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ALGEBRAS OF AUTOMORPHJC FORMS

WITH FEW GENERATORS

BY

PHILIP WAGREICH1

Abstract. Those finitely-generated Fuchsian groups G for which the graded

algebra of automorphic forms A is generated by 2 or 3 elements are classified. In

these cases the structure of A is described.

Suppose G is a finitely-generated Fuchsian group of the first kind and AG is the

(graded) ring of automorphic forms relative to G. The purpose of this paper is to

give a self-contained proof of the classification of those groups G for which the ring

AG is generated (as an algebra over Ç) by < 3 elements. The first results in this

direction were announced by Dolgachev [Dl] who studied the case where G is a

triangle group Gn . That is, G is the subgroup of orientation-preserving maps of

the group generated by reflections in the sides of a hyperbolic triangle with angles

ir/nx, 77j'n2 and tt/n3. He showed that exactly 14 triangles have the property that

AG is generalized by 3 elements. The remaining groups for which H+/G is

compact were studied independently by Dolgachev [D2] and myself. Milnor [M]

has studied rings of automorphic forms with fractional weight. This paper will

describe the classification for arbitrary G. The idea of the proof is elementary and

makes heavy use of the fact AG is a graded ring (Definition (1.1)) i.e., AG =

®k>0Ak, where Ak is the vector space of /c-forms. Suppose AG is generated as a

C-algebra by 3 elements x0, xx, x2. Elementary arguments (1.5) show that the

generators can be chosen to be homogeneous. Let x, G Aq. We let S =

C[X0, Xx, X2] and define a grading on S by letting degree X¡ = q¡. Define <p:

S —» AG by <p(X¡) = x¡ and let / = kernel <p. Then we have

Proposition (2.7). / is a principal ideal.

Now the kernel of a homomorphism of graded algebras is a homogeneous ideal,

i.e., / = ®"=0 /„ where In = I n An. One can easily show that / is generated by a

homogeneous element. Suppose that the element is/ G S. Then

/(/«°Z0, f»Zx, t«>Z2) = tdf(Z0, zx, z2)

where d is an integer called the (weighted) degree of /. Such a polynomial is called

a weighted homogeneous polynomial, i.e., homogeneous with respect to the grading

of S defined above. We let R = S/I. The dimension of R¡ can be computed easily
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in terms of q0, qx, q2 and d. On the other hand, dim A¡ can be computed using the

Riemann-Roch theorem.

By equating dim Ä, and dim Ai and observing some elementary properties of

rings of the form S/I we can eliminate all but a list of 42 types of groups. Direct

calculation then gives the structure of AG for that list of groups.

This paper is organized as follows. The first section is devoted to a review of

properties of graded rings and the Poincaré power series of a graded ring. In §2 we

calculate the Poincaré power series of AG and as a consequence develop relations

between invariants of G (the signature of G) and q0, qx, q2 and d. Then in §3 we

find a list of groups G so that all groups with AG generated by < 3 elements are on

the list. The fourth section is devoted to proving that all of the groups on the list

are, in fact, generated by 2 or 3 elements.

This paper is essentially self-contained. In a subsequent paper [W2], we will use

the theory of singularities of complex surfaces to give more general results on the

structure of algebras of automorphic forms.

I would like to thank Irwin Kra and Igor Dolgachev for stimulating correspon-

dence.

1. Graded algebras. Suppose A" is a field and R is a A"-algebra.

Definition (1.1). A grading on R is a collection of AT-vector subspaces R¡ of R so

that

(ii) R,Rj c Ri+j.
The A"-algebra R together with a grading is called a graded K-algebra. We say

x e R is homogeneous of degree i if x G R¡.

Example (1.2). R = K[X0, . . . , Xn\. Fix integers q0, . . . , qn. Define R¡ = K-

subspace generated by X¿° • • • X¡* so that i0q0 + ■ ■ ■ + i„q„ = i- Note that

/ G Ri ̂ f(t""X0, ..., t<-XH) = t'f(X0, ..., X„),

t an indeterminate. If q0 = qx = • • • = q„ = 1 we get the usual grading on R.

Definition (1.3). A homomorphism <p: S —> R of graded algebras is said to be

homogeneous of degree d if <p(S¡) c Ri + d, for all i.

Definition (1.4). We say R is a graded K-algebra of finite type if there are

homogeneous elements x0, . . . , xn G R so that the homomorphism

cp:K[X0,...,Xn]^R

defined by <p(X¡) = x¡ is onto.

Henceforth we shall assume R is positively graded (i.e., R¡ = {0} for i < 0) and

R0=K.

(1.5) If we are as before and degree x¡ = q¡ and we grade S = ÄTfA',,, . . . , Xn] as

in Example (1.2) then <p is a graded homomorphism of degree 0. It follows that

/ = kernel <p is a homogeneous ideal, i.e., / = ©(. /,. Thus / is generated by

homogeneous elements. Let m = © l>0 R¡. Then m is a maximal ideal of R. The

embedding dimension of R is defined to be Ä"-dimension of the vector space m/m2.

The algebra R is of finite type if and only if dim^ m/m2 < oo and in that case
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x0, . . . , xn generate Äasa Ä"-algebra if and only if their residues x0, . . . , xn G

m/m2 generate m/m2 as a K vector space. Note that m/m2 is a graded vector space

and we can choose n homogeneous generators for m/m2. These lift to n homoge-

neous algebra generators of R. The above discussion shows that the embedding

dimension of R is the minimal n so that the algebraic variety Spec(/?) can be

embedded in affine «-space over K.

Definition (1.6). Suppose R is a graded A"-algebra, M is a graded R-module and

a, = dim^ M¡ < oo for all i. Let ^M(t) = 2°10 a,t', the Poincaré power series of M.

We now sketch the calculation of 9R(t) in the case we will be studying.

Proposition (1.7). Suppose S = K[X0, . . . , Xn] is graded as in Example (1.2),

f e Sd,I = (f) and R - S/I. Then

(i) 9s(t) = i/Tjrç.oO - t"-),
(û)9R(t) = (\-td)/Wi=0(\ -r«).

Proof.

t'       t
Lemma. Suppose 0—>M'—» A/—» M" —»0 z's a« exact sequence of graded S

modules, <p is homogeneous of degree 0, <p' is homogeneous of degree a. Then

ta9M(t) - 9M(t) + 9M„(t) = 0.

The proof of the lemma is immediate. To prove (i) one can proceed by induction

by considering the exact sequence

0^ K[X0,..., X,] ^K[X0,..., X,] X K[X0, . . ., *,_,] -*0

where <p'(g) = X¡g and <p is defined by <p(Xj) = Xpj =£ i, <p(X¡) = 0.

To prove (ii) we use the exact sequence

O^S^S-^R^O

where <p'(g) = fg.    □

Remark. One can show as above that for any graded A"-algebra of finite type

<3'R(t) is a rational function [A-M].

In §2 we will be interested in the principal part of ^(O-

Proposition (1.8). Ifp(t) = ri7_0(1 ~ '4)/^]-o(.1 ~ <*).then the principal part of

p at t = 1 « a/(\ - t)2 + b/(\ - t) where

11/-0 aj \7 = 0 z Í-0 Z       /

Proof.

f v =     i     n;.p(i + --- + /«-')

(l -tf WjZl(\ + ■ ■ ■ +/•-»)'
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Now let z = 1 - t. Then 1 + • • - +tm~x = m - m(m - l)z/2 + f(z) where /

consists of terms of degree > 2 in z. Thus

where g(z) is holomorphic at z = 0. This gives us the desired result.

Proposition (1.9). Let fit) = (1 - td)/(\ - ta)(\ - tb)(\ - tc) where a, b, c, d

are positive integers. Suppose £e = 1 and £ ^ 1.

(a) If e\a,e\b,c,d then the principal part of f at t = £is

H(i - í")/fl(i - ¿*)(i - n) • (v (i - o).
(b) //e|<z, e|¿>, e|¿/, e } c //¡en the principal part of fat t = £ ¿s

(-rfi/o&O-€«))• 0/0-0).
Proof. Let z = ? — £ and substitute for / in the given function. The principal

part is easily calculated.

Definition (1.10). The dimension of a Ä-algebra R is the transcendence degree of

the quotient field of R over Ä".

Remark (1.11). (a) If R is finitely generated over K then dim R = Krull dim R.

(b) If R is a finitely-generated graded algebra then dimension R = order of pole

of 6^(0 at/= 1[A-M].

Definition (1.12). If 5 = K[X0, . . . , Xn] is graded by letting degree X¡ = q¡ >

0, we define c(q0, . . ., qn)¡ = dim^ S¡ which by Proposition (1.7) equals the coeffi-

cient of t' in the power series 1/IT"=0(1 — r*).

When calculating this integer by hand it is frequently helpful to use the recursion

formula

C(<70> • • • . ?„)< =  C(?0> • • • ' %,-l)< + C(90> • ■ • , <ln)i-qn (1.10.1)

for all i. Also

c(l,...,D, = ('•+„")•

The calculations in the later parts of this paper were done by using a computer,

evaluating c(q0, . . . , q„)¡  by  multiplication of  the  power  series   1/(1 — t9') =
2oo        fkq¡

k~0 '      ■

2. Automorphic forms.

(2.1) The Lie group PSL(2, R) acts on the upper half plane H+ by y ■ z =

(az + b)/(cz + d), where (" bd) is a representative for y and z G H+. Henceforth

we shall assume that G is a subgroup of PSL(2, R), that G acts properly discontinu-

ously on H+ and that X = H+/G is a compact Riemann surface with a finite

number of punctures, i.e., there is a compact Riemann surface X and an open

immersion of X = H+/G into X so that X — X consists of a finite number of

points. Let a be the number of punctures.

Let px, . . . ,pr G X be the points where H + —> X is branched and let e¡ be the

ramification index over pt. We number the p¡ so that ex < e2 < • • • < er. We let

er+x = • • • = er + a = oo. If g = genus X then (g; a; ex, . . ., er) is called the
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signature of G. We will also use the notation {g; ex, . . . , er+a) for the signature of

G. By [K, p. 78] a set of integers as just mentioned arises from a group G as before

if and only if

0-+ ¿ (l --)+2g-2>0.
, = i\        e,1

(2.1.1)

Alternately Z£?(l - l/e,) + 2g - 2 > 0.

(2.2) A meromorphic function fiz) on //+ is said to be an unrestricted automor-

phic form of weight k for G if

•,2k.
(2.2.1)fi(az + b)/ (cz + d)) = (cz + d)¿Kf(z)

for all (ac bd) G G. Equivalent^

f(yz)=(dy/dz)-kf(z). (2.2.2)

For any parabolic element of G we can change coordinates so that its fixed point is

at oo. Let A(z) = z + 1 be the generator of the stabilizer of oo. Then / has a

Fourier expansion fiz) = 2™__0O ane2mnz. We say / is entire if/ is holomorphic in

H+ and an = 0 for n < 0 (for each parabolic subgroup of G). We say / is a cusp

form if/is entire and an = 0 for « < 0 (see [G, II.7] for details).

Define Ak = the C-vector space of entire automorphic forms of weight k, k > 0.

Ck = the subspace of cusp forms,       k > 1.

Define /1G = ©£°=0 -^*> me algebra of automorphic forms,

oo

GG =  ©   Q,    the ideal of cusp forms.
A:=l

Then AG is a graded algebra and GG is a homogeneous ideal. If we define C0 = C

and CG = ®"_0 Ck we call CG the algebra of cusp forms.

Henceforth, when there can be no confusion we will denote AG by A.

Remark. In [W2] we prove that AG is a finitely-generated C-algebra. It follows

that CG is a finitely-generated ideal. On the other hand CG is not a finitely-gener-

ated C-algebra (see (4.1)).

(2.3) The dimension of the vector space Ak can be calculated using the

Riemann-Roch theorem. For example, one can use the proof in [G, Chapter II,

Theorem 1] slightly modified. If G has signature {g; a; ex, . . . , er} then

dim Au =

(2k- l)(g- l) + ak+ S <K) if k > 1 or a > 0,

if k = 1 and a = 0,

if k = 0.

(2.3.1)

The symbol [x] denotes the largest integer < x.

(2.4) An elementary calculation using (2.3) shows that the Poincaré power series

(1.6) of A is

VA =
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where Pe(t) = 2^=0[â:(1 - l/e,)]f* and S denotes the Kronecker delta.

We shall be interested in the partial fraction decomposition of Pe. This is

calculated in the following proposition.

Proposition (2.5). (i) If a and b are natural numbers and ak = [k(a/b)] then

^.Wt«-V, (2.5.0

(ii) The principal part of Pe(t) at t = 1 is

e - 1 1 3(e - 1)        1
(2.5.2)

e      (1 _ tf 2e        (1 - /)

(iii) Suppose £e = 1 and £ ¥= 1. Then Pe(t) has a pole of order 1 at £ with residue

e/e(\ - £).

Proof, (i) Observe that ak + nb — ak + na and hence

I   aktk =  S"    I   <W*+"fc =  S"    I (a* + na)tk^
k=0 k=0   n=0 k = 0   n=0

ft-1b—\[ oo oo \

fc = 0\ n = 0 n = 0 /

/t=o\        V1 — r   / „=0 /

(1 - ,6) (1 _ t»f

(ii) If we let b = e and a = e — 1 in part (i), then a0= ax = 0, a, = / — 1 for

/' = 2, . . ., e — 1. Let z = 1 — í and substitute for t in (2.5.1). We get

p (/) = (g - 2)(e - I)/2 + (e - l)Sr-'o(l - ^)*0 - ^)e

e2z2

+ terms on nonnegative degree in z.

The principal part of the above is

e-\
(e - \)(e - 2)      (e - l)e      e - 1

le eV e2z2
-ez - %   kz

k=l

(e-l)      3(g - 1)

ez 2 2ez

(iii) Pe(t) has a pole of order 1 at t = £, hence the residue = lim,_>i(/ — £)/*e(0

which can be evaluated using (2.5.1) and l'Hôpital's rule.    □

Remark. Since 9A has a pole of order 2 at í = 1, A is an algebra of dimension 2

(cf. [A-M]). In particular this tells us that if A is generated by n elements, then the

ideal of relations has at least n — 2 generators.

Theorem (2.6). Suppose G is a group with signature {g; a; ex, . . . , e,}. If the

algebra of entire automorphic forms AG is generated by 3 elements f0, /,, f2 of weights

1o> 1i> Ii respectively, then the ideal of relations is a principal ideal generated by a
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homogeneous element of degree d and

2(g-l) + a+ 2   -i—L--Í-, (2.6.1)
<-l        et q0qxq2

3(1 - g) - o - - 2,   -=-^-.      (2.6.2)
2, = 1      <?, 29oil92

(i - g) - -, z ——-,„ „ „-• (2-6-3)

Moreover

g.c.d.(?0, qx, q2) = 1. (2.6.4)

Proof. By (2.4) and Proposition (2.5) the principal part of <$A (t) at t — 1 is

(

r    e, — 1 \       1
2g - 2 + a + 2   -

r,       *    /(l-,)2

+ (— -il^lirb )
On the other hand we define <p: C[X0, Xx, X2] —> A by <jd(A',) = /, and we grade

S = C[X0, Xx, X2] by letting degree X¡ = q¡. We see that A is isomorphic to

/? = S/I as a graded algebra, where 7 = kernel <p.

Lemma (2.7). I is a principal ideal generated by a weighted homogeneous polynomial

F of some degree d.

We shall prove the lemma below. Returning to the proof of the theorem we

apply Proposition (1.8) to find the principal part of 9R(t). Equating the coefficient

of 1/(1 - t)2 in 9R(t) and 9A(t) gives (2.6.1).

Similarly equating the coefficient of 1/(1 - t) gives (2.6.2). The third equation

follows from the first two. Finally g.c.d.(#0, qx, q2) = 1 since 9A(t) = ^R(t) has a

pole of order at most 1 at each nontrivial root of unity.    □

Remark. The case that A is generated by 2 elements is a special case of the

above. If /0, /, are generators of A define <p: S -» A by <p(X¡) =/, / = 0, 1,

<p(X2) = 0. Grade 5 by letting degree Xí = q¡, i = 0, 1, and degree X2 = q2,

arbitrary. Then I is the principal ideal generated by X2, so that d = q2.

Proof of Lemma (2.7). If <p: C[X0, Xx, X2] -^ AG is a surjective graded homo-

morphism, then I = kernel <p is a principal ideal generated by a homogeneous

element.

Proof. By (2.4) and Proposition (2.5), 9A(t) has a pole of order < 2 at t = 1. By

(2.1.1) the order of the pole is precisely 2. Hence by (l.ll)(b), A has dimension 2.

Now A is isomorphic to S/I hence I is a height 1 prime ideal. But S is a unique

factorization domain, hence every height 1 prime ideal is principal [Z, Chapter V,

§14]. If F generates I let F = Fd + Fd+X + ■ ■ ■ where F¡ G S¡. Now I is a

homogeneous ideal so Fd G /. Thus F\Fd and therefore F = Fd.    □
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Proposition (2.8). Suppose G has signature {g; a; ex, . . . , er) and AG is gener-

ated by f e Aq, i = 0, 1, 2. For each i let £, = exp(27rV^T/e1) and v¡ = the number

ofj so that e\ej. Then

.   9a¿') - 0 - *")/ 0 - '9o)0 - '*)0 - **) (2.8.1)

// and only if

(a) (2.6.1), (2.6.2) and (2.6.4) hold.

(b) For each i

e,(l - i)

(c) For all i andj so that i =£j, (q¡, qf)\d.

(d)

à = % + 1\ + I2 + !     i/a = 0,

¿/ = ?0 + q-, + q2 ifa>0 and g > 0, (2.8.3)

d < q0 + qx + q2 — 1      if a > 0 an*/g = 0.

Proof. Let/(0 = (1 - td)/(\ - t9°)(l - t9')(l - t9i). Decompose fit) and <3> =

9A (t) as partial fractions over the complex numbers. The poles of ty are at e,th

roots of unity for some e¡ or at t = 1. Equation (2.6.4) is equivalent to/ having a

pole of order at most 1 at roots of unity. Equations (2.6.1) and (2.6.2) are

equivalent to the coefficients of 1/(1 — t) and 1/(1 — t)2 being the same for/and

*?. By Propositions (2.5)(iii) and (1.9), equations (2.8.2) are equivalent to the

equality of the principal parts of / and 9 at £, where £ =£ 1 is a root of unity. Now

the polynomial part of ^(f) is Sa+xxt + g. Thus a = 0 if and only if 6a+1, = 1 if

and only if d = q0 + qx + q2 + 1. If a > 0 and g > 0 then the polynomial part of

9 is a nonzero constant, i.e., ^P is holomorphic and nonzero at oo. But / is

holomorphic and nonzero at oo if and only if d = q0 + qx + q2. Finally a > 0 and

g = 0 is equivalent to 9 having a zero at oo and / has a zero at oo if and only if

d < q0 + qx + q2 — 1. When all other conditions are satisfied the constant term of

9 and/must be equal since/(O) = <ÍP(0) = 1.   □

3. Groups for which AG may have few generators. Henceforth we assume G is

a finitely-generated Fuchsian group of the first kind with signature

{ g; ex, . . . , er, . . . , er+a} where e¡ < oo for 1 < / < r and e, = oo for / > r. We

arrange the e, so that e, < e2 < • • •  < er.

Theorem (3.1). If the algebra AG is generated by 2 elements then it is a polynomial

ring in two variables. Those signatures and the degrees q0, qx of the generators are

given below.

-*o - tf)
4.(1 - &«0O - W

-di

*„ft,0 - £*')

ifeilq^ande^q^q^,

'/g,k,n.e,kll)e,U/

(2.8.2)
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Signature (q0, ?,)

{0; oo, oo, oo} (1, 1)

{0;2, oo, oo} (1,2)

{0;2,3, oo}        (2,3)

If the algebra AG is generated by 3 elements, then G is on Table 1 which follows. For

these signatures we determine the degrees q0, qx, q2 of the generators and the degree d

of the relation. The converse of this theorem will be proven in §4.

Table 1

Signature (djqQ.q^qg) Signature (d;qQ,qi,q2)

(5J,

(2)

(2;2

U;2

(1,2

(l;2

(i;2

Uj?
ti;«
(l;-

(1;»

(l;-

10;»

(0;2

tO;2

(0;3

(0;2

(0;3

(0;2

non hyperelliptic

}

,2,2}

,2)

,3}

1
)
}
,-,-)
,»)
)

-]
-1

(451,1.1)
(6;l,l,3)

(551,1,2)

(6;1,2,2)

(8;1,2,4)

(7;1,2,3)

(1251,4,6)

(10;1,3,5)

(951,3,4)

(351,1,1)

(451,1,2)

(651,2,3)

(251,1,1)

(351,1,2)

(4;1,2,2)

(451,2,3)

(6;2,2,3)

(6;2,3,3)

(652,5,4)

[0,2,8,2,2,31

[052,2,2,2,21

(052,3,3,3)

[052,2,3,4)

(052,2,3,3)

(052,2,2,5)

(052,2,2,4)

[052,2,2,3)

(0;4,4,4)

(0,3,4,5)

(0;3,4,4)

(053,3,4)

(0;3,3,5)

(0;3,3,6)

(052,5,6)

(0;2,5,5)

(0;2,4,7)

(0;2,4,6)

(0;2,4,5)

(0;2,3,91

(0;2,3,8)

(0;2,3,7)

(8;2,2,3)

(1052,2,5)

(9;2,3,3)

(10,2,3,4)

(12;2,5,6)

(12;2,4,5)

(1452,4,7)

(1852,6,9)

(1253,4,4)

(1353,4,5)

(1653,4,8)

(24s3,8,12)

(1853,5,9)

(1553,5,6)

(1654,5,6)

(2054,5,10)

(1854,6,7)

(2254,6,11)

(3054,10,15)

(2456,8,9)

(3056,8,15)

(4256,14,21)

Proof. For each possible signature we shall determine the degrees q0, qx, q2 of

the generators. Then d is determined by (2.6.1). For clarity we shall divide the

proof into sections.

(3.2) Suppose A is generated by forms f0, fx, f2 and q¡ = degree/. We let

S = CfA'o, Xx, X2] and define <p: S -» A by <p(Xj) = /. We grade 5 by letting degree

Xj = qt. Then <p is onto and A is isomorphic to R = S/I, where I = kernel <p. Now

by (2.3)

(g - 1) + a     if a > 0,

g if a = 0,

and dim A, < 3 since A is generated by 3 elements. Thus

(g - 1) + a < 3 if a > 0,    and   g < 3 if a = 0. (3.2.1)

In either case g < 3.

dim Ax
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(3.3) Suppose g = 3. Then by (3.2.1) either a = 0 or a = 1. In either case

dim Ax = 3 implies there are at least 3 generators of weight 1. Hence q0 = qx = q2

= 1. Applying (2.3.1) we get dimv42 = 6 + 2a + r. But dim S2 = c(l, 1, 1)2 = 6

(see Definition (1.10)), hence, a = r = 0. Thus {3} is the only possible signature

with g = 3. If X is hyperelliptic, then the one-forms do not generate AG (this

follows from [S, p. 293]).

(3.4) Now suppose g = 2 or g = 1. Then Table 2 gives dim AK for all signatures

which do not appear on Table 1. A generator of AG is indicated by the letters a, b,

c, d. We stop counting generators after we have found that there must be four

generators. As an example, consider the signature (1; 2, e2}, e2 > 3. Clearly there is

a generator a G Ax. Now dim A2 = 2, so there must be an element b G A2 so that

a2 and b are linearly independent. Next there must be an element c G A3 so that

a3, ab and c are independent. Finally, a, b and c generate a subspace of dimension

< c(l, 2, 3)4 = 4 in A4, so there must be a fourth generator d.

Table 2. dim Ak for signatures with embedding dimension

> 3, g = 1 or 2

k 1 2 3 4 5

a, û

Í2sar ...,er) r >   2 2 3+r

(2-e   1 e     >   2 a'° ? Î1   -'~1J "1 '   L 2 4 7

>   3
a,b,c,d

<4

(2;<j5e1,...,er) a  =  2 ? >7

(2:a;e,,...,e  ) 3=1
a,b c,d

1,..-,-rJ - - g >5

(l5e1,...,ep) r > 3 x /

ll;e1,e2,e5J e3 > 2 x ? >4

m               i , o a b c, d

(l;2;e2) e2 > 3 1 £ ?                      5

fl        i x i, a bed

(l;a;e1,...,er) a > 3                a,b,c,d

(lS35e,,...,eJ r >  0 a,b,c d

rio                       t                      ^^                    a.. b c » ̂
fl;2;e1,...,9r)                 r >  0                      ¿ ^

a b,c                  d
(l;ei;-l                                                              1 3                >  4

a,b,c ,d
(Ojaje^ . . .,er) a >   4 a  -  1

. a,b,c
(0;4je1,...,er)                                               3 r+5                 ?
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(3.5) Suppose g = 0. Then Table 3 lists all the groups with signatures not on

Table 1. This table suffices to rule out all the cases except a = 2, r = 1, ex > 4. In

that case q0 = 1, qx = 2 and q2 = 3. By (2.6.1), d/6 = (ex — l)/ex which implies

ex = 3 or 6. But ex = 6 does not satisfy (2.6.3). Thus e, = 3.

{0; 2, 2, oo} is not realizable by (2.1.1).

4. Classification. In this section we prove the converse of Theorem (3.1); for

every group G on Table 1, AG is generated by 3 or 2 elements. In order to do this,

we first reinterpret the ring AG as a ring of functions on X.

(4.1) Let «* be an arbitrary meromorphic differential form on X and K the

divisor of u>*. Then to* pulls back to a meromorphic form <o on H+. If/ is an

automorphic form of weight k, g = //w* is a G-invariant meromorphic function on

H+ and hence induces a meromorphic function on X. By [G, p. 24] / is holomor-

phic if and only if

(g) + k-K+ 2 •(■4)Pi + 2  kpt > 0
r+1

where px, . . . ,pr are the elliptic points and pr+J, . . . ,Pr+a are the cusp points.

Here ( ) denotes the divisor of a function or differential. Thus for any k we have an

isomorphism

<Pk-Ak L\kK+ 2
i = i K) />, +   2    ̂ r+i)

Table 3. dim Ak for signatures with embedding dimension

> 3, g = 0, a < 2

2
b,c,d

1+r

(Oje^ej,»,-)

lO;e1,...,er,»J

(0;2,e2,»i

tO;e1,...,er)

[0;e1,...,e5J

[0;2,2,2,2,e   J

(O^.eg.ej.e,,)

e, >  2

r > 4

3! >   5.   e2 >   4     0

e2 >  5

r >   6

e5  >   4

e„ >   3,   e. >  3    0

b. o
3

i,o,o
r-1

a, d
2

a,b,c
r-3

a,b
2

d

>   «

>   2

>   2

b,c
2

d
>  1

c,d

>   2

b,c,d

3

b,e
2

d

>  2

d

>  2
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Table 3 (continued)

[0;2,2,e3,c4)

(0,2,2,3,e,,t)

[0;2,2,2,9,.)

(0;3,e2,e3)

[0;3,4,e,J

(OjJ,3,6,1

Í0;2,5,e3)

(0;2,4,e3)

ÍO;2,3,ej)

e2   >

N  >

s, >  4      0

4
cd
3

b,c
2 >   1

cd
2

e, >   10

defined by yk(f) = //co*. Let

¿»"L(*,jr+l?,Hi"i)
Then we have an isomorphism of C-algebras

A +   2   fcV+jL

<p:^c e u
k>0

Jk>0 *-k.

(4.1.1)

Let LG denote ©A

Remark. q>k induces an isomorphism of the space of cusp forms of weight k with

a similar vector space of functions

<rV  Ck L\k-K+ 2
i = i

<K)P,+ t(k-l)prA

One can use this to see that the algebra of cusp forms is not finitely generated, as

follows. Linear combinations of products of cusp forms of degree < k are all

contained in

q-l(*.* + |[*(i-I) Pi + 2 (* - 2)/>
1 = 1 4

If g > 1, it follows immediately from Riemann-Roch that dim Ck/Ck > a, and

hence that there are at least a generators of every degree. If g = 0 then we have

Ak d Ck D Ck and again by Riemann-Roch dim Ck/Ck > 0, provided dim^ >

a. Now A is an algebra of dimension 2 (see Remark preceding Theorem (2.6))

hence there are an infinite number of k so that dim Ak > a. Thus Ck requires an

infinite number of generators.
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(4.2) Let C(X) denote the field of meromorphic functions on X. Note that the

inclusions Lk —> C(X) do not induce an inclusion LG -» C(X). (Since, for example,

Lk c L2k.) Let t be an indeterminate and define

Lk^C(X)[t],       f^f-tk.

This extends to an injective map iG: LG -» C(X)[t].

Henceforth, we identify LG with its image in C(A^)[r], i.e., an element

(0, . . . , 0,/, 0, . . . ) is identified with/- /* if /lies in the kth component. Thus the

exponent of / serves as a reminder of which Lk f comes from.

Example (4.3). Suppose G is a group with signature {1; 4}. Then Lk « L(\k\]p)

where p G X is the branch point. Let / be the Weierstrass p function with pole (of

order 2) at p and g = /'. Then letting < ) denote "vector space generated by", we

have

L(np) =

<1>, «=0,1,

<hfig,f2J2g,---Jn/2>, «even, > 2,

<1,/, g,f,fg,f, ■ ■ ■ ,f"-3/2g>,    « odd, > 3.

Now

Lk =

L(3np),

L(3np),

L((3n + l)p),

L((3n + 2)p),

k = 4n,

k - An + 1,

k = 4« + 2,

k = 4/1 + 3.

LG = <l>©<l>/0<l>i2©<l,/>i3e<l,/,g>f4e<l,/,g>f5-It can easily

be verified that LG is generated by z0 = 1 • t, z, = /• r3 and z2 = g ■ t4. The map

$:C[Z0,Z„Z2]^LG

defined by <3>(Z,) = z, is surjective. By Lemma (2.7) the kernel of $ is a principal

ideal generated by a homogeneous polynomial / of degree d. Now by Proposition

(2.8)(d), d = q0 + qx + q2 + 1 = 9 and we see that

f(Z0, Z„ Z2) = Z0Z2 - 4Z,3 + g2Z¿Zx + g3Zl

where g2 and g3 are constants depending on G so that g\ — 21 g\ =£ 0.    □

For the groups on Table 1 we have natural candidates for generators of AG. To

show that these elements actually generate we use the following.

Proposition (4.4). Suppose A is a graded algebra over C,

9a(*)-
1

z¡ G Aq¡ for each / = 0, 1, 2,
(1 - t"°)(\ - t9')(l - t92) '

and the z¡ satisfy a relation f of degree d in A. Suppose, moreover, that

( 1 ) / is irreducible,

(2) the z, generate a field C(z0, z„ z2) of transcendence degree 2.

Then the canonical map

<&:C[Z0,Z„Z2]/(/)^

is an isomorphism.
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Proof. Let R = C[Z0, Z„ Z2]/(f) and / = kernel <E>. Now/ irreducible implies

R is an integral domain. Thus / ¥= (0) implies [A-M, §11] dim R/I < dim R = 2.

But transcendence degree C(z0, z,, z2) = 2 implies dim R/I = 2 [A-M, 11.25].

Thus / = (0) and hence <£> is one-one. Finally, 9R(t) = ^(f) implies <3> is onto.

D
Remark (4.5). Suppose A is an integral domain, A, <$A and z, are as in

Proposition (4.4) and the z, satisfy a relation/of degree d.

(1) If the z, satisfy no relation of degree < d then/is irreducible.

(2) If for some i ^j, z$/zf' is not a constant then the z, generate a field

C(z0, z„ Zj) of transcendence degree 2.

Proof. (1) If / were reducible then / = gh where g and h are homogeneous of

degree < d. But A is an integral domain and hence either g or « is a relation in A.

This contradicts the hypothesis.

(2) If C(z0, z,, z2) has transcendence degree < 1, then z0 and z, are algebraically

dependent. Then there is an irreducible polynomial/(Z0, Z,) satisfied by z0 and z,.

But / is weighted homogeneous of the form Z£ — eZ^ where e G C, a =

qx/(q0, qx) and ß = q0/(q0, qx) by [O-W, Lemma 3.6]. Thus zg'/zf« is a power of e,

contradicting the hypothesis.    □

Theorem (4.6). For every group on Table 1 in §3, AG is generated by < 3 elements.

The degrees of the generators and the relation are given in Table 1.

Proof. For each group one finds natural candidates, z, G Lq ■ t9i, i = 0, 1,2, for

the generators of LG using Table 4. Then we show that these actually generate

using Proposition (4.4) and Remark (4.5). One first verifies that for each group G

<3V> = (l - td)/(\ - t"°)(i - f')(l - r»)

where q0, qx, q2 and d are given in Table 1. This verification can be carried out

using Proposition (2.8) or (2.4) and Proposition (2.5) and we shall not include these

calculations here. The fact that the z, satisfy a relation / of degree d is also easily

seen. Hence all that remains is to show that Proposition (4.4)(1) or Remark (4.5)(1)

and Proposition (4.4)(2) or Remark (4.5)(2) are satisfied. We first prove a technical

lemma which is used in the proof.

Lemma (4.6.1). Suppose f0, . . . ,/ are analytic functions, none of which is identi-

cally zero. Suppose that for each i there is a point p so that vp(f¡) < vp(ff)for all i <j,

where vp(f) is the order of the pole of f at p. Then f0, . . . ,/ are linearly independent.

Proof. Proof by induction. The assertion is true for r = 0. Now suppose it is

true for r — 1 functions. If /0, . . . ,/ are as before and a0fx + ■ ■ • +ar_xfr_x +

arfr = 0 then aQf0 + • ■ ■ +ar_xfr_x = -ajr. If ar ¥= 0, then by hypothesis there is

a point p so that the right-hand side has a pole at p of order, say n = vp(fr), while

the left-hand side has a pole of lesser order. This is impossible, so ar = 0. Now by

the inductive hypothesis/0, ...,/_, are linearly independent so a0 = ax = • • • =

ar_, = 0. Thus/0, . . . , fr are linearly independent.    □

We return to the proof of the theorem, examining each signature in turn.
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{3}: By Noether's theorem [S-D] AG is generated by 1-forms if and only if X is

nonhyperelliptic. In fact, we can see this rather explicitly in the case of genus 3. If

X is nonhyperelliptic then one can choose a basis co,, co2, co3 for the space of

1-forms and then

h(x) = (w,(x): u2(x): w3(x))

defines the canonical embedding of X in P2. Now one can see that AG is

isomorphic to the homogeneous coordinate ring of h(X). Hence AG is generated by

the u¡, and the co, satisfy a (nonsingular) relation of degree 4. This relation is

precisely the equation of h(X) in P2. Conversely, if X is hyperelliptic we can write

X as the Riemann surface of the plane curve

y2 = II (x - e,).
t=i

By [S, §10.10] the 1-forms are generated by dx/y, xdx/y, x2dx/y and the 2-forms

by dx2/y2, . . . , x4dx2/y2, dx2/y. Now the last 2-form is not in the subspace

generated by products of 1-forms, hence A is not generated by 1-forms. One can

show that A is generated by the three 1-forms and dx2/y.

{2}: We may write X as the Riemann surface of the curve

y2 = (■* - ei)(* - e2)(* - e3)(* - «.»)(* - e5) (4.6.1)

where the e, are distinct nonzero complex numbers.

Ax = (dx/y, xdx/y),

A2 = (dx2/y2, xdx2/y2, x2dx2/y2),

A3 = (dx3/y3, xdx3/y3, x2dx3/y3, x3dx3/y3, dx3/y2),

Lx = <1, x),       L2 = (1, x, x2),       L3 = (l, x, x2, x3,y).

Let z0 — 1 ■ t, zx = x ■ t, z2 = y ■ t3. Then the z, generate a field of transcendence

degree 2 and satisfy an irreducible polynomial relation

5

(z2)2 - z0 u (z, - e,z0) = 0. (4.6.2)
t = i

Thus by Proposition (4.4) the z, generate LG.

{2; 2}: The curve X is given by equation (4.6.1). help be the branch point on X.

Suppose   p = oo.   Then   L, = L(K) = <1, x>,   L2 = L(2K + p) = L(5oo) =

<1, x, x2,y}. Let z0 = 1 • t, z, = x • t, z2 = y t2. Then the z, satisfy the irreducible

relation

5

zozj - II (z, - e,z0) = 0. (4.6.3)
i = i

Hence by Proposition (4.4) the z, generate LG.

Now supposep ¥= oo. Then L, = <1, x>, L2 = <1, x, x2,/) where/has a pole of

order 1 at p. By subtracting a suitable linear combination of x and x2 from / we

may replace /by a function with a pole of odd order at infinity (since the canonical

divisor K = 2oo). By the Riemann-Roch theorem /(oo + p) = 1 + /(oo — p) = 1,
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hence L(oo + p) consists only of constants. Therefore/must have a pole of order 3

at oo. Now L3 D <1, x, x2, x3,f, xf) and by using Lemma (4.6.1) we can show that

those six functions are linearly independent. The dimension of L3 is 6, hence the

inclusion above is an equality. Similarly L4 = <1, x, x2, x3, x4,f, xf, x2/,/2) and

these functions are linearly independent. We can now exhibit candidates for

generators of L, namely let z0 = 1 • t, z, = x • /, z2 = /• t2. One can easily verify

that there are 12 monomials of (weighted) degree 5 in z0, z,, z2 and that dim L5 =

11. Thus there must be a relation of degree 5 among the z,. Moreover one can

easily see from the preceding remarks that there is no relation of degree less than 5.

Hence by Remark (4.5) and Proposition (4.4) the z, generate L and satisfy a

relation of degree 5.

{1; 2, 2, 2}: In the case g = 1, the canonical divisor K = 0. Thus Lx = L(0) =

<1>, L2 = L(px + p2 + p3) = <L/> g) where we choose/and g so that the divisor

of poles of/, (/)„ = px + p2 and (g)x = p2 + p3. Let z0 = 1 • t, z, = /• t2, z2 = g

■ t2. There is a relation of degree 6 among the z, since dim A6 = 9, while there are

10 monomials of degree 6 in the z,. Now by Remark (4.5)(1) it is sufficient to show

that there is no relation of degree < 6. Now L2 = L3 so there is no relation of

degree 3. Next we see that

L4 = L(2Px + 2p2 + 2p3) D < 1,/, g, f2, fg, g2> (4.6.4)

and dim L4 = 6. By considering the orders of the poles of the above functions at

the p¡ we can see that they are linearly independent. Thus we have equality in

(4.6.4) and there can be no relation of degree 4. Finally L4 = L5 so there is no

relation of degree 5.

{1; 2, 2}: In this case L, = L(0) = <1>, L2 = L(px + p¿ = <l,/>, L3 = L2,

L5 = L4= L(2px + 2p2) = <1,/, g> where we can choose/ and g so that (/)„, =

px + p2 and (g)x = 2px. Then one can easily verify that L6 = L7 =

<1,//2, f3, g,fg} since these functions are linearly independent. There is a relation

of degree 8 among the z, since dim As = 8 and there are 9 monomials of degree 9

in the z¡. Now by the above remarks if we let z0 = 1 • t, z, = /• t2, z2 = g ■ t4 then

there are no relations of degree less than 8, hence by Proposition (4.4) and Remark

(4.5) the zt generate LG.

{1; 2, 3}: In this case L, = <1>, L2 = <l,/>, L3 = <l,/,g> where (f)x = Po +

px and (g)x — 2px. Then one can easily verify that a basis for L„ /' = 4, 5, 6, is

given as follows.

¿4 = <hfigJ2>,        L5 = <l,/g,/2,/g>,

L6=OJ,gJ2Jg,g2,f>.

Letting z0 = 1 • t, zx = /• t2, z2 = g • t3 we see that there is a relation of degree 7

and no relation of degree < 7. Hence again by Proposition (4.4) and Remark (4.5)

the z, generate LG.

{1; «}: Let/? be the branch point, jo the Weierstrass function with pole at p. Let

/ = p and g = & and z0 = 1 • /. If n = 2, let z, = /• t4 G L4 • t4, z2 = g ■ t6 G L6 •

t6. If « = 3, let z, = /• t3 G L3 • r3 and z2 = g • ts G L5 • t5. If /i = 4, let z, = /• /3

G L3t3 and z2 = g • í4 G L4 - t4.  If « = oo, let z, = /• r2 and z2 = g • t3.  By



386 PHILIP WAGREICH

Proposition (4.4) it is sufficient to show that in each case the z, satisfy an

irreducible relation in Ld ■ td.

{l;2}:z2-4z3 + g2z*z,+g3z¿2 = 0,

(1; 3}: z2 - 4z0z3 + g2z],zx + g3zx0° = 0,

{1; 4}: z0z2 - 4z3 + g2z^zx + g3z90 = 0,

{1; oo}:z2-4z3 + g2z4z,+g3zS = 0,

where g2, g3 are complex numbers so that g2 — 27gf ^ 0. These can be seen to be

irreducible by considering them as polynomials in z2.

{l;o}, o = 2 or 3: These can be explicitly constructed as above using the fact

that on an elliptic curve X any divisor of degree n is linearly equivalent to a divisor

of the form np for some/? G X [Wl].

All of the groups on Table 1 with a > 0 are seen to have LG generated by < 3

elements by elementary application of Proposition (4.4), Remark (4.5), (A.l) and

(A.2). For example in the case of signature {0; 2, 2, 2, oo} L has two generators z0,

zxe L2 and one generator z2 G L3. Now z0 and z, generate the quotient field of

LG, hence Remark (4.5)(2) is satisfied. As for Remark (4.5)(1), there are clearly no

relations in L,, L2 or L3. Applying (A.2) with i = r = 2 we see there are no

relations in L4 and applying (A.l) with ; = 3 and j = 2 we see there are no

relations in L5.

Finally, we consider the groups with g = a = 0. We number the branch points

px, . . . ,pr G X = C, the Riemann sphere. We may assume px = 0, p2 = 1 and

p3 = oo G C and the canonical divisor is AT = -2 ■ px.

{0; 2, 2, 2, 2, 3}: In this case L, = {0}, L2 = L(-3 • 0 + 1 + oo + p4 + ps). The

latter is generated by

z0 = x3/ (x - l)(x - p4)(x - p5)

and

z, = x4/ (x - l)(x - p4)(x - p5).

Rearrange the subscripts so that ex = 3. Then L3 = L(-4 • 0 + 1 + oo + p4 + p5)

is generated by z2 = x4/(x - l)(x — />4)(x — ps). Clearly Remark (4.5)(2) is satis-

fied. To verify Remark (4.5)(1) we can easily see using (A.l) and (A.2) that the only

possible relation of degree < d = 8 is in degree 6. The monomials in L6 are z\, z\,

Zgzx, z0z2 and z3. At the point 0 these functions have a zero of order 8, 9, 10, 11 and

12 respectively. Hence by (4.6.1) they must be linearly independent. Thus Remark

(4.5)(1) is satisfied and we have the desired result.

{0; 2, 2, 2, 2, 2}: Let L2 = <z0, z,) and L5 = <z2). Several applications of (A.l)

and (A.2) show that Remark (4.5)(1) and (2) are satisfied.

{0; 2, 3, 3, 3}: Let ex = 2. Then L2 = L(-3 • 0 + 1 + oo + p4) and L3 =

L(-5 • 0 + 2 • 1 + 2oo + 2p4). Let

z0 = x3/ (x - l)(x - p4) G L2,     z, = x5/ (x - l)2(x - p4)2
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and

z2 = x6/ (x - l)2(x - p4)2.

Then L2 = <z0> and L3 = <z,, z2>. Clearly Remark (4.5)(2) is satisfied. Now by

(A.l) the only possible nontrivial relations of degree < d = 9 are in L6 or L8. The

monomials in L6 are z3,, z2, z,z2, z2. At the point 0 these functions have a zero of

order 9, 10, 11 and 12 respectively. Hence they are linearly independent. A similar

calculation in Lg shows that Remark (4.5)(1) is satisfied.

{0; 2, 2, 3, 4}: Let e, = 2, e2 = 2, e3 = 3, e4 = 4 and define

¿o = x3/ (x - l)(x - p4) G L2,    z, = x5/ (x - l)(x - p4f e L3

and

z2 = x7/ (x - l)2(x - p4f.

Then L2 = <z0>, L3 = <z,>, L4 = (z2,, z2> and L5 = (zqZ,). Now L6 contains the

monomials Zq, z2 and zQz2. At the point oo these have poles of order 3, 4 and 3

respectively. Thus any relation is of the form az3, + ßz0z2 = 0. But any such

relation factors, and hence is a consequence of a relation of lower degree. This is

impossible. There are no relations of degree 7 or 9 by Proposition (A.l). Finally,

the monomials of degree 8 are Zq, z%z2, ZqZ2 and z2. Atp4 these have poles of order

4, 4, 5 and 6 respectively. It follows easily that there is no relation of degree 8.

{0; 2, 2, 3, 3}: Let L2 = <z0>, L3 = <z,>. Then z\ and z\ are linearly indepen-

dent since Zq has a pole of order 3 at oo and z2 has a pole of order 4. Using Table 4

we see there is a z2 G L6 so that L6 = (z3,, z\, z2>. Then the fact that LG is an

integral domain and repeated application of (A.l) shows there is no relation among

the z, of degree < 12. Thus Remark (4.5) and Proposition (4.4) imply that the z,

generate LG.

{0; 2, 2, 2, 5}: Let e4 = 5. Then L2 = <z0 = x3/(x - l)(x - />4)>, L4 = <z¿, z,

= x6/(x - l)2(x - p4)3}, L5 = <z2 = x8/(x - l)2(x - p4)4>. Applying Proposi-

tions (A.l) and (A.2) we see that the only possible relation of degree < d = 12 is in

degree 10. Now the monomials of degree 10 are Zq, z0\zx, z0z2 and z2. At p4 these

have poles of order 5, 6, 7 and 8 respectively. Thus there can be no relation among

them. Thus Remark (4.5)(1) is satisfied. Clearly (4.5)(2) holds, hence we get the

desired result by Proposition (4.4).

{0; 2, 2, 2, 4} and {0; 2, 2, 2, 3}: These two cases follow easily from Proposi-

tions (A.1), (A.2) and (4.4).

Consider the groups with g = a = 0 and r = 3. In this case there is, up to

conjugacy, a unique group for each signature. We can obtain our results by using

Remark (4.5) as before. Alternately one can prove that the relation of degree d

must be irreducible and apply Proposition (4.4) directly. A third proof can be

developed using the theory of Seifert bundles. The crucial fact in that proof is that

there is a unique singularity with Seifert invariants {0; b; (ax, /?,), (a2, ß2), (a3, ß3)}

[O-W].   □
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Appendix.

Proposition (A.l). Suppose k is a field, L is a graded k-algebra, L is an integral

domain, zn G L% for n = 0, 1, 2 and

<3>L,.>«(1-/*)/( II 1-.«■).

Suppose we are given natural numbers i and j and d so that i + j < d, dim L¡ = 1,

dim Lj = Li+j, and there are no relations of degree j or i (among the zn). Then there

are no relations of degree j + i.

Proof. Let S = K[Z0, Z„ Z2], define /: S -h> L by /(Z„) = z„ and let / =

kernel/ If we grade S by letting degree Zn = qn, for n = 0, 1, 2 then/ is a graded

homomorphism of degree 0. Note that 9s(t) = 1/(11,, 1 - t9"). Let X G 5, be any

nonzero element and x = fiX). Then x ^ 0 since there are no relations of degree i.

Then we have a commutative diagram with exact rows

0    -    - J,      -      Sj      Í       Lj

0     ^     IJ+i     -+     SJ+i     Z     LJ+i

where <p(z) = XZ and ^(z) = xz. Note that no relations of degree j means

lj = {0}. Moreover dim Sj = coefficient of i, in tys = coefficient of tJ in 9L =

dim Zj. Hence / is an isomorphism. Now ^ is one-one since L is a domain; thus

dim Lj = dim LJ+t implies ^ is an isomorphism. Thus^+, is onto. But as above,

dim Lj+i = dim SJ+i and hence L+, = {0}.    □

Proposition (A.2). If L is a graded integral domain over an algebraically closed

field k and x, y G L, are linearly independent, then for all r > 1, xr, xr~xy, . . . ,yr

are linearly independent in Lri.

Proof. Suppose a0xr + a,xr~y + • • • +aryr = 0. Let / be an indeterminate

and let/(í) = 2¿_0 a¡1'- Then/(/) factors into linear factors over k,

/o) = n («,< - ßd.i=i
But then W¡=x(a¡y — ßtx) = 2'=0 a,xr_y = 0 and hence a¡y — ß(x = 0 for some

i. This implies a, = y8, = 0 and hence a, = 0, for all /'.    □
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