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STABILITY OF THE NULL SOLUTION

OF PARABOLIC FUNCTIONAL INEQUALITIES

BY

RAY REDHEFFER1 AND WOLFGANG WALTER

Abstract. Uniqueness and stability theorems are established for coupled systems

of parabolic differential equations which may involve a Volterra-type dependence

on the past history of the process. We allow retarded or deviating arguments,

convolution-type memory terms, and strong coupling. (This means that all the

space derivatives up to a given order can occur in all the equations.) Our results for

strong coupling depend on the concept of "admissible monomial" which is here

introduced for the first time and has no counterpart in the linear case. It is possible

for uniqueness to fail in general, but to be restored (relative to a tolerably large

class of functions of (x, t)) if a single solution independent of x exists. Another

curious feature of these theorems, depending again on the concept of admissible

monomial, is that conditions for uniqueness can involve derivatives of order much

higher than those occurring in the equation. Examples given elsewhere show that

the results are, in various respects, sharp. Thus, the seemingly peculiar hypotheses

do not arise from deficient technique, but from the actual behavior of strongly

coupled systems. The paper concludes with a new method of dealing with un-

bounded regions for the difficult case in which the functional occurs in the

boundary operator as well as in the differential equation.

0. Historical introduction. As the reader will recall, a powerful method of getting

inequalities of the form u(x, t) < p(x, t) for solutions u of parabolic inequalities

was introduced by Nagumo in 1939 and rediscovered by Westphal in 1949. The

essence of the method is to choose p so that p(x, 0) > u(x, 0) and so that a

contradiction is obtained at the first value t such that u(x, t) = p(x, t) for some x.

Such a point (x, t) is called a Nagumo point. The subject of this paper has its origin

in certain extensions of this basic procedure.

(a) Inspired by early work of Max Müller (1926), Szarski and Mlak extended the

method to weakly coupled systems in 1955, 1957 and 1959. Here one considers the

first value t such that the kth component uk(x, t) = p(x, t) for some x and some k.

(b) It was observed by Redheffer in 1963 that the Nagumo procedure applies to

equations containing functionals u —* Fu, provided the functional is monotone and

of Volterra type; that is, provided (Fu)(x, t) can be estimated from above by use of

sup4 supT<( u(i, r). (c) In 1975 Nickel introduced a novel approach to the theory of

strongly coupled systems depending on the fact that, in a suitable function class,

the space derivatives Du can be estimated at (x, t) by means of sup£|t/(£, t)\. (The

possibility of such estimation in one variable follows from inequalities of Landau,

Bernstein and Kolmogorov.) Nickel's ingenious method [3]-[5] is, first, to substitute
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the Bernstein or Kolmogorov estimate into the error formula which results from the

Nagumo procedure, then to take the sup over x, and finally to get an explicit

estimate from the resulting integral inequality. A generalization of this argument,

based upon the classical theory of Volterra integral equations, is given in [9]. (d) In

an effort to bring these results (c) into contact with the older methods (a), (b), the

authors developed a comprehensive theory of two-sided inequalities. Here the goal

is |w(x, 01 < p(x, 0 rather than the one-sided estimate w*(x, 0 < p(x, t), and the

appropriate measure of magnitude is

|"|» = sup|«(£, 0|    or    \u\,t, = sup sup |«(£, t)|
{ £     T<r

as the case may be. The latter is used when p(x, 0 is increasing in t, the former

when p is unrestricted. These theorems are the first known to us which are directly

applicable to strongly coupled systems containing Volterra functionals. Neverthe-

less, in the case of a bounded region, the method requires only minor changes from

the procedure (a), (b); cf. proof of Theorems 1 and 3 for a bounded region, as

outlined below, (e) What we have described so far is merely the formal basis for a

theory of parabolic inequalities containing functionals, and does not come to grips

with the main problems. The main problems are associated with the use of an

unbounded region in the comparison argument and with the use of a general region

in the Kolmogorov-type inequalities. The trouble with an unbounded region is that

p has to be unbounded, as a rule, to control u at distant points; but then |p|, = oo,

giving no estimate for |w|,. In the Kolmogorov inequalities over general regions,

trouble is encountered from the boundary.

These difficulties are essential. For the comparison inequality one has to impose

certain growth restrictions on the coefficients, and without these restrictions, the

purported extension to unbounded regions is false. For the Kolmogorov inequali-

ties one has to impose an interior cone condition, and also to change the basic form

of the inequality. Without such precautions, the extension to general regions is

false.

These difficulties are overcome, at least to our own satisfaction, in the papers

[9]-[12], to which this paper is a sequel. Since we wish to deal with what we

perceive as the principal technical problems, all results here are formulated for

general regions which need not be bounded.

1. Summary of results. With the introduction of the expression |w|, above, the

theory of coupled systems appears in a new light. Namely, the undifferentiated

component m* is displayed in the kth equation along with uk and ukx, and the other

components uJ are estimated at the Nagumo point by |u|, rather than by uk(x, t) as

is customary. With no increase in complexity (and indeed, with the same compari-

son equation for p) the results apply to a much wider class of problems, including

problems containing functionals such as u -> Du.

Another novelty of the present treatment is that a distinction is made between

those aspects of the problem that depend on the past and those that do not. To this

end, we introduce a memory function fi(t) > 0 and a measure of magnitude
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|u|M-sup        sup      |t/(|, t)|
í i-,l(0<T<f

in addition to the measure |m|, mentioned above. The latter corresponds to

p(0 = 0; that is, to memory 0. Use of two memory functions is reminiscent of the

two-timing approach often seen in the study of asymptotic behavior for parabolic

equations, but it has a different motivation here. Theorem 1, which gives a general

comparison inequality in this setting, is supported by three corollaries asserting

local, global and asymptotic stability. These would apply to a much smaller class of

problems if we used only a single memory function p.

Our next result comes to grips with a basic difficulty in the theory of strongly

coupled systems; namely, the comparison equation usually involves fractional

powers of p and does not even lead to uniqueness. (An exception arises in

connection with the Bernstein class introduced into these problems by Nickel

[3]-[5], for which an existence theory is developed in [8]. We believe, however, that

this class is appropriate only for linear systems whose coefficients are independent

of the Bernstein variable.)

The problem of fractional exponents is avoided here by the concept of admissible

monomial. The gist of the matter is that, if the terms in the space derivatives Du are

of sufficiently high degree, then the exponents in the comparison equation are > 1

and one gets not only uniqueness but local, global or asymptotic stability. These

results, given in Theorem 2 and in the accompanying remarks, apply to problems

of current interest, including the strongly coupled systems for fluid flow obtained

in [2].

According to an often-quoted remark of Nirenberg, "most results for nonlinear

problems are still obtained via linear ones, i.e. despite the fact that the problems

are nonlinear and not because of it." By contrast, the results associated with

admissible monomials make essential use of nonlinearity and do not have any

counterparts in the linear case. These results cannot be applied, in general, to assess

the difference of two solutions u — v, but they can be so applied if v depends on /

alone. Thus we get some novel uniqueness theorems, to the effect that certain

classes of strongly coupled systems cannot generate any spontaneous dependence

on x (despite the failure of uniqueness in general) if a single solution independent

of x exists. This discussion is prefaced by an extension of Theorem 1 to allow

Neumann-type boundary conditions, uv = 0. Such conditions are natural for solu-

tions of the form v(t).

It turns out that the question whether a monomial is admissible (and hence, the

question whether uniqueness holds) depends on the continuity class over which the

monomial is considered. A monomial in the elements of Du of order as low as 2

might be admissible relative to the class c1000 but not relative to C999. Examples

given in [13] show that this reflects a genuine property of strongly coupled systems

and that our conditions for a strongly coupled system not to generate any

spontaneous dependence on x are, basically, sharp.

The paper concludes with a new method of reducing estimation in an un-

bounded region to that in a bounded region. The main theorem is about certain
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classes of functions, not about differential equations, and it has applications other

than the corollary presented here.

2. A summary of notation. In this paper x G R", t G R and for simplicity

G = fl X (0, oo), G0 = ß0 X [F0, oo), T = G0 - G, where ß is a domain in R", ß0

is a closed subset of R" containing ß, and T0 < 0. We refer to G as the parabolic

interior and to T as the parabolic boundary; when ß0 = ß and T0 = 0 this

terminology is standard. To distinguish conditions which hold for t < T from those

which hold for / < oo we define

G(T) = ß X (0, T],    G0(T) = ß0 X [ TQ, T],    T(T) = GQ(T) - G(T).

The class Zm of admissible functions is the class of functions u: C70—» Rm which

are bounded in G0(T) for each T, continuous in G0, twice differentiable with

respect to x in G, and which have a left-derivative with respect to t in G.

Derivatives are denoted as usual by u„ ux, uxx, the values being respectively in Rm,

(R")m, (S")m where S" is the set of real symmetric nby n matrices. Monotonicity

with respect to a matrix argument is denoted by an arrow; for instance, given/:

R X S" -» R the notation fit, uxx^) means

fit, uxx + s)> fit, uxx) > fit, uxx - s),       (x, t)GG,s>0.

Here uxx = uxx(x, t) and the inequality s > 0 is interpreted as usual by quadratic

forms.

As norm for the vector z G Rd it is convenient to use

|z|=max(|z1|,|z2|,...,|zrf|).

This applies to matrices as well as vectors; e.g., if z G S" then d = n2. With | • | as

above and u G Zm we define

\u\, = syip{\u(t,t)\:(t,t)GGo},

|«|fW = sup{|M(£, t)| : (fc t) GG0,t- ¡i(t) < t < t}

where p is a given function R + -» R + which remains fixed throughout the discus-

sion. It is supposed that t — p(t) > T0 for f > 0, or that T0 = -oo if t — ¡i(t) is not

bounded below. Note that \u\, = |«|0(. This use of the subscript t on the symbol

| • | should be distinguished from its use to denote partial differentiation.

The statement of theorems is simplified by the following:

Notational convention. The letters 8, e, p denote continuous functions Ä —» R +

which are constant on (— oo, 0]. The letter A denotes an increasing function

R + -» R + which can be large and can depend on the unknown function u.

3. An estimation theorem. Let an operator Pk be defined for u G Zm by

Pku = uk - fk{x, t, uk, uk, ukJ, «(•)),       k = 1, 2, . . . , m, (la)

where Z* is a function G X R X R" X S" X Zm -> R. We assume that there is a

function to: R4 —» R such that

(sgn z)fk(x,t,z,p,q,u(-))

< w(i, |z|, |M|„ |«|M) + A(0|x| \p\ + A(0|x|2|9|        (lb)
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for k = 1, 2, . . . , m, (x, t) G G,p G R",q G S", u(-) G Zm, z = uk(x, t), where

w(t, a, ß, y]") is continuous, increasing in y, and has

continuous partial derivatives with respect to a, ß, y. (le)

Inequality (lb) is needed in G(T) for each T subject to the side conditions

(i) |x| > N(T), \p\ < A(r)|x|A \g\ < A(F)|x|-2,

(ii)|x| <N(T),p = 0,q = 0.

If only the coordinates x¡ for/ < / are unbounded in ß, and the rest are bounded,

there is the further side condition

O")/', = <lij = 0 for i,j >/.

Theorem 1. Let (la)-(lc) hold, let u G Zm, and let p, > u(t, p, p, pM) + 8 for

t > 0, p > e for t > 0, where p^t) = max p(t), / - n(t) < t < t. Then \Pu\ < 8 in

G and \u\ < e in T implies \u\ < p in G0.

Remark. For some applications it is important to know that the hypothesis

|Fu| < 8 can be replaced by the weaker hypothesis (sgn uk)Pku < 8, k =

1, 2, . . . , m. This refinement results automatically from the proof. However, since

(lb) is required only for z = uk(x, t), the refinement can also be obtained from

Theorem 1 as it stands, by incorporating the error terms 8k = Pku, (sgn uk)8k < 8,

into / A similar remark applies to results given below.

Proof (in the case of a bounded region). If ß is bounded, as supposed here,

the proof of Theorem 1 is easy. By virtue of the conditions on w we can assume

that the two inequalities for p are strict. If the conclusion does not hold there is a

Nagumo point (x, t) G G and an index k such that

|«*(x, 0| = p(t)t        |«(|, t)| < p(t)    for r <t.

We assume w*(x, t) = + p(t); the discussion with — is similar. Then at (x, t)

uk > p„    m* = p,    uk = 0,    ukx < 0,    |u|f = p,    14,, < Pfl.

Hence, at this point,

Pic" > P, - Sk(x, t, p, 0, 0, u(-)) > p, - <o(t, p, p, pM) > 8,

which is a contradiction.

The above proof has been given to assist the reader in understanding Theorem 1,

and also to make it plausible that the theorem is true. The result for an unbounded

region is obtained by the iterative technique used in the proof of [12, Theorem 1].

Since only minor modifications are needed to adapt that argument to the case

considered here, we do not repeat the details.

4. Stability. If p is increasing then p)i = p and Theorem 1 leads to an ordinary

differential equation. By the regularity conditions on w that equation is locally

stable if u(t, 0, 0, 0) = 0 and we get the following:

Corollary 1. Let the hypothesis of Theorem 1 hold with co(r, 0, 0, 0) = 0. Then

the null solution of the problem Pu = 0, u(T) = 0 is locally stable relative to the class

of functions u G Zm. That is, given any tj > 0 there exists X = A(tj; T) > 0 such that

\Pu\ < X in G(T), \u\ < X in T(T)=* \u\ < tj in G0(T).
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It should be emphasized that X does not depend on A or p, or on the a priori

bound for u in G(T). Also X involves P and ß only insofar as X involves w.

If the conclusion holds in G rather than just in G(T) the problem is globally

stable, and if lim|w(x, 01 = 0 under suitable hypotheses as t —» oo, it is asymptoti-

cally stable. We shall discuss these matters in a special case which has an

interesting bearing on the theory of strongly coupled systems. Let

<o(r, «, ß, y) = - a(t)a + b(t)ß" + c(t)y,       o > I, a > 0, b > 0, c > 0, (2)

where a, b, c are continuous functions Ä —» R and o is constant. The differential-

functional inequality for p is then

p, > -ap+ bp" + cpp-t 8,       p> e. (3)

In Corollaries 2 and 3 all relations involving lim, lim sup or lim inf pertain to the

variable t -» oo. The familiar o and O notation also expresses relationships as

t —> oo, under the understanding that these relationships hold uniformly in x when

applied to u or Pu. For example, |Pw| = o(a) means

|Pw|(x, t) ,   . n
hm   J-, .      = 0   uniformly in x G ß.
(->«,       a(t)

Corollary 2 (Stability). Let u G Zm and let P satisSy the hypothesis of Theorem

1 with <o as in (2) and a > 1. Suppose further that b = 0(a) and lim sup(c/a) < 1.

Then for every tj > 0 there exists X = A(tj) > 0 such that \Pu\ < Xa in G, \u\ < X in

T=> |m| < tj in G0.

Corollary 3 (asymptotic stability). Besides the hypotheses of Corollary 2,

suppose one of the following conditions holds:

(i) c = o(a) and a is not integrable on [0, oo), or

(ii) lim inf a > 0 and lim(t — ¡i(t)) = oo.

Then there exists X > 0 such that the implication |Pw| = o(a) in G, \u\ = o(l) in

r=> \u\ = o(l) in G0 holds for every function u G Zm satisfying \Pu\ < Xa in G,

\u\ < X on T.

It will be seen that X depends on a, b, c, a, in Corollary 3(ii) also on p, but not

otherwise on P, ß, or u.

Proof. We write a = 1 + k, k > 0. To establish Corollary 2, let lim sup(c/a) =

1 - 39 where 9 > 0, and choose p0 > 0 and T > 0 so that p0 < tj, p¿b(t) < 9a(t),

c(t) < (1 - 29)a(t), t > T.U 8 <Xa with X = 9p0 and if p = p0, the differential

inequality (3) holds for t > T, since

0 > —ap0 + 9ap0 + (1 — 29)ap0 + 9p0a.

By Corollary 1 we can reduce X, if necessary, so that |u| < p0 holds in G0(T). Then

the result follows by use of Theorem 1 in G — G(T), with p = p0.

The proof of Corollary 3(i), is facilitated by the following elementary but useful

lemma:
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Lemma 1. Let a, <b be continuous functions R+ -* R + , where a is not integrable on

R+ and <j> is decreasing and o(l). Then the solution of the initial-value problem

V - (+ - $)a,       1(0) > <j>(0)

satisfies yp > <í> and \p = o(l).

We omit the trivial proof.

Let us now choose p0, 0 < p0 < 1, so that 2p¿b < a. By Corollary 1 it is possible

to choose X = A(w) so that |Pw| < Aa, \u(T)\ < X => \u\ < p0 and we suppose X so

determined. Since \Pu\ = o(a) and c = o(a) there exists a positive function tj =

o(l) such that c + 8 < r¡a. The differential inequality (3) holds at any given value t

where

p, > -ap + \ap + Tja,       P^ < P0 < L

Let the inequality |u| = o(l) in T be written in the form \u\ < e, e = o(l). Also let <J>

be a decreasing continuous function satisfying <|> = o(l), <f> > 2tj, <i> > e. Applying

Lemma 1 with a replaced by a/2, we can find a function \¡/ = o(l) such that

>¡>t > — ̂ a\p + 7¡a, \p > e, \p(0) > p0. Since \p = o(l) there is a last value, T, at

which tp(F) = p0. We define p = p0 for / < T and p = \p for t > T. Since |w| < p0

= p(F), Theorem 1 applied in G — G(T) gives \u\ < p = o(l).

We now establish Corollary 3(ii). Choose 9 > 0, A > 0 and T so that c <

(1 — 39)a and a > yl for / > T, and then choose p0 so that pôb < a9, t > T. The

value X is now determined by Corollary 1, as in the above proofs, so that \u\ < p0

inC70.

The hypothesis |Fm| = o(a) in G gives 8 = r¡a where tj is continuous, positive,

decreasing and o(l). The hypothesis \u\ = o(l) in T can be written |u| < e where

e = o(l) and where, without loss of generality, the graph of e is convex; e.g., e' < 0,

e" > 0. We shall choose for p a piecewise hnear function whose graph consists of

line segments joining the successive points (r„, p„). It should be thought that r„

increases rapidly to oo, and pn decreases to 0. The precise values will be determined

presently. However, among the conditions which we shall impose are

i0 > T,    tn< tn + x,    t - n(t) > tn    for t > tn+x. (4)

This latter is possible because lim(< — p(0) = oo.

The above conditions show that

tn  < t  < tn+l => l(0   < n(Q, P„(0   < fti-l.      P(0  >  Pn+V

and also p(t„) > e(t„) => p(t) > e(t). Hence, the differential inequality holds for the

piecewise linear function p on each of its segments if

P;+1ZP; >[-(!- 9)pH+x + (1 - 39)pn_x + v(tn)]a(t),       pn > e(tn).  (5)
«n + 1 ln

We now determine pn and t„.

Choose h, 0 < h < 1, so that (1 - 9)h2 - (1 - 30) - h9 > 0. This is possible

since the expression is positive when h = 1. We define p„ = Poh", n = 0, 1, 2, ...,

as well as p(0 = Po f°r t < 'o- Next we choose i„ so large that

Tj(in) < 9Poh",       e(sn) < poh" (6)
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and we require tn > sn in addition to the conditions (4). Then (6) holds with sn

replaced by /„, and the bracket in (5) is positive. Because of this latter condition we

can replace a(t) in (5) by A = inf a. A short calculation shows, then, that (5) holds

if

h- h2 < A(t„+X - ,„)[(! - 0)h2 - (1 - 39) - h9],       n > 0.

(For n = 0 the inequality has (1 - 39)h on the right instead of (1 — 39), hence is

implied by the above.) If the sequence {/„} increases fast enough this holds, and

the result follows from Theorem 1 in G — G( T).

Remark. Corollaries 2 and 3 require that e and 8 be in some sense small, before

any estimate is obtained. Such restrictions are not unexpected when the compari-

son equation is of degree > 1, as it is in (3). For example, if a and b are positive

constants and 8 = c = 0, equation (3) has the constant solution p0 = (a/b)x/",

where k = o — 1 > 0. For p(0) < p0 the solutions are o(l), but for p(0) > p0 the

solutions tend to oo at a finite value, T, which depends on p(0). If ß = R" we could

modify the assumptions on u and P in such a way that this p would lead to an

estimate for u(x, t) from below. Hence, the instability represents a genuine aspect

of the problem.

Of course when a, b, c are variable, (3) may exhibit a great variety of behaviors.

Some aspects of this behavior can be read off from the formula

-!-= -!- - i'e-A(s)b(s) ds,       A(t) = í'a(s) ds
[p(t)eA"Y      «       Jo W     •>«>      '

which gives the solution when c = 8 = 0, p(0) = e, 0 = 1 + k. It is helpful to

distinguish two cases, according as be~A G L[0, 00) or not. The formula then

describes the function peA. To analyze the function p we distinguish two further

cases, according as a is integrable on [0, 00) or not. Details of these developments

are easy and are omitted. It should be mentioned, however, that the results apply to

the strongly coupled system considered in Theorem 2.

5. Admissible monomials. Partial derivatives with respect to x (not 0 are denoted

by the usual indicial notation D", and Du is the vector of m(\ + n + • • ■ +nd)

components which contains all x-derivatives D"u, \a\ < d. It is said that ß G

K(9, h) if each point x G ß is the vertex of a cone C(x; 9, h) c ß which has

altitude h > 0 and vertex angle 29, 0 < 9 < it/2. When n = 1, C(x; 9, h) is a line

segment of length h.

The subclass of functions u G Zm for which Du is continuous in x at each fixed

t > 0 is denoted by Cd n Zm. For such functions we define Uk(t) =

sup{\Dau(x, t)\: \a\ = k, x G ß} and state the following lemma [11]:

Lemma 2. Let ß G K(9, h) and u G Cd n Zm. Then there exists a constant

J = J(d, n, 9) (independent of m, h, t) such that

uk(t) < jUo(ty-k/du;(t)k/d,     k = o,\,...,d,

where U¡(t) = maxlfi^O, h~dU0(t)].
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The hypothesis U0(t) < const for 0 < t < T is already built into the definition of

the class Zm. If we introduce the further restriction Ud(t) < const for 0 < t < T, or

for 0 < t < oo, we can use Lemma 2 to estimate functions of Du, much as the

Bernstein and Landau-Kolmogorov inequalities are used in [3]-[6].

In general, Lemma 2 leads to an estimate with U0(ty where the exponent p < 1,

and the results do not even imply uniqueness, much less stability. The following

definition, however, suggests a class of problems involving Du to which Theorem 1

applies:

Definition 1. Let j, > 0 and pj > 0,j = 0, 1, . . . , d. The monomial

M(s0, sx,..., sd) = *6X ' • • * &

is said to be of type (a, t) if

ad = pod + px(d - 1) + • • •  +pd_x,        rd = p, + 2p2 + • • •  +dpd.

The monomial is admissible if a > 1 and strictly admissible if o > 1.

Note that o + t = p0 + Pi + • • • +pd, which is the degree of M.

To get at the significance of this definition, suppose a monomial F(Du) in the

elements of Du (i.e. a product of terms £>V) has coefficient 1 and pk factors of

order k, k = 0, I, . . . , d; that is, pk factors D V, |a| = k. With sk = Uk(t) it is

obvious that supxfEil\F(Du)\(x, t) < M(s0, sx, . . . , sd) where M is the monomial

considered in Definition 1. If U0(t) < hdUd(t), both expressions being finite,

Lemma 2 gives

|F(F)m)|<A+tí/0(0oí/íí(0t (7)

where J = J(d, n, 9). If U0(t) > hdUd(t) Lemma 2 gives

\F(Du)\<J°+TU0(t)a+r(h-dy. (8)

In either case we get an estimate (const) Uo(t)a, where a > 1 if Af is admissible

and o > 1 if M is strictly admissible. The behavior is more favorable for small U0

in the second case, but we shall generally have Ud > > U0, so that only the first

case is relevant.

In this example the p, are thought to be nonnegative integers. However, the

choice Sj = Uj(t) > 0 allows any real pj > 0 in Af, whether integers or not, and

Definition 1 has been formulated so as to take this into account.

6. Strongly coupled systems. Before stating a general theorem, we want to give

some idea of the class of problems to which the foregoing theory applies. For

functions w G Z ' let linear operators be defined by

Lkw = ak(x, t)w + 2 ak(x, t)j- -   2   <(*> OtTST
,= 1 OX¡ jj=x OXfOXj

where (atk) > 0, k = 1, 2, . . . , m. We assume also that

|a,*(x,0|<A(0|x|,    \ak(x,t)\<N(t)\x\2       (|x| > N(t))

for (x, t) G G and for all values of the indices i, j, k. A suitable class of operators

Pk is given by Pku = uk + Lkuk + Fk(x, t, Du) + Gk(x, t, «(•)) where the Gk

denote functionals. If ak(x, t) > a(t) > 0 and
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\Fk(x,t,Du)\<b(t)U0(t)a,        \Gk(x,t,u(.))\<c(t)\u\ll,l (9)

then Theorem 1 applies with u as in (2), and hence Corollaries 1-3 apply also.

To discuss (9), let the real vector s = (sa) correspond to the elements of

Du = (D"u), and let sk = max{|ia|: |a| = k}, k = 0, 1, . . . , d, in correspondence

with Uk(t). Suppose |F(x, /, s)\ < .0(02 ^,(ío> *i> • • • > sd) (sum finite) where the

M¡ are admissible and B is continuous. If u is restricted to the class of functions

u G Cd n Zm for which Ud(t) < L, where L is constant, then the first inequality

(9) holds with ¿(0 = (const) 5(0 and with o > 1. If the Af, are strongly admissible,

a > 1.

Conditions on Gk are readily established in specific cases. For example if

Xrt       Hi.
Í 2 «ii*, 'i £ t)u>({, t) dr di

.i   Jt-VL(t)j=\

where the g{ are sufficiently smooth to ensure existence of the integral, the desired

estimate (9) follows from

Xrt m
Í 2 \g-(x, f, t, r)\ dr dí < c(0-

.2 Jt-n(t)j=l

Other examples are easily given.

We now generalize these remarks. Let Pk be defined by

Pku = m* - fk(x, t, uk, «*, ukJ, Du, u(.)), k=\,2,...,m, (10a)

where fk is a function G X R X R" X S" X A"*1*"«" • " +«*> x Zm ^> R. We as-

sume there are positive continuous functions a, b¡, c and finitely many admissible

monomials M¡ such that

(sgnz)fk(x, t,z,p,q,s,u(-))

< ~a(t)z + S ¿>,(OM(*o> sx, . .., sd) + c(0|4,,

+ A(0|x|+A(0|x|2|o| (10b)

for A: = 1,2, . . . , m, (x, t) G G,p G R",q GS",s G R"<x + n+ ■■ ■+n"\ u() G Zm,

z = uk(x, t). This is needed in G(T) for each T subject to side conditions (i)-(iii)

of Theorem 1. As explained above, s" corresponds to D"u and Sj = max|ja| for

l«l =/•
We shall establish the following:

Theorem 2. Let ß G K(9, h), let (10a), (10b) hold, and let L be a given continuous

function R-^> R satisfying L > 1. Suppose u is restricted to the subclass (L) of

functions u G Cd n Zm satisfying sup{|Z)ai/(x> Oh x G ß, |a| = d} < L(t) for

(x, t) G G. Then

(i) If u = 0 is a solution of the problem Pu = 0 in G, u = 0 on T, then this solution

is unique and locally stable relative to the class (L).

(ii) // the monomials M¡ are strongly admissible and have types (a¡, t(), and if the

hypotheses of Corollaries 2 or 3 hold with

M0 = 2 b,(i)WY\       o = min a„

then the conclusion of Corollary 2 or 3 holds in the class (L).
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Proof. If U0(t) < hdL(t) either estimate (7) or (8) gives

\M(s0, sx,..., sd)\ < J°+*Uo(t)°L(ty (11)

where sk = Uk(t). Hence the expression 2 biMi in (10b) does not exceed

2 bj(t)J°<+r<Jo(ty'L(t)r' and the corresponding comparison equation for p is p > e

and

p, > -a(t)p + S 6,(0.A+T'L(0V' + c(0p„ + 8. (12)

The condition U0(t) < hdL(t) is assured if p(/) < hdL(t), which can be assumed for

the p used in Corollaries 2 and 3. We can also assume p(t) < 1, so that the

exponents a, in (12) can be replaced by their minimum, o. The constant J does not

affect the hypothesis b = 0(a), and Theorem 2 follows. For detailed estimates (12)

should be used, but for the proof of stability (12) has no advantage over the simpler

equation corresponding to b(t) in Theorem 2.

Remarks, (a) The estimates underlying Theorem 2 remain valid even if the

monomials M¡ are not admissible, and lead to results of the form \Pu\ = o(l) in G,

\u\ = o(t) on T => \u\ = o(t) in G0 as t -» 0 + . Aside from this one application,

however, such estimates lose much of their impact unless M¡ are admissible. This is

so because one could always put a bound on \Du\ independently of Lemma 2, and

treat the problem as an inhomogeneous parabolic system.

Suppose, for example, that a strongly coupled system with P as in (10a) contains

first-order terms bounded by (const)|D'M| and is otherwise without complications,

so that a = c = 0. The following two comparison equations suggest themselves for

the problem Pu = 0 in G, u = 0 on T:
(i) p, > (JLp)x'2, p(0) = 0;

(ii) p, > JL, p(0) = 0,
where J is constant. The first would be appropriate if \D2u\ < L and IF)1«! is

assessed by Lemma 2. The second would arise if |F> '«| < L and the error produced

by D xu is incorporated into the inhomogeneous term, 8. Except for the behavior

near 0 + , it would seem that the second (altogether trivial) result is preferable to

the first. That is why the concept of admissible monomial has been emphasized

here, and why only the behavior as t -» 0 + was emphasized in [12, Theorem 2],

(b) Our theorems on strongly coupled systems generally have a hypothesis to the

effect that \Dau\ for |a| = d is not large, and a conclusion to the effect that |u| is

small. In that case Lemma 2 implies that the derivatives \Dau\ for |a| < d are also

small. In particular, as t -> oo, \Dau\ = 0(1) for |a| = d, \u\ = o(l) => |£>att| = o(\)

for |a| < d. Under mild additional conditions [11] the same holds for |a| = d, so

that finally \Du\ = o(l). This remark applies also to results given below.

(c) The main feature of Theorem 2 is not that it allows terms with retarded or

deviating arguments, but that it allows strong coupling. The essential hypothesis for

this latter application is that the monomials M¡ be admissible relative to the class

Cd, where d may have to be much larger than the order of the differential equation.

Examples given in [13] show that, surprising as it may seem, this hypothesis is

sharp.
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7. Mixed boundary conditions. If the normal derivative ur rather than u is

prescribed on the lateral part of the boundary, one must use a comparison function

p(x, t) depending on x. It might be thought that Dp would have to be well defined

if Du occurs in Pu, but this is not the case. It suffices to have p G C2 even if D is

of arbitrarily high order, and p need not be in the domain of P.

With the usual notation [15] for the interior normal derivative, including the

convention that the interior normal v lies in a hyperplane t = t0 > 0, we introduce

the following definition [7]:

Definition 2. The boundary 3ß is regular if there exists a function c(x) G Z ' such

that c„(x) > 1 for x G tfß and

0 < c(x) < C0,    \cx\ < C„    \cxx\ < C2

for x G ß. The constants Cj are called the region constants relative to c.

Let

Pku = «,* - fk(x, t, «*, uk, ukJ, «(•)) (13a)

as in (la), but assume instead of (lb)

(sgn z)fk(x, t, z,p, q, u(-)) < w(r, |z|, \u\„ |«|M; |p|, \q\) (13b)

where co is continuous, is continuously differentiable with respect to the last five

arguments, and is increasing with respect to the last four. As boundary conditions

we assume

m* sgn uk < e0    or    -u* sgn w* < e,        (x, /) e T, (13c)

for k = 1, 2, . . . , m where e0 > 0 and e > 0 are constant. It is understood that one

or the other condition holds for each (x, t, k), but the question of which condition

holds can depend on (x, t, k). Since the normal derivative does not exist when

/ < 0, equation (13c) implies |w(x, 01 < «o f°r ' < 0> and this fact will be needed in

the proof.

Theorem 3. Let 3ß be regular and admit the region constants Cj, and let

(13a)-(13c) hold with u G Zm. Suppose p satisfies

p, >     sup     u(t,p - 9, p, pM; eCx, eC2) + 8(t),       t > 0,
0<e<eC0

as well as p(t) > eQ + eC0for t > 0. Then \Pu\ < 8 in G implies \u\ < p in G0.

In general, the right-hand side of the equation for p, has a favorable behavior as

e —* 0, and Theorem 3 can be used to establish uniqueness and local stability much

as in Corollary 1. Since <o need not be increasing with respect to its second

argument, the theorem also gives global stability in certain cases. The following is

an example:

Corollary 4. Let the hypothesis of Theorem 3 hold with

u(t, a, ß, y; sx, s2) = -Aa + Bß" + Cy + Jxsx + J2s2

where A, B, C,JX, J2 and o are positive constants and A > C, a > 1. Then given any

tj > 0 there exists X > 0 such that the three conditions e0 < X, e < X, \Pu\ < X in G

together imply )u\ < tj in G0.
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In other words, the null solution of the problem Pu = 0 in G, ukuk > 0 in Y is

globally stable, if we interpret ukuk > 0 to mean uk = 0 at points of T where uk

does not exist.

Proof (for a bounded region). We shall establish the stronger inequality

|m| < p — ec, where c is the function in Definition 2. By the regularity condition on

w, it can be assumed that the two inequalities for p are strict. If ß is bounded, and

the desired conclusion |uj < p — ec does not hold, we can find a Nagumo point

(x, 0 where, without loss of generality, uk(x, t) = p(t) — ec(x), |4,< <

|p(0 — ec(x)\ll¡l < |p|M, 14 ^ P(0- The boundary conditions show (x, 0 cannot

be in T, and hence at (x, 0

K* > p„    uk = - ecx,    ukx < - ecxx,    (x, t) G G,

besides the conditions above. This gives a contradiction,

Pku > p, - u(t, p - ec, p, p^; eCx, eC2) > 8.

It should be observed that (13b) was used only for \p\ < eCx, \q\ < eC2, a fact

which greatly increases the scope of Theorem 3. When the region is unbounded the

function c(x) is replaced by

c(x) = (1 + a)c(x) + a(l + x, + • • • +x„2)1/2

where a > 0 is arbitrarily small, and (13b) is needed for \p\ < ßeCx, \q\ < ßeC2

with ß arbitrarily close to 1. The proof is the same as in the case of a bounded

region when the functional does not have any x deviation, but requires the iterative

technique of [12] in general.

Proof of Corollary 4. It suffices to note that the equations for p and p, in

Theorem 3 have the constant solution p = p0, where k = o — 1 and

p0(A - Bp¿ - C) > e(AC0+ JXCX + J2C2) + 8,        p0 > e0 + eC0.

This not only gives Corollary 4, but also shows how X depends on (ß, w, tj).

Corollary 4 applies to operators of the type considered in Theorem 2, where B

and a depend on the admissible monomials used there. Thus we get global stability

for the null solutions of strongly coupled systems with mixed boundary conditions,

including the usually troublesome condition uv = 0. The latter is of interest because

it allows solutions depending on t alone, as discussed next.

8. Problems with spatial homogeneity. If two equations involving an admissible

monomial M are written for u and for it, and subtracted, the resulting equation

almost always involves monomials in w = u — ù which are not admissible. That is

the reason why we have compared u with the null solution, rather than with an

arbitrary solution w. There is just one case in which the concept of admissible

monomial can be used to estimate u — ü. This is the case in which « is a function

of / alone.

Let M(s0, sx, . . . , sd) be a monomial of the type considered in Definition 1, and

suppose the exponent p0 for s0 is p0 = 0 while at least one exponent p7 > 0, / > 1.

Substituting appropriate derivatives DauJ, |«j = A:, for sk, we get an expression

which we denote by M(u). Then M(u ± ü) = M(u) = M(u) ± M(u) whenever ü
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depends on t alone. This is the basis for the behavior described above.

Consideration of u(x, t) — û(t) gives a means of discussing the following

question: Suppose a problem Pu = 0 with appropriate boundary conditions is

spatially homogeneous, in the sense that it admits a solution ü(t) which is

independent of x. Is every solution u(x, t), in some reasonably large class, neces-

sarily independent of x? In the case of strongly coupled systems, the question is

whether the strong coupling can generate any dependence on x, when it is known a

priori that a solution independent of x exists. Instead of formulating a general

theorem (as is easily done) we shall illustrate the main features in an example.

Example. Let m = 2, n = I and write (u, v) instead of (ux, u2). For definiteness

we take G to be the first quadrant, G = (0, oo) X (0, oo), and G0 = G. Let us

consider the problem

u, = -u + ax(x, t)uxx + bx(x, t)uv2x + Í cx(r)v(x + 1, t) dr + g(t),
Jo

v,= -v + a2(x, t)vxx + b2(x, t)(uxvxxf + Í c2(r)u(x2, r) dr + h(t),
Jo

where the coefficients a¡, b¡ are bounded in G(T) for each T, a¡ > 0, and c¡ are

continuous. It is convenient to assume the following boundary conditions:

«(x, 0) = u0,    v(x, 0) = v0,    |^(0, 0 = 0,    |^(0, 0=0       (t > 0).

If g and h are continuous, as now assumed, the problem has a solution (y, z)

depending on / alone. When g and h are differentiable (y, z) are given by the linear

system

y" + y' = cxz + g',   y(0) = u0,   y'(0) = g(0) - «0,

z" + z' = c2y + W,   z(0) = v0,   z'(0) = h(0) - v0.

In any case, we regard (y, z) as known.

Upon substituting u(x, t) = U(x, t) + y(t), v(x, t) = V(x, t) + z(t) into the

original equations, one finds that U, V satisfy the corresponding homogeneous

system (g = h = 0) with the single exception that the expected term bxUVxx in the

first equation appears as bxuVxx. This is so because the factor u must be incorpo-

rated into the coefficient and not into the monomial. The boundary conditions for

( U, V) are homogeneous.

The monomial Vxx is admissible over the class Cd if d = 4, and strongly

admissible if d = 5. The monomial ( Ux Vxx)2 is strongly admissible in either case.

Hence, the spatially homogeneous solution (y, z) is unique over the class of

functions u G C4 n Zm for which \D"u\ is bounded in each G(T), \a\ =4.

Furthermore there is local stability relative to the class (L, L0) for which \D"u\ <

L, |a| = 4, and |w| < L0. (The latter condition is needed to control the coefficient

bxu.) If

r¡cx(r)\ dr < 1, r\c2(r)\ dr < 1,
-'o •'o

and the coefficients a¡, b¡ are bounded in G, there is global stability relative to the

class (L, L0) satisfying the above inequalities in G with d = 5, |a| = 5.
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Hence, the strong coupling does not generate any dependence on x in a situation

such as this. Furthermore, if g, h and the boundary conditions are replaced by

functions which show only a slight dependence on x, then the solution u (restricted

to an appropriate continuity class) will also show only slight dependence on x. Our

main hypothesis \D"u\ < const for |a| = 4 or 5 is not unreasonable in this connec-

tion, since D°y = Daz = 0 for all |a| > 1.

In conclusion, we mention that comparison with (y, z) really is different from

comparison with (0, 0). Local or global stability of the null solution requires

u G Cd n Zm with d = 2 or 3, respectively, rather than 4 or 5, and no bound

|w| < L0 is needed. The fact that different aspects of this problem lead to four

different continuity classes Cd, d = 2, 3, 4, 5, is connected with the phenomenon

noted in §6; cf. also [13].

9. A remark on asymptotic behavior. For interesting classes of functions u and

operators P one can show a priori that lim u(x, t) = 0 as |x| -* oo in ß, uniformly

in t for 0 < t < T. The estimation problem then reduces to a similar problem in a

bounded region.

In discussing this matter, the first requirement we impose is a condition of

integrability:

Definition 3. The function u G Zm belongs to the class I if ja <j>(f, |w(x, 01) dx <

oo for a dense set of values t > 0, where </>: R+ X R+-^> R is such that <b(t, rf) is

strictly increasing and <j>(t, 0) = 0.

This holds, for example, if in a dense set {/}, |«| G L2(ß) or log(l + \u\) G L(ß)

or exp(—1/í|m|2) G L(ß). As seen by the third example above, the hypothesis

u G I is much weaker than the assumptions of integrability commonly used, and is

not a severe restriction.

More serious is a requirement that the highest derivative shall satisfy a condition

of boundedness or uniform continuity, as in the next definition. By a modulus of

continuity is meant a function <b: R-* R such that <b(0 +) = 0:

Definition 4. The function u G Cd n Zm belongs to the class Hd if one of the

following conditions holds for each fixed T:

(i) Dau is bounded in G(T)for \a\ = d, or

(ii) there exists a modulus of continuity <j> such that

\Dau(x, 0 - Dau(y, 01 < <K\x - y\)

whenever \a\ = d, 0 < t < T, andXx + (1 - X)y G il for 0 < X < 1.

Although the hypothesis u G Hd is rather restrictive, we remark that (i) is

appropriate for the theory of strongly coupled systems as developed in [3]-[6], and

that (ii) is not out of line with the Holder condition required in certain existence

theories.

Roughly speaking, our third requirement is that the function/in the definition

Pu = u, - fix, t, u, ux, uxx, Du, u(.))

shall be bounded when all of its arguments, except x, are themselves bounded; e.g.,

when 0 < t < T, u G Cd n Zm, and sup|Dw| < oo in G(T), d > 2. If \Pu\ is
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bounded in G(T), with/ and u as described, we deduce that u, is also bounded in

G(T). Here /= (fx,f2, . . . ,fm) and the earlier requirement that only the kth

component of ux and uxx shall occur in fk is irrelevant. Nor is any monotonicity

condition needed.

Although the following theorem makes no mention of P or / the situation we

have in mind is \Pu\ < const as discussed above.

Theorem 4. Let ß G K(9, h) and suppose u G Cd n Zm n Hd n / with d > 1.

Then \Du\ is bounded in G(T)for each T. If, in addition, u, is bounded in G(T), then

for x GÜ

lim   u(x, 0 = 0    uniformly in t,0 < t < T.
|jc|—CO

Proof. Depending upon which condition (i) or (ii) for the class Hd holds, it

follows from [11, Theorem 2 or 3], that sup|Z>M| < oo in G(T). Furthermore, it

follows from [11, Theorem 4] that lim u(x, t) = 0 as |x| —> oo in ß, for the dense set

associated with the class /. If |w(| < M for 0 < t < T then

|m(x, 0 - u(x, t0)\ < M\t - t0\,       0<t,t0<T,

where inclusion of the lower limit 0 is justified by continuity. Given tj > 0, cover

the interval [0, T] by finitely many intervals /, whose lengths satisfy 0 < |F| < tj.

Pick a point tj G Ij and a value r¡ such that |m(x, tj)\ < tj for x G ß, |x| > r,. Then

\u(x, 01 < i7(l + M) for (x, 0 G G(T), \x\ > max r}. This shows that lim u(x, t) =

0 uniformly in t and completes the proof.

We shall illustrate Theorem 4 with a class of boundary operators which are

difficult to handle, in unbounded regions, by the iterative method used in [12]. The

following definition formalizes the ideas discussed informally above:

Definition 5. The function f: G X R X R" X S" X (Cd n Zm) -^ Rm belongs

to the class Bd if the expression

E(x, 0 = /(x, t, u, ux, uxx, «(•))

is bounded in G(T) whenever u G Cd n Zm and sup\Du\ < 00 in G(T).

For example, / could be a polynomial, with bounded coefficients, in the elements

of Du or in expressions Ftu, where each F, is a bounded functional over Cd n Zm.

The class Bd is closed under formation of sums and products.

Let us consider the interior and boundary operators

Pku = uk - fk(x, t, uk, «*, ukJ, «(•)),

Rku = uk - gk(x, t, uk, u*î, «(•))        (t > 0),

Rku = uk        (t < 0), (14a)

for (x, t) G G and (x, 0 G T, respectively. At points of Type I, that is, at boundary

points where m„ is not involved in the boundary condition, the argument uk is

dropped from gk and the monotonicity condition is considered to be vacuously

fulfilled. Aside from this, gk is a function T X R2 X Zm ^> R which vanishes

identically when / < 0.
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As continuity conditions we assume

(sgn z)fk(x, t, z, 0, 0, «(•)) < w(i, |z|, |4, |4,,),

(sgn z)gk(x, t, z, 0, u(-)) < a0(t, \z\, \u\„ |u|M), (14b)

where

u(t, a, ß, y|) and w0(<, a, ß, y\) are monotone. (14c)

Inequalities (14b) are required in G and T, respectively, for z = uk(x, t), t > 0, and

« as in Theorem 4.

Corollary 5. Let ß G K(9, h), ß0 = ß, and let (14a)-(14c) hold. Suppose fur-

ther:

(i) For some d > \ we have f G Bd, u G Cd n Zm n Hd n /.

(ii) The function p satisfies p(0) > e(0) and p, > u(t, p, p, pM) + 8,

p > u>0(t, p, p, pM) + e,t > 0. _

Then \Pu\ < 8 in G and \Ru\ < e in T =* \u\ < p in G.

Proof. It follows from Theorem 4 and from the hypothesis f G Bd that, for

x G ß, lim^i^^ u(x, 0 = 0 uniformly in t, 0 < t < T. Hence we can choose r so

large that

|x| > r,   x G G(T) =>|m(x, 01 <    inf    p(0-
o<r<r

If the conclusion \u(x, t)\ < p(t) fails there is a Nagumo point (x, t) with / > 0 and

|x| < r at which, without loss of generality, uk(x, t) = p, |u|, = p, |4,» *» P^r The

proof of Theorem 1 shows (x, 0 cannot be in G and hence (x, t) G T. From this

follows m* < 0, if «„* exists, in addition to the relations above. Thus we get a

contradiction, Rku > p — gk(x, t, p, 0, u(-)) > p — <¿0(t, P, P, PM) > £•  If «* does

not exist, the point (x, 0 must be of Type I and the proof simplifies.
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