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NONINVARIANCE OF AN APPROXIMATION PROPERTY

FOR CLOSED SUBSETS OF RIEMANN SURFACES

BY

STEPHEN SCHEINBERG1

Abstract. A closed subset E of an open Riemann surface M is said to have the

approximation property & if each continuous function on E which is analytic at all

interior points of E can be approximaed uniformly on E by functions which are

everywhere analytic on M. It is known that $ is a topological invariant (i.e.,

preserved by homeomorphisms of the pair (M, E)) when M is of finite genus but

not in general, not even for C°° quasi-conformal automorphisms of M. The

principal result of this paper is that & is not invariant even under a real-analytic

isotopy of quasi-conformal automorphisms (of a certain M). M is constructed as

the two-sheeted unbranched cover of the plane minus a certain discrete subset of

the real axis, and the isotopy is induced by (x + iy,t)y-*x + ity, for / > 0; E can

be taken to be that portion of M which lies over a horizontal strip.

Let M be an open Riemann surface and F be a closed subset of M. Denote by

A(E) the collection of continuous functions on E which are analytic on the interior

of E. Say that E has property & in M if each element of A(E) can be approxi-

mated uniformly on E by functions which are analytic everywhere on M. By

definition & is a property of the pair (Af, E) and is a conformai invariant; that is,

if one pair is related to another by an analytic homeomorphism, the both pairs

have £B or neither one does. It is natural to ask whether 6B is invariant for other

types of equivalence. The famous theorem of Bishop and Mergelyan implies that &

is a topological invariant in case E is compact, and the theorem of Arakelyan

shows that 6? is a toplogical invariant when M is planar. By "topological invariant"

I mean an invariant for the equivalence defined by homeomorphism of pairs. It is

known [S] that 6£ is a topological invariant when M is of finite genus but is not a

topological invariant in general. In fact, é£ is not an invariant even for the finer

partition induced by this relation: call (A/, E) equivalent to (AF, E') if and only if

M is conformally equivalent to M' and there is a quasi-conformal homeomorphism

of M onto M' which carries E onto E' [S]. When I showed him the known example

illustrating this phenonmenon, Dennis Sullivan asked me whether the example

could be improved to one in which & fails to be preserved by an isotopy. The

intent of this article is to provide an affirmative answer by demonstrating that a

real-analytic isotopy need not preserve  &, even though  it is "affine",  being
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definable in local coordinates by (x + iy, t) -» x + ity for 0 < / < oo, and all the

homeomorphisms of M throughout the homotopy are quasi-conformal equiva-

lences. The precise statement is given below as the theorem. Let us write "E G &"

in place of "E has property & in Af".

Theorem. There is a connected open Riemann surface M, a homotopy U: M X R+

—» Af, and two closed connected subsets E + and E~ of M such that the following hold,

where U,(p) is written in place of U(p, t).

(a) M can be given as a two-sheeted unbranched cover of a plane region by Z:

M -» C — ty, where fy is a discrete subset of the real axis, and the homotopy U is

induced by the affine plane homotopy «:CxR+->C defined by u(x + iy, t) = x +

ity; that is, Z(U(p, t)) = u(Z(p), t)for all p G M and t G R+.

(b) U is real-analytic on M X R+.

(c) Each U, is a real-analytic quasi-conformal automorphism of M.

(d) Ux is the identity of M.

(e) Ast^>\ the distortion \dU,/dZ\ \Wt/dZ\~x -» 0 uniformly on M.

(f) {t: U,(E+) G &} = (0,1].

(g){t: U,(E~) G &} = (0, 1).

Because of the relation between U and u one may call U or U, "affine". For /

near 1 the maps U, are as close to conformai and as close to the identity as may be

desired; yet the slight movement of F+ to Ux+e(E+) destroys <£ and the slight

movement of E~ to Ux_e(E~) creates &.

The proof of the theorem will be along the following lines. A locally finite

collection of closed intervals J will be selected in R according to certain technical

requirements. M will be formed as follows: two copies of C minus all the J's will be

joined in the standard way along corresponding slits J, leaving out the set ^

consisting of all the endpoints of the J's. The natural projection Z: Af—»C — ̂

exhibits M as a two-sheeted unbranched covering of a plane region. The homotopy

defined on C x R+ by u(x + iy, t) = x + ity transfers via Z to a homotopy

defined on each component of Z~X(V) X R+, where V is any vertical strip in

C - ty whose projection on the y-axis is R, R + , or R". These homotopies agree

whenever there is an overlap; so they define a homotopy U on M. Assertions

(a)-(e) will follow immediately.

Define Sx to be the strip {x + iy: \y\ < X} and Sx (resp., Sx) to be the

intersection of Sx with the closed right (resp., left) half-plane. Define £jf =

Z~X(SX±). The intervals J will be arranged in R in such a fashion that for a certain

Xg > 0 none of the sets Sx+ for X > Xg (resp., Sx for X > X0) supports a nontrivial

bounded analytic function which vanishes on Sx+ n ^ (resp., Sx n ÖÖ). This will

imply that & fails for the corresponding Ex (resp., Ex). Because U,(EX) = E,x,

this will mean that one-half of (f) and (g), namely with " G " in place of " = ", will

be true for E+ = Ex   and E'= Ex.

The proof of the other half of (f) and (g) is technically more difficult and will

require the bulk of the work. These ideas will be involved. Fix one Ex , X < Xq, or

one Ex, X < Xg, and call it E. Because of the spatial arrangement of <>D there will
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exist a sequence of meromorphic functions Hn on C each of which has a zero or a

pole at each point of ^D and nowhere else and each of which is small on a large

bounded set Xn, is large on a co-compact subset Y„ of S*, and is nearly 1 on a

vertical strip on which separates Xn from Yn. Multiplying Hn by an exponential

function and extracting a square root, we obtain an analytic function irn on M

which separates these four sets: Z~X(X„), the two components of Z~x(o„), and

Z~x(Yn). E — U Z~x(an) consists of separated pieces of finite genus; so if / G

A(E), there is an analytic 4> on M such that g = / — í> is very small on F —

U Z~x(on). g can be approximated by 2 g„, where gn is C1 on E° u Z~x(Xn), is

supported in Z'x(a„), and has small Z-derivative. Because irn separates the four sets

indicated above, gn can be written gn = g„ ° ttn, where gn is (essentially) a smooth

function of compact support in C having small z-derivative. Because of this

property of g„ and of the nature of -nn(Z~x(Xn U on u Yn)), gn can be approximated

reasonably well by a rational function kn. Thus, kn ° -nn approximates gn on

E u Z'X(X„). The poles of k„ ° -nn in A/ can be removed by a multiplier without

essentially altering the goodness of the approximation to gn. The resulting analytic

functions \¡/n on M can be summed to an analytic function ty, because Z'x(Xn)\M,

and thus <3> + ¥ will approximate/.

The reader acquainted with [S] will recognize a similarity in spirit between the

above scheme for showing E G & and the method used in § 11 of [S]. However, the

method of [S] is technically simpler in several respects. For example, the projection

77 of the surface in [S] served to separate all the components of all the ir~x(on) at

once, and it was not necessary to allow singularities to arise in intermediate steps

for later removal. The punctures in the surface of [S] allowed the existence of

enough globally analytic functions but prevented the existence of an isotopy. The

surface M of this article is punctured in order to allow construction of the

separating functions mn; since the punctures lie over the real axis, they do not

interfere with the isotopy. I thank Ted Gamelin for asking me whether a related

result utilized an iteration of some sort. This remark prompted me to look for an

approximation of g = / — $ by means of separate approximations of "pieces" of g;

this in turn opened up the possiblity of individual separating functions mn for each

"piece". And I thank Dennis Sullivan for raising the question which this paper

answers.

The rest of the paper is devoted to a proof of the theorem. Most of the technical

aspects are gathered into manageable or convenient aggregates and termed lemmas

or corollaries.

Lemma 1 (a). If\z\ < ±, then |log(l + z) - z\ < \z\/2.

(b)If\w\ < I, then \ew - 1| < (e - l)|w| < 2\w\.

(c) //2k| < ', then |LT(1 + an) - 1| < 3 2|a„|.

Proof, (a) and (b) are well known and follow readily from easy manipulations

of Taylor series. Assume 2|a„| < {. From (a) it follows that |log n(l + a„) - 2 an\

< £ 2K|; so |log n(l + a„)| < f 2K| < |. Now an application of (b) yields (c).
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Lemma 2. For 0 < X < oo and complex z0 and z define

t(z; z0, X) = (a* - a*)/ (a2 + <A),

where a = exp(7r/2X). Suppose 0 < X < tr(2 log 2)"1 and \x — x0\ > 1, where x =

Re z and x0 = Re z0. Let us = signum(x — x0). Then

|1 - <ot(z, z0, X)*1! < 4a-|jc-*°l = 4 min(a* • a"*», a*°- ¿A).

Proof. In case x > x0 + 1 compute

| az + a2"

because \az°~z°\ = 1 and ax"~x < a"1 <^. The computations for t"1 and for the

case x < x0 — 1 are very similar.

Lemma 3. If xn is a sequence of distinct real numbers such that \xn\ -» oo and

0 < X < oo, the following are equivalent.

(a) There exists a nonzero bounded analytic function on Sx which vanishes on

X={x„:n> 1}.

(b) On Sx there is a nonzero bounded analytic function which vanishes on

X n Sx , and the analogous statement holds for Sx.

(c) 2 a-'*"' < oo, where a = exp(îr/2X).

(d) ITn sgn(xn)(ax" — az)/(ax" + az) converges normally on the plane to a function

which is analytic on S^ (the interior of S^), is bounded by 1 on Sx, and vanishes in

$2\ precisely on X.

Proof. The conformai map w = <p(z) = e\p(trz/2X) carries Sx to the closed right

half-plane minus 0 and takes A" to a positive sequence {wn} which clusters only at 0

and/or oo. The Blaschke condition for a real sequence wn tending to 0 (resp. oo) in

the right half-plane is easily seen to be 2 wn < oo (resp., 2 w~x < oo). Because a

convergent Blaschke product on the open half-plane is analytic on the closed

half-plane minus the cluster set of its zeros, (a) is equivalent to (c). Trivially, (a)

implies (b). The above mapping w = <p(z) (resp., w = l/«p(z)) sends Sx (resp., Sx)

onto the half-disc {w: \w\ < 1, Re w > 0} — {0}, which contains the disc A = {w:

\w — '| <j}. So (b) implies the Blaschke condition for the real sequence wn =

<p(x„) —* 0 (resp., wn = l/<p(x„) —» 0) in A, which implies (c). Recall that a sequence,

series, or product of meromorphic functions /„ is said to converge normally on a

region R if for each compact subset K of R all the functions fn are analytic on K

for n > N(K) and the sequence, series, or product of the/, for n > N(K) converges

uniformly on K. Lemma 2 and simple observations about t(z; xn, X) reveal that (c)

implies (d). Finally, (d) trivially implies (a).

Lemma 4. There exist sequences s„, t„, K„, and N„ of positive integers such that

(1) 1 < sx < r, < s2 < t2 < ■ ■ ■   and 1 < Kx < Nx < K2 < N2 < ■ ■ • ,

(2) 2',Jn 2" 2^. -h> 0 as n -+ oo; in particular, t„ - sn^> oo,

(3) 16'" 2"+1 4~sj(Kj + 4-sj/jNj) -^Oasn^oo; in particular, sn+x - tn -> oo and

2î° 4~s"(Kn + 4-s"/nNn) < oo, and

(4) 2 4-^A, = oo = 2 4~s-4es"K„ for every e > 0.

1 + aio~z°

1 + az°~z
<a>

.Xq—X
< 4ax
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Proof. Define three sequences of integers by the recursion: rx = 1, sn = nrn,

tn = n(3sn + n), rn+l = 2tn + n. It is easy to see that rn and sn are strictly

increasing with n and that sn+x > nrn + x > tn > sn. Put Nn = 41" and Kn = Nn4~s"/n

= Nn4-r- = 4s-~r- = 4("-1)\ (1) and (4) are immediate.

Each of the sums 2" in (2) and S~+1 in (3) is readily seen to be a sum of distinct

powers of 2. Therefore, each sum is at most twice its largest term. For the sum S"

in (2) this estimate is 2 • 2s»Nn = 2 • 23î- = 2 • 2,Jn ■ 2~", and (2) follows. For the

sum S~+1 in (3) the estimate is 2 • 4_i"+l • 2Kn+x = 4 • 4nr"*'~s"*' = 4 • 4~r-*< = 4 ■

4"2'- • 4-", and (3) follows.

Let us turn now to the specification of M, U, E+, and E~. Put Xg = m(4 log 2)"1;

any value could serve for Xg, but this one is convenient because exp(7r/2X0) = 4.

Select sn, tn, Kn, and Nn according to Lemma 4. For each n > 0 select K„ disjoint

closed subintervals of the real interval (sn, sn + 1) and Nn disjoint closed subinter-

vals of (-sn - 1, -s„); refer to each of these tiny intervals as J. Consider the

intervals J as slits in the plane and join two copies of the plane slit by all the J's in

the standard fashion by joining the upper edge of each / in each plane with the

lower edge of the same J in the other plane. Call the resulting surface M and let ñ:

M->C be the natural projection of M onto C. M is exhibited as a branched

two-sheeted cover of C. Let B G M be the set of branch points of this covering;

that is ß G B if and only if d-n(ß) = 0 if and only if •n(ß) is an endpoint of one of

the intervals /. Now define M = M — B, Z = W\M, and ty = W(B) = the set of

endpoints of the J's. Z: A/^C — ̂  realizes M as a two-sheeted unbranched

cover of the region C — ÖD. Denote by Ex* the sets Z~X(SX) in M and put

E+ = Ex+ andF"= Ex.

As previously indicated, U will be induced by the plane isotopy u(x + iy, t) = x

+ ity, t > 0, in this manner. M is covered by open sets T for which Z|r is a

homeomorphism and Z(T) = I X /', where I is an open interval of R and /' = R

or R+ or R". /' can equal R precisely when I is disjoint from fy. For each such T

define a homotopy UT: T X R+ --> T by UT(p, t) = (Z\T)~xu(Z(p), t). It is clear

that if 7", n T2 ¥= 0, then for allp G 7", n T2 and all r > 0, UTi(p, t) = UTi(p, t)

= UTnT(p, t). Therefore, we may define U(p, t) = Uj{p, t) for any T which

contains p and for all t > 0. Because Z is a local coordinate at every point of M

and is an analytic homeomorphism on each T, it is immediate from the definition

of U and elementary properties of u that (a)-(e) hold.

Because u,(Sx) = StX it is immediate that U,(EX) = ElX. So (f) and (g) are

equivalent to the following statements:

(F) Ex+ G & if and only if X < X0.

(g') Ex G & if and only if X < X0.

The "only if" parts of (f) and (g') are proved as follows. Fix X > Xq and define

a = a(X) = exp(7r/2X). a(Xg) = 4, and a(X) = 4X~' for some e > 0 when X > X0.

For 0<j<x<j+1 and a < 4 we find a~x > 4~xa~s and 4~x > 4~'4-i. From

Lemma 3 and from part (4) of Lemma 4 it then follows that if <p is a bounded

analytic function on Sx for X > Xg (or on Sx for X > X0) which vanishes at every

point of ^ n Sx (or ty n Sx+), then tp vanishes identically. The following lemma
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then yields that the corresponding sets Ex   = Z X(SX) in M do not belong to &.

Special cases of this lemma were used in [S].

Lemma 5. Suppose tTx: Mx —* R is a two-sheeted branched cover of a connected

open subset R of C with branch set Bx G Mx. Let B0 G Bx; put M2 = Mx — B0 and

w2 = trx\M. If S is a subregion of R such that S ^= R and 0 is the only bounded

analytic function on S which vanishes at all points oftrx(Bx) n S, then ^(S), which

is irxx(S) — B0, does not have property & in M2.

Proof. For any function g on tT2x(S), define Ag on S — itx(Bx) by Ag(z) =

(g(Pi) ~ S(P2))2' where {px,p2} = "^(z). (See [RS], where this idea is used.) Ag is

analytic on S — itx(Bx) whenever g is analytic on 7r2x(S). If furthermore g is

bounded on tt2x(S), Riemann's theorem on removable singularities implies that g

extends to a bounded analytic function on irx^(S) G Mx and that Ag extends

similarly to S. The extended Ag vanishes at every point zx G irx(Bx) n S, because

as z tends to z, the two points p, andp2 coalesce to the single point of Bx lying over

z,. By hypothesis Ag must therefore vanish identically on S whenever g is a

bounded analytic function on -n2x(S).

Now choose z0 G R — (S u -nx(Bx)) and let {px,p2} = ir2x(z0). Select a mero-

morphic function/on M2 which has a pole atp, as its only singularity [BS]. Then/

is analytic on tr2x(S) and yet/cannot be approximated uniformly on tr2x(S) by an

analytic function F on M2. For if F were analytic on M2 and |/ — F\ < 1 on

•n2x(S), the foregoing paragraph shows that A(/ — F) = 0 on S. By uniqueness of

analytic functions A(/ - F) = 0 on R — (trx(Bx) u {z0})- However, this is con-

tradicted by the fact that / — F is bounded near p2 and unbounded near px. So

such an F does not exist, and -n2 X(S) does not have property & in A/2.

The proof of the "if parts of (f) and (g'), namely, that Ex G & for 0 < X < Xg

and that Ex G & for 0 < X < Xg will require the construction of certain auxiliary

functions on C and on Af. Henceforth let b be a variable ranging over ^ = ñ(B)

= the set of endpoints of the intervals J, and let sn, t„, Kn, and N„ be as in Lemma

4. Define functions An, Bn, Cn, and Dn as follows, where for b < 0 we let k = k(b)

be the unique integer such that sk < -b < sk + 1, X6 = fcXgO + k)~x, and ab =

exp(w/2X6) = 4 • 4x/k.

An(z)=   H    T(z;6A)-1=Il4±4>
b<->„ azb - a%

A2/" — 4*/"

Bn(z)=      n      r(z; 6, nX0) = n ,
-t„<b<t„ 4 '     + 4 '

C„(z)=   n (-Tiz^Xg)-')^^;,
b>t„ 4—4

Dn(z) = An(z)Bn(z)Cn(z).

Lemma 6. (a) The product for Dn converges normally on the plane to a meromorphic

function all of whose zeros and poles are simple,

(b) {z: D„(z) = 0 or oo and |Im z\ < 4X0/3} = 6¡).
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(c) // D„(z) = oo and |Re z| < tn, then either z G <$> or else |Im z\ > 2/iXg.

For every 8 > 0 and t > 0 the following hold for all large enough n.

(d) \D„(z) - 1| < 8 whenever tn - t < |Re z| < z„ + t.

(e) \D„(z)\ < 1 + 8 on S„Xo n {*: |Rc z\ < t„ + t}.

(f) \Dn(z)\ >\-8 on (SXo n {z|Re z > tn - t}) u (5Xq_5 n {z: Re z < -tn+

'})•

Proof. Let e be very small, let x = Re z, and let -s^. — 1 < b < -ifc < jc — 1. By

Lemma 2

II — t(z; b, X )~'| < 4 • 4(*+1)x/* • 4-<* + 1)V* < 4 . 42*. 4-*. 4",*/*-

From Lemma 1 and part (3) of Lemma 4 it follows that An is normally convergent

on C and that |^4„(z) — 1| < e for -(„-(< Re z, for all large n. In a similar

manner we find that C„ is normally convergent and | Cn(z) — 11 < e for Re z < tn

+ t, for large n. Bn is convergent, being a finite product, and Lemma 1, Lemma 2,

and part (2) of Lemma 4 give \Bn(z) — 1| <e for Re z > /„ — t, for large n.

Because there are an even number of b's in (-t„, t„), Bn(z) = LTt = LT(-t), and the

same argument as above shows that \Bn(z) — 1| < e for |Re z\> tn — t, for large n.

Each r(z ; b, X) is periodic with period 4Xi, and z0 is a zero of r if and only if

z0 + 2X/ is a pole. The smallest X involved in the product for Dn is X =

A:Xg(l + A:)-1 for k = n + I; so X > 2Xg/3 and 2X > 4Xg/3. (a), (b), and (c) are

clear, and if e is small enough (d) follows from the estimates above. Because \An\

and |C„| are each bounded by 1 + e in |Re z\ < tn + t and |2?„| < 1 in S^, we

have (e) for small e and large n. Finally, because \B„(z) — 1| < e for |Re z| > tn -

t, \C„\ > 1 in SXo, and \An\ > 1 in S,(„ + i)A0/(n+2)> we have (f) for small e and large n.

Lemma 7. If z0 G C, 8 > 0, and V is an open neighborhood of an arc which

connects z0 to 00, then there exists an entire function h having a simple zero at z0 with

no other zeros such that \h — l\c~v ^ &•

Proof. |ea - 1| < 2|a| for |a| < 1, by Lemma 1(b); so \a - ß\ < 1 implies

|e" — e^| < 2|a — ß\ \eß\. Choose a branch of log(z — z0)~x = -log(z — z0) in the

complement of the given arc y which joins z0 to 00. In V choose a connected

simply connected neighborhood F, of y which is the interior of a locally polygonal

set. Then Vx u {00} is connected and locally connected; so Arakelyan's Theorem

[Al], [A2] can be applied to the function log(z — z0)_1 on C — Vx with e =

min(l, 8/2) to yield an entire function g so that |g(z) — log(z — z0)_1| <e for

zGC— F, DC— V. Put a = g(z) and ß = log(z — z0)_1 in the opening sentence

of this proof, and we obtain |exp(g(z)) - (z — z0)'x\ < 2e\z - z0\~x < 5/|z - z0|

for z G C - V. Thus, |(z - z0)exp(g(z)) - 1| < 8 for z G C - V. The function

h(z) = (z — z0)exp( g(z)) has the desired behavior.

Corollary 8. There is a sequence H„ of meromorphic functions on C which have

these properties. Let t > 0 and 8 > 0 be arbitrary.

(1) Hn(z) =HjT).

(2) The zeros of Hn are simple and comprise the set {b: \b\ < /„}.

(3) The poles of Hn are simple and comprise the set {b: \b\ > tn}.
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(4) sup{\Hn(z) - 1|: f„ - f < |Rez| < /„ + f} ->Oas n-» oo.

(5) sup{|7F„(z)| : |Re z\ < tn + t and |Im z| < «Xg} —> 1 as n -» oo.

(6) inf{177„(z)|: Re z > tn — t and |Im z| < Xg} -» 1 as n -» oo.

(7) inf{\Hn(z)\: Re z < -tn + t and |Im z\ < Xg - 8} -h» 1 as n -» oo.

Proof. Start with the meromorphic functions Dn of Lemma 6; note that

Dn(z) = Dn(z). Enumerate the zeros and poles of Dn in {z: Im z > 0} as z„

z2, . . . ; then z,, Zj, . . . are the zeros and poles in the lower half-plane. For each j

let Vj be a small neighborhood of the line segment Lj = {z = x + iy: x = Re zy

and y > Im z,} which joins zy to oo. Because L. is disjoint from the set 7"„ = Sx¡¡ (J

(z: |Re z| < tn and |Im z| < n\} u {z: |Re z| G U [sk, sk + 1]}, we may assume

that Vj r\ Tn = 0, as well. By Lemma 7 there is an entire function h¡ which is zero

only at zy and which satisfies \hj — 1| < S, = 2~"~J outside Vj. Put k}(z) =hj(z). Let

F„ = l\(hjkj)±x, where the exponent is chosen to be +1 in case Dn(zJ) = oo =

Dn(zj) and is chosen to be -1 in case Dn(z) = D„(z/) = 0. Because S 25, = 2 • 2'"

< oo and each compact set meets only finitely many of the V} or their conjugates,

the product for Fn converges normally on the plane to a meromorphic function

which by Lemma 1 satisfies |F„ — 1| < 62"" on Tn, for n > 2. From Lemma 6 it is

clear that Hn = FnDn has all the required properties.

Define R(x0; t, X) to be the rectangle (z = x + iy: \x — x0\ < t and |y| < X}.

For n > 0 define t_n = -tn, Gn(z) = 2z-'-H„(z), and G_„(z) = 2''~zHn(z), where Hn

is as in Lemma 8. Fix X+ < X0 and X_< Xq, define X„ = X+ for n > 0 and X„ = X_

for n < 0, and put S(n) = S¿ for n > 0 and S(n) = S^ for n < 0. Define these

sets:

a„= (z GS(n): 16-1 < |G„(z)| < 16},

Xn = (z: |Re z\ < 5]n| + 1 and |Im z| < |«|Xg}

u(S(n)n {^:Rez/i„ < 1}) - o„,

Yn = (S(n)n {z:Rez/tn> 1}) - on.

Lemma 9. The following statements hold for \n\ sufficiently large.

(1) Gn is meromorphic on C with a simple zero or pole at each b G ty and no other

zeros nor poles; Gn(z) = Gn(z).

(2) G„ is an analytic homeomorphism on a neighborhood of R(tn; 5, X„).

(3)R(tn;3,Xn)GonGR(tn;5,Xn).

(4) \G„\< 16"' on Xn, \Gn\ > 16 on Yn, 16"' < |G„| < 16 on on, and G„ is an

analytic homeomorphism on an.

(5) 77¡ere is a smooth function ©„: [16_1, 16] ̂ (0, it) such that G„(o„) = {w:

\6'x < |w| < 16 and |arg w| < e„(|w|)}.

Proof. For definiteness let us consider the case n < 0; the case n > 0 is treated

in a very similar manner. (1) is clear because the same thing is true for Hn. By

Corollary 8 H_n(z + tn) —> 1 uniformly on R(0; 1, 3Xg) as n —» -oo. Because 2~z is

an analytic homeomorphism on S3X and G„(z + tn) = 2~zH_n(z + tn) —» 2~z uni-

formly on R(0; 7, 3Xg), Gn(z + t„) is an analytic homeomorphism on R(0; 6, 2X0)

for large n < 0, and (2) follows.
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From parts (7) and (5) of Corollary 8 we obtain {- < \H_n(z)\ for Re z < tn + 5

and \H_„(z)\ < 2 for Re z > /„ - 5 for large n < 0. If Re z < t„ - 5, we have

|2'"A > 32; so \G„(z)\ > 16. If Re z > tn + 5, we have |2'--z| < 32"'; so |G„(z)| <

16A Thus, o„ G R(tn; 5, XJ. Because x2 < \H_n(z)\ < 2 in R(tn; 5, XJ, which con-

tains R(t„; 3, X„), and 8_1 < |2'-"r| < 8 on R(t„; 3, XJ, we see that 16"1 < |G„(z)|

< 16 on R(tn; 3, XJ. Thus, R(tn; 3, XJ G on and (3) is proved.

Because t^ — s^ » 0 for large |n|, we have from Corollary 8 that \H_n(z)\ < 2

for z G Xn for large n < 0. By (3) and the definition of Xn, Re z > tn + 1 for

z G X„; so |2'-A < \ and |G„(z)| < 2 • {- = 1 for z G Xn. Because of (3) and the

definition of a„, this means that |GJ < 16"1 on X„. In a similar manner we obtainn~ in) n

\Gn\ > 16 on Yn. By (2) and (3), Gn is an analytic homeomorphism on on, and (4) is

proved.

Because Gn is a diffeomorphism and does not vanish on a neighborhood of

R(t„; 5, XJ, the functions r = |G„(z)| and 0 = arg(G„(z)), where -ir < 0 < it, con-

stitute a global differentiable coordinate pair on a neighborhood of R(t„; 5, XJ. We

can therefore parametrize G„(x — /XJ as G„(x - <XJ = r exp[j'6„(r)] for a smooth

function 0„. Because arg 2'-~z > 0 for Im z = -X„ and H_n is nearly 1, 0„ takes

values in (0, m) for large n < 0. The set y = {r = r0) n R(t„; 5, \,) consists of

regular arcs which have no endpoints in R(t„; 5, XJ°. If we knew that y consisted

of just one arc which meets the boundary of R(t„; 5, XJ in just two points, we

could complete the argument as follows. For r0 G [16 , 16] y does not meet

{x — tn = ± 5}, for on the latter set |G"„| is approximately 32 or 32"1, which is not

close to 16 or 16"'. So y connects Im z = -\ to Im z = + X„. Because

G„(z) = G„(z) and Gn > 0 on [tn - 5, tn + 5], y is parametrized by a single sym-

metric interval -0O < 0 < 0O. Evidently (r0, 0O) corresponds to a point of (Im z =

X„} or to a point of (Im z = -X„}. As we have previously observed, (Im z = -X„}

corresponds to positive 0. Since G(x — /XJ = r exp(/0„(r)), this shows that (5)

holds.

Finally, to see that y = {r = r0} n R(t„'> 5, XJ consists of a single arc, consider

the following elementary calculation for an analytic non vanishing/:

2lf|9|/l_9|/l2_9(/A)_ a/;|fa/~
u' dx      dx       dx      dxJ   J dx

= /l+ ^)" = //'+/(/r=2Re//';

so 3|/|/3x = l/l"1 Re(ff'). Apply this formula to Gn, taking into account the fact

that H_n is very close to 1 on a neighborhood of R(in; 5, XJ and hence H'_n is very

close to 0. The result is

^ = |GJ-' Re(G,G„') « |2'»-|"' Re((2*."T(2*--*)')

= ¿I2'""1 = (log2)|2'--z| < -(^2)32"'

on R(tn; 5, XJ. So for large negative n, 3r/3x = 3|G„|/3x < 0 on R(t„; 5, X„). This

means that each horizontal line {Im z = constant) meets y in at most one point;
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and y consists of at most one arc, since it has no endpoints in R(tn; 5, XJ°.

Define for large |«| the following subsets of C. [See Figure 1.]

V; = {z: 4-x < \z\ < 4 and i0„(|z|) < arg z < w-i0„(|z|)},

Fn-={z:z-GF„+},

W = {z: 4~' < \z\ < 4 and |arg z\ < |0„(|z|)},

W = {z: -z G W}.

Figure 2

Lemma 10. For large \n\ there is an analytic function tTn on M which enjoys these

properties [see Figure 2].

(\)*2n = GnoZ;

(2) mn maps Z~x(Xn uo„U Y„) into C - (V„+ u V~);

(3) trn(Z-x(Xn)) G {z: \z\ < 4"1}, trn(Z-x(Yn)) G {z: \z\ > 4}, and irn is an ana-

lytic homeomorphism of Z~x(on) onto W (J W'■

Proof. Recall the surface M and its projection m onto C, which has branch set

B G M. Gn has a simple zero or pole at each point b of <3) « ñ(B), and no other

zeros nor poles. From this fact and the definition of M and tF it follows that the

function Gn ° -n has a single-valued square root, call it mn, on Af. Indeed, M can be
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thought of as the classical Riemann surface constructed from the multiple-valued

function \/G„ on the plane. Restricting nn to M we have \/G„ ° Z as a

single-valued analytic function, call it irn, on M having no zeros nor poles.

Properties (2) and (3) are immediate from Lemma 9. Note that ir„(p+) = -v„(p~) if

{P+,P~} = Z~\z) for z G o„.

Lemma 11. Let \n\ be large. For every 8 > 0 and every Cx function g on

Z~\X„ u o„ U Yn) such that g = 0 on the closure of Z~x(Xn u Y„) and \dg/oZ\ <

8 on Z~x(on) there exists a meromorphic function $ on M such that |t// — g|<17fion

Z~\Xn Uff„U Yn). The poles ofv/ lie outside Z~x(Xn Uo„U Yn).

Proof. Let |«| be so large that Lemma 10 holds. By Lemma 10 and the

hypothesis on g we can find a Cx function g on C such that g = 0 on {z:

|z| < 4"1 + e or |z| > 4 — e} for some e > 0 and g ° irn = g on Z~x(Xn U o„ U

yj. Calculate

3g       9(1 ° O      3(g ° -nn ° Z"1) 3g 3g
—— =-—-=- • Z = — ° ir„ • Z     ° Z = — ° ît„.
3Z 3Z 9z ^ °z

So |3g/3z| < S on IF u W. Now we apply a method of Mergelyan [M, §3,

Chapter I] to approximate g by a rational function k. Then k » itn will approximate

S ° "■„ = g- Let r* be curves oriented positively (counterclockwise) inside V^

which are within e of the boundary of V^. See Figure 3.

Figure 3

Let FR be the circle of radius R, centered at 0. For z0 G C — (Fn+ u V~) we can

write the generalized Cauchy formula as follows (see [M, pp. 304-305], [G, p. 26],

[S, §7]), for R > \z0\.

g-(z0) = -^ f f   - f        )g(z)(z - zg)"1 dz-\\[    ||(z- zg)"1 dx dy,
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where 2Ä is the set of points inside TR and outside both T+ and T . Because g

vanishes on TR, the line integral reduces to

J(zo) = - (2ff»T' JrurM^ ~ zo)~l dz.

Because g vanishes on most of HR, the integral over 2Ä reduces to an integral over

Tn = the two components of [{4_1 + e<|z|<4 — e) — (r+u T~)] which contain

± 1. See Figure 4, in which 7"„ is shaded.

3Vn+

Figure 4

Because g is C1 and |3g/3z| < 8 on C — (F„+ u Vn), we can take e so small that

|3g/3z| < 25 on 7"„. Then

< 28ir~x I |   |z — z0|_1 dx dy

< 25tA f f      \z - z0|-' dx dy < 28m~xX/4ir ■ it ■ 42 = 165.
J  J\z\<4

The last inequality is Lemma 3.1.1 of [B]. Now for z0 G C - (Fn+ U FnJ and

z G T+ u T", the distance |z — z0| is bounded away from 0; thus, I(Zq) can be

uniformly approximated for z0 G C — ( K„+ u V~) by a finite Riemann sum for

this integral, which is manifestly a rational function k(z0) having its poles in

vn U V~. Choosing such a k for which |/(z0) - A:(z0)| < 5 for all z0 G C - (Vn+

U V~), we have \g — k\ < 175 on C - (Vn+ u V~) and so \k ° ttn — g ° ir„| <

175 on 7r-'(C - (Vn+ u V~)) D Z~x(Xn u o„ u Yn). Thus, \p = k ° ir„ does what is

required. The poles of \p are not in Z~x(Xn u on u F„), because i// is bounded there.

Lemma 12. Let S be a closed subset of C which is s tar-shaped with respect to 0, let

zn be a sequence of points of C — 5 tending to oo, and let kn be a sequence of

nonnegative integers.f For each e > 0 there is an entire function <p such that

11 — <p| < e on S and for each n, q> has a zero of order at least kn at zn.

Proof. Given e > 0, let e„ > 0 be chosen so that 2 knen < min^, e/3). Put

yn = {rzn: r > 1}; yn is an arc joining z„ to oo in C — S, because S is star-shaped.

AI - »- //,
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Each compact set meets at most finitely many y„. Choose a neighborhood Vn of

each y„ so that Vn G C — S and so that each compact meets only finitely many Vn.

Using Lemma 7 choose an entire function hn so that hn(zn) = 0 and |1 — hn\ < en

on C — Vn. By Lemma 1 the product II hk" converges normally on the plane to a

function <p having the desired properties.

Corollary 13. In Lemma 11 we can require \¡/ to be analytic on M if we relax the

approximation to \\p — g\ < 185.

Proof. Write Z„ = Z~x(Xn Ua„u Yn). Given g and 5 satisfying the hypothesis

of Lemma 11, let \px be meromorphic on Af and satisfy \ipx — g\z < 175. Let P be

the pole set of \px and enumerate Z(P) = {zx, z2, . . . }. Note that P n Z„ = 0; so

Z(P) n (Xn u on u Yn) = 0. For each z, let k} be the larger of the orders of the

poles of i|>, at the two points of Z'x(z/). In Zn g vanishes off a compact set; so

\g\z„ < °°. Thus \\px\Zit = K < oo. Apply Lemma 12 to the star-shaped S = Xn u

o„ U Y„, the sequence {z.}, the integers {kj}, and e = 8/K to find an entire

function <p so that |<p — l|s < 8/K and <p has a zero of order at least kj at each z,.

Put ^ = (<p ° Z)t//,, which has no poles on M by construction.

I* - *ik - K» ° ZM - *ik < I^IaIv °z - !k <*•.*/*-*.
Therefore, |«// - g|Zj_ < |tf- - t//,^ + |uV, - g|Zn < 5 + 175 = 185.

Equipped with the foregoing technical tools we can now detail the proof that

Ex G 6E for X < Xg and Ex G & for X < Xg. Fix one such Ex or Ex and call it E.

Let / G /1(F) and e > 0. By Corollary 13 there is a set of integers 91 = Z n

[N, oo), in case E = Ex+, or 9t = Z n (-oo, -A/], in case F = F^~, such that for

every n 6 91 and every C1 function g on Z„ = Z~X(X„ u o-„ U î"J which is

supported in the relative (to ZJ interior of Z~x(on) there is an analytic function \p

on M such that |g - t|>|^ < 18|3g/3Z|Zn. (If 5 = |3g/3Z|Zn > 0, this is Corollary

13; if 5 = 0, then g is analytic on the connected set Z°, and since it vanishes on

Z~x(Xn), it vanishes identically and we can take ip = 0.) For every n G 91 put

Wn = E n Z~x{z: |Re z - tn\ < 1}. F - U „<=<x Wn consists of a sequence of

separated closed connected subsets, which we may number En, n G 91. Do this

numbering so that Wn sits between En and En. where |«'| = \n\ + 1. Each En has a

neighborhood of finite genus; indeed, the closure of En in Af is compact. We may

select these neighborhoods to be disjoint from each other. By Theorem 1.5 of [S]

there is an analytic function <£> on Af such that |/ — <£>|£. < 2^0, where 0 = e/40.

Put g = / - $. Note that \g\uEn < 0/2.

Select a Cx function x: C -> [0, 1] which depends only on x = Re z and which

has these properties: x=l on [-1, 1], x = 0 outside (-2, 2), and |3x/3x| < 2.

Then |3x/3z| < 1. Put x, = X ° (Z — fj; then |3x„/3Z| < 1 on Af, and we may

assume that x^X* = 0 for w and n in 91, m ¥=n, because of the large gaps between

tm and r„ for large |n|. Define g„ = x„g for n G 9l. |S g„ — g\E < 0/2 because of

the following. For each p there is an integer m such that (S g„)(p) = gm(p),

because at most one term in S g„(p) is nonzero. Thus, |2 g„(p) — g(p)\ = | gm(p)

- g(p)\ = \X„(P) - 1| l*0»)|. If Xjj>) -1^0, thenp G U En and |g(p)| < 0/2,

while IxJp) - 1| < 1.
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In£° we calculate

°g„ _ d(x,g) _ °X„ dg m aXn

aZ aZ dZ oZ       öZ

because g G A(E).JHosn ((dx,/aZ)g)(p) = 0 unless 1 < |Re Z(p) - tn\ < 2, in

which case |(3x,/3Z)(p)| < 1 and \g(p)\ < max{2Hm|0: m G 91, m = n - 1, n, or

n + 1} < 2 • 2~ln|0. Thus, the support of g„ in Z„ is contained in R(tn; 2, X), which

belongs to the relative (to Zn) interior of on, by Lemma 9, and \ogn/dZ\z^ < 2 •
2-|n|0.

Next we approximate g„ on Z„ by a C1 function A„ on Zn. Specifically, let s„ be

the map of on into C given by sn(z) = t„ + rn(z — f J, where rn < 1 and rn is close

to 1, and define h„ by h„ = g„ on Z"1^ u FJ and hn = (Z\x)~x <• s„ ° (Zy for

each component 2 of Z_1(aJ. Because gn vanishes on a neighborhood of

Z~x(Xn u KJ, the same will be true for hn if rn is close enough to 1. In this case hn

will be C1 on Zn and |3/i/3Z|z_ = /-J3g/3Z|Z> < |3g/3Z|Zji < 2 • 2"|n|Ö. Because

Z-1^) is compact we may take rn so close to 1 that | g„ - hn\z-^an) < 2~^0.

By Corollary 13 there is an analytic function xpn on M such that \\pn — hn\z < 18

• 2 • 2~M0 = 36 • 2"|n|ö. Because 2„e9l2^',| < 1 and every compact set in M is

contained in all but perhaps finitely many of the Zn, the sum 2 ip„ converges

normally on M to an analytic function ^. Let F be $ + SI', which is analytic on M,

and estimate

\F-S\-\2*n + *-j\

< 21^ - y + 2K - a.1 +|S^n - «|+ |g + * -/I-
On F the first sum is at most 2ns9l 36 • 2"'n|0 < 360. The second sum has at most

one nonzero term at any point of E; so it is dominated by max{2"'"'ö: n G 91} <

0/2. The third term |2 g„ — g\ is at most 0/2, as estimated earlier, and the last

expression | g + # — /| is identically zero by definition of g. Therefore, we have

|F — /| < 370 = 37e/40 < e on F, and the proof is complete.
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