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APPROXIMATION RESULTS IN HILBERT CUBE MANIFOLDS

BY

T. A. CHAPMAN1

Abstract. The purpose of this paper is to answer questions of the following type

for maps /: M —> N between Q-manif olds : When is / close to an approximate

fibration? When is/close to a fiber bundle map? When is /close to a block bundle

map? For the second and third questions a series of obstructions are encountered

in the lower algebraic /^-theoretic functors K_¡ of Bass.

1. Introduction. Recall that the Hilbert cube Q is the countable infinite product

of closed intervals, and a Q-manifold is a separable metric manifold modeled on Q.

The purpose of this paper is to investigate questions of the following sort: If f:

M —> TV is a map between Q-manifolds, when can f be approximated by "nice" mapsl

The "nice" maps referred to include homeomorphisms, approximate fibrations, and

block bundles. The key idea common to all of these results is a very carefully

controlled engulfing. This is established very early in §3 by use of Z-set unknotting,

and is then used at crucial points throughout the paper. This entire line of research

is a natural outgrowth of the approximation results of [4], [5], and [14].

With the only exception being some rare instances in which Hurewicz fibrations

are introduced for technical reasons, all spaces in this paper will be locally

compact, separable, and metric. A map /: X —> Y (i.e., a continuous function) is

proper provided that/-'(C) is compact, for all compact C c Y. If a is an open

cover of Y, then a proper map /: X —» Y is said to be an a-fibration (or, / has the

a-lifting property) if for all maps F: Z X [0, l]-> Y and F0: Z —> X for which

fF0 = F0, there is a map G: Z X [0, 1] -» X such that G0 = F0 and/G is a-close to

F. This latter statement means that given any (z, t) e. Z X [0, 1] there is a U G a

containing both/G(z, /) and F(z, t). Finally, a proper map p: X —> Y is said to be

an approximate fibration provided that it has the a-lifting property, for all open

covers a of Y. We refer the reader to [9] where the notion of an approximate

fibration was introduced.

Our first result is concerned with the homotopy detection of those maps which

are close to approximate fibrations.

Theorem 1. Let B be an ANR and let a be an open cover of B. There exists an

open cover ß of B so that if M is Q-manifold and f: M -» B is a ß-fibration, then f is

a-close to an approximate fibration.
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The proof of this result, which is given in §6, first uses some g-manifold results

from [6] to reduce it to the case in which B is a polyhedron. Then the proof uses a

handle lemma from §5 which is established by engulfing and torus geometry.

In [13] a proof is given that any finitely dominated polyhedron can be realized as

the fiber of an approximate fibration/?: M —» 5', where M is a (?-manifold. In the

following corollary of Theorem 1 we recover this result. See §6 for a proof.

Corollary [13]. If K is a finitely dominated polyhedron, then there is a Q-mani-

fold M and an approximate fibration p: M —» S1 whose (homotopy) fiber is K.

The following notation will be used throughout this paper. If a is an open cover

of Y, then a homotopy «, : X —* Y is said to be an a-homotopy provided that each

set {ht(x)\0 < / < 1} lies in some element of a. A proper map /: .Y—> Y is an

a-equivalence provided that there is a proper map g: Y -* X and proper homo-

topies <p,: gf^ id^, 8,: fg ^ idY such that/<p,: X —> Y and <p,: T —» Y are a-homo-

topies. We write this as

/-'(«) a
<p,:gf    =a    id    and   8,:fg=± id,

where/-'(a) denotes the open cover of X defined by/-'(a) = {f~\U)\U G a}.

Finally if Y has a specified metric and e > 0 is given, then we will also use e to

denote the open cover of Y by balls of diameter e. This convention means that we

have also defined the notions of e-homotopy and e-homotopy equivalence.

Our metric on euclidean «-space R " is the one derived from the standard norm,

11*11 = (|x,|2 + |x2|2 + • • • +|jc„|2)1/2. A homotopy «,: X-+R" is said to be

bounded provided that there is a constant k > 0 so that h, is a k-homotopy. If Y is

compact, then a proper map /: X -» R " X y is said to be a bounded homotopy

equivalence if there is a constant k > 0 for which /is a p ~ '(&)-equivalence, where

p = projection to R".

For any compact ß-manifold F let S (F) denote the set of equivalence classes of

the form [/], where /: M —* F is a homotopy equivalence (M is also a compact

ß-manifold). Another such map, /': M' ^>F, is defined to be equivalent to /

provided that there is a homeomorphism ft: M —» M' for which/'h is homotopic to

/. In analogy with the definition of S(F) we also define S6(/î" X F), where

bounded homotopies and bounded homotopy equivalences are used in lieu of

homotopies and homotopy equivalences.

For our next result we will first have to recall material from [2, Chapter XII]. For

more details see [1] and §7 of this paper. If T" is the «-torus, then there is a

functorial direct sum decomposition of the Whitehead group Wh(r" X F):

Wh(r" X F) = Wh(F) 0 2 (" )*:,_,(*■) © Nu Terms.
;=1V ' '

Here Wh is the Whitehead group functor, K0 is the reduced projective class group

functor, and the Kx _,'s are the lower algebraic /^-theoretic functors of Bass. All the

above groups vanish if w, of each component of F is free abelian or, more

generally, poly Z [12].

Theorem 2. If F is a compact Q-manifold, then Q>b(R" X F) is in 1-1 correspon-

dence with Wh(F) for n = 0, and with Kx_n(F) for n > 1.
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The proof of this result, which appears in §8, only treats the cases « > 1. The

case « = 0 reduces to S(F), and it follows from [6, Chapter 12] that this is just

Wh(F).
Our next result is a generalization of the main result of [5] on approximating

maps into bundles by homeomorphisms.

Theorem 3. Let B be an ANR and let a be an open cover of B. There exists an

open cover ß of B so that if M and E are Q-manifolds,p: E —> B is a ß-fibration, and

/: M —> E is ap~\ß)-equivalence, then f isp~x(a)-homotopic to a homeomorphism

provided that the groups WhCÍF) and K_nCS) (« > 0) are all zero, where S is the

homotopy fiber of p.2

Important special cases of this occur when/?: E —> B is (1) a fiber bundle with

fiber a compact ANR, (2) an approximate fibration, and (3) a block bundle (see

definition below). The proof of this result, which is given in §9, first proceeds as in

Theorem 1 to a quick reduction to the case in which B is a polyhedron. Then

Theorem 2 is used as a "handle lemma" to induct on dim B.

We point out that if B is a polyhedron and dim B = « in Theorem 3 above, then

we only need Wh(?F) and K_j(<S), 0 < i < « — 1, to vanish. The assumption that

all of these obstruction groups vanish is an admission of ignorance. The situation is

complicated by the fact that the obstructions in K_,¡_l^(<S) are not defined unless

the obstructions in K_i('S) are zero. So a remaining problem is to work out an

obstruction theory which gives a general answer to the problem of Theorem 3.

For our last result we will need the following notion. Let B be a polyhedron with

a fixed triangulation. A proper map p of a g-manifold E to B is said to be a block

bundle with fiber a compact <2-manifold F if for each simplex a of B we have a

block-preserving homeomorphism/: p~x(a) —»a X F, i.e., for each face t of a we

have f(p~\r)) = t X F. In §10 we prove that if p: £—> B is a block bundle, then

there is a block preserving homotopy oip to an approximate fibration.

Our next result is concerned with the following question: When is a proper map

of a Q-manifold to a polyhedron close to a block bundle (with respect to some fine

subdivision of the polyhedron)! It follows from the paragraph above that one

necessary condition for this to happen is that the map must be an a-fibration, for a

a fine open cover of the polyhedron. Starting with this necessary condition, the

following result gives us sufficient conditions for this to happen. As in Theorem 3 it

would be nice to have an obstruction theory giving the general answer.

Theorem 4. Let B be a polyhedron and let a be an open cover of B. There exist an

open cover ß of B and a triangulation of B so that if M is a Q-manifold and f:

M —> B is a proper map which is a ß-fibration, then f is a-homotopic to a block

bundle provided that the groups WhCiF) and K_n(S) (« > 0) are all zero, where 'S is

the homotopy fiber of f.

2If B is not connected, then these restrictions are placed on the various homotopy fibers arising from

the different components of B.
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Corollary. Let B be a polyhedron, let M be a Q-manifold, and let /: M —» B be

an approximate fibration with homotopy fiber S. Then f can be approximated

arbitrarily closely by block bundles provided that it ¿'S) is free abelian.

This result follows quickly from Theorems 1 and 4 provided that we recall the

remark made in the paragraph preceding Theorem 2 about the vanishing of the

groups Wh(F) and K_n(F).

Finally we remark that there is an analogue of Theorem 4 for ft-block bundles,

where a proper map p of a ^-manifold M to a polyhedron B is said to be an

h-block bundle with fiber a compact g-manifold F provided that for each simplex a

of B there is a block-preserving homotopy equivalence/: p~\o) —» a X F. Here is

the analogue of Theorem 4 for «-block bundles. The proof is left to the interested

reader.

Theorem 4'. Given the data of Theorem 4, f is a-homotopic to an h-block bundle

provided that the groups K_nCS) (n > 0) are all zero.

Upon careful examination the reader should observe that the engulfing tricks

that we use do have finite-dimensional analogues, and therefore there must be

analogues of Theorems 1-4 for topological «-manifolds. This is indeed the case

and it will be the subject of a future paper.

2. General preliminaries. In this section we will introduce some additional

notation and remind the reader of some well-known results from the literature

which will be used throughout this paper.

Recall from § 1 that R" denotes euclidean «-space, i.e., R" = R X ■ •• XR (n

times). In R" we consider «-cells of the form B" = [ — r, /•]". We use S1 to denote

the set of complex numbers of absolute value 1, and the «-torus is T" = Sl

X ■ ■ ■ XS1. We always let / = [0, 1] and the standard «-cell is /" = [0, 1]

X • • ■ X[0, 1]. The Hilbert cube Q will be the countable product Q = I X I

X . . . so that for each « we have an internal factorization Q = /" X Q„ + t- Note

that if n is large, then each set {x} X Q„ + x has a small diameter. It will be

convenient to regard /" as identified with the subset /" X {(0, 0, . . . )} of Q; thus

/' c Q.
Expanding on the definition of an a-equivalence which was given in § 1 let /:

X -^ Y be proper, let C c T be closed, and let a be an open cover of Y. Then / is

said to be an a-equivalence over C if there is a proper map g: C —» X and proper

homotopies <p,: gf\f~l(C) ==/''<'*> id, 8,: fg =^a id. This means that <p,: f~\C) -* X

and 8,: C —» Y are proper homotopies such that cp0 = gf\f~l(C), <p, is the inclusion

f~\C) °-* X, <p, is an/-1(a)-homotopy, 80 = fg, 0, is the inclusion C^* Y, and 8,

is an a-homotopy. Note that if C c G c Y, where C is closed and G is open, then

for all sufficiently fine open covers a of Y any a-equivalence /: X -^ Y restricts to

an (a n G)-equivalence over C, f\f~\G): f~l(G)-> G. (Here a n G = {U n

G\U G a}.)

The following result tells us how to detect a-equivalences locally. It is essentially

a souped-up version of Proposition 3.2 of [4].
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Proposition 2.1. Let B be a space and let y be an open cover of B. For every open

cover a of B there exists an open cover ß of B so that iff: X —» Y and p: Y —» B are

proper maps such that X, Y are ANR's and f is a p~x(ß)-equivalence over the

closure of each element of y, then f is a p~ ''(a)-equivalence.

Proof. We begin by recalling how Proposition 3.2 of [4] applies here. Let Ax, A2

be closed subsets of B with closed neighborhoods Ax, A2, respectively. Then

Proposition 3.2 of [4] says that for every open cover a of B there is an open cover ß

of B so that if /: X ^* Y is a />-'(/^-equivalence over Ax and A2, then / is a

p ~ '(a)-equivalence over A x U A2.

If B is compact then we may assume that y = {Ui}"=x is a finite open cover of

B. Choose a sequence {yk}"kZ,\ of open covers of B of the form yk = {Ukl}"_x so

that Ux, c U¡ and Uk+Xi c Uki (we use ~ to denote closure). We are given that/is

a />-'(/^-equivalence over each U¡. Using Proposition 3.2 of [4], / must be a

/>-'(/?,)-equivalence over Uxx u UX2 and UXi, for 3 < / < «, where ßx can be

made as fine as we want corresponding to a fine choice of ß. Again using

Proposition 3.2 of [4], / must be a p ~ '( ß2)-equivalence over the closure of

U2X u U22 u U2i and U2i, 4 < i < «, where ß2 can be made as fine as we want

corresponding to a fine choice of /},. Continuing this we finally get that / is a

/?~'(a)-equivalence over the closure of U"_i t/„_,, = B.

If B is not compact (and therefore locally compact) we can write B = U ,°11 B¡,

where B¡ is compact and B¡ n Bj, = 0 for \i - j\ > 2. Let B¡ be a closed neighbor-

hood of B¡ so that we also have B¡ n Bj, = 0 for |/ — /| > 2. By the ideas used in

the compact case we conclude that/is a/?-'(a')-equivalence over each B¡, where a'

can be made as fine as we want corresponding to a fine choice of ß. Clearly / is

also a/j-'(a')-equivalence over B' — U {B^i odd} and B" = U {B¡\i even). By

Proposition 3.2 of [4] we conclude that /is a/?-1(a)-equivalence over the union of

U {B¡\i odd} and U {B,\i even}.    D

Remarks. 1. There is a similarly-worded local version of this result whose

conclusion states that/is a/>"'(a)-equivalence over some closed C c Y. The proof

again follows quickly from Proposition 3.2 of [4].

2. The above proof works if we merely assume that X, Y are separable metric

ANR's and /, p are no longer necessarily proper. For this to make sense we also

have to drop the requirement that the map g and homotopies <p„ 9, of the definition

are proper.

We now expand on the definition of an a-fibration which was given in §1. Let/:

X -» Y be proper, let C c Y be closed, and let a be an open cover of Y. Then / is

said to be an a-fibration over C if for all maps F: Z X I —» C and F0: Z —» X for

which/F0 = F0, there is a map G: Z X I —> X such that G0 = F0 and/G is a-close

to F. Note that if /: X -> y is an a-fibration and C c G c Y, where C is closed

and G is open, then the restriction f\f~'(G): f~\G)—> G is an (a n G)-fibration

over C provided that a is sufficiently fine.

Here is an analogue of Proposition 2.1 for a-fibrations.

Proposition 2.2. Let B be an ANR and let y be an open cover of B. For every
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open cover a of B there exists an open cover ß of B so that if X is an ANR and f:

X —» B is a ß-fibration over the closure of each element of y, then f is an a-fibration.

Proof. Inspired by the proof of Proposition 2.1, we establish the analogue of

Proposition 3.2 of [4]; the proof then follows that of Proposition 2.1. Choose closed

subsets Ax, A2 of B with closed neighborhoods Ax, A2 respectively, and let a be an

open cover of B. We want to prove that there exists an open cover ß of B so that if

/: X -» B is a proper map which is a ß-fibration over Ax and A2, then / is an

a-fibration over Ax u A2. Let F: Z X I ^> Ax u A2 and F0: Z—> X be given so

that fF0 = F0. For simplicity we will only treat the case in which Z is compact. The

general (locally compact) case then easily follows from the same ideas.

Our first task will be to treat a special situation which will be used repeatedly to

obtain our desired result. Choose open sets N¡ c B so that A¡ c N¡ and N¡ c A¡,

and let a' be an open cover of B.

Assertion. We can choose the open cover ß so that if each F({z) X I) lies in either

Nx or N2, then there is a map G: Z X I —* X which extends F0 and for which f G is

a'-close to F.

Proof. Let Z, = {z G Z|F({z} X I) C N¡) and use the fact that/is a ß-fibra-

tion over A, to choose a map G ': Z, X / -» X so that G0' = F0\ZX and so that/G '

is ß-close to F\ZX X I. We will need the Estimated Homotopy Extension Theorem of

[4]. It states that an a-homotopy of a closed subset of a metric space into an ANR,

A, extends to an a-homotopy of the entire metric space to A provided that the

0-level extends. Using this we can adjust F slightly rel Z X {0} so that F\ZX X I =

/G '. (We also have to cut down the domain of G ' slightly.)

Since Z, and Z2 are open we can find compacta C, c Z, so that Z = C, U C2.

Now let R,: Z2 X /-» Z2 X / be a homotopy, 0 < t < 1, which affects only the

/-coordinate, so that

(1) r0(z2 x I) c (z2 x {0}) u ((Z, n z2) x /),

(2) R, = id on (Z2 X {0}) u ((C, nZJX /), for all /,

(3) Rx = id.

Let R: (Z2 X I) X [0, 1] -► Z2 X / be defined by R(z, s, t) = R,(z, s) and note that

FR0: Z2X I -+ Ä2 lifts to the map gR0: Z2X I -> X, where g: (Z2 X {0}) u ((Z,

n Z2) X /) -h> X is defined by g = F0 on Z2 X {0} and g = G ' on (Z, n ZJ X I.

Since / is a ß-fibration over A2 we can find a map H: (Z2 X I) X [0, 1] -^ X so

that H0 = gR0 and so that/// is ß-close to FR. The restriction of Hx: Z2 X I —» X

to (Z2 X {0}) u ((C, n Z^ X I) is easily seen to be /"'(yS)-homotopic to the

restriction of g to (Z2 X {0}) u ((C, n Z2) X /) by using the [0, Incoordinate.

Thus by the Estimated Homotopy Extension Theorem there is an f~\ß ^homo-

topy of //, to G2: Z2 x I^> X so that G02 = F0|Z2 and so that G2 = Gl on

C, n Z2. Then G' and G2 piece together to give our desired map G: Z X / —» X.

D
Now returning to the proof of Proposition 2.2 choose a partition of /, 0 = t0 < tx

< ■ ■ ■ < tn = 1, so that for each z G Z and i we have F({z) X [/,_,, /,]) close to

Ax or A2. For each /' we will construct a map G':Z X [0, /,.] —» X so that

(1) Go = ¿o,
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(2)/G'jZ X {/,.} isa'-closetoF|Z X {*,},

(3)/G' is a-close to F\Z X [0, t¡\.

Then G": Z X I —> X will be our desired extension of F0.

The case / = 0 is trivial, so proceeding inductively let G': Z X [0, t¡] —> X be

given with the properties listed above. We will construct G' + 1: Z X [0, ti+x]-*X.

Since our G' + 1 will be an extension of G' we only have to worry about its

definition on Z X [t¡, ti+x]. By the Estimated Homotopy Extension Theorem we

can adjust F|Z X [t„ ti+x] slightly to obtain F': Z X [t¡, ti+x] -h> B so that F't¡ = fG[

and so that F't = F. . Then we still must have F'({z} X [/,., ti+x]) close to Ax or

A2, for all z. By the Assertion there is a map G' + 1: Z X [t¡, tt+x]—>X for which

G,'+l = G,' and for which/G'+1 is a'-close to F'. If a' is appropriately chosen, then

/G' + 1 is a-close to F\Z X [tt, ti+x). This completes the inductive step.    □

Remark. As in Proposition 2.1 there is a similarly-worded local version of this

result whose conclusion states that/is an a-fibration over some closed set C c B.

The following result gives us another point of view from which we can recognize

p ~ '(a)-equivalences.

Proposition 2.3. Let B be an ANR and let a be an open cover of B. There exists

an open cover ß of B so that if p: & —> B is a Hurewicz fibration, X is arbitrary and

f: X —> & is a homotopy equivalence for which pf: X —> B is a ß-fibration, then f is a

p ~ '(a)-equivalence.

Proof. As in Remark 2 following Proposition 2.1 we allow that X, & be

arbitrary separable metric, and the maps are possibly nonproper. Suppose first that

pf: X -» B is also a Hurewicz fibration. Then / is a fiber preserving map between

two Hurewicz fibrations and it is also a homotopy equivalence. In [10, Theorem

6.1] there is a proof that/must be a fiber homotopy equivalence. This means that

there is a fiber preserving map g: & —» X and fiber preserving homotopies ^g » id,

g/ — id. Therefore/is a p ~ '(a)-equivalence for all open covers a of B. This special

case does not require that B be a ANR.

The proof given in [10] requires only the homotopy lifting property, and so a

slight modification of it works if we merely assume that pf: X -h> B has the ß-lif ting

property. Let g: S —» X be an ordinary homotopy inverse of / and let ft,: /g — ids

be a homotopy. Then the homotopy ph,: (pf)g ^-p can be ß-lifted to a homotopy

k,: g — g'■ The map g': S —» X is nearly fiber preserving, and it is our candidate

for a/?-'(a)-inverse of/. The argument of [10] quickly adapts to prove that this is

the case. The assumption that B be an ANR is needed to construct homotopies

between maps to B which are sufficiently close together. Further details are left to

the reader.    □

We write "/ = g over C" to mean that/"'(C) = g~\C) and/ = g on/"'(C).

In general we say that/has property P over C whenever/|/~'(C) has property P.

In some instances when the meaning is clear we will simply write / when the

restriction/| is intended. Finally, a homotopy/: X —* Y is said to be an a-homotopy

overC c yif/(|/o"'(C):/0"'(C)-^ y is an a-homotopy.

The concept of the mapping cylinder will be useful to us. If /: X -» Y is a map
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between compact spaces, then the mapping cylinder of /is the quotient space

M(f) = (x x[o, i])uy/~,

where — is the equivalence relation generated by (x, 1) —f(x). We identify X with

X X {0} c M(f) and call it the top. The base of M(f) is the natural copy of Y

embedded in it. The collapse of M(f) to its base, c: M(f) —> Y, is the map obtained

by retracting each ray ({x} X [0, l])H{/(x)}/~ to f(x). Generally it is convenient

to write M(f) = (X X [0, 1)) u Y, with the appropriate topology being under-

stood.

In this paper we will need several standard geometric results from g-manifold

theory, and a good reference for all of these is [6]. In particular, the reader should

be familiar with Z-set unknotting, stability, the Triangulation Theorem, and

Edwards' ANR Theorem. There is a slightly stronger form of Z-set unknotting

which we will need, so we supply a proof.

Proposition 2.4. Let Mx, M2 be Q-manifolds, let A¡ c M¡ be a Z-set for i = 1, 2,

and let u: Mx —» M2 be a proper map such that u\Ax: Ax^> A2 is a homeomorphism.

If there is a proper a-homotopy of u to a homeomorphism ft: A/, —» M2, then there is a

homeomorphism ft': Mx -h> M2for which h! = u on Ax and there is a proper St(a)-ho-

motopy u^h' xe\ Ax.

Proof. First we define the open cover St(a) of M2:

St(a) = {U{^|^eaandrfn U^0}\U Ga}.

Let w, denote the proper homotopy u ^ ft. We may assume that h(A,) n A2 = 0

and we can adjust u, slightly so that u,\: Ax —> M2 is an a-isotopy of Z-embeddings

whose various levels are pairwise disjoint. Now let gt: M2 —» M2 be an a-isotopy for

which g0 = id and g, = u,u~x on u(Ax). The existence of g, follows easily from the

proof of 19.4 of [6], but apparently not from the statement. Then ft' = g,~'ft:

MX^>M2 is a homeomorphism which is St(a)-homotopic to u re\Ax via the

homotopy g," '«,: u =¿ gx 'ft.    □

Remark. There is a similarly-worded version of this result in which the homeo-

morphism ft is replaced by an open embedding. This particular version is used near

the end of §8.

There is a large collection of results from simple-homotopy theory which we will

need. An excellent reference is [8]. Also the reader should be aware of the

Classification Theorem of [6, p. 86], which is the main connection between

^-manifold theory and simple-homotopy theory.

Finally, we will need the finiteness obstruction of Wall [18], which assigns to

each finitely dominated space X an element a(X) of the reduced projective class

group K0irx(X) = K0(X). This element a(X) is a homotopy-type invariant and it

vanishes iff X is homotopy equivalent to a compact polyhedron.

3. Engulfing. The purpose of this section is to establish Theorem 3.3, which is the

main engulfing result for g-manifolds which will be needed in the sequel. In

Lemma 3.1 we use nothing more complicated than Z-set unknotting to establish

the basic engulfing result. This is then used to establish Lemma 3.2, which turns
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out to be a global version of Theorem 3.3. Finally, Theorem 3.3 follows as a

corollary to the proofs of Lemmas 3.1 and 3.2. For notation X will be a compact

metric space with a specified metric for Lemmas 3.1 and 3.2.

Lemma 3.1. For every e > 0 there exists a S > 0 so that if M is a Q-manifold and

f: M -» X X R is a 8-fibration over X X [ — 3, 3], then there exists a homeomorphism

ft : M —» M for which

f~\X X(-oo, l])cft/-*(* x(-oo,0)).

Moreover if px: X X R -h> X is projection, then there is a homotopy ft,: idw £* ft which

is supported on f~l(X X [ — 2, 2]) and which is a (pxf)~l(e)-homotopy.

Proof. Since proj: M X [0, 1]-» M is a near homeomorphism we may replace

M by M X [0, 1] and regard each f({m) X [0, 1]) as having small diameter. The

first step is to obtain an isotopy ut: M X [0, 1] —* M X [0, 1] such that u0 = id, ut is

supported onf~x(X X [—1.5, 1.5]), w, is a (pxf)~\S)-homotopy, and

(MX {0})nf-\X X(- oo, 1.4]) duJ-\X x(-oo,0)).

One constructs u, as the inverse of an isotopy whose 1-level takes (M X {0}) n

f~\X X (—oo, 1.4]) into f~\X X (—oo,0)). This isotopy comes immediately

from Z-set unknotting, and the homotopy needed to apply the Z-set unknotting

theorem comes from the definition of a ô-fibration.

The next step is to again use Z-set unknotting to find an isotopy v,: M X [0, 1]

—> M X [0, 1] such that v0 = id, v, is supported on f~l(X X [- 1.6, 1.3]), v, is a

(/7,/)~'(S)-homotopy, and

(M x {i})n/-'(* x[-i.5, oo))c »,-'/-'(* x(l, oo)).

The construction of v, is similar to the construction of u,.

The last step is to find an isotopy wt: M X [0, 1] —» M X [0, 1] such that w0 = id,

w, is supported on f~\X X [—1.5, 1.5]), wxuxf~\X X [0, oo)) is close to the set

f~\X X [1.4, oo)) u [(M X {1}) n r\X X [- 1.5, oo))], and wt is a (Pxf)~\8)-
homotopy. We can easily construct w, by moving along the [0, l]-factor. Then

ft, = 13,^,1/, and ft = ft, fulfill our requirements. (The confused reader should draw

a picture.)   □

We now establish a generalization of Lemma 3.1. For notation let 8: R -* R be a

homeomorphism which is supported on [— 1, 1].

Lemma 3.2. For every e > 0 there exists a 8 > 0 so that iff: M —* X X R is as in

Lemma 3.1, then there exists a homeomorphism 8: M —> M which is supported on

f~l(X X [ — 2, 2]) and for which d(f8, (id^ X 8)f) < e. Moreover we can construct 8

so that there is a (pxf)~1(e)-homotopy of 8 to id.

Proof. We start by choosing a fine partition of [—1,1], — 1 = x0<xx

< ■ ■ ■ < xn_x < xn — 1. We will use Lemma 3.1 to construct a "stacking," i.e., a

homeomorphism 8: M -> M which is supported on/_'(Ar X [-2, 2]), which satis-

fies d(pxß,pxf) < e/2, and which also satisfies

f-\X x(-a>,0(*,_,)]) C 8f-\X x(-oo,x,.]) c/-'(* x(-c,9(xi)]),
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for 1 </< « - 1. If the support of 8 is sufficiently close to f~\X X [—1, 1]), and

if the partition {x¡} is sufficiently fine, then we will clearly have d(ß, (id X 9)f) <

e. The homotopy of 8 to id will be clear from the construction. We will actually

construct 8 as a composition, 8 = 9n_x ° • • • ° 8X. The working procedure is to

assume that 8 is small enough to perform all of the ensuing constructions. Just to

make sure that there is no confusion, here is the order of choices: First the

partition {x¡} is chosen, then 8 is calculated in terms of this choice.

We start by constructing 8X. By Lemma 3.1 there is a homeomorphism 9X:

M-» M which is supported onf~x(X X [—1, 1]), for which d(pxf8x,pxf) is small,

and for which

f-\X X(-oo, -1])C #,/-'(* X(-oo,xx])czf-x(Xx(-ao,8(xx)]).   (*)

Note that the first inclusion will be automatically satisfied provided that 8X is

supported on f~x(X X [-1, 1]).

We will construct 82 as a composition, 82 = 82 ° 8'2. It will be supported on

8xf~x(X X [xx, 1]), so the inclusion (*) will be automatically preserved. The

homeomorphism 82 comes from Lemma 3.1. It is supported on 8xf~x(X X [xx, 1])

so that d(pxf8'2,pxf) is small and so that

S~\X x(-^,8(xl)])c8¡8J-x(X x(-^,x2]).

The homeomorphism 82" also comes from Lemma 3.1. It is supported on

f~x(X X [8(xx), 1]) (thus preserving the above inclusion) so that d(pxß2,pxf)

is small and so that 92"9¡9xf-l(X X (-oo, x2\) cf~\X X (- oo, 9(xjf).Putting

together these two inclusions we have

f-\X x(-oo,0(x,)]) ^8^8^8xf-\X x(-oo,x2])c/-*(* x(-oo, 8(x2)}).

Therefore 82 = 82 ° 8'2 fulfills our requirements.3

It is now clear that we can inductively continue this process to construct our

desired 9„ 1 < / < n — 1.    □

We are now ready for our main result. For notation let A' be a space with a

specified metric, let <p: X —» [0, oo) be proper, and for each t G [0, oo) let X, =

<p~]([0, t]). Let 8,: R -» R be an isotopy, / G [0, oo), which is supported on [— 1, 1]

and for which 8, = id for t > 1. This induces a homeomorphism 9: X X R —» X X

R defined by 8(x, r) = (x, 8^x)(r)). It is supported on Xx X [ — 1, 1].

Theorem 3.3. For every e > 0 there exists a 8 > 0 such that if M is a Q-manifold

and f: M —» X X R is a 8-fibration over X3 X [ — 3, 3], ffte« there exists a homeomor-

phism 8: M —>• M which is supported on f~x(X2 X [ — 2,2]) and which satisfies

d(fô> 9f) < e. Moreover, for every ¡u > 0 there exists a v > 0 such that if f is

additionally given to be a v-fibration over (X3 — Xx,3) X [ — 3, 3], then the homeo-

morphism 9: M —> M additionally satisfies d(ß, 9f) < ¡x over (X — X2/3) X R.

Also (as in Lemma 3.2), there is a homotopy of 9 to id which is supported on

3It should be apparent to the reader that each time any of these engulfing moves is constructed, we

must actually engulf a little more than is indicated in the above inclusions so that the process can be

continued at the next stage.
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/ \X2 X [ — 2, 2]), which is a (pxf) \e)-homotopy (globally), and a

(pxf)~~l(ti)-homotopy over (X — X2,3) X R.

Remarks on Proof. This is similar to the proof of Lemma 3.2. First one

establishes a basic engulfing result which is similar to Lemma 3.1. Then (imitating

the proof of Lemma 3.2) these basic engulfing moves are inductively "stacked" in

order to produce our desired homeomorphism 9 satisfying d(ß, 8f) < e. To achieve

the second half of Theorem 3.3 all one has to do is use the »'-control on the

homotopies over (X3 — Xx/3) X [ — 3, 3] to further refine the above "stacking" so

that we have d(ß, 8f) < fi over (X - X2/3) X R.    □

4. Wrapping up. In this section we will establish some results on wrapping up

maps around Sx. Our main result is Theorem 4.3, but as in §3 we will treat the

simpler global version first in Lemma 4.1 below. It is concerned with the problem

of wrapping up S-fibrations around S\ Theorem 4.2 is the analogue of Lemma 4.1

for wrapping up S-equivalences around S1. For notation let e: Ä—»S1 be the

covering projection defined by e(x) = exp(mx/4), and let A' be a compact ANR

with a specified metric.

Lemma 4.1. For every e > 0 there exists a 8 > 0 such that if M is a Q-manifold

and f: M —» X X R is a 8-fibration over X X [ — 3,3], then there is a compact

Q-manifold M, a map f: M->ï Xi1 which is an e-fibration, and an open

embedding <p: /~'(A" X(—1, 1))—» M for which the following diagram commutes:

M -L X X S}

cpl |id X e

f~\X X(-l, 1))      L      AX (-1,1)

Proof. We begin by constructing M. By Lemma 3.2 we can find a homotopy ft,:

idw es ft, which is supported on f~x(X X [ — 2.5, 2.5]), such that pxfh, is close to

pxf, and such that ft, is a homeomorphism for whichp2fhxf~l(X X { — /}) is close

to {/ + 4}, for 1.8 < t < 2.2. (Recall that/?, denotes projection to X, and here we

usep2 to denote projection to R.) Let

y = hxr\X x(-oo, -2]) -f~l(X X (-oo, -2)),

which is a compactum in M. Now define M = Y/ ~, where ~ is the equivalence

relation on Y generated by x ~ hx(x), for all x G/~'(A" X {—2}). It is clear that

M is a compact Q-manifold.

We now define the map/: M—> X X Sl. We can represent S1 as [ — 2, 2]/~,

where — is generated by —2 — 2. Thus/-'(A" X (— 1, 1)) is naturally identified as

an open subset of M and (—1, 1) is naturally identified as an open subset of S'. So

we may regard <p and e\(— 1, 1) as inclusion maps in the commutative rectangle

above. Now define a map g: Y —» X X [ — 2, 2] as follows. The Ä-component of g,

p2g, sends f~\X X {-2}) to -2, it sends hxf~l(X X {-2}) to +2, and other-

wise it is close top2f\ Y. For the definition of/j, g we will need the homotopy

ft,-' = «,_,«,"': id^hx~\
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By the Estimated Homotopy Extension Theorem we can find a homotopy e,:

Y^>X for which e0 -pJ\Y, e, = pj on /~'(A X {-2}), e, = pxfh~x on

ft,f~x(X X {-2}), and pxet is close to pxf\Y. Then define pxg = ex. Note that

g =/ on f~x(X X {-2}) and g = fhxx on hxf~x(X X {-2}). Thus g factors

through the appropriate equivalence relations to yield a map /: M —* X X S '

which makes the above rectangle commute.

There remains the problem of proving that / is an e-fibration. We clearly have a

y-homotopy g ~ f\ Y, where y is a small number. Thus by Proposition 2.2 it

suffices to find a neighborhood of A X {*} (where * is the point of 5' to which 2

and —2 have been identified) over which/is an e, -fibration, for e, small. Let

U = ft,/"'(A X (-oo, -1.8)) -/"'(A x(-oo, 1.8])

and define g': U -> X X (1.8, 2.2) by lettingp2g' = p2g on U n Y,p2g' = p2ghx '

+ 4 on U - Y, pxg' = px g on U n Y, and px g' = px gft," ' on U - Y. It is clear

that we may regard U as an open subset of M and X X (1.8, 2.2) as an open subset

of X X S ' so that /| U = g'. Thus if we can prove that g' is an e,-fibration over

X X [1.9, 2.1], then / will be an e,-fibration over a neighborhood of A" X {*} as

desired.

By construction p2g' is close top2f\U; thus there is a small homotopy p2g' es

/>2/|/7. We have a homotopy/>,g' es u, where w: I/-* A is defined by u = pxg on

t/ n y and « = pxfhxx on t/ — y. This comes quickly from the homotopy e,_,:

pxg ~pxfie\fx(X X {—2}). Now applying the homotopy ex_, again to U n Y

and extending it over U we easily get a homotopy u ~/>,/|[/. Putting all of this

together we have a y-homotopy g' cs /| U, where y is small. Thus g' is an e,-fibra-

tion over A X [1.9, 2.1] as desired.    □

We are now ready for our analogue of Lemma 4.1 for 5-equivalences. In the

following statement p will always denote projection to X X R and q will always

denote projection to A X Sx, where X is again a compact ANR.

Theorem 4.2. For every e > 0 there exists a 8 > 0 such that if M is Q-manifold, F

is a compact ANR, and f: M ^* X X F X R is a p~ '(8)- equivalence over X X F X

[ — 3, 3], then there is a compact Q-manifold M, a q "'(e)- equivalence f: M —» X X F

X Sx, and an open embedding <p: fx(X X F X (— 1, 1)) -» M for which the follow-

ing diagram commutes:

M L X X F X 5'

<PÎ fid X e

/"'(A X FX (-1, 1))      4-      XxFx(-\,\)

Remarks on Proof. This goes almost word-for-word like the proof of Lemma

4.1.    □

The following notation will be needed for Theorem 4.3. Let A be an ANR with a

specified metric and let <p: X —> [0, oo) be a proper map. For each t G [0, oo) let

A, = (p~'([0, /]), which is a compactum in X.
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Theorem 4.3. For every e > 0 there exists a 8 > 0 such that if M is a Q-manifold

and f: M'•-» X X R is a 8-fibration over X3 X [ — 3, 3], then there exists a Q-mani-

fold M, a map f: M -* X25 X S ' which is an e-fibration over X2X Sx, and an open

embedding <p:f~ X(XX X (—1, 1)) —» M so that the following diagram commutes:

M

<pî

/"*(*. x(

Moreover, for every ju, > 0 there exists a v > 0 such that if f is additionally given to

be a v-fibration over (X3 — Xx/3) X [ — 3, 3], then the map f: M -+ X25 X Sx is

additionally a fi-fibration over (X2 — X2,3) X Sx.

Remarks on Proof. This is similar to the poof of Lemma 4.1. The only

significant change that must be made is that Theorem 3.3 is used in lieu of Lemma

3.2.    □

5. A handle lemma. The purpose of this section is to establish a result which is

best described as a handle lemma for Theorem 1. Continuing the strategy of §§3

and 4 we first establish the global version (Lemma 5.1) and then quickly obtain the

more general version (Theorem 5.2) as a corollary of the proof.

Lemma 5.1. // e > 0 and « > 0 are given, then there exists a 8 > 0 so that for

every ¡i > 0, Q-manifold M, and map f: M —» R" which is a 8-fibration over B",

there is a map f: M -h> R" which is a ¡i-fibration over B" and which is e-homotopic to

f rel M - /-'(Í3").

Proof. We begin by introducing some notation. Let e: R^>SX be the covering

projection defined in §4 and let e" = e X ■ ■ ■ Xe: R" —» T" be the product

covering projection. Thus e"\B3: B3 —> T" is an embedding. We regard T"1-1 x R

as a open subset of i3" so that e""1 X id: B2 -h> B£ is the identity (see [11, §8]).

Now consider the restriction f\: f^x(T"~x X R) ^ T"-x X R. If 8 is small

enough, then f\ is a 5-fibration over T"~x X [ — 3, 3]. By Lemma 4.1 there is a

compact g-manifold A/', a map/': M' —> T" which is a 8'-fibration, and an open

embedding <p: f-^T"'1 X ( — 2,2)) —> M' so that the following diagram com-

mutes:

fid X e

jn-\   x  (_2, 2)

Recall that the size of 8' depends on the size of 8. In the remainder of the proof it

will be convenient to regard <p as an inclusion mapping.

We now unwrap all of this. By passing to covering spaces we obtain /":

M" —> R" which makes the following pull-back diagram commute:

—*        ^2.5 x $

fid X e

1,1))     4     Á,X(-1, 1)

M'

/-'(r-'xí-u))
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M"     f~*      R"

Pi ïe"

M'      f->      T"

M" is defined to be the subspace of M' X R" consisting of all pairs (x,y) for

which f'(x) = e"(y). The maps/? and/" are restrictions of projection maps.

Assertion. M" is a Q-manifold and we can choose notation so that f" = f over B2.

Also f" is a 8"-fibration (globally), where the size of 8" depends on the size of 8'.

Proof. Since e": R" -* T" is an immersion (i.e., locally an open embedding) and

this is a pull-back diagram, it follows that the vertical map p: M" —» M' is also an

immersion. Thus M" is a g-manifold. We chose e"~x X id: B2 —> B2 to be the

identity, and from this it easily follows that/>|: (f")~x(B2) —>/~'(i?2) is a homeo-

morphism. Thus we can choose notation so that/" = /over B2.

To see that/" is a 8"-fibration let F: Z X I -> R" and F0: Z -> M" be maps for

which f"F0 = F0. Then e"F: Z X I -* T" and pF0: Z —> M' are maps for which

f'pF0 = e"F0. Since/' is a 8'-fibration, there is a map H: Z X I —» M' for which

H0 = pF0 and/'// is ô'-close to e"F. Using the fact that/?: M" -» M' is a fibration

we can lift H to G: Z X I ^> M" so that G0 = F0. Thus /" is a 8"-fibration.

Alternately one could also invoke Proposition 2.2 to conclude that/" is a 8"-fibra-

tion.    □

We now modify the map /". Choose K > 0 large and let y: R" —» R" be a

radially-defined homeomorphism which takes B£ to B3 and keeps B2 pointwise

fixed. Now define / = y/": M" -+R". Clearly / = / over fi2", / is a «'"-fibration,

and / is a /x-fibration over R " — B3, where the size of ju. depends on the size of

1/K, and the size of 5'" depends on the size of 8".

The next step is to modify the map /. Let 8: /?"-»/?" be a homeomorphism

which is supported on 58" and which is defined to be 9(xx, x2, . . ., xn) = (xx +

5, x2, . . . , xn) on B2. This can be done so that 9 only affects the first coordinate of

R". Note that 9(B2) c R" - ¿3". By the first part of Theorem 3.3 there is a

homeomorphism 9: M" —* M" so that ß is e"-close to Of, where the size of e"

depends on the size of 8'". Define/ = 9~xf0: M" —> R". This is a u-fibration over

BX5. Moreover we observe that there is a homotopy of/to/, where the size of this

homotopy depends on the size of e".

Define/: M -+ R" to be/over B^, to be/over R" - i2", and over 52" - ¿,"5 we

let/be defined by the homotopy / ^ / described above. It is clear that / fulfills our

requirements.    □

Before giving the statement of Theorem 5.2 we will have to introduce some more

notation. Let A be a compact ANR and let c(X) denote the cone over X. More

precisely, let c(X) = X X [0, oo]/~ , where — is the equivalence relation gener-

ated by (x, 0) — (x', 0), for all x, x' G X. Similarly let c(X) = X X [0, oo)/~

denote the open cone over X, and for any t G [0, oo] let c,(X) = X X [0, /]/— and

ct(X) = X X [0, 0/~ •
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Theorem 5.2. If e. > 0 and « > 0 are given, then there exists a 8 > 0 such that the

following is true: for every \i > 0 there exists a v > 0 so that if M is a Q-manifold

and f: M—* c(X) X R" is a 8-fibration over c3(X) X B", and a v-fibration over

[c3(X) - cx/3(X)] X B3, then there is a map f: M -> c(X) X R" which is a n-fibra-

tion over cx(X) X B" and which is e-homotopic to f rel M — f~x(c2/3(X) X B3).

Remarks on Proof. For « > 1 the proof is similar to the proof of Lemma 5.1.

There are only two places in which any significant changes must be made.

The first occurs in the wrapping up procedure. In the more general case that we

are dealing with, Theorem 4.3 must be used in lieu of Lemma 4.1 in order to

accommodate the c(A)-factor. The second occurs in the construction of the map

/ = y/", where y is a "radial squeeze" towards the origin. In this more general case,

y: c(X) X R" —> c(X) X R" is a homeomorphism which is a composition y = y2y,,

where y, gives a squeeze to R" towards the origin and y2 gives a squeeze to c(X)

towards the vertex. This device of squeezing towards the vertex is amply illustrated

in the case « = 0 below.

We now treat the case « = 0, which is not covered in the proof of Lemma 5.1.

We are given e > 0, ¡u > 0 and a proper map /: M —> c(X) which is a 5-fibration

over c3(X) and a »»-fibration over c3(X) — cx/3(X). Choose t close to 0 and let 9:

c(X) -^ c(X) be a homeomorphism which is supported on c2,3(X) — c,,2(X) and

which takes ct(X) to c,/2(A). This can be done so that 0 affects only the

[0, oo)-coordinates in c(X). By Lemma 3.1 there is a homeomorphism 9: M —> M

for whichß~l is 5-close to 8~'/, where the size of 8 is dependent on the size of 5.

Then /' = 8~xf8: M-» c(X) is a /¡-fibration over c3(X) — c,(X) and which is

e/2-homotopic to /rel M — f~x(c2/3(X)), where the e/2-homotopy comes from

Lemma 3.1 and ß depends on the size of v. Let y: c(A")—» c(X) be a homeomor-

phism which is supported on c2/3(A) and which squeezes c,(X) close to the vertex.

It is then clear that / = y/' fulfills our requirements.    □

6. Proof of Theorem 1 and its corollary. We have divided the proof of Theorem 1

into three cases which are treated in order of increasing generality. They are: B is a

polyhedron, B is a ß-manifold, and B is an ANR.

I. B is a polyhedron. We are given a ß-fibration /: M —> B. We will construct

sequences {/} and {ß} such that/: M -^> B is a ß-fibration, lim,^^ mesh(ß,) =

0, where

mesh(ß) = lub{diam(í/)|t/ G ß,},

/ is close to /, and p = lim,^^ /: M —> B is a proper map. Certainly p must be

close to /, and to see that p is an approximate fibration it suffices (by Proposition

2.2) to show that for every compactum C c B and open cover y of B, p is a

y-fibration over C. So suppose that we have maps F: Z X I -^ C and F0:

Z -^>p~x(C) such that pF0 = F0. If i is large, then there is a small homotopy of

p\pX{C) to f¡\p~x(C). SincepF0 = F0 this gives us a small homotopy of F0 to f¡F0.

By the Estimated Homotopy Extension Theorem we can get a small homotopy

F o=l F' so that F¿ = f¡F0. Since / has the ß,-lifting property we have a map G:
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Z X / —> M so that G0 = F0 and /G is ß-close to F'. Then pG is close to F as

desired.

All that remains to be done for this case is the verification of the existence of the

sequences {/} and {ß}. They are inductively chosen by the following

Assertion. For every open cover a of B there exists an open cover ß of B so that the

following is true: if M is a Q-manifold and f: M —* B is a ß-fibration, then for every

open cover y of B there exists a y -fibration f ': M —> B which is a-close to f.

Proof. We will need a "handle decomposition" of B. Assume that B has a fixed

triangulation and for each barycenter b G B let Cb be the closed star of b in the

second barycentric subdivision of B. Recalling the cone notation of §5 we can

regard each Cb as cx(Xb) X B", where Xb is a compact polyhedron and B" is a

neighborhood of b in the simplex of which b is the barycenter. By enlarging Cb

slightly we obtain an open set in B of the form c(Xb) X R" so that Cb is identified

with cx(Xb) X B" c c(Xb) X R". (If b is the barycenter of a principal simplex, then

we let c(Xb) = {ft} for convenience.) If the choices are correctly made, then for any

fixed integer k the sets c(Xb) X R k are pairwise-disjoint.

If B is compact then the procedure is standard. Let dim B = n and consider the

collection {c(Xb X R")\b is the barycenter of some «-simplex}. The open sets of

this collection are pairwise-disjoint, so the handle lemma of §5 can be applied to

each of them (independently). Since c(Xb) = {ft} we only need Lemma 5.1. If ß is

sufficiently fine, then Lemma 5.1 yields a ß,-fibration/,: M —* B which is close to/

and which is a y,-fibration over a neighborhood of S„ = U {Cb\b is the barycenter

of some «-simplex}, where mesh(ß,) depends on mesh(ß) and mesh(y,) can be

chosen as small as we want. This completes the first step of the construction.

The next step is to treat similarly the open sets c(Xb) X R"~x, where ft is the

barycenter of some (n — l)-simplex. In this case we use the full strength of the

handle lemma (i.e., Theorem 5.2) to find similarly a ß2-fibration/2: M —> B which

is close to/, and which a y2-fibration over a neighborhood of Sn U S„_x, where

S„_, = U {Cb\b is the barycenter of some (« - l)-simplex}, where meshißj)

depends on mesh(ß,), and where mesh(y2) depends on mesh(y,). This completes

the second step of the construction. It is now clear that one can continue in this

manner until all of the handles in B are exhausted.

If B is not compact, then one writes B as a union of compact subpolyhedra,

B = U B¡, so that B¡ n B} = 0 for |/' — j\ > 2. Then the above procedure for the

compact case is applied to the B2i_x (independently) to produce a ß0-fibration/0:

M —» B which is close to / and which is a y0-fibration over a neighborhood of

U B2i_x, where on any B2i_x mesh(ß0) depends on mesh(ß) and mesh(y0) can be

made as small as we want. Again applying the procedure for the compact case to

the B2i (independently) we produce our desired y-fibration/': M -> B which is

a-close to/    □

II. B is a Q-manifold. Let /: M -^ B be a ß-fibration, where B is a g-manifold.

According to the proof of the polyhedral case, it suffices to prove that for every

open cover y of B, f is a-close to a y-fibration. Choose a factorization, B = Bx X

Q, where Bx is a polyhedron and so that each {x} X Q is small with respect to the

open cover a. Letp — proj: B —» Bx.
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Assertion l.pf: M —» Bx is a ßx-fibration, where ß, = p(ß) = {p(U)\ U G ß}.

Proof. Let F: Z X I -h> Bx and F0: Z -» M be maps such that pfF0 = F0. Define

H: Z X I^BX XQ by H(z, t) = (F(z,t),PQfF0(z)), where pQ = proj: B -» ß.

Note that //0 = /F0 and /?// = F. Since / is a ß-fibration, there is a map //:

Z X / —> M such that 7/0 = F0 and such that fH is ß-close to H. Then /?/// is

ß,-close top H = F and we are done.    □

If y, is any open cover of Bx, then we can use the polyhedral case to find a

y,-fibration/: M-* Bx which is close topf. This cover y, can be chosen as fine as

we want provided that a correspondingly fine choice of ß is made.

Assertion 2. If y, is sufficiently fine, then f X id: M X Q —» Bx X Q is a y-fibra-

tion.

Proof. Let F: Z X / -* Bxx Q and F0: Z -» M X Q be maps such that

^o = (/ x id)F0. If Pm = ProJ: W X G; —> M, then we clearly have a map G:

Z X I —> M such that /G is y,-close to pF and such that G0 = pMF0. Define G:

Z X I-> M X Qby G(z, t) = (G(z, t),pQF(z, t)). Then G0 = F0 and (/ X id)G is

y-close to F.    fj

Now let u: M X Q —» A/ be a homeomorphism which is close to projection.

Then/' = (/ X id)w~': A/—» 2? is a y-fibration which is a-close to/because of the

size of the sets {x} X Q. This completes the ß-manifold case.

III. B is an ANR. Again it suffices to show that the ß-fibration /: M —» B is

a-close to a y-fibration. By Assertion 2 above it follows that/ X id: M X Q -h> B

X g is a ß,-fibration, where ß, can be made as fine as we want provided that we

make a correspondingly fine choice of ß. Since B X Q is a g-manifold [6, p. 106],

we can use the g-manifold case above to find a y,-fibration/: M X Q -* B X Q

which is close to/ X id. We can choose y, as fine as we want. If u: M X Q —> M is

a homeomorphism close to projection, then

u ~ ' / Pr°j

/': M -» M X Q^B X Q-* B

is a y-fibration which is a-close to / (see Assertion 1 above). This completes the

proof of the ANR case and therefore the proof of Theorem 1.

Proof of Corollary. Since Ä"is finitely dominated, K X Sx has the homotopy

type of a compact polyhedron [15]. Thus there is a compact ß-manifold A/, and a

homotopy equivalence /,: A/, —» Â" X Sx. Let v: Sx —» S' be the map v(z) = z"

(the standard «-fold covering map), and form the pull-back diagram:

M      -*     K X 5'

4 lid X v

Mx      -^      K X Sx

Then M is a compact ^-manifold and /: M -^ K X S ' is still a homotopy

equivalence. More importantly, proj ° /: M —> 5 ' is an e-fibration, where e = e(«)

is small if « is large. This is an easy exercise using the basic properties of covering

spaces. By Theorem 1 we have proj ° f homo topic to an approximate fibration/?:

M —» Sx. The homotopy fiber of/? is homotopy equivalent to the homotopy fiber of
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proj : K X S ' —> 5 ' because the homotopy fiber is an invariant of homotopy type.

But the homotopy fiber of proj: K X Sx -* Sx is K.4   □

7. Some preliminaries for Theorem 2. The purpose of this section is twofold: first

we recall some well-known facts from simple homotopy theory and algebraic

/^-theory, and then we put all of this material together to establish some lemmas

which will be needed for the proof of Theorem 2.

We begin by recalling the geometric interpretation of the Whitehead group of a

compact polyhedron which is given in [8, §6]. For any compact polyhedron L the

Whitehead group of L, Wh(L), can be realized geometrically as the set of all

equivalence classes [K, L], where (K, L) is a compact polyhedral pair for which K

strong deformation retracts to L. Two of these equivalence classes, [K, L] and

[K', L], are equal provided that there is a simple homotopy equivalence g: K -» K'

for which the following homotopy commutes:

K L, K'

L

Each equivalence class represents the torsion, t(/), of a strong deformation

retraction/: K —> L.

Now let q: L -» B be a map to some compact parameter space. We say that the

torsion [K, L] is a q ~ '(e)-torsion provided that we can choose a strong deformation

retraction /: Ä"—► L for which /—id rel L via a 9~'(e)-homotopy. We call / a

q~x(e)-strong deformation retraction. It is obvious that if [K, L] and [K', L] are

<7"'(e)-torsions, then so is the sum [K, L] + [K\ L] = [K \J L K', L]. On p. 21 of

[8] there is given a geometric construction of the inverse, — [K, L], of a torsion

[K, L]. It follows from this that for every e > 0 there exists a 8 > 0 so that if [K, L]

is a <7~'(5)-torsion, then — [K, L] is a q~'(e)-torsion. In fact we may choose

8 = e/3, and to prove this all we need is the following result: ///: K —> L is a

q~x(8)-strong deformation retraction and c: M(f) —* L is the collapse of the mapping

cylinder to its base, then there is a (qc)~x(38)-strong deformation retraction of M(f)

to the top K. This is an easy exercise using the Estimated Homotopy Extension

Theorem and the construction of [17, p. 31] for converting a weak deformation

retraction to a strong deformation retraction.

Our main object of concern in this section is the fundamental theorem of

algebraic Ä"-theory [2, Chapter XII]. In what follows q will denote projection to Sx,

the set of complex numbers of modulus 1. For any compact polyhedron L there is

a functorial direct sum decomposition,

Wh(5" X L) = Wh(L) 0 K0(L) 0 Nil(L), (*)

where Nil(L) is a term which will be of no use to us. The canonical injection

Wh(L)^ Wh(S' X L) is realized geometrically by the rule [K, L]\-+[(SX X L) u

({1} X K), Sx X L].  It follows that the torsions in Wh(S' X L) which lie in

4This is clarified by the fact that the homotopy fiber of p is shape equivalent top~'(z), for all z e S '

[13].
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Wh(L) are all çr~'(e)-torsions, for any e > 0. The canonical retraction Wh(S' X L)

-* Wh(L) is realized geometrically by the rule [K, Sx X L] \-+[K u (D2 X L), {1}

X L], where Z>2 is the disc bounding Sx and K n (D2 X L) = Sx X L.

The canonical injection K0(L)-^> Wh(Sx X L) is not quite as easy to realize

geometrically. Assuming that L is connected let [P] G K0(L), where F is a finitely

generated projective Z[77,(L)]-module. (If L is not connected, then we can direct

sum over the components.) Choose another f.g. projective Z[77,(L)]-module P' for

which P © P' is free of dimension k. Let A = L V (Vf=i S/2), which is the space

formed by wedging a bouquet of k 2-spheres with L, and let Y = (S ' X L) u ({1}

X X). The canonical injection K0(L)^Wh(Sl X L) will send [P] to [Y, Sx X L],

where Y is the space formed by attaching k 3-cells to Y via attaching maps ^

which are described as follows. Let * G Y be the wedge point and for each /' let q>¡:

(S2, 60) —> (iS,-2, *) be a homeomorphism. The homotopy classes [<p,.] are the free

generators of the Z[77-,(L)]-module ir2(X, L). Also there is an isomorphism of

Z[w,(L)]-modules, -n2(X, L) « F © P'. The retraction F © P' -> P induces a

Z[7r,(L)]-module homomorphism a: tt2(X, L)—» tt2(X, L). Now identify each [q>¡]

with its natural image in 772(y, Sx X L) and let ip¡: (S2, b0) —>(Y, *) represent the

homotopy class a[<p¡] + t(l — a)[<pj, where multiplication by t indicates the action

of the generator of w,(S') C ttx(Y) on ir2(Y, Sx X L). Then Y is formed by

attaching 3-cells to Y via the attaching maps ^¡, 1 < i < k. This completes the

description of the injection K0(L) —> Wh(S ' X L).

The above construction for the injection A^(L)—>Wh(S' X L) can be iterated

by wedging on the bouquets \/f= i S* any finite number of times around Sx X L,

and then attaching corresponding blocks of k 3-cells to kill the generators of

ir2(Y, Sx X L). This "stacking" procedure yields the same homomorphism of K0(L)

into Wh(Sx X L), and it is also the same one that is obtained upon passage to

standard finite covers of Sx by taking pull-backs as in the proof of the Corollary of

Theorem 1. It then follows that each torsion in Wh(S' X L) which lies in K0(L) is

a <7~'(e)-torsion for any e > 0. We summarize the situation as follows.

Lemma 7.1. Any torsion in Wh(5' X L) which lies in Wh(L) © K0(L) is a

q~ x(e)-torsion, for any e > 0.

Here is a result which says that Lemma 7.1 is the best possible result.

Lemma 7.2. There exists an e > 0 so that if K, L are compact polyhedra and [K, L]

is a q~x(e)-torsion in Wh(Sx X L), then [K, L] G Wh(L) © K0(L).

Proof. If t, is the component of [K, L] in KQ(L) c Wh(5' X L), then by the

above remarks the torsion — t, is also a ^_'(e)-torsion. Thus we can find a

compact polyhedral pair (J, Sx X L) so that [J, Sx X L] = [K, L] - t, is a

<7"'(e)-torsion. So all we have to do is prove that [J, Sx X L] G Wh(L) c

Wh(5' X L).

In what follows it will be convenient to assume that / is a compact g-manifold.

The Classification Theorem of [6, Chapter 12] assures us that there is no loss of

generality in making such an assumption. Let e: R —* Sx be the covering projection
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used in §4 and form the pull-back diagram:

/

si

J

where /: J^> Sx X L is a q~'(e)-strong deformation retraction. Then / is a

/?~'(ô)-equivalence, where/? = projection to R and 8 is small. There is an obstruc-

tion in K0(L) to splitting /, i.e., to finding a compact bicollared g-manifold M c /

so that M ^-> / is a homotopy equivalence [6, Chapter IX]. By Proposition 4.7 of

[16] this obstruction in K0(L) is the A^(L)-component of t(/) = [J, L], which is 0.

Thus the splitting manifold M <z J exists. By Lemma 3.2 we can assume that

M c /~'((— 1, 1) X L), and so 5: M —» J is an embedding. This enables us to write

J = A \j B and homotope/to/': J -» Sx X L so that

(1) A and B are compact g-manifolds such that A n B = A/, u A/2, where

A/,, A/2 are (2-manifolds obtained in a manner similar to s(M) and A/, n M2 = 0;

(2) MX'L+ A and Mx'L-> B are homotopy equivalences;

(3) /'(^) = Sj X L, f'(B) = SXBX L, and /'(A/, u M2) = {a„ a2} X L, where

S] and S g are arcs in 5 ' which meet in {a,, a2) ;

(4) /'|^: ,4 -> Sj X L, /'|fi: fi^SJXL, /'|A/,: A/, -» {a,} X L, and /'|A/2:

A/2 —» {a2} X L are all homotopy equivalences.

By the Sum Theorem for Whitehead torsion [8, p. 76], we conclude that

t(/') G Wh(L) as desired.    □

The remainder of this section is concerned with generalizations of Lemma 7.1

and 7.2. We may write the «-torus as T" = S¡ X ■ ■ ■ X Sx, and for each i we

define F,""' = 5,' X • • • X5,' X • • • XSX. Then for each i we get a factoriza-

tion T" = 5,' X T"~x, which gives us a direct sum decomposition

Wh(F" X L) = Wh(F,"-' XL)© K^T?-1 XL)® Ni^F,"-' X L).

We define Kx_n(L) = fl ,"_i K0(T¡"~X X L), which then gives us the direct sum

decomposition mentioned in §1 (see [1, p. 220]):

Wh(F" X L) = Wh(L) © ¿ ( n\kx_i(L) © Nil terms.
i=i^ ' '

In what follows q will denote projection to T".

Lemma 7.3. Any torsion in Wh(F" X L) which lies in Wh(L) © 2,"_,(")£,_/L) is

a q~x(e)-torsion, for any e > 0.

Proof. The proof is by induction on «, with the case « = 1 having been done in

Lemma 7.1. Looking at the inductive step we now assume the result to be true for

some «, and then prove it to be true for « + 1. For n + 1 the direct sum

decompositions mentioned above become

R X L

le X id

Sx X L

Wh(Fn+1 X L) = WhtTj" XL)© K0(T,n XL)© Nil(F," X L)
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and

n + 1  / . -,

Wh(F"+1 X L) = Wh(L) © 2 ( " +    )K\-i(L) © Nil terms.
i = i \     '     '

If q¡: T" X L —> T" is projection, then our inductive hypothesis says that each

torsion in the subgroup G¡ = Wh(L) © 2?_, 0#,_,(L) of Wh(7)" X L) is a

^r "(e)-torsion, for any e > 0. From the manner in which the injection

Wh(F," X L)^Wh(Tn + x X L)

was described at the begining of this section, we conclude that each torsion in the

subgroup G, of Wh(F"+1 X L) is a <7~'(e)-torsion, for any e > 0, where q:

Tn+X X L-> F"+l is projection. Each torsion in 2"_,("t')^,_,(L) lies in one of

the G,'s; thus each torsion in Wh(L) © 2?_, (n+ix)Kx_i(L) is a 9~'(e)-torsion, for

any e > 0.

The only torsions left to examine are those in

n+\

K_n(L) -  Pi   K¿J? X L).
i=i

In the paragraph preceding Lemma 7.1 we have already observed that the torsions

in K0(T" X L) are invariant under passage to standard finite covers of the

S;.1-factor of Tn+X = Sx X T". Thus the torsions in Kn(L) are invariant under

passage to standard finite covers T*+1 -* Tn*x. Just as in the proof of the

Corollary of Theorem 1, we conclude that any torsion in K_n(L) is a q~'(extor-

sion, for any e > 0.    fj

Lemma 7.4. There exists an e > 0 so that if K, L are compact polyhedra and [K, L]

is a q~ x(e)-torsion in Wh(T" X L), then

[/:,L]GWh(L)©¿(")ie,_,.(L).
i=iv ' '

Proof. Again we induct on «, with the case « = 1 having been done in Lemma

7.2. Assume the result to be true for some « and now consider the case n + 1.

Using the direct sum decomposition,

Wh(F"+1 X L) = Wh(7)" XL)© K^T? XL)© Ni^F/1 X L)

we conclude from Lemma 7.2 that the <7-'(e)-torsion [K, L] lies in Wh(T" XL)®

KQ(T? X L). The canonical retraction of Wh(F"+1 X L) to Wh(F," X L), de-

scribed at the beginning of this section, implies that the component of [K, L] in

Wh(T¡" X L) is a q¡~ '(e,)-torsion, where e, = e,(e) and qt is projection to T". By our

inductive hypothesis we have [K, L] G G, © K0(T" X L), where G, is the group

defined in the proof of Lemma 7.3. This implies that

[K,L]£Wh(L)®"Í:(n+l)Kx_i(L)
i=i v     '     ;

because

"+l "+x i        i\

f] [g, © k0(t? x D] = wh(L) eS" + 1 U,-,(¿)-   □
i = i i = i \     '     '
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8. Proof of Theorem 2. For F a compact Ç-manifold we want to establish a

bijection am: &b(R" X F) äs F,_„(F), for all n > 1. So our first task is to start

with a bounded homotopy equivalence/: A/—» R" X F, M being a <2-manifold,

and show how this gives rise to an element a(f) G Kx_n(F). This will then induce

our desired bijection at. In what follows/? will denote projection toi?" and q will

denote projection to T".

I. Definition of a(f). As in Lemma 5.1 we may regard F"~' X R as an open

subset of B3 so that e"~ ' X id: F2 -> 52 is the identity. Choose ä:o large and let/ó:

M —> F " X F be defined by dividing the R "-component of / by K0. That is,

/ó = (Mo x id)/, where u0: R" —> R" is defined by u0(x) = x/K0. Clearly f¿ is a

/?~'(Ô)-equivalence, for 5 small. By Theorem 1 there is a/?~'(y)-homotopy/ó es f¿':

M —> R" X F for which/?/q is an approximate fibration. Define/0 = (u0 X id)~ lf¿':

M —► R" X F. This is still an approximate fibration, but now we have a bounded

homotopy

/0 = («0 X id)"'/«;' es (u0 X id)~Vo = /

Thus we have a bounded homotopy/^/0, where/, is a/?_'(5)-equivalence. If 8 is

small enough, then/0:/0~'(F"~' X F X F) -> F"-1 X F X Fis a/?"'(^-equiva-

lence over T"'x X [ — 3, 3] X F. By Theorem 4.2 there is a compact 0-manifold

M0 which contains /¿"'(F"-1 X ( — 2, 2) X F) as an open set and a #-'(^-equiva-

lence/,: M0 —> F" X F so that the following rectangle commutes:

/o
A/0 -* F" X F

J fid X e X id

/„"'(F"-' X (-2, 2) X F)      4      F""1 X (-2, 2) X F

Moreover, e can be made small by choosing 8 small. By Lemma 7.4 we have the

torsion t(/0) lying in the subgroup Wh(F) © 2?-, QÂ'i-ii-F) of Wh(F" X F). We

define our desired a(f) G Kx_n(F) to be the component of t(/0) in Kx_n(F).

II. a(/) is we// defined. First we show that a(/) is independent of the choice of/0:

M0 -* T" X F. So suppose that we make another choice of a commutative rectan-

gle:

— /o
m0 -» rxf

J tid X e X id

/0-'(F"-'x (-2, 2) x F)     4.     F""'x (-2, 2) x F

Again A/0 is a compact £?-manifold and/, is a ^~'(e)-equivalence. We must show

that t(/0) and t(/0) have the same component in Kx_n(F). Let

N cf0-x(Tn-x X (-2,2) X F)

be a compact g-manifold which contains f¿~x(Tn~x X [-1, 1] X F) and whose

topological boundary is a bicollared Q-manifold. The given commutative rectan-

gles, along with the Estimated Homotopy Extension Theorem, enable us to find a

homotopy equivalence g: M —> M so that g = id on N, g\: M0 — N —> A/0 — N is a
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homotopy equivalence, and/0g —/0. Then r(g) is just the inclusion-induced image

of T(g|A/0 - Ñ) in Wh(À70). If (/„)„: Wh(Â70) -♦ Wh(F" X F) is the isomorphism

induced by/0, then (f0)t(r(g)) lies in the subgroup Wh(Fn" ' X F) of Wh(F" X F)

which corresponds to the direct sum decomposition

Wh(F" X F) = Wh(F"-' X F) © K0(T"-X X F) © Nil(F"_1 X F).

The homotopy f0g^f0 gives us t(/0) - t(/0) = (/0)+(T(g)). Since KX_„(F) does

not meet Wh(F"~' X F), it follows that the Ä\_„(F)-components of r(f0) and

t(/0) are equal. Thus a(f) is independent of the choice of f0: M0 -» T" X F.

We now show that a(f) is independent of the choice of /„: M —> R" X F. So

suppose that we have bounded homotopies/e±/„ and/^/„ where/, and/, are

/?"'(¿^-equivalences. Choose K large and let u: R" ->• R" be defined by u(x) =

x/K. Then/¿ = (u X id)/0 and/,' = (u X id)/, are /?_'(5)-equivalences for which

pf¿ is close to/?/,'. If we allow K to take on values in the interval [1, K], then we get

a proper homotopy/, ^/ó so that each level is a/?~'(¿^-equivalence. Similarly we

have a proper homotopy/,'^/, so that each level is a/?_'(5)-equivalence. If we

interpose a small homotopy from/¿ to/,', then we get a proper homotopy/:/0 —/,

for which each level is a/?_'(5)-equivalence. Each/ is a/?_'(ô)-equivalence which

determines a ^~'(e)-equivalence/,: Mt—>T"xF making the following rectangle

commute:

M, 4. Tn X F

j |id X e X id

f-\T"-x X (-2, 2) X F)     X     F""' X (-2, 2) X F

Each torsion t(/) has a component in Kx_n(F), and all we need to do is show that

all of these components are the same. Clearly it suffices to show that t(/0) and t(/,)

have the same component in Kx_n(F) provided that/?/, is close to/?/,. We will

actually show that t(/0) and t(/,) have the same component in the direct summand

K0(T"-X X F) of Wh(F" X F) (which contains Kx_n(F)). The following pull-back

diagrams give us proper homotopy equivalences/,: A/0—> T"~l X R X F and/,:

Mx^> F""' X R X F:

T"~x X R X F

|id X e X id

T" X F

By Proposition 4.7 of [16], the component of t(/) in k0(T"~x X F) is just the

splitting obstruction for the g-manifold M¡. Since/?/, is close to/?/,,

if0y\T"-xx(-\,i)xF)

embeds as an open subset of A/,. This implies that the splitting obstructions for A/0

M0     4      F"-1 X R X F        A/,

i ¿id X e X id   |

M0     4 Tn X F Mx
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and Mx coincide,5 and therefore a(f) G Kx_n(F) is independent of the choice of/0:
M^ Rn X F.

III. Definition of a+. Define <v S6(F" X F) -* F,_„(F) by »»([/]) = a(f). To

show that this is well defined all we have left to do is prove that if [/] = [/'], then

a(f) = a(f'). So assume that/: M -» R" X F and/': A/' -> R" X F are bounded

homotopy equivalences, and let ft: M —» A/' be a homeomorphism for which/'ft is

boundedly homotopic to / It follows that o(f) = o(f') by a repetition of the

argument of the preceding paragraph (because topological homeomorphisms pre-

serve splitting obstructions). Thus o: S¿,(F" X F) -* Kx_n(F) is well defined.

IV. a, ¿s one-to-one. It suffices to show that if /: A/ -» fi" X F is a bounded

homotopy equivalence for which o(f) = 0, then / is boundedly homotopic to a

homeomorphism. Recall that o(f) is the component of t(/0) in Kx_n(F), where/,:

A/0 -^ T" X F is a ¿7~'(e)-equivalence for which the following diagram commutes:

/o
A/0 -* T" X F

openf fid X e x id

/„-'(F"'1 X (-2, 2) X F)     X      F""' X (-2, 2) X F

Assertion. There is a compact Q-manifold M and a q -1(e)-equivalence f: M —> T"

X F for which t(/) = a(f) and for which} = /„ ouer e"(F2 ) X F

Proof. By a mapping cylinder construction like that used at the beginning of §7

we may assume that/, is a <7~'(e)-strong deformation retraction and T" X F is a

Z-set in M0. By the Relative Triangulation Theorem [6, p. 83] there is a compact

polyhedral pair (K, T" X L) and a homeomorphism A/0 = K X Q for which

{jc} X F goes to {x} X L X Q, for each x G T". So/0: ixß^rxLxßis

a </~ '(e)-strong deformation retraction. For k large the composition

/o ProJ
r: K X Ik <^> K X Q-> TnXLXQ-+TnxL

is also a <7"'(e)-strong deformation retraction. For any factorization T" = S¡  X

T"~ ', torsions in the subgroup

i

Wh(7)"-' X L) n wh(L)© 2 (")^.-/W

of Wh(F" X L) are realized by <7~'(e)-strong deformation retractions to T" X L.

By using the canonical method of injecting Wh(F,""' X L) into Wh(F" X L),

which was described in §7, we conclude that each element of the above subgroup

can be represented by a torsion [K', T" X L] for which there is a ^"'(e)-strong

deformation retraction /•': K' -^ T" X L such that / = id over e"(B3) X L. If t is

the component of r(r) in Wh(L) © 2"!,' ("i)Kx_i(L), then

i

t G w^F,"-' X L) n Wh(L)© 2   ("j^.jiL)

5This is an easy exercise provided that the reader is armed with (1) the Triangulation Theorem for

g-manifolds, (2) the definition of the splitting obstruction for^: MtI -> T"~' X R X F (see [6, p. 69]),

and (3) the engulfing result Lemma 3.2.
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for some i. Thus there exists a torsion [Kx, T" X L] for which there is a q '(e)-

strong deformation retraction rx : Kx —> T" X L such that r(rx) = r(r) — t and

rx = rover en(B") X L.

Let M = Kx X Q and consider the product

/, = a-, X ide: M^> T" X F.

(For convenience we identify the Q-iactor in M with Qk+X.) Then t(/,) = a(/) and

it is easy to get a </~'(e,)-homotopy /, e¿/so that/ = /0 over e"(B2) X F, where

e, = e,(ft). If /c is large enough, then /is still a 9 ~'(e)-equivalence.    □

Since a(f) = 0,/is homotopic to a homeomorphism ft: A/ —> F" X F Now form

the following pull-back diagram:

M     -4      F" X F

i le" X id

Ä7      L,       T" X F

Recalling that e" ' X id: 52 —> F2 is the identity we can choose notation so that

/ = /0 over F2 X F. Also there is a bounded homotopy of / to a homeomorphism

ft. Moreover it follows from Proposition 2.1 that/is a/?~'(ë)-equivalence, where

é" = ë(e) is small if e is small. Choose K > 0 large and let /,: M->Ä"Xfbe

defined so that (i) it agrees with / over B£_x X F, (ii) it agrees with A over

(R" - É£) X F, and (iii) over (^-¿^,)XF it is defined by using the

bounded homotopy ft — /. (For this it is convenient to assume that

ft-'((F" - È£) X F)    and   /~'(F£_, X F)

are disjoint.) We now refer the reader to the last half of the proof of Lemma 5.1.

Specifically, we refer to the part which follows the proof of the assertion. Repeating

this construction it is easy to get an open embedding g: f¿~x(B2 X F)—» R" X F

which is p ~ '(e,)-homotopic to f0\f¿~x(B2 X F), for some small e, > 0. Then we

obtain a /?'(ô)-equivalence /„: M —» R" X F which is a homeomorphism over

Bxs X Fand which is boundedly homotopic to/0.

To finish the proof we will show that there is a bounded homotopy of /, to a

homeomorphism. Since/, is a/? "'(¿^-equivalence,/?/,: A/—» F" is easily seen to be

a 2ô-fibration. Also/?/, is an a-fibration over BX5, for every open cover a of Bx5. It

follows from Theorem 1 that if 8 is sufficiently small, then there is a small

homotopy of /?/„ rel(/?/0)~'(F"4) to an approximate fibration/?': M —» R". The

small homotopy/?/, ^/?' lifts to a homotopy/, e±/' rel(f0)~x(BXA X F). Thus/1 is

a homeomorphism over B,"2 X F and /?/' = /?' is an approximate fibration. By

Proposition 2.3,/' is a/?~ '(a)-equivalence, for every open cover a of R".

Again using the ideas of the last half of the proof of Lemma 5.1 we can find

homeomorphisms 8: R" -> R", 8: M -^ M so that/2 = (8 X id)~xfx8: M-> F" X

F is a homeomorphism over F2"2 X F and so that /2e±/' rel(/')~'(F," X F).6

Moreover, the F "-component of this homotopy can be made as small as we please

6The map 9 is a radially-defined contraction which takes £2.2 to B".2' ant^ 0 — id on B",.
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by making an appropriate choice of 8. Note that/2 is still a/? '(a)-equivalence, for

every open cover a of R". Repeating this construction we get

f^fre\(f2Yx(BïxF)

so that/3 is a homeomorphism over F3"2 X F,/3 is a/?"'(a)-equivalence for every

a, and so that the F "-component of this homotopy is small. It is then clear that we

can continue this process to get our desired bounded homotopy of /' to the

homeomorphism limn_>00 /".

V. a+ is onto. Choose any torsion t G Kx_n(F) c Wh(F" X F) and let /,:

A/, —» F" X F be a homotopy equivalence of a compact Ç-manifold to F" X F

whose torsion is t. By Lemma 7.3 we can choose/, to be a 9~'(e,)-equivalence,

where e, is small. The pull-back diagram,

M      -4      R" X F

i le" X id

M,      4       T" X F

gives us a/?~'(5)-equivalence, where ¿i is small. We will prove that a(f) = t.

Let/: M-» F" X F be a g~'(e)-equivalence for which the following diagram

commutes (e is small):

M -4 T" X F

J fid X e X id

/-'(F""' X (-2, 2) X F)      ¿^      T"~x X (-2,2) X F

Then o(/) is the component of r(f) in Kx_n(F). Since <?""' X id: B$-*B2 is the

identity we can choose notation so that / = /, over e"(B2) X F. Recalling the

proof of the assertion in step IV above we can represent / and/, by ç-'(e)-strong

deformation retractions f: K —> F" X L, r, : Kx-* T" X L so that r = r, over

e"(F") X L. We need to show that r(r) and r(rx) have the same components in

Kx_n(L). Let r2: K2 —> F" X L be a strong deformation retraction whose torsion is

- r(rx). We assume that F2 is constructed as on p. 21 of [8], and for convenience

we assume that r2 is a 9_1(e)-strong deformation retraction. Then r and r2 piece

together to give us a <7~'(e)-strong deformation retraction f: K = K u K2 —> T" X

L whose torsion is r(r) — r(rx). So all we have to do is prove that the component of

t(F) in kx_„(L) is 0.

On p. 21 of [8] there is given a geometric proof that [F„ T" X L] + [K2, T" X

L] = 0. If we localize this argument over e"(Bx) X L and use the fact that f = rx

over e"(B") X L, then we get a strong deformation retraction r: K —» F" X L

which is the identity over e"(Bx/2) X L and whose torsion is r(r). For convenience

we assume that f is a <7~'(e)-strong deformation retraction. By the proof of the

assertion in step IV we may assume that r(r) G Kx_n(L). So we want to prove that

r(r) = 0. If « = 1, the proof is easy. The condition r = id over e([- \, {-]) X L

means that we must have r(r) lying in the subgroup Wh(L) of Wh(F! X L). By our

assumption that r(r) G K0(L) we must have r(r) = 0.
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Proceeding by induction, choose a factorization F" = Sx X T"~x. The canonical

retraction Wh(F" X L)^> Wh(F""' X L) sends the q ~ '(e)-equivalence f: K-± T"

X L to the ^,"'(e)-equivalence u: J -^T"~l X L, where /=Fu(L>2xF""'x

L),T"~X X L = {1} X TnX X L, and u is the composition

ruid   _, __    , „ retraction   ___i
./ -.   D2 X T"~x X L    -»      TnXXL.

By our assumption that T(r) G Kx_n(L) we have t(«) = 0. Thus step IV implies

that there is an open embedding g: u~x(e"~x(B2~x) X L) X Q -» F"-1 X L X g

which is homotopic to m X id|M~'(e"_'(52~') X L) X g via a homotopy whose

F"~'-component is small.

LetA = Sx - e((-l/3, 1/3)) and consider

u   X(e"-X(È^3X)XL)

= (f)~x(Sx X ^"-■(¿."/-j1) X L) U (Z>2 X ^"-'(5,"/-') X L).

By collapsing the D2-factor to A we obtain a collapse of u~x(e"~x(ÈxJ3x) X L) to

(f)~x(A X e"-x(BxnJ3x) X L). By the CE Approximation Theorem of [3] this col-

lapse stabilizes to a near homeomorphism upon multiplication by Q. Since A X Q

is homeomorphic to Q we obtain a homeomorphism T"~x X L X Q ^ A X T"~x

X L X Q. Combining these homeomorphisms with the open embedding g we

obtain an open embedding g,: (r)~x(A X e"~x(BxJ4x) X L) X Q -h> A X

e"~x(BxJ3x) X L X Q which is homotopic to (r X idg)| via a homotopy whose

T"~ '-component is small. By Proposition 2.4 we may assume that g, = id on

dA X e"~x(Bxn/~4x) X L X Q and that the homotopy g, ~ (r X id)| is rel dA X

e"~ x(B"^4l) X L x Q. Thus g, extends via the identity to an open embedding

#,: (r)-x(Sx x e""'(£,"/-') X L) X Q-> Sx X «""'(¿fc1) X L X Q

which is homotopic to (r X id)| via a homotopy whose F"~ '-component is small.

Therefore we can deform f X ide to a map w: K X Q -+ T" X L X Q which is a

homeomorphism over Sx X e"~x(BXp) X L X Q. Moreover, the T"~'-compo-

nent of this homotopy is small, so w is a qx~ '(e,)-equivalence (for e, small).

Refactor T" X L x Q as T" X L X Q = F""1 X (Sx X L X Q), where Sx X

L X Q is now regarded as the fiber. Since r(w) G Kx_n(L X Q) we conclude that

t(w) G kx_(n_X)(Sx X LX Q) c Wh(F"-' X (Sx X L X Q)). We are inductively

assuming that any q ~ '(e)-strong deformation retraction to T""-1 X F' must have

0-torsion provided that that torsion lies in Kx_(„_,)(F'). So setting F' = Sx X L X

Q we conclude that t(w) = 0 as desired.    □

9. Proof of Theorem 3. Proceeding in the spirit of the proof of Theorem 1 we

treat the following cases: F is a polyhedron, F is a ß-manifold, and B is an ANR.

I. B is a polyhedron. For B compact we proceed by induction on dim B. Once

this has been done, the noncompact case follows quickly from the proof of the

compact case (just as in the proof of Theorem 1). For the case dim B = 0 we might

as well assume that B = {point}. Then we are dealing with a homotopy equiva-

lence between compact g-manifolds, /: M —» E. Since 'S is homotopy equivalent to
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E we have Wh(F) = 0. Thus r(f) = 0 and/is homotopic to a homeomorphism as

desired.

For the inductive step it suffices to consider the case B = Bx u A", where

dim F, = « — 1 and A" is the single principal «-cell in B. Assuming the result to be

true for Bx, we prove that it is also true for B. For notation we identify A" with F".

Let q: & -» B be a Hurewicz fibration for which there is a homotopy equivalence

A: F—> S such that qh~p [17]. Using the homotopy lifting property we may

assume that qh = /?. By Proposition 2.3 we conclude that A is a q~x(ß^-equiva-

lence, where ß' is as fine as we want.

Now choose a compact g-manifold N for whichp~x(B") c N c p~x(B2). If ß'

is sufficiently fine, then the map h\: N —> q~x(A") must be a homotopy domination.

Thus 'S (which is homotopy equivalent to ^~'(A")) is finitely dominated by N.

Since K0CS) = 0 we conclude that 'S is homotopy equivalent to some compact

polyhedron. (We are using the finiteness obstruction of Wall [18].) Thus 'S is

homotopy equivalent to a compact g-manifold F. It follows that there is a fiber

homotopy equivalence <7~'(A") ~ A" x F. By this we may assume that q~x(b") is

identified with the trivial fibration A" X F.

Since Kx_n(F) = 0 we can use Theorem 2 to deform ft slightly (measured in B)

to ft: E —> S so that ft is a homeomorphism over B" X F. (Step IV of Theorem 2

explains why Theorem 2 applies here.) Thus we can make an identification of p\:

/?~'(F2") —» F2" with proj: B2 X F-* B". Again using Theorem 2 we can deform/

slightly to/: M —» F so that it is a homeomorphism over Bx5 X F.

Let B0= B - ¿^^0= E - (F," X F), and M0 = M - /~'(¿," X F). Restrict-

ing / and /? we obtain maps /„: A/0 -^> F0 and p0: E0 —» F0. It follows from

Proposition 2.2 that/?0 is a ß0-fibration and it follows from Proposition 2.1 that/, is

a/?o"'(ß0)-equivalence, where ß0 is a fine open cover of F0. Also/, is a homeomor-

phism over 3F," X F and/0~'(9F," X F) is a Z-set in M0. Let r: F0-> F, be the

retraction induced by the radially-defined retraction of A" - B" to 9A". We leave it

as an easy exercise to show that rp0: E0 -» F, is a ß,-fibration and/,: A/0 —> F0 is a

(//?0)~'(ß,)-equivalence, for ß, a fine open cover of F,. (This should be compared

with the proof of Assertion 1 in step II of the proof of Theorem 1.) By the

inductive hypothesis/, is homotopic to a homeomorphism g0: A/0 —» F0. Moreover,

the composition of this homotopy with rp0 is small, and by Proposition 2.4 we may

take this homotopy to be rel/0~'(3F" X F). Then we obtain a homeomorphism

g = So U id: M —> F which is homotopic to / Also the composition of this

homotopy with /? is small provided that we choose notation so that F" is very

nearly all of A". This completes the polyhedral case.

II. F is a Q-manifold. The proof goes somewhat like the proof of a corresponding

step in Theorem 1. Choose a factorization, B = F, X Q, where F, is a polyhedron

and so that each {x} X Q is small with respect to the open cover a. Let/?, = proj:

B —* Bx. Following the proof of Theorem \,pxp: E -h> F, is a ß,-fibration, where ß,

is a fine open cover of F,. It also easily follows that/: M -^ E is a (/?,/?)"'(ß,)-

equivalence.

By the polyhedral case, / is homotopic to a homeomorphism via a homotopy
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which is small when composed with /?,/?. By the choice of/?,, this homotopy is an

a-homotopy when composed with/?. Thus/is/?~'(a)-homotopic to a homeomor-

phism as desired.

III. F is an ANR. Multiplication by Q yields a ß,-fibration/? X id: F X Q -» F

X Q and a (/? X id)"'(ß,)-equivalence / X id: M X Q -> E X Q, where ß, is a

fine open cover of 5 X g. Then there is a (/? X id)~'(a,)-homotopy of/ X id to a

homeomorphism ft,: A/ X Q —> F X g by the g-manifold case above. If u:

M X Q -» M and t>: F X Q -*■ E are homeomorphisms which are close to projec-

tion, then

ft: A/4 M X Q^E X ô4f

is a homeomorphism which is a-homotopic to/    □

10. Proof of Theorem 4. We first expand slightly on the definition of a block

bundle which was given in §1. Let F be a polyhedron for which F = \K\ (i.e., F is

triangulated by the simplicial complex K). Then following the definition given in

§1 we say that /?: F —» F is a K-block bundle with fiber F provided that for each

a G F there is a F-block preserving homeomorphism/?-'(a) =^a X F. (Recall that

F is a (?-manifold and F is a compact Q-manifold.) When the meaning is clear we

drop the prefix K.

Lemma 10.1. Let p: E —» B be a K-block bundle with fiber F such that K is a finite

complex which simplicially collapses to a point. Then there is a K-block preserving

homeomorphism E = F X F.

Proof. Let A" G F be an «-cell, let a"~ ' c A" be a face, and let 5 = 3A - ó (the

closure of 9A - a). Assume that F = F, u A, where F, = |F,|, for Kx a collapsible

subcomplex of K and F, n A = ¿>. It will suffice to prove that any block preserving

homeomorphism ft,: p~x(Bx) — F, X F extends to a block preserving homeomor-

phism ft: F = B X F. (We are inducting on the reverse of the collapse.)

Let ft2: /?~'(A)—»A X F be a block preserving homeomorphism. Then A,A2~'|:

8 X F -* 8 X F is block preserving. Let D" be the «-disc with boundary S"~l and

write S"~x = Z),"-' u DJ-1, where />""' and Z>2""' are the upper and lower

hemispheres. Then we clearly have a homeomorphism of triples,

(A X F, 8 X F, a X F) s (Dn X F, £>,""' X F, D^~x X F).

This implies that A,A2~'|5 X F extends to a block preserving homeomorphism 8:

Ax fn>Ax F Then ft2 = f?ft2: p~ '(A) —» A X F is block preserving and it agrees

with ft, on p~x(8). Thus ft, and ft2 piece together to give a block preserving

homeomorphism E = B X F.    □

Remark. Lemma 10.1 implies the following interesting fact concerning the

definition of a block bundle p: E -h> B: If we drop the requirement that E be a

Q-manifold, we can prove that E must be a Q-manifold. (Because each point in B

has a collapsible neighborhood.)
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Lemma 10.2. Let p: E —* B be a K-block bundle with fiber F such that K is a finite

complex. If K' is the first bary centric subdivision of K, then there is a K -block bundle

/?': F —> B and a K-block preserving homotopy p' ~ p.

Proof. It suffices to construct /?': F —» B by inducting on the skeleta. The

inductive step reduces to the following special case: Let F = A", the standard

«-simplex with standard triangulation F consisting of « + 1 vertices, and let K' be

the first barycentric subdivision of K. Assume that/?: F—» F is a F-block bundle

for whichp\: /?~'(9A)—» 9A is already a F'-block bundle. We want to prove that/?

is homotopic to/?': E —> B rel/?"~'(9A), where/?' is a F'-block bundle.

Let a c 9A be an (« - l)-simplex of K' and let 8 = 9A - 6. Also let a c 9A be

an (« — l)-simplex of F containing a and let 8 = 9A - (ö)°. If a, c 9A is an

(« - l)-simplex of K' missing 5 and 5, = 9A — o,, then Lemma 10.1 gives us a

F'-block preserving homeomorphism/?"'(S,) s= 5, X F. Clearly there exists a ho-

meomorphism of ¿>, X F onto itself which is the identity on 9S, X F, which takes

a x F to 5 X F, and which is homotopic to id rel 9¿¡, X F. This induces a

homeomorphism 8: p~x(8x)-*p~x(8x) which extends via the identity to a homeo-

morphism 8: /?~'(9A)^>/?~'(9A) for which (1) 0~id and (2) 8 takes p~l(a) to

p~x(a). By Z-set unknotting 9 extends to a homeomorphism 9: E —> F which takes

p~x(a) to p~l(a). We observed in the proof of Lemma 10.1 that there is a

homeomorphism of triples, (A X F, 8 X F, à X F) s (Dn X F, £>""' X F, D2~x

X F). The given F-block preserving homeomorphism £-Axf then gives us a

homeomorphism of triples, (E,p~x(8),p~x(ë)) s (£>" X F, £>,""' X F, Z)2"' X

F). Using the homeomorphism 9 we get a homeomorphism of triples,

(E,p~x(8),p~x(a)) = (Z)" X F, Z),""1 X F, F?2""' X F). Also there is a homeo-

morphism of triples, (A X F, ¿> X F, a X F) = (Dn X F, £>,"""' X F, Z>2""' X F).

If g: /?~'(¿>)—» S X F is a F'-block preserving homeomorphism, which exists by

Lemma 10.1, then the above homeomorphisms of triples give us a homeomorphism

A: F —> A X F which extends g and which is F'-block preserving over 9A.

Clearly there is a F'-block preserving homotopy/>|/?~'(9A) ~ projA ° A|/?~'(9A).

This homotopy is constructed inductively over the skeleta in 9A. Define/?': E—»A

by/?' = p on/?~'(9A), /?' = projA ° A on A"'(F" X F) (where A = F"), and/?' on

A"'((A - B") X F) is defined by the homotopy /?|/?"'(9A) ^ projA ° A|/?~'(9A).

(We are choosing F" in A so that if 9A X [0, 1] c A is a F'-block preserving

collaring with 9A X {0} = 9A, then F," = A - (9A X [0, {)).) Then it is easy to see

that/?': F —> A is a F'-block bundle which is homotopic top rel/?-'(9A).    □

We now combine Lemmas 10.1 and 10.2 to establish a result which was

mentioned in §1.

Proposition 10.3. If p: E —» F is a block bundle, then there is a block preserving

homotopy of p to a new block bundle which is an approximate fibration.

Proof. First assume that F is compact and let F = \K\. If F(n) is the «th

barycentric subdivision of F, then iterating Lemma 10.2 there is a F-block

preserving homotopy/? ^/?' such that/?' is a F(n)-block bundle. We will show that

if e > 0 is given, then for a sufficiently large choice of « the map /?' must be an
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e-fibration. Iteration of this result gives our desired homotopy of p to an approxi-

mate fibration (compare with the proof of Theorem 1).

Recall from Proposition 2.2 that e-fibrations are detected locally. For each point

ft G F there is a F-collapsible neighborhood N c F of ft. So all we have to do is

prove that /?' has the e-lifting property over N. Since N is also F(n)-collapsible we

can use Lemma 10.1 to get a F("'-block preserving homeomorphism (/?')"X(N) »

N X F. This implies that /?' has the e-lifting property over N for « large.

Having done the compact case the noncompact case follows routinely (as in the

proofs of Theorems 1 and 3).

Remark. It follows from the above proof that if/?': E^B is the new block

bundle which is an approximate fibration, then (/?')"x(a) = p~x(a), for all sim-

plices o in B.

Lemma 10.4. Let q: S —> F be a Hurewicz fibration over a polyhedron whose fiber

has the homotopy type of a compact Q-manifold F for which Wh(F) = 0. Ffte« there

exist a block bundle p: E —» F with fiber F and a homotopy equivalence f:E-^>&

which is block preserving.

Proof. In what follows below we will construct /? : F —» B and a block preserving

map/: F —> S so that for each vertex ft of B, the restriction f\p~'(ft): p~x(b)—*

q~x(b) is a homotopy equivalence. Then all we need is the

Assertion, f is a homotopy equivalence, in fact, a block preserving homotopy

equivalence.

Proof. By Proposition 10.3 we may assume that/?: F —» B is an approximate

fibration. Since / is block preserving we have qf~p. By the homotopy lifting

property we may assume that qf = p. It is well known that S must have the

homotopy type of a CW complex. (See, for example, [7, Lemma 3.2].) By applying

the five lemma to the homotopy sequences7 of /?: E^B and q: S^5 we

conclude that/is a homotopy equivalence.    □

So returning to the proof of Lemma 10.4 we have the task of building/?: E -* B

and /: F —> £. As is usual the following special case suffices for both the compact

and noncompact cases. Let A" be the standard «-simplex and assume that /?:

F -^ 9A is a block bundle with fiber F. Also let /: F —> 9A X F be a block

preserving map which is a homotopy equivalence over the vertices. We want to

extend /? to a block bundle p : E —» A and extend / to a map /: F —> A X F. (We lose

no generality by using proj : A X F —» A in place of a Hurewicz fibration over A.)

Since /: F —> 9A X F is a homotopy equivalence over the vertices, / must also be

a homotopy equivalence over the simplices. By inductively applying the Classifica-

tion Theorem and Z-set unknotting theorem of [6] over the skeleta of 9A we

conclude that / is homotopic to a block preserving homeomorphism A : F —»

9A X F. (It is here that the condition Wh(F) = 0 is invoked.) Let F, = E X

[0, 1]U(9A X F)/—, where ~ is the minimal equivalence relation determined by

(x, 1) — h(x). This is just the mapping cylinder of A, where E = E X {0} is the top

7The homotopy sequence for approximate fibrations is established in [9].
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and 9A X F is the base. Now define F = F, u (A X F), where F, n (A X F) = 9A

X F is the base of F,. Then/?: F —> 9A clearly extends to a block bundle/: F —> A.

If we write A X F = [(9A X F) X [0, 1]] u (A X F), then it is easy to see how /

extends to /: F -► A X F.    □

Proof of Theorem 4. We are given a proper map /: M —» F which is a

ß-fibration, for ß a fine open cover of B. Let q: & —» F be a Hurewicz fibration for

which there is a homotopy equivalence A : A/ —» S so that #A as / By the homotopy

lifting property we may assume that qh = f. It follows from Proposition 2.3 that A

is a 9~'(ß,)-equivalence, where ß, is a fine open cover of B. As in the proof of

Theorem 3, the fiber of ê (which is 'S) is homotopy equivalent to a compact

2-manifold F. By Lemma 10.4 there is a block bundle/?: F —» F with fiber F and a

block-preserving homotopy equivalence g: F —> S which is block preserving. This

can be done for any triangulation of B. If this triangulation is sufficiently fine, then

g: F —> & is a #"'(ß,)-equivalence. (Again we are invoking Proposition 2.3.)

Let g,: S ^> E be a /?"'(ß,)-inverse of g. Then g,A: M —» F is a map which

fulfills the requirements of Theorem 3, and so there is a homotopy of g,A to a

homeomorphism k : M —> E. Moreover, the composition of /? with this homotopy is

small in F. Thenpk: M —» F is a block bundle which is a-homotopic to/    □
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