NONINVARIANCE OF AN APPROXIMATION PROPERTY FOR CLOSED SUBSETS OF RIEMANN SURFACES

BY STEPHEN SCHEINBERG ${ }^{1}$

Abstract

A closed subset E of an open Riemann surface M is said to have the approximation property \mathcal{Q} if each continuous function on E which is analytic at all interior points of E can be approximaed uniformly on E by functions which are everywhere analytic on M. It is known that \mathcal{Q} is a topological invariant (i.e., preserved by homeomorphisms of the pair ($M, E)$) when M is of finite genus but not in general, not even for C^{∞} quasi-conformal automorphisms of M. The principal result of this paper is that \mathbb{Q} is not invariant even under a real-analytic isotopy of quasi-conformal automorphisms (of a certain M). M is constructed as the two-sheeted unbranched cover of the plane minus a certain discrete subset of the real axis, and the isotopy is induced by $(x+i y, t) \mapsto x+i t y$, for $t>0 ; E$ can be taken to be that portion of M which lies over a horizontal strip.

Let M be an open Riemann surface and E be a closed subset of M. Denote by $A(E)$ the collection of continuous functions on E which are analytic on the interior of E. Say that E has property \mathcal{Q} in M if each element of $A(E)$ can be approximated uniformly on E by functions which are analytic everywhere on M. By definition \mathscr{Q} is a property of the pair (M, E) and is a conformal invariant; that is, if one pair is related to another by an analytic homeomorphism, the both pairs have \mathcal{Q} or neither one does. It is natural to ask whether \mathcal{Q} is invariant for other types of equivalence. The famous theorem of Bishop and Mergelyan implies that \mathbb{Q} is a topological invariant in case E is compact, and the theorem of Arakelyan shows that \mathcal{Q} is a toplogical invariant when M is planar. By "topological invariant" I mean an invariant for the equivalence defined by homeomorphism of pairs. It is known [S] that \mathscr{Q} is a topological invariant when M is of finite genus but is not a topological invariant in general. In fact, \mathcal{A} is not an invariant even for the finer partition induced by this relation: call (M, E) equivalent to (M^{\prime}, E^{\prime}) if and only if M is conformally equivalent to M^{\prime} and there is a quasi-conformal homeomorphism of M onto M^{\prime} which carries E onto $E^{\prime}[\mathrm{S}]$. When I showed him the known example illustrating this phenonmenon, Dennis Sullivan asked me whether the example could be improved to one in which \mathbb{Q} fails to be preserved by an isotopy. The intent of this article is to provide an affirmative answer by demonstrating that a real-analytic isotopy need not preserve \mathcal{Q}, even though it is "affine", being

[^0]definable in local coordinates by $(x+i y, t) \rightarrow x+i t y$ for $0<t<\infty$, and all the homeomorphisms of M throughout the homotopy are quasi-conformal equivalences. The precise statement is given below as the theorem. Let us write " $E \in \mathbb{Q}$ " in place of " E has property \mathcal{Q} in M ".

Theorem. There is a connected open Riemann surface M, a homotopy $U: M \times \mathbf{R}^{+}$ $\rightarrow M$, and two closed connected subsets E^{+}and E^{-}of M such that the following hold, where $U_{t}(p)$ is written in place of $U(p, t)$.
(a) M can be given as a two-sheeted unbranched cover of a plane region by Z : $M \rightarrow \mathbf{C}-\mathscr{D}$, where \mathscr{D} is a discrete subset of the real axis, and the homotopy U is induced by the affine plane homotopy $u: \mathbf{C} \times \mathbf{R}^{+} \rightarrow \mathbf{C}$ defined by $u(x+i y, t)=x+$ ity; that is, $Z(U(p, t))=u(Z(p), t)$ for all $p \in M$ and $t \in \mathbf{R}^{+}$.
(b) U is real-analytic on $M \times \mathbf{R}^{+}$.
(c) Each U_{t} is a real-analytic quasi-conformal automorphism of M.
(d) U_{1} is the identity of M.
(e) As $t \rightarrow 1$ the distortion $\left|\partial U_{t} / \partial \bar{Z}\right|\left|\partial U_{t} / \partial Z\right|^{-1} \rightarrow 0$ uniformly on M.
(f) $\left\{t: U_{t}\left(E^{+}\right) \in \mathbb{Q}\right\}=(0,1]$.
(g) $\left\{t: U_{t}\left(E^{-}\right) \in \mathbb{Q}\right\}=(0,1)$.

Because of the relation between U and u one may call U or U_{t} "affine". For t near 1 the maps U_{t} are as close to conformal and as close to the identity as may be desired; yet the slight movement of E^{+}to $U_{1+e}\left(E^{+}\right)$destroys \mathcal{Q} and the slight movement of E^{-}to $U_{1-\varepsilon}\left(E^{-}\right)$creates \mathcal{Q}.

The proof of the theorem will be along the following lines. A locally finite collection of closed intervals J will be selected in \mathbf{R} according to certain technical requirements. M will be formed as follows: two copies of \mathbf{C} minus all the J 's will be joined in the standard way along corresponding slits J, leaving out the set \mathscr{D} consisting of all the endpoints of the J's. The natural projection $Z: M \rightarrow \mathbf{C}-\mathscr{D}$ exhibits M as a two-sheeted unbranched covering of a plane region. The homotopy defined on $\mathbf{C} \times \mathbf{R}^{+}$by $u(x+i y, t)=x+i t y$ transfers via Z to a homotopy defined on each component of $Z^{-1}(V) \times \mathbf{R}^{+}$, where V is any vertical strip in $\mathbf{C}-\mathscr{D}$ whose projection on the y-axis is $\mathbf{R}, \mathbf{R}^{+}$, or \mathbf{R}^{-}. These homotopies agree whenever there is an overlap; so they define a homotopy U on M. Assertions (a)-(e) will follow immediately.

Define S_{λ} to be the strip $\{x+i y:|y| \leqslant \lambda\}$ and S_{λ}^{+}(resp., S_{λ}^{-}) to be the intersection of S_{λ} with the closed right (resp., left) half-plane. Define $E_{\lambda}{ }^{ \pm}=$ $Z^{-1}\left(S_{\lambda}{ }^{ \pm}\right)$. The intervals J will be arranged in \mathbf{R} in such a fashion that for a certain $\lambda_{0}>0$ none of the sets S_{λ}^{+}for $\lambda>\lambda_{0}$ (resp., S_{λ}^{-}for $\lambda>\lambda_{0}$) supports a nontrivial bounded analytic function which vanishes on $S_{\lambda}^{+} \cap \mathscr{D}$ (resp., $S_{\lambda}^{-} \cap \mathscr{D}$). This will imply that \mathbb{Q} fails for the corresponding E_{λ}^{+}(resp., E_{λ}^{-}). Because $U_{t}\left(E_{\lambda}{ }^{ \pm}\right)=E_{t \lambda}^{ \pm}$, this will mean that one-half of (f) and (g), namely with " \subseteq " in place of " $=$ ", will be true for $E^{+}=E_{\lambda_{0}}^{+}$and $E^{-}=E_{\lambda_{0}}^{-}$.

The proof of the other half of (f) and (g) is technically more difficult and will require the bulk of the work. These ideas will be involved. Fix one $E_{\lambda}{ }^{+}, \lambda<\lambda_{0}$, or one $E_{\lambda}^{-}, \lambda<\lambda_{0}$, and call it E. Because of the spatial arrangement of \mathscr{D} there will
exist a sequence of meromorphic functions H_{n} on \mathbf{C} each of which has a zero or a pole at each point of \mathscr{D} and nowhere else and each of which is small on a large bounded set X_{n}, is large on a co-compact subset Y_{n} of $S_{\lambda}^{ \pm}$, and is nearly 1 on a vertical strip σ_{n} which separates X_{n} from Y_{n}. Multiplying H_{n} by an exponential function and extracting a square root, we obtain an analytic function π_{n} on M which separates these four sets: $Z^{-1}\left(X_{n}\right)$, the two components of $Z^{-1}\left(\sigma_{n}\right)$, and $Z^{-1}\left(Y_{n}\right) . E-\cup Z^{-1}\left(\sigma_{n}\right)$ consists of separated pieces of finite genus; so if $f \in$ $A(E)$, there is an analytic Φ on M such that $g=f-\Phi$ is very small on $E-$ $\cup Z^{-1}\left(\sigma_{n}\right) . g$ can be approximated by Σg_{n}, where g_{n} is C^{1} on $E^{\circ} \cup Z^{-1}\left(X_{n}\right)$, is supported in $Z^{-1}\left(\sigma_{n}\right)$, and has small \bar{Z}-derivative. Because π_{n} separates the four sets indicated above, g_{n} can be written $g_{n}=\tilde{g}_{n} \circ \pi_{n}$, where \tilde{g}_{n} is (essentially) a smooth function of compact support in \mathbf{C} having small \bar{z}-derivative. Because of this property of \tilde{g}_{n} and of the nature of $\pi_{n}\left(Z^{-1}\left(X_{n} \cup \sigma_{n} \cup Y_{n}\right)\right), \tilde{g}_{n}$ can be approximated reasonably well by a rational function k_{n}. Thus, $k_{n} \circ \pi_{n}$ approximates g_{n} on $E \cup Z^{-1}\left(X_{n}\right)$. The poles of $k_{n} \circ \pi_{n}$ in M can be removed by a multiplier without essentially altering the goodness of the approximation to g_{n}. The resulting analytic functions ψ_{n} on M can be summed to an analytic function Ψ, because $Z^{-1}\left(X_{n}\right) \uparrow M$, and thus $\Phi+\Psi$ will approximate f.

The reader acquainted with [\mathbf{S}] will recognize a similarity in spirit between the above scheme for showing $E \in \mathcal{Q}$ and the method used in $\S 11$ of $[\mathbf{S}]$. However, the method of $[\mathbf{S}]$ is technically simpler in several respects. For example, the projection π of the surface in $[\mathbf{S}]$ served to separate all the components of all the $\pi^{-1}\left(\sigma_{n}\right)$ at once, and it was not necessary to allow singularities to arise in intermediate steps for later removal. The punctures in the surface of [\mathbf{S}] allowed the existence of enough globally analytic functions but prevented the existence of an isotopy. The surface M of this article is punctured in order to allow construction of the separating functions π_{n}; since the punctures lie over the real axis, they do not interfere with the isotopy. I thank Ted Gamelin for asking me whether a related result utilized an iteration of some sort. This remark prompted me to look for an approximation of $g=f-\Phi$ by means of separate approximations of "pieces" of g; this in turn opened up the possiblity of individual separating functions π_{n} for each "piece". And I thank Dennis Sullivan for raising the question which this paper answers.

The rest of the paper is devoted to a proof of the theorem. Most of the technical aspects are gathered into manageable or convenient aggregates and termed lemmas or corollaries.

Lemma 1 (a). If $|z| \leqslant \frac{1}{2}$, then $|\log (1+z)-z| \leqslant|z| / 2$.
(b) If $|w| \leqslant 1$, then $\left|e^{w}-1\right| \leqslant(e-1)|w| \leqslant 2|w|$.
(c) If $\Sigma\left|a_{n}\right| \leqslant \frac{1}{2}$, then $\left|\Pi\left(1+a_{n}\right)-1\right| \leqslant 3 \Sigma\left|a_{n}\right|$.

Proof. (a) and (b) are well known and follow readily from easy manipulations of Taylor series. Assume $\Sigma\left|a_{n}\right| \leqslant \frac{1}{2}$. From (a) it follows that $\left|\log \Pi\left(1+a_{n}\right)-\Sigma a_{n}\right|$ $\leqslant \frac{1}{2} \Sigma\left|a_{n}\right|$; so $\left|\log \Pi\left(1+a_{n}\right)\right| \leqslant \frac{3}{2} \Sigma\left|a_{n}\right| \leqslant \frac{3}{4}$. Now an application of (b) yields (c).

Lemma 2. For $0<\lambda<\infty$ and complex z_{0} and z define

$$
\tau\left(z ; z_{0}, \lambda\right)=\left(a^{z}-a^{z_{0}}\right) /\left(a^{z}+a^{\bar{z}_{0}}\right)
$$

where $a=\exp (\pi / 2 \lambda)$. Suppose $0<\lambda<\pi(2 \log 2)^{-1}$ and $\left|x-x_{0}\right|>1$, where $x=$ $\operatorname{Re} z$ and $x_{0}=\operatorname{Re} z_{0}$. Let $\omega=\operatorname{signum}\left(x-x_{0}\right)$. Then

$$
\left|1-\omega \tau\left(z, z_{0}, \lambda\right)^{ \pm 1}\right| \leqslant 4 a^{-\left|x-x_{0}\right|}=4 \min \left(a^{x} \cdot a^{-x_{0}}, a^{x_{0}} \cdot a^{-x}\right)
$$

Proof. In case $x \geqslant x_{0}+1$ compute

$$
\left|1-\tau^{+1}\right|=\left|\frac{a^{z_{0}}+a^{\bar{z}_{0}}}{a^{z}+a^{\bar{z}_{0}}}\right|=a^{x_{0}-x}\left|\frac{1+a^{\bar{z}_{0}-z_{0}}}{1+a^{\bar{z}_{0}-z}}\right|<a^{x_{0}-x} \frac{2}{1-a^{x_{0}-x}}<4 a^{x_{0}-x},
$$

because $\left|a^{\bar{z}_{0}-z_{0}}\right|=1$ and $a^{x_{0}-x} \leqslant a^{-1}<\frac{1}{2}$. The computations for τ^{-1} and for the case $x \leqslant x_{0}-1$ are very similar.

Lemma 3. If x_{n} is a sequence of distinct real numbers such that $\left|x_{n}\right| \rightarrow \infty$ and $0<\lambda<\infty$, the following are equivalent.
(a) There exists a nonzero bounded analytic function on S_{λ} which vanishes on $X=\left\{x_{n}: n \geqslant 1\right\}$.
(b) On S_{λ}^{+}there is a nonzero bounded analytic function which vanishes on $X \cap S_{\lambda}^{+}$, and the analogous statement holds for S_{λ}^{-}.
(c) $\sum a^{-\left|x_{n}\right|}<\infty$, where $a=\exp (\pi / 2 \lambda)$.
(d) $\Pi_{n} \operatorname{sgn}\left(x_{n}\right)\left(a^{x_{n}}-a^{z}\right) /\left(a^{x_{n}}+a^{z}\right)$ converges normally on the plane to a function which is analytic on $S_{2 \lambda}^{\circ}$ (the interior of $S_{2 \lambda}$), is bounded by 1 on S_{λ}, and vanishes in $S_{2 \lambda}$ precisely on X.

Proof. The conformal map $w=\varphi(z)=\exp (\pi z / 2 \lambda)$ carries S_{λ} to the closed right half-plane minus 0 and takes X to a positive sequence $\left\{w_{n}\right\}$ which clusters only at 0 and/or ∞. The Blaschke condition for a real sequence w_{n} tending to 0 (resp. ∞) in the right half-plane is easily seen to be $\Sigma w_{n}<\infty$ (resp., $\Sigma w_{n}^{-1}<\infty$). Because a convergent Blaschke product on the open half-plane is analytic on the closed half-plane minus the cluster set of its zeros, (a) is equivalent to (c). Trivially, (a) implies (b). The above mapping $w=\varphi(z)$ (resp., $w=1 / \varphi(z)$) sends S_{λ}^{-}(resp., S_{λ}^{+}) onto the half-disc $\{w:|w| \leqslant 1, \operatorname{Re} w>0\}-\{0\}$, which contains the disc $\Delta=\{w$: $\left.\left|w-\frac{1}{2}\right|<\frac{1}{2}\right\}$. So (b) implies the Blaschke condition for the real sequence $w_{n}=$ $\varphi\left(x_{n}\right) \rightarrow 0$ (resp., $w_{n}=1 / \varphi\left(x_{n}\right) \rightarrow 0$) in Δ, which implies (c). Recall that a sequence, series, or product of meromorphic functions f_{n} is said to converge normally on a region R if for each compact subset K of R all the functions f_{n} are analytic on K for $n \geqslant N(K)$ and the sequence, series, or product of the f_{n} for $n \geqslant N(K)$ converges uniformly on K. Lemma 2 and simple observations about $\tau\left(z ; x_{n}, \lambda\right.$) reveal that (c) implies (d). Finally, (d) trivially implies (a).

Lemma 4. There exist sequences s_{n}, t_{n}, K_{n}, and N_{n} of positive integers such that
(1) $1 \leqslant s_{1}<t_{1}<s_{2}<t_{2}<\cdots$ and $1 \leqslant K_{1}<N_{1}<K_{2}<N_{2}<\cdots$,
(2) $2^{-t_{n} / n} \sum_{1}^{n} 2^{s^{s}} N_{j} \rightarrow 0$ as $n \rightarrow \infty$; in particular, $t_{n}-s_{n} \rightarrow \infty$,
(3) $16^{t_{n}} \sum_{n+1}^{\infty} 4^{-s,}\left(K_{j}+4^{-s / j} N_{j}\right) \rightarrow 0$ as $n \rightarrow \infty$; in particular, $s_{n+1}-t_{n} \rightarrow \infty$ and $\sum_{1}^{\infty} 4^{-s_{n}}\left(K_{n}+4^{-s_{n} / n} N_{n}\right)<\infty$, and
(4) $\sum 4^{-s_{n}} N_{n}=\infty=\sum 4^{-s_{n}} 4^{s_{n}} K_{n}$ for every $\varepsilon>0$.

Proof. Define three sequences of integers by the recursion: $r_{1}=1, s_{n}=n r_{n}$, $t_{n}=n\left(3 s_{n}+n\right), r_{n+1}=2 t_{n}+n$. It is easy to see that r_{n} and s_{n} are strictly increasing with n and that $s_{n+1}>n r_{n+1}>t_{n}>s_{n}$. Put $N_{n}=4^{s_{n}}$ and $K_{n}=N_{n} 4^{-s_{n} / n}$ $=N_{n} 4^{-r_{n}}=4^{s_{n}-r_{n}}=4^{(n-1) r_{n}}$. (1) and (4) are immediate.

Each of the sums Σ_{1}^{n} in (2) and Σ_{n+1}^{∞} in (3) is readily seen to be a sum of distinct powers of 2 . Therefore, each sum is at most twice its largest term. For the sum Σ_{1}^{n} in (2) this estimate is $2 \cdot 2^{s_{n}} N_{n}=2 \cdot 2^{3 s_{n}}=2 \cdot 2^{t_{n} / n} \cdot 2^{-n}$, and (2) follows. For the $\operatorname{sum} \sum_{n+1}^{\infty}$ in (3) the estimate is $2 \cdot 4^{-s_{n+1}} \cdot 2 K_{n+1}=4 \cdot 4^{n r_{n+1}-s_{n+1}}=4 \cdot 4^{-r_{n+1}}=4$. $4^{-2 t_{n}} \cdot 4^{-n}$, and (3) follows.

Let us turn now to the specification of M, U, E^{+}, and E^{-}. Put $\lambda_{0}=\pi(4 \log 2)^{-1}$; any value could serve for λ_{0}, but this one is convenient because $\exp \left(\pi / 2 \lambda_{0}\right)=4$. Select s_{n}, t_{n}, K_{n}, and N_{n} according to Lemma 4. For each $n>0$ select K_{n} disjoint closed subintervals of the real interval $\left(s_{n}, s_{n}+1\right)$ and N_{n} disjoint closed subintervals of ($-s_{n}-1,-s_{n}$); refer to each of these tiny intervals as J. Consider the intervals J as slits in the plane and join two copies of the plane slit by all the J 's in the standard fashion by joining the upper edge of each J in each plane with the lower edge of the same J in the other plane. Call the resulting surface \bar{M} and let $\bar{\pi}$: $\bar{M} \rightarrow \mathbf{C}$ be the natural projection of \bar{M} onto $\mathbf{C} \bar{M}$ is exhibited as a branched two-sheeted cover of \mathbf{C}. Let $B \subseteq \bar{M}$ be the set of branch points of this covering; that is $\beta \in B$ if and only if $d \bar{\pi}(\beta)=0$ if and only if $\bar{\pi}(\beta)$ is an endpoint of one of the intervals J. Now define $M=\bar{M}-B, Z=\left.\bar{\pi}\right|_{M}$, and $\mathscr{D}=\bar{\pi}(B)=$ the set of endpoints of the J 's. $Z: M \rightarrow \mathbf{C}-\mathscr{D}$ realizes M as a two-sheeted unbranched cover of the region $C-\mathscr{D}$. Denote by $E_{\lambda}^{ \pm}$the sets $Z^{-1}\left(S_{\lambda}^{ \pm}\right)$in M and put $E^{+}=E_{\lambda_{0}}^{+}$and $E^{-}=E_{\lambda_{0}}^{-}$.

As previously indicated, U will be induced by the plane isotopy $u(x+i y, t)=x$ + ity, $t>0$, in this manner. M is covered by open sets T for which $\left.Z\right|_{T}$ is a homeomorphism and $Z(T)=I \times I^{\prime}$, where I is an open interval of \mathbf{R} and $I^{\prime}=\mathbf{R}$ or \mathbf{R}^{+}or $\mathbf{R}^{-} . I^{\prime}$ can equal \mathbf{R} precisely when I is disjoint from \mathscr{D}. For each such T define a homotopy $U_{T}: T \times \mathbf{R}^{+} \rightarrow T$ by $U_{T}(p, t)=\left(\left.Z\right|_{T}\right)^{-1} u(Z(p), t)$. It is clear that if $T_{1} \cap T_{2} \neq \varnothing$, then for all $p \in T_{1} \cap T_{2}$ and all $t>0, U_{T_{1}}(p, t)=U_{T_{2}}(p, t)$ $=U_{T_{1} \cap T_{2}}(p, t)$. Therefore, we may define $U(p, t)=U_{T}(p, t)$ for any T which contains p and for all $t>0$. Because Z is a local coordinate at every point of M and is an analytic homeomorphism on each T, it is immediate from the definition of U and elementary properties of u that (a)-(e) hold.

Because $u_{t}\left(S_{\lambda}^{ \pm}\right)=S_{t \lambda}^{ \pm}$it is immediate that $U_{t}\left(E_{\lambda}^{ \pm}\right)=E_{t \lambda}^{ \pm}$. So (f) and (g) are equivalent to the following statements:
(f') $E_{\lambda}^{+} \in \mathcal{Q}$ if and only if $\lambda \leqslant \lambda_{0}$.
(g') $E_{\lambda}^{-} \in \mathscr{Q}$ if and only if $\lambda<\lambda_{0}$.
The "only if" parts of (f ') and (g ') are proved as follows. Fix $\lambda \geqslant \lambda_{0}$ and define $a=a(\lambda)=\exp (\pi / 2 \lambda) . a\left(\lambda_{0}\right)=4$, and $a(\lambda)=4^{1-\varepsilon}$ for some $\varepsilon>0$ when $\lambda>\lambda_{0}$. For $0 \leqslant s<x<s+1$ and $a \leqslant 4$ we find $a^{-x}>4^{-1} a^{-s}$ and $4^{-x}>4^{-1} 4^{-s}$. From Lemma 3 and from part (4) of Lemma 4 it then follows that if φ is a bounded analytic function on S_{λ}^{-}for $\lambda \geqslant \lambda_{0}$ (or on S_{λ}^{+}for $\lambda>\lambda_{0}$) which vanishes at every point of $\mathscr{D} \cap S_{\lambda}^{-}$(or $\mathscr{D} \cap S_{\lambda}^{+}$), then φ vanishes identically. The following lemma
then yields that the corresponding sets $E_{\lambda}^{ \pm}=Z^{-1}\left(S_{\lambda}^{ \pm}\right)$in M do not belong to \mathbb{Q}. Special cases of this lemma were used in [S].

Lemma 5. Suppose $\pi_{1}: M_{1} \rightarrow R$ is a two-sheeted branched cover of a connected open subset R of C with branch set $B_{1} \subseteq M_{1}$. Let $B_{0} \subseteq B_{1} ;$ put $M_{2}=M_{1}-B_{0}$ and $\pi_{2}=\left.\pi_{1}\right|_{M_{2}}$. If S is a subregion of R such that $\bar{S} \neq R$ and 0 is the only bounded analytic function on S which vanishes at all points of $\pi_{1}\left(B_{1}\right) \cap S$, then $\pi_{2}^{-1}(\bar{S})$, which is $\pi_{1}^{-1}(\bar{S})-B_{0}$, does not have property \mathbb{Q} in M_{2}.

Proof. For any function g on $\pi_{2}^{-1}(S)$, define Δg on $S-\pi_{1}\left(B_{1}\right)$ by $\Delta g(z)=$ $\left(g\left(p_{1}\right)-g\left(p_{2}\right)\right)^{2}$, where $\left\{p_{1}, p_{2}\right\}=\pi_{2}^{-1}(z)$. (See [RS], where this idea is used.) Δg is analytic on $S-\pi_{1}\left(B_{1}\right)$ whenever g is analytic on $\pi_{2}^{-1}(S)$. If furthermore g is bounded on $\pi_{2}^{-1}(S)$, Riemann's theorem on removable singularities implies that g extends to a bounded analytic function on $\pi_{1}^{-1}(S) \subseteq M_{1}$ and that Δg extends similarly to S. The extended Δg vanishes at every point $z_{1} \in \pi_{1}\left(B_{1}\right) \cap S$, because as z tends to z_{1} the two points p_{1} and p_{2} coalesce to the single point of B_{1} lying over z_{1}. By hypothesis Δg must therefore vanish identically on S whenever g is a bounded analytic function on $\pi_{2}^{-1}(S)$.

Now choose $z_{0} \in R-\left(\bar{S} \cup \pi_{1}\left(B_{1}\right)\right)$ and let $\left\{p_{1}, p_{2}\right\}=\pi_{2}^{-1}\left(z_{0}\right)$. Select a meromorphic function f on M_{2} which has a pole at p_{1} as its only singularity [BS]. Then f is analytic on $\pi_{2}^{-1}(\bar{S})$ and yet f cannot be approximated uniformly on $\pi_{2}^{-1}(\bar{S})$ by an analytic function F on M_{2}. For if F were analytic on M_{2} and $|f-F| \leqslant 1$ on $\pi_{2}^{-1}(\bar{S})$, the foregoing paragraph shows that $\Delta(f-F) \equiv 0$ on S. By uniqueness of analytic functions $\Delta(f-F) \equiv 0$ on $R-\left(\pi_{1}\left(B_{1}\right) \cup\left\{z_{0}\right\}\right)$. However, this is contradicted by the fact that $f-F$ is bounded near p_{2} and unbounded near p_{1}. So such an F does not exist, and $\pi_{2}^{-1}(\bar{S})$ does not have property \mathscr{Q} in M_{2}.

The proof of the "if" parts of (f') and (g^{\prime}), namely, that $E_{\lambda}^{+} \in \mathscr{Q}$ for $0<\lambda \leqslant \lambda_{0}$ and that $E_{\lambda}^{-} \in \mathscr{Q}$ for $0<\lambda<\lambda_{0}$ will require the construction of certain auxiliary functions on \mathbf{C} and on M. Henceforth let b be a variable ranging over $\mathscr{D}=\bar{\pi}(B)$ $=$ the set of endpoints of the intervals J, and let s_{n}, t_{n}, K_{n}, and N_{n} be as in Lemma 4. Define functions A_{n}, B_{n}, C_{n}, and D_{n} as follows, where for $b<0$ we let $k=k(b)$ be the unique integer such that $s_{k}<-b<s_{k}+1, \lambda_{b}=k \lambda_{0}(1+k)^{-1}$, and $a_{b}=$ $\exp \left(\pi / 2 \lambda_{b}\right)=4 \cdot 4^{1 / k}$.

$$
\begin{aligned}
& A_{n}(z)=\prod_{b<-t_{n}} \tau\left(z ; b, \lambda_{b}\right)^{-1}=\Pi \frac{a_{b}^{z}+a_{b}^{b}}{a_{b}^{z}-a_{b}^{b}} \\
& B_{n}(z)=\prod_{-t_{n}<b<t_{n}} \tau\left(z ; b, n \lambda_{0}\right)=\Pi \frac{4^{z / n}-4^{b / n}}{4^{z / n}+4^{b / n}}, \\
& C_{n}(z)=\prod_{b>t_{n}}\left(-\tau\left(z ; b, \lambda_{0}\right)^{-1}\right)=\Pi \frac{4^{b}+4^{z}}{4^{b}-4^{2}} \\
& D_{n}(z)=A_{n}(z) B_{n}(z) C_{n}(z)
\end{aligned}
$$

Lemma 6. (a) The product for D_{n} converges normally on the plane to a meromorphic function all of whose zeros and poles are simple.
(b) $\left\{z: D_{n}(z)=0\right.$ or ∞ and $\left.|\operatorname{Im} z|<4 \lambda_{0} / 3\right\}=\mathscr{D}$.
(c) If $D_{n}(z)=\infty$ and $|\operatorname{Re} z|<t_{n}$, then either $z \in \mathscr{D}$ or else $|\operatorname{Im} z| \geqslant 2 n \lambda_{0}$. For every $\delta>0$ and $t>0$ the following hold for all large enough n.
(d) $\left|D_{n}(z)-1\right|<\delta$ whenever $t_{n}-t \leqslant|\operatorname{Re} z| \leqslant t_{n}+t$.
(e) $\left|D_{n}(z)\right|<1+\delta$ on $S_{n \lambda_{0}} \cap\left\{z:|\operatorname{Re} z| \leqslant t_{n}+t\right\}$.
(f) $\left|D_{n}(z)\right|>1-\delta$ on $\left(S_{\lambda_{0}} \cap\left\{z \mid \operatorname{Re} z \geqslant t_{n}-t\right\}\right) \cup\left(S_{\lambda_{0}-\delta} \cap\left\{z: \operatorname{Re} z \leqslant-t_{n}+\right.\right.$ t).

Proof. Let ε be very small, let $x=\operatorname{Re} z$, and let $-s_{k}-1<b<-s_{k} \leqslant x-1$. By Lemma 2

$$
\left|1-\tau\left(z ; b, \lambda_{b}\right)^{-1}\right| \leqslant 4 \cdot 4^{(k+1) x / k} \cdot 4^{-(k+1) s_{k} / k} \leqslant 4 \cdot 4^{2 x} \cdot 4^{-s_{k}} \cdot 4^{-s_{k} / k}
$$

From Lemma 1 and part (3) of Lemma 4 it follows that A_{n} is normally convergent on \mathbf{C} and that $\left|A_{n}(z)-1\right|<\varepsilon$ for $-t_{n}-t \leqslant \operatorname{Re} z$, for all large n. In a similar manner we find that C_{n} is normally convergent and $\left|C_{n}(z)-1\right|<\varepsilon$ for $\operatorname{Re} z<t_{n}$ $+t$, for large $n . B_{n}$ is convergent, being a finite product, and Lemma 1 , Lemma 2, and part (2) of Lemma 4 give $\left|B_{n}(z)-1\right|<\varepsilon$ for $\operatorname{Re} z>t_{n}-t$, for large n. Because there are an even number of b 's in $\left(-t_{n}, t_{n}\right), B_{n}(z)=\Pi \tau=\Pi(-\tau)$, and the same argument as above shows that $\left|B_{n}(z)-1\right|<\varepsilon$ for $|\operatorname{Re} z|>t_{n}-t$, for large n. Each $\tau(z ; b, \lambda)$ is periodic with period $4 \lambda i$, and z_{0} is a zero of τ if and only if $z_{0}+2 \lambda i$ is a pole. The smallest λ involved in the product for D_{n} is $\lambda=$ $k \lambda_{0}(1+k)^{-1}$ for $k=n+1$; so $\lambda \geqslant 2 \lambda_{0} / 3$ and $2 \lambda \geqslant 4 \lambda_{0} / 3$. (a), (b), and (c) are clear, and if ε is small enough (d) follows from the estimates above. Because $\left|A_{n}\right|$ and $\left|C_{n}\right|$ are each bounded by $1+\varepsilon$ in $|\operatorname{Re} z| \leqslant t_{n}+t$ and $\left|B_{n}\right| \leqslant 1$ in $S_{n \lambda_{0}}$, we have (e) for small ε and large n. Finally, because $\left|B_{n}(z)-1\right|<\varepsilon$ for $|\operatorname{Re} z|>t_{n}-$ $t,\left|C_{n}\right| \geqslant 1$ in $S_{\lambda_{0}}$, and $\left|A_{n}\right| \geqslant 1$ in $S_{(n+1) \lambda_{0} /(n+2)}$, we have (f) for small ε and large n.

Lemma 7. If $z_{0} \in \mathbf{C}, \delta>0$, and V is an open neighborhood of an arc which connects z_{0} to ∞, then there exists an entire function h having a simple zero at z_{0} with no other zeros such that $|h-1|_{\mathbf{c}-V} \leqslant \delta$.

Proof. $\left|e^{\alpha}-1\right| \leqslant 2|\alpha|$ for $|\alpha| \leqslant 1$, by Lemma 1 (b); so $|\alpha-\beta|<1$ implies $\left|e^{\alpha}-e^{\beta}\right| \leqslant 2|\alpha-\beta|\left|e^{\beta}\right|$. Choose a branch of $\log \left(z-z_{0}\right)^{-1}=-\log \left(z-z_{0}\right)$ in the complement of the given arc γ which joins z_{0} to ∞. In V choose a connected simply connected neighborhood V_{1} of γ which is the interior of a locally polygonal set. Then $V_{1} \cup\{\infty\}$ is connected and locally connected; so Arakelyan's Theorem [A1], [A2] can be applied to the function $\log \left(z-z_{0}\right)^{-1}$ on $\mathbf{C}-V_{1}$ with $\varepsilon=$ $\min (1, \delta / 2)$ to yield an entire function g so that $\left|g(z)-\log \left(z-z_{0}\right)^{-1}\right|<\varepsilon$ for $z \in \mathbf{C}-V_{1} \supseteq \mathbf{C}-V$. Put $\alpha=g(z)$ and $\beta=\log \left(z-z_{0}\right)^{-1}$ in the opening sentence of this proof, and we obtain $\left|\exp (g(z))-\left(z-z_{0}\right)^{-1}\right|<2 \varepsilon\left|z-z_{0}\right|^{-1}<\delta /\left|z-z_{0}\right|$ for $z \in \mathbf{C}-V$. Thus, $\left|\left(z-z_{0}\right) \exp (g(z))-1\right| \leqslant \delta$ for $z \in \mathbf{C}-V$. The function $h(z)=\left(z-z_{0}\right) \exp (g(z))$ has the desired behavior.

Corollary 8. There is a sequence H_{n} of meromorphic functions on \mathbf{C} which have these properties. Let $t>0$ and $\delta>0$ be arbitrary.
(1) $H_{n}(\bar{z})=\overline{H_{n}(z)}$.
(2) The zeros of H_{n} are simple and comprise the set $\left\{b:|b|<t_{n}\right\}$.
(3) The poles of H_{n} are simple and comprise the set $\left\{b:|b|>t_{n}\right\}$.
(4) $\sup \left\{\left|H_{n}(z)-1\right|: t_{n}-t \leqslant|\operatorname{Re} z| \leqslant t_{n}+t\right\} \rightarrow 0$ as $n \rightarrow \infty$.
(5) $\sup \left\{\left|H_{n}(z)\right|:|\operatorname{Re} z| \leqslant t_{n}+t\right.$ and $\left.|\operatorname{Im} z| \leqslant n \lambda_{0}\right\} \rightarrow 1$ as $n \rightarrow \infty$.
(6) $\inf \left\{\left|H_{n}(z)\right|: \operatorname{Re} z \geqslant t_{n}-t\right.$ and $\left.|\operatorname{Im} z| \leqslant \lambda_{0}\right\} \rightarrow 1$ as $n \rightarrow \infty$.
(7) $\inf \left\{\left|H_{n}(z)\right|: \operatorname{Re} z \leqslant-t_{n}+t\right.$ and $\left.|\operatorname{Im} z| \leqslant \lambda_{0}-\delta\right\} \rightarrow 1$ as $n \rightarrow \infty$.

Proof. Start with the meromorphic functions D_{n} of Lemma 6; note that $D_{n}(\bar{z})=\overline{D_{n}(z)}$. Enumerate the zeros and poles of D_{n} in $\{z: \operatorname{Im} z>0\}$ as z_{1}, z_{2}, \ldots; then $\bar{z}_{1}, \bar{z}_{2}, \ldots$ are the zeros and poles in the lower half-plane. For each j let V_{j} be a small neighborhood of the line segment $L_{j}=\left\{z=x+i y: x=\operatorname{Re} z_{j}\right.$ and $\left.\mathrm{y} \geqslant \operatorname{Im} z_{j}\right\}$ which joins z_{j} to ∞. Because L_{j} is disjoint from the set $T_{n}=S_{\lambda_{0}} \cup$ $\left\{z:|\operatorname{Re} z| \leqslant t_{n}\right.$ and $\left.|\operatorname{Im} z| \leqslant n \lambda_{0}\right\} \cup\left\{z:|\operatorname{Re} z| \in \cup\left[s_{k}, s_{k}+1\right]\right\}$, we may assume that $V_{j} \cap T_{n}=\varnothing$, as well. By Lemma 7 there is an entire function h_{j} which is zero only at z_{j} and which satisfies $\left|h_{j}-1\right| \leqslant \delta_{j}=2^{-n-j}$ outside V_{j}. Put $k_{j}(z)=\overline{h_{j}(\bar{z})}$. Let $F_{n}=\Pi\left(h_{j} k_{j}\right)^{ \pm 1}$, where the exponent is chosen to be +1 in case $D_{n}\left(z_{j}\right)=\infty=$ $D_{n}\left(\bar{z}_{j}\right)$ and is chosen to be -1 in case $D_{n}\left(z_{j}\right)=D_{n}\left(\bar{z}_{j}\right)=0$. Because $\sum 2 \delta_{j}=2 \cdot 2^{-n}$ $<\infty$ and each compact set meets only finitely many of the V_{j} or their conjugates, the product for F_{n} converges normally on the plane to a meromorphic function which by Lemma 1 satisfies $\left|F_{n}-1\right| \leqslant 62^{-n}$ on T_{n}, for $n \geqslant 2$. From Lemma 6 it is clear that $H_{n}=F_{n} D_{n}$ has all the required properties.

Define $R\left(x_{0} ; t, \lambda\right)$ to be the rectangle $\left\{z=x+i y:\left|x-x_{0}\right| \leqslant t\right.$ and $\left.|y|<\lambda\right\}$. For $n>0$ define $t_{-n}=-t_{n}, G_{n}(z)=2^{z-t_{n}} H_{n}(z)$, and $G_{-n}(z)=2^{t_{n}-z} H_{n}(z)$, where H_{n} is as in Lemma 8. Fix $\lambda_{+} \leqslant \lambda_{0}$ and $\lambda_{-}<\lambda_{0}$, define $\lambda_{n}=\lambda_{+}$for $n>0$ and $\lambda_{n}=\lambda_{-}$ for $n<0$, and put $S(n)=S_{\lambda_{n}}^{+}$for $n>0$ and $S(n)=S_{\lambda_{n}}^{-}$for $n<0$. Define these sets:

$$
\begin{gathered}
\sigma_{n}=\left\{z \in S(n): 16^{-1} \leqslant\left|G_{n}(z)\right| \leqslant 16\right\}, \\
X_{n}=\left\{z:|\operatorname{Re} z| \leqslant s_{|n|}+1 \text { and }|\operatorname{Im} z| \leqslant|n| \lambda_{0}\right\} \\
\cup\left(S(n) \cap\left\{z: \operatorname{Re} z / t_{n} \leqslant 1\right\}\right)-\sigma_{n}, \\
Y_{n}=\left(S(n) \cap\left\{z: \operatorname{Re} z / t_{n}>1\right\}\right)-\sigma_{n} .
\end{gathered}
$$

Lemma 9. The following statements hold for $|n|$ sufficiently large.
(1) G_{n} is meromorphic on \mathbf{C} with a simple zero or pole at each $b \in \mathscr{D}$ and no other zeros nor poles; $G_{n}(\bar{z})=\overline{G_{n}(z)}$.
(2) G_{n} is an analytic homeomorphism on a neighborhood of $R\left(t_{n} ; 5, \lambda_{n}\right)$.
(3) $R\left(t_{n} ; 3, \lambda_{n}\right) \subseteq \sigma_{n} \subseteq R\left(t_{n} ; 5, \lambda_{n}\right)$.
(4) $\left|G_{n}\right|<16^{-1}$ on $X_{n},\left|G_{n}\right|>16$ on $Y_{n}, 16^{-1} \leqslant\left|G_{n}\right| \leqslant 16$ on σ_{n}, and G_{n} is an analytic homeomorphism on σ_{n}.
(5) There is a smooth function $\Theta_{n}:\left[16^{-1}, 16\right] \rightarrow(0, \pi)$ such that $G_{n}\left(\sigma_{n}\right)=\{w$: $16^{-1} \leqslant|w| \leqslant 16$ and $\left.|\arg w| \leqslant \Theta_{n}(|w|)\right\}$.

Proof. For definiteness let us consider the case $n<0$; the case $n>0$ is treated in a very similar manner. (1) is clear because the same thing is true for H_{n}. By Corollary $8 H_{-n}\left(z+t_{n}\right) \rightarrow 1$ uniformly on $R\left(0 ; 7,3 \lambda_{0}\right)$ as $n \rightarrow-\infty$. Because 2^{-z} is an analytic homeomorphism on $S_{3 \lambda_{0}}$ and $G_{n}\left(z+t_{n}\right)=2^{-2} H_{-n}\left(z+t_{n}\right) \rightarrow 2^{-z}$ uniformly on $R\left(0 ; 7,3 \lambda_{0}\right), G_{n}\left(z+t_{n}\right)$ is an analytic homeomorphism on $R\left(0 ; 6,2 \lambda_{0}\right)$ for large $n<0$, and (2) follows.

From parts (7) and (5) of Corollary 8 we obtain $\frac{1}{2}<\left|H_{-n}(z)\right|$ for $\operatorname{Re} z<t_{n}+5$ and $\left|H_{-n}(z)\right|<2$ for $\operatorname{Re} z \geqslant t_{n}-5$ for large $n<0$. If $\operatorname{Re} z<t_{n}-5$, we have $\left|2^{t_{n}-z}\right|>32$; so $\left|G_{n}(z)\right|>16$. If $\operatorname{Re} z>t_{n}+5$, we have $\left|2^{t_{n}-z}\right|<32^{-1}$; so $\left|G_{n}(z)\right|<$ 16^{-1}. Thus, $\sigma_{n} \subseteq R\left(t_{n} ; 5, \lambda_{n}\right)$. Because $\frac{1}{2}<\left|H_{-n}(z)\right|<2$ in $R\left(t_{n} ; 5, \lambda_{n}\right)$, which contains $R\left(t_{n} ; 3, \lambda_{n}\right)$, and $8^{-1} \leqslant\left|2^{t_{n}-z}\right| \leqslant 8$ on $R\left(t_{n} ; 3, \lambda_{n}\right)$, we see that $16^{-1} \leqslant\left|G_{n}(z)\right|$ $\leqslant 16$ on $R\left(t_{n} ; 3, \lambda_{n}\right)$. Thus, $R\left(t_{n} ; 3, \lambda_{n}\right) \subseteq \sigma_{n}$ and (3) is proved.
Because $t_{|n|}-s_{|n|} \gg 0$ for large $|n|$, we have from Corollary 8 that $\left|H_{-n}(z)\right|<2$ for $z \in X_{n}$ for large $n<0$. By (3) and the definition of $X_{n}, \operatorname{Re} z \geqslant t_{n}+1$ for $z \in X_{n}$; so $\left|2^{t_{n}-z}\right| \leqslant \frac{1}{2}$ and $\left|G_{n}(z)\right|<2 \cdot \frac{1}{2}=1$ for $z \in X_{n}$. Because of (3) and the definition of σ_{n}, this means that $\left|G_{n}\right|<16^{-1}$ on X_{n}. In a similar manner we obtain $\left|G_{n}\right|>16$ on Y_{n}. By (2) and (3), G_{n} is an analytic homeomorphism on σ_{n}, and (4) is proved.

Because G_{n} is a diffeomorphism and does not vanish on a neighborhood of $R\left(t_{n} ; 5, \lambda_{n}\right)$, the functions $r=\left|G_{n}(z)\right|$ and $\theta=\arg \left(G_{n}(z)\right)$, where $-\pi<\theta<\pi$, constitute a global differentiable coordinate pair on a neighborhood of $R\left(t_{n} ; 5, \lambda_{n}\right)$. We can therefore parametrize $G_{n}\left(x-i \lambda_{n}\right)$ as $G_{n}\left(x-i \lambda_{n}\right)=r \exp \left[i \Theta_{n}(r)\right]$ for a smooth function Θ_{n}. Because $\arg 2^{t_{n}-z}>0$ for $\operatorname{Im} z=-\lambda_{n}$ and H_{-n} is nearly $1, \Theta_{n}$ takes values in $(0, \pi)$ for large $n<0$. The set $\gamma=\left\{r=r_{0}\right\} \cap R\left(t_{n} ; 5, \lambda_{n}\right)$ consists of regular arcs which have no endpoints in $R\left(t_{n} ; 5, \lambda_{n}\right)^{\circ}$. If we knew that γ consisted of just one arc which meets the boundary of $R\left(t_{n} ; 5, \lambda_{n}\right)$ in just two points, we could complete the argument as follows. For $r_{0} \in\left[16^{-1}, 16\right] \gamma$ does not meet $\left\{x-t_{n}= \pm 5\right\}$, for on the latter set $\left|G_{n}\right|$ is approximately 32 or 32^{-1}, which is not close to 16 or 16^{-1}. So γ connects $\operatorname{Im} z=-\lambda_{n}$ to $\operatorname{Im} z=+\lambda_{n}$. Because $G_{n}(\bar{z})=\overline{G_{n}(z)}$ and $G_{n}>0$ on $\left[t_{n}-5, t_{n}+5\right], \gamma$ is parametrized by a single symmetric interval $-\theta_{0} \leqslant \theta \leqslant \theta_{0}$. Evidently $\left(r_{0}, \theta_{0}\right)$ corresponds to a point of $\{\operatorname{Im} z=$ $\left.\lambda_{n}\right\}$ or to a point of $\left\{\operatorname{Im} z=-\lambda_{n}\right\}$. As we have previously observed, $\left\{\operatorname{Im} z=-\lambda_{n}\right\}$ corresponds to positive θ. Since $G\left(x-i \lambda_{n}\right)=r \exp \left(i \Theta_{n}(r)\right)$, this shows that (5) holds.

Finally, to see that $\gamma=\left\{r=r_{0}\right\} \cap R\left(t_{n} ; 5, \lambda_{n}\right)$ consists of a single arc, consider the following elementary calculation for an analytic nonvanishing f :

$$
\begin{aligned}
2|f| \frac{\partial|f|}{\partial x} & =\frac{\partial|f|^{2}}{\partial x}=\frac{\partial\left(f f^{-}\right)}{\partial x}=\frac{\partial f}{\partial x} \bar{f}+f \frac{\partial \bar{f}}{\partial x} \\
& =\bar{f} \frac{\partial f}{\partial x}+f\left(\frac{\partial f}{\partial x}\right)^{-}=\bar{f} f^{\prime}+f\left(f^{\prime}\right)^{-}=2 \operatorname{Re} \bar{f} f^{\prime}
\end{aligned}
$$

so $\partial|f| / \partial x=|f|^{-1} \operatorname{Re}\left(\overline{f f} f^{\prime}\right)$. Apply this formula to G_{n}, taking into account the fact that H_{-n} is very close to 1 on a neighborhood of $R\left(t_{n} ; 5, \lambda_{n}\right)$ and hence H_{-n}^{\prime} is very close to 0 . The result is

$$
\begin{aligned}
\frac{\partial\left|G_{n}\right|}{\partial x} & =\left|G_{n}\right|^{-1} \operatorname{Re}\left(\bar{G}_{n} G_{n}^{\prime}\right) \approx\left|2^{t_{n}-z}\right|^{-1} \operatorname{Re}\left(\left(2^{t_{n}-z}\right)^{-}\left(2^{t_{n}-z}\right)^{\prime}\right) \\
& =\frac{\partial}{\partial x}\left|2^{t_{n}-z}\right|=(\log 2)\left|2^{t_{n}-z}\right| \leqslant-(\log 2) 32^{-1}
\end{aligned}
$$

on $R\left(t_{n} ; 5, \lambda_{n}\right)$. So for large negative $n, \partial r / \partial x=\partial\left|G_{n}\right| / \partial x<0$ on $R\left(t_{n} ; 5, \lambda_{n}\right)$. This means that each horizontal line $\{\operatorname{Im} z=$ constant $\}$ meets γ in at most one point;
and γ consists of at most one arc, since it has no endpoints in $R\left(t_{n} ; 5, \lambda_{n}\right)^{\circ}$.
Define for large $|n|$ the following subsets of \mathbf{C}. [See Figure 1.]

$$
\begin{aligned}
V_{n}^{+} & =\left\{z: 4^{-1}<|z|<4 \text { and } \frac{1}{2} \Theta_{n}(|z|)<\arg z<\pi-\frac{1}{2} \Theta_{n}(|z|)\right\}, \\
V_{n}^{-} & =\left\{z: \bar{z} \in V_{n}^{+}\right\}, \\
W & =\left\{z: 4^{-1} \leqslant|z| \leqslant 4 \text { and }|\arg z| \leqslant \frac{1}{2} \Theta_{n}(|z|)\right\}, \\
W^{\prime} & =\{z:-z \in W\} .
\end{aligned}
$$

Figure 1

Figure 2
Lemma 10. For large $|n|$ there is an analytic function π_{n} on M which enjoys these properties [see Figure 2].
(1) $\pi_{n}^{2}=G_{n} \circ Z$;
(2) π_{n} maps $Z^{-1}\left(X_{n} \cup \sigma_{n} \cup Y_{n}\right)$ into $\mathbf{C}-\left(V_{n}^{+} \cup V_{n}^{-}\right)$;
(3) $\pi_{n}\left(Z^{-1}\left(X_{n}\right)\right) \subseteq\left\{z:|z|<4^{-1}\right\}, \pi_{n}\left(Z^{-1}\left(Y_{n}\right)\right) \subseteq\{z:|z|>4\}$, and π_{n} is an analytic homeomorphism of $Z^{-1}\left(\sigma_{n}\right)$ onto $W \cup W^{\prime}$.

Proof. Recall the surface \bar{M} and its projection $\bar{\pi}$ onto \mathbf{C}, which has branch set $B \subseteq \bar{M} . G_{n}$ has a simple zero or pole at each point b of $\mathscr{D}=\bar{\pi}(B)$, and no other zeros nor poles. From this fact and the definition of \bar{M} and $\bar{\pi}$ it follows that the function $G_{n} \circ \bar{\pi}$ has a single-valued square root, call it $\bar{\pi}_{n}$, on \bar{M}. Indeed, \bar{M} can be
thought of as the classical Riemann surface constructed from the multiple-valued function $\sqrt{G_{n}}$ on the plane. Restricting $\bar{\pi}_{n}$ to M we have $\sqrt{G_{n} \circ Z}$ as a single-valued analytic function, call it π_{n}, on M having no zeros nor poles. Properties (2) and (3) are immediate from Lemma 9. Note that $\pi_{n}\left(p^{+}\right)=-\pi_{n}\left(p^{-}\right)$if $\left\{p^{+}, p^{-}\right\}=Z^{-1}(z)$ for $z \in \sigma_{n}$.

Lemma 11. Let $|n|$ be large. For every $\delta>0$ and every C^{1} function g on $Z^{-1}\left(X_{n} \cup \sigma_{n} \cup Y_{n}\right)$ such that $g=0$ on the closure of $Z^{-1}\left(X_{n} \cup Y_{n}\right)$ and $|\partial g / \partial \bar{Z}|<$ δ on $Z^{-1}\left(\sigma_{n}\right)$ there exists a meromorphic function ψ on M such that $|\psi-g|<17 \delta$ on $Z^{-1}\left(X_{n} \cup \sigma_{n} \cup Y_{n}\right)$. The poles of ψ lie outside $Z^{-1}\left(X_{n} \cup \sigma_{n} \cup Y_{n}\right)$.

Proof. Let $|n|$ be so large that Lemma 10 holds. By Lemma 10 and the hypothesis on g we can find a C^{1} function \tilde{g} on C such that $\tilde{g}=0$ on $\{z$: $|z|<4^{-1}+\varepsilon$ or $\left.|z| \geqslant 4-\varepsilon\right\}$ for some $\varepsilon>0$ and $\tilde{g} \circ \pi_{n}=g$ on $Z^{-1}\left(X_{n} \cup \sigma_{n} \cup\right.$ \boldsymbol{Y}_{n}). Calculate

$$
\frac{\partial g}{\partial \bar{Z}}=\frac{\partial\left(\tilde{g} \circ \pi_{n}\right)}{\partial \bar{Z}}=\frac{\partial\left(\tilde{g} \circ \pi_{n} \circ Z^{-1}\right)}{\partial \bar{z}} \circ Z=\frac{\partial \tilde{g}}{\partial \bar{z}} \circ \pi_{n} \circ Z^{-1} \circ Z=\frac{\partial \tilde{g}}{\partial \bar{z}} \circ \pi_{n}
$$

So $|\partial \tilde{g} / \partial \bar{z}| \leqslant \delta$ on $W \cup W^{\prime}$. Now we apply a method of Mergelyan [M, §3, Chapter I] to approximate \tilde{g} by a rational function k. Then $k \circ \pi_{n}$ will approximate $\tilde{g} \circ \pi_{n}=g$. Let $\Gamma^{ \pm}$be curves oriented positively (counterclockwise) inside $V_{n}^{ \pm}$ which are within ε of the boundary of $V_{n}^{ \pm}$. See Figure 3.

Figure 3
Let Γ_{R} be the circle of radius R, centered at 0 . For $z_{0} \in \mathbf{C}-\left(V_{n}^{+} \cup V_{n}^{-}\right)$we can write the generalized Cauchy formula as follows (see [M, pp. 304-305], [G, p. 26], [S, §7]), for $R>\left|z_{0}\right|$.

$$
\tilde{g}\left(z_{0}\right)=\frac{1}{2 \pi i}\left(\int_{\Gamma_{R}}-\int_{\Gamma^{+} \cup \Gamma^{-}}\right) \tilde{g}(z)\left(z-z_{0}\right)^{-1} d z-\frac{1}{\pi} \iint_{\Sigma_{R}} \frac{\partial \tilde{g}}{\partial \bar{z}}\left(z-z_{0}\right)^{-1} d x d y
$$

where Σ_{R} is the set of points inside Γ_{R} and outside both Γ^{+}and Γ^{-}. Because $\tilde{\boldsymbol{g}}$ vanishes on Γ_{R}, the line integral reduces to

$$
I\left(z_{0}\right)=-(2 \pi i)^{-1} \int_{\Gamma^{+} \cup \Gamma^{-}} \tilde{g}(z)\left(z-z_{0}\right)^{-1} d z
$$

Because \tilde{g} vanishes on most of Σ_{R}, the integral over Σ_{R} reduces to an integral over $T_{n}=$ the two components of $\left[\left\{4^{-1}+\varepsilon \leqslant|z| \leqslant 4-\varepsilon\right\}-\left(\Gamma^{+} \cup \Gamma^{-}\right)\right]$which contain ± 1. See Figure 4, in which T_{n} is shaded.

Figure 4
Because \tilde{g} is C^{1} and $|\partial \tilde{g} / \partial \bar{z}| \leqslant \delta$ on $C-\left(V_{n}^{+} \cup V_{n}^{-}\right)$, we can take ε so small that $|\partial \tilde{g} / \partial \bar{z}| \leqslant 2 \delta$ on T_{n}. Then

$$
\begin{aligned}
\left|\pi^{-1} \iint_{\Sigma_{R}}\right| & =\pi^{-1}\left|\iint_{T_{n}}\right| \leqslant 2 \delta \pi^{-1} \iint_{T_{n}}\left|z-z_{0}\right|^{-1} d x d y \\
& \leqslant 2 \delta \pi^{-1} \iint_{|z|<4}\left|z-z_{0}\right|^{-1} d x d y \leqslant 2 \delta \pi^{-1} \sqrt{4 \pi \cdot \pi \cdot 4^{2}}=16 \delta .
\end{aligned}
$$

The last inequality is Lemma 3.1.1 of [B]. Now for $z_{0} \in \mathbf{C}-\left(V_{n}^{+} \cup V_{n}^{-}\right)$and $z \in \Gamma^{+} \cup \Gamma^{-}$, the distance $\left|z-z_{0}\right|$ is bounded away from 0 ; thus, $I\left(z_{0}\right)$ can be uniformly approximated for $z_{0} \in C-\left(V_{n}^{+} \cup V_{n}^{-}\right)$by a finite Riemann sum for this integral, which is manifestly a rational function $k\left(z_{0}\right)$ having its poles in $V_{n}^{+} \cup V_{n}^{-}$. Choosing such a k for which $\left|I\left(z_{0}\right)-k\left(z_{0}\right)\right| \leqslant \delta$ for all $z_{0} \in \mathbf{C}-\left(V_{n}^{+}\right.$ $\left.\cup V_{n}^{-}\right)$, we have $|\tilde{g}-k| \leqslant 17 \delta$ on $C-\left(V_{n}^{+} \cup V_{n}^{-}\right)$and so $\left|k \circ \pi_{n}-\tilde{g} \circ \pi_{n}\right| \leqslant$ 17δ on $\pi_{n}^{-1}\left(\mathrm{C}-\left(V_{n}^{+} \cup V_{n}^{-}\right)\right) \supseteq Z^{-1}\left(X_{n} \cup \sigma_{n} \cup Y_{n}\right)$. Thus, $\psi=k \circ \pi_{n}$ does what is required. The poles of ψ are not in $Z^{-1}\left(X_{n} \cup \sigma_{n} \cup Y_{n}\right)$, because ψ is bounded there.

Lemma 12. Let S be a closed subset of \mathbf{C} which is star-shaped with respect to 0 , let z_{n} be a sequence of points of $\mathrm{C}-S$ tending to ∞, and let k_{n} be a sequence of nonnegative integers.f For each $\varepsilon>0$ there is an entire function φ such that $|1-\varphi| \leqslant \varepsilon$ on S and for each n, φ has a zero of order at least k_{n} at z_{n}.

Proof. Given $\varepsilon>0$, let $\varepsilon_{n}>0$ be chosen so that $\Sigma k_{n} \varepsilon_{n} \leqslant \min \left(\frac{1}{2}, \varepsilon / 3\right)$. Put $\gamma_{n}=\left\{r z_{n}: r \geqslant 1\right\} ; \gamma_{n}$ is an arc joining z_{n} to ∞ in $\mathbf{C}-S$, because S is star-shaped.

Each compact set meets at most finitely many γ_{n}. Choose a neighborhood V_{n} of each γ_{n} so that $V_{n} \subseteq \mathbf{C}-S$ and so that each compact meets only finitely many V_{n}. Using Lemma 7 choose an entire function h_{n} so that $h_{n}\left(z_{n}\right)=0$ and $\left|1-h_{n}\right|<\varepsilon_{n}$ on $\mathbf{C}-V_{n}$. By Lemma 1 the product $\Pi h_{n}^{k_{n}}$ converges normally on the plane to a function φ having the desired properties.

Corollary 13. In Lemma 11 we can require ψ to be analytic on M if we relax the approximation to $|\psi-g| \leqslant 18 \delta$.

Proof. Write $Z_{n}=Z^{-1}\left(X_{n} \cup \sigma_{n} \cup Y_{n}\right)$. Given g and δ satisfying the hypothesis of Lemma 11, let ψ_{1} be meromorphic on M and satisfy $\left.\right|_{\psi_{1}}-\left.g\right|_{z_{n}} \leqslant 17 \delta$. Let P be the pole set of ψ_{1} and enumerate $Z(P)=\left\{z_{1}, z_{2}, \ldots\right\}$. Note that $P \cap Z_{n}=\varnothing$; so $Z(P) \cap\left(X_{n} \cup \sigma_{n} \cup Y_{n}\right)=\varnothing$. For each z_{j} let k_{j} be the larger of the orders of the poles of ψ_{1} at the two points of $Z^{-1}\left(z_{j}\right)$. In $Z_{n} g$ vanishes off a compact set; so $|g|_{z_{n}}<\infty$. Thus $\left|\psi_{1}\right|_{z_{n}}=K<\infty$. Apply Lemma 12 to the star-shaped $S=X_{n} \cup$ $\sigma_{n} \cup Y_{n}$, the sequence $\left\{z_{j}\right\}$, the integers $\left\{k_{j}\right\}$, and $\varepsilon=\delta / K$ to find an entire function φ so that $|\varphi-1|_{S} \leqslant \delta / K$ and φ has a zero of order at least k_{j} at each z_{j}. Put $\psi=(\varphi \circ Z) \psi_{1}$, which has no poles on M by construction.

$$
\left|\psi-\psi_{1}\right|_{z_{n}}=\left|(\varphi \circ Z) \psi_{1}-\psi_{1}\right|_{z_{n}} \leqslant\left|\psi_{1}\right|_{z_{n}}|\varphi \circ Z-1|_{z_{n}} \leqslant K \cdot \delta / K=\delta .
$$

Therefore, $|\psi-g|_{z_{n}} \leqslant\left|\psi-\psi_{1}\right|_{z_{n}}+\left|\psi_{1}-g\right|_{z_{n}} \leqslant \delta+17 \delta=18 \delta$.
Equipped with the foregoing technical tools we can now detail the proof that $E_{\lambda}^{+} \in \mathscr{Q}$ for $\lambda \leqslant \lambda_{0}$ and $E_{\lambda}^{-} \in \mathscr{Q}$ for $\lambda<\lambda_{0}$. Fix one such E_{λ}^{+}or E_{λ}^{-}and call it E. Let $f \in A(E)$ and $\varepsilon>0$. By Corollary 13 there is a set of integers $\mathscr{M}=\mathbf{Z} \cap$ $[N, \infty)$, in case $E=E_{\lambda}^{+}$, or $\Re=\mathbf{Z} \cap(-\infty,-N]$, in case $E=E_{\lambda}^{-}$, such that for every $n \in \mathscr{N}$ and every C^{1} function g on $Z_{n}=Z^{-1}\left(X_{n} \cup \sigma_{n} \cup Y_{n}\right)$ which is supported in the relative (to Z_{n}) interior of $Z^{-1}\left(\sigma_{n}\right)$ there is an analytic function ψ on M such that $|g-\psi|_{Z_{n}} \leqslant 18|\partial g / \partial \bar{Z}|_{Z_{n}}$. (If $\delta=|\partial g / \partial \bar{Z}|_{Z_{n}}>0$, this is Corollary 13; if $\delta=0$, then g is analytic on the connected set Z_{n}°, and since it vanishes on $Z^{-1}\left(X_{n}\right)$, it vanishes identically and we can take $\psi=0$.) For every $n \in \mathcal{N}$ put $W_{n}=E \cap Z^{-1}\left\{z:\left|\operatorname{Re} z-t_{n}\right|<1\right\} . E-\cup_{n \in \mathfrak{\Re}} W_{n}$ consists of a sequence of separated closed connected subsets, which we may number $E_{n}, n \in \mathcal{R}$. Do this numbering so that W_{n} sits between E_{n} and $E_{n^{\prime}}$ where $\left|n^{\prime}\right|=|n|+1$. Each E_{n} has a neighborhood of finite genus; indeed, the closure of E_{n} in \bar{M} is compact. We may select these neighborhoods to be disjoint from each other. By Theorem 1.5 of [S] there is an analytic function Φ on M such that $|f-\Phi|_{E_{n}}<2^{\dashv n \mid} \theta$, where $\theta=\varepsilon / 40$. Put $g=f-\Phi$. Note that $|g|_{\cup E_{n}} \leqslant \theta / 2$.

Select a C^{1} function $\chi: C \rightarrow[0,1]$ which depends only on $x=\operatorname{Re} z$ and which has these properties: $\chi \equiv 1$ on $[-1,1], \chi \equiv 0$ outside $(-2,2)$, and $|\partial \chi / \partial x|<2$. Then $|\partial \chi / \partial \bar{z}| \leqslant 1$. Put $\chi_{n}=\chi^{\circ}\left(Z-t_{n}\right)$; then $\left|\partial \chi_{n} / \partial \bar{Z}\right| \leqslant 1$ on M, and we may assume that $\chi_{m} \chi_{n} \equiv 0$ for m and n in $\Re, m \neq n$, because of the large gaps between t_{m} and t_{n} for large $|n|$. Define $g_{n}=\chi_{n} g$ for $n \in \mathscr{N}$. $\left|\Sigma g_{n}-g\right|_{E}<\theta / 2$ because of the following. For each p there is an integer m such that $\left(\Sigma g_{n}\right)(p)=g_{m}(p)$, because at most one term in $\Sigma g_{n}(p)$ is nonzero. Thus, $\left|\Sigma g_{n}(p)-g(p)\right|=\mid g_{m}(p)$ $-g(p)\left|=\left|\chi_{m}(p)-1\right|\right| g(p) \mid$. If $\chi_{m}(p)-1 \neq 0$, then $p \in \cup E_{n}$ and $|g(p)| \leqslant \theta / 2$, while $\left|\chi_{m}(p)-1\right| \leqslant 1$.

In E° we calculate

$$
\frac{\partial g_{n}}{\partial \bar{Z}}=\frac{\partial\left(\chi_{n} g\right)}{\partial \bar{Z}}=\frac{\partial \chi_{n}}{\partial \bar{Z}} g+\chi_{n} \frac{\partial g}{\partial \bar{Z}}=\frac{\partial \chi_{n}}{\partial \bar{Z}} g
$$

because $g \in A(E)$. Now $\left(\left(\partial \chi_{n} / \partial \bar{Z}\right) g\right)(p)=0$ unless $1<\left|\operatorname{Re} Z(p)-t_{n}\right|<2$, in which case $\left|\left(\partial \chi_{n} / \partial \bar{Z}\right)(p)\right| \leqslant 1$ and $|g(p)| \leqslant \max \left\{2^{-|m|} \theta: m \in \mathcal{N}, m=n-1, n\right.$, or $n+1\} \leqslant 2 \cdot 2^{-|n|} \theta$. Thus, the support of g_{n} in Z_{n} is contained in $R\left(t_{n} ; 2, \lambda\right)$, which belongs to the relative (to Z_{n}) interior of σ_{n}, by Lemma 9, and $\left|\partial g_{n} / \partial \bar{Z}\right|_{z_{n}}<2$. $2^{-|n|} \theta$.

Next we approximate g_{n} on Z_{n} by a C^{1} function h_{n} on Z_{n}. Specifically, let s_{n} be the map of σ_{n} into \mathbf{C} given by $s_{n}(z)=t_{n}+r_{n}\left(z-t_{n}\right)$, where $r_{n}<1$ and r_{n} is close to 1 , and define h_{n} by $h_{n}=g_{n}$ on $Z^{-1}\left(X_{n} \cup Y_{n}\right)$ and $h_{n}=\left(\left.Z\right|_{\Sigma}\right)^{-1} \circ s_{n} \circ\left(\left.Z\right|_{\Sigma}\right)$ for each component Σ of $Z^{-1}\left(\sigma_{n}\right)$. Because g_{n} vanishes on a neighborhood of $Z^{-1}\left(X_{n} \cup Y_{n}\right)$, the same will be true for h_{n} if r_{n} is close enough to 1 . In this case h_{n} will be C^{1} on Z_{n} and $|\partial h / \partial \bar{Z}|_{Z_{n}}=r_{n}|\partial g / \partial \bar{Z}|_{Z_{n}} \leqslant|\partial g / \partial \bar{Z}|_{Z_{n}} \leqslant 2 \cdot 2^{-|n|} \theta$. Because $Z^{-1}\left(\sigma_{n}\right)$ is compact we may take r_{n} so close to 1 that $\left|g_{n}-h_{n}\right|_{Z^{-1}\left(\sigma_{n}\right)}<2^{-|n|} \theta$.

By Corollary 13 there is an analytic function ψ_{n} on M such that $\left|\psi_{n}-h_{n}\right|_{z_{n}} \leqslant 18$ $\cdot 2 \cdot 2^{-|n|} \theta=36 \cdot 2^{-|n|} \theta$. Because $\Sigma_{n \in \Re} 2^{-|n|} \leqslant 1$ and every compact set in M is contained in all but perhaps finitely many of the Z_{n}, the sum $\Sigma \psi_{n}$ converges normally on M to an analytic function Ψ. Let F be $\Phi+\Psi$, which is analytic on M, and estimate

$$
\begin{aligned}
|F-f| & =\left|\sum \psi_{n}+\Phi-f\right| \\
& =\left|\sum\left(\psi_{n}-h_{n}\right)+\sum\left(h_{n}-g_{n}\right)+\left(\sum g_{n}-g\right)+(g+\Phi-f)\right| \\
& \leqslant \sum\left|\psi_{n}-h_{n}\right|+\sum\left|h_{n}-g_{n}\right|+\left|\sum g_{n}-g\right|+|g+\Phi-f|
\end{aligned}
$$

On E the first sum is at most $\sum_{n \in \mathscr{\Re}} 36 \cdot 2^{-|n|} \theta \leq 36 \theta$. The second sum has at most one nonzero term at any point of E; so it is dominated by $\max \left\{2^{-|n|} \theta: n \in \Re\right\} \leqslant$ $\theta / 2$. The third term $\left|\Sigma g_{n}-g\right|$ is at most $\theta / 2$, as estimated earlier, and the last expression $|g+\Phi-f|$ is identically zero by definition of g. Therefore, we have $|F-f| \leqslant 37 \theta=37 \varepsilon / 40<\varepsilon$ on E, and the proof is complete.

References

[A1] N. U. Arakelyan, Uniform approximation on closed sets by entire functions, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1187-1206. (Russian)
[A2] \qquad , Approximation complexe et propriétés des fonctions analytiques, Internat. Congr. Math., vol. 2, Gauthier-Villars, Paris, 1971, pp. 595-600.
[B] A. Browder, Introduction to function algebras, Benjamin, New York, 1969.
[BS] H. Behnke and F. Sommer, Theorie der analytischen Funktionen eines komplexen veranderlichen, 2nd ed., Springer-Verlag, Berlin and New York, 1962, pp. 581-592.
[G] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969.
[M] S. N. Mergelyan, Uniform approximations to functions of a complex variable, Amer. Math. Soc. Transl. (1) 3 (1964), 294-391.
[RS] B. Rodin and L. Sario, Principal functions, Van Nostrand, Princeton, N. J., 1968, p. 205.
[S] S. Scheinberg, Uniform approximation by functions analytic on a Riemann surface, Ann. of Math. 108 (1978), 257-298.

[^0]: Received by the editors November 8, 1979.
 1980 Mathematics Subject Classification. Primary 30E10, 30 F99.
 ${ }^{1}$ Partially supported by NSF Grant MCS77-01848. I am grateful to the Hebrew University, Jerusalem, and the Mathematical Institute, Oxford, for their gracious hospitality during my visit in the spring of 1978, when much of this work was done.

