into three mutually orthogonal orthonormal se-

quences so that Lemma 6.6 applies. Set /?, = ea,~x, i = I, 2,... . The /?, are all

infinitesimal symmetric, and commute with all the a, and e. By the first hypothesis

of Theorem 6.1, there exist y, in X so that 1 — ß2 = y,y^, / = 1, 2, . . . ,   so by

Lemma 6.6 there exists a G {e,)xx with (a, e¡) = (c, e,)/?, = e, /' = l,¿.Since

our form represents 1 on every one-dimensional subspace, there exists a so that

(aa, aa) =1. Set b = aa, and r\ = (b, e¡) = at. Since 1 = (b, b) >

2?_[(A, e¡)(b, e¡)* = n(i?î}*), n = 1, 2, ... , tj is infinitesimal. Select some positive

integer m, and set d = mb. Then d G {e,}xx, (d, d) = m2, and (d, e¡) = mq,

i = 1, 2, ... . Now set X, = a,_1wij. The X, are infinitesimal, so according to

Lemma 6.6 again (X, in place of /?,), there exists e G (e,}xx, (e, e,) = a,X, = mq,

and (e, e) < (c, c) < f + e < 2. Since both d and e belong to {e,}xx and (d, e¡) =

(e, e,), / = 1, 2, . . . , we have d = e. Thus m2 = (d, d) < 2 for every positive

integer w, our desired contradiction.

Hence Xg = R, C, or H, and E = H. Now by the theorem of Amemiya-Araki-

Piron [2], E is Hubert space.
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